
Reducing False Positives of Static Program Analysis in Industry
Anonymous Author(s)

I. INTRODUCTION
Static program analysis (SPA) is commonly used to improve

software quality by analyzing code and detecting defects [1,

2] before the program runs. However, one of the major

drawbacks of static program analysis is the high rate of false

positives, which can lead to time and efforts waste as

developers must manually review each report to determine

its validity.

To mitigate this problem, researchers have proposed various

approaches. For example, TASMAN [3], for instance,

leverages symbolic execution to reduce false positives by

tracking the data flow through the program. Phoenix [4] uses

machine learning technique to detect potential vulnerabilities.

Interactive static analysis is a promising technique to solve

this problem, and EUGENE [5] is a typical representative of

this approach. By providing limited amounts of user

feedback which mark whether the report is true positive or

false positive, EUGENE can significantly reduce the number

of false positives.

II. CHALLENGES
However, EUGENE faces two main challenges when applied

in industry:

Challenge one: User feedback cannot be reused in

continuous integration process. A static program analysis

algorithm normally consists of a series of rules that are used

to identify program vulnerabilities. When a series of rules

produces a false positive, other reports derived by the same

series of rules may be also false positives. Therefore, when a

small number of false positives are flagged by user, it may

uncover more false positives derived from the same series of

rules.

However, a false positive report conformed by users is

associated to a specific code line, such as "there is a memory

out-of-bounds error in line 68." After making code changes

in a next version, it is challenging to determin whether the

memory out-of-bounds error in the previous version still

exists for two reasons:

 The code logic may have changed.

 The associated code line number may have changed.

Therefore, user feedback for a previous version cannot be

reused directly in subsequent versions. We need to find new

approaches to reuse user feedback in continuous integration

process.

Challenge two: Unsorted reports lead to inefficient

manual confirmation. A static program analysis tool

typically outputs a large number of reports, and the labor

resources are limited in practice. So manually confirming all

reports is a time-consuming task. Existing tools output

reports with a mixture of true positives and false positives

making it difficult to pick out all the true positives by hand.

Sorting the reports based on their probability of being true

positives would be beneficial to improve the efficiency of

manual confirmation.

REFERENCE
[1] Zhenjiang Dong, Hui Ye, Yan Wu, Shaoyin Cheng, and Fan

Jiang. Android Apps: Static Analysis Based on Permission

Classification[J]. ZTE Communications, 2013, 11(1): 62-66.

[2] TANG Kai. Risk Analysis of Industrial InternetIdentity

System[J]. ZTE Communications, 2020, 18(1): 44-48.

[3] Arzt S, Rasthofer S, Hahn R, et al. Using targeted symbolic

execution for reducing false-positives in dataflow analysis[C]//

Acm Sigplan International Workshop on State of the Art in

Program Analysis. ACM, 2015:1-6.

[4] Pistoia M, Tripp O, Lubensky D . Combining Static Code

Analysis and Machine Learning for Automatic Detection of

Security Vulnerabilities in Mobile Apps[M]. 2017.

[5] Mangal R, Zhang X, Nori A V, et al. A user-guided approach

to program analysis[C]// Joint Meeting on Foundations of

Software Engineering. ACM, 2015:462-473.


