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Abstract—A key challenge in software systems that are exposed
to runtime variabilities, such as workload fluctuations and service
degradation, is to continuously meet performance requirements.
In this paper we present an approach that allows performance
self-adaptation using a system model based on queuing networks
(QNs), a well-assessed formalism for software performance engi-
neering. Software engineers can select the adaptation knobs of a
QN (routing probabilities, service rates, and concurrency level)
and we automatically derive a Model Predictive Control (MPC)
formulation suitable to continuously configure the selected knobs
and track the desired performance requirements. Previous MPC
approaches have two main limitations: i) high computational
cost of the optimization, due to nonlinearity of the models;
ii) focus on long-run performance metrics only, due to the lack of
tractable representations of the QN’s time-course evolution. As a
consequence, these limitations allow adaptations with coarse time
granularities, neglecting the system’s transient behavior. Our
MPC adaptation strategy is efficient since it is based on mixed
integer programming, which uses a compact representation of a
QN with ordinary differential equations. An extensive evaluation
on an implementation of a load balancer demonstrates the
effectiveness of the adaptation and compares it with traditional
methods based on probabilistic model checking.

Index Terms—Adaptive software, Control-theory, Model pre-
dictive control, Performance requirements

I. INTRODUCTION

In software-intensive systems, runtime variability [1], [2]
is a major impediment to satisfy quantitative non-functional
properties such as performance and reliability [3]: a configura-
tion that is initially optimal with respect to some given quality-
of-service (QoS) requirements (e.g., throughput or mean time
to failure) may suddenly become poor when certain events
such as workload fluctuations or breakdowns, steer the system
toward a sensibly different operating point. In this context,
self-adaptation is a promising paradigm where uncertainty is
managed by continuously monitoring the current execution
conditions [4] and planning a reconfiguration using a model
of the system under analysis [5], [6], [7], [8], [9], [10].

Runtime adaptation introduces two main difficulties. First,
the system model must be analyzed under strict time con-
straints to ensure fast reactions. Second, an effective strategy
must be devised to explore the adaptation space (AS), i.e., the
set of all feasible system configurations that can be obtained
by tuning the adaptation knobs. Indeed, the typically huge size

of the AS represents one of the major limitations for applying
state-of-the-art approaches to real world scenarios [11].

Some recent work has looked at ways of efficiently ex-
ploring the parametric AS [12], [13], [14], also using SAT-
based methods [15], [16]; however available solutions only
concern the long-run (i.e., steady-state) performance indices.
Any adaptation strategy based on such indices (as also done
in [17], [18], [19], [20]) ignores the system’s whole time-
course dynamics. Actually, reaching a steady state may not
even be guaranteed based on the degree of variability, hence
defying any prediction and adaptation effort.

In this paper we deal with self-adaptation for performance-
related QoS requirements, and focus on software sys-
tems that can be described by queuing networks (QNs), a
well-estabilished model in software performance engineer-
ing (e.g., [21], [22], [23]). The analysis of the QN’s time-
dependent evolution suffers the well-known problem of state
space explosion, arising from the huge state space of the
underlying Markov chain. To tackle this issue we consider
a compact, approximate representation of QNs based on ordi-
nary differential equations (ODEs) [24], [25]. Viewing a QN
as a dynamical system governed by ODEs unleashes a range
of techniques that would not be otherwise applicable. For
instance, Filieri et al. use ODEs in a closed-loop control strat-
egy [26], [27], but the control acts on a single parameter. The
novelty of our approach is the formulation of the performance-
driven self-adaptation problem using model predictive control
(MPC), a well-known technique based on on-line numerical
optimization [28], which allows multiple knobs. This provides
a more expressive adaptation strategy that may automatically
act on system settings of different nature (routing probabilities,
service rates and concurrency levels).

The basic idea behind MPC is to perform an optimization
at each time step during the system evolution. The model is
initialized with the currently measured state of the system.
The optimization automatically finds the values of the control
signals, i.e., the model parameters related to the adaptation
knobs that best steer the system toward a given reference
trajectory (e.g., a QoS requirement such as throughput or
response time) over a given time horizon. Thus MPC returns
an optimal value for each control signal at each time step
across that horizon. Adaptation takes place according to the



receding horizon control paradigm: only the values for the
next time step are applied, whereas all subsequent ones are
discarded [29]. When MPC is started at the next iteration the
newly measured state will readily feed back the effect of the
adaptation into the system, and become the starting point for
the optimization over the next time horizon.

Unfortunately, applying MPC is not straightforward. Its
main limitation is the typically high computational cost. In-
deed, state-of-the-art approaches report significant overheads
even for small models and short prediction horizons [29]. For
QNs, the main sources of complexity are: (i) the nonlinearity
of the ODE model, as it needs to account for threshold-type
service rates that depend on the state of the system; (ii) the
exponential complexity of the optimization due to the multi-
dimensionality of the control signals space. The practical con-
sequence is that the execution of a single optimization problem
can be time consuming, reducing the maximum frequency
at which the controller can operate. This may significantly
degrade its effectiveness if the system under control has
faster dynamics, because the controller will not keep track
of potentially many events across two steps.

Ideally one would like to design the controller’s compu-
tational loop such that it can operate at a frequency close
to the system dynamics. As a main technical result of this
paper, we achieve this by formally translating the original
nonlinear MPC problem into a Mixed Integer Programming
(MIP) one. This is an equivalent representation where the
model becomes linear time-invariant and the control signals
become exogenous inputs, leading to a quadratic programming
problem that enjoys very efficient solution techniques [30].

We tested our MPC approach on an implementation of a
load-balancing system. Our results show its effectiveness in
adapting to events such as performance degradation of a server
and sudden changes in the system workload. Our formulation
does allow reaction times that are orders of magnitude faster
than a naive nonlinear MPC design. Indeed, we show that
such nonlinear MPC would not be able to track the dynamics
of our testbed effectively. A scalability assessment of the
computational requirements of our MIP approach shows that it
can yield control loops as fast as 0.3 s on commodity hardware
even for large prediction horizons.

Our work advances the state-of-the-art in applications of
MPC, which so far have been designed for ad-hoc solutions
to specific case studies, always considering a single adaptation
knob [31], [32], [33], [34]. In addition, it compares very
favourably against analogous runtime adaptation strategies
based on probabilistic model checking. To show this, we con-
sider the Markov chain interpretation of the QN and develop
a controller based on Markov Decision Processes using the
PRISM model checker [35], similarly to [36]. We show that the
execution time of MPC controller is essentially independent
from the system size, whereas the Markov Decision Process
suffers from state explosion to the extent that it does not return
an adaptation strategy fast enough to track runtime variability.

The remainder of this paper is organized as follows. Sec-
tion II provides an overview of our approach. Section III sets

Fig. 1: Approach overview

up the MPC problem, and the mathematical formulation is
reported in Appendix. Section IV numerically demonstrates
the effectiveness and the scalability of our approach on a real
system. Section V discusses the threats to validity. Section VI
presents related works, and Section VII concludes the paper
and outlines future work.

II. OVERVIEW AND RUNNING EXAMPLE

Figure 1 depicts the overview of the approach we propose.
a) The starting point is a system specification that can be

translated into a QN. Although the definition of such a system
specification is outside the scope of this work, we argue that it
could be based on existing model-driven approaches. Indeed,
in the literature there are techniques that translate software
designs into performance models (e.g., [37], [38], [39], [40],
[41]). We call a parametric QN the model including the
following two main characteristics of the system specification:
I1. the elements that can act as adaptation knobs, and the

range of values that each adaptation knob can take;
I2. the adaptation goals defined as desired set-points for

certain performance metrics; these represent the given QoS
requirements for the system.

Which adaptation knobs to use mainly depends on the possibil-
ity that those architectural elements may be changed at runtime
in the actual implementation. For instance, in the model of a
server, choosing its concurrency levels as an adaptation knob
requires the implementation to dynamically kill/spawn new
threads/processes. We will study such a case in Section IV.

The adaptation goal can be described in terms of set-points
for either queue lengths (how many clients/jobs are waiting
for service at a station) or throughputs (how many clients
are served per unit time). We focus on these for ease of
presentation, but we stress that this is general enough to encode
other important performance metrics such as utilization and
response time, see [42] for a discussion on this.

b) For a given parametric QN, the controller can be auto-
matically synthesized. In particular, we first obtain an ODE
system, using an approach similar to [14], [43]. Using well-
known arguments that relate the ODE dynamics to a stochas-
tic Markov-chain based interpretation of the QN behavior
(e.g., [24], [25]), the ODE solution gives an estimate of the
average queue length at each station. Importantly the model



size is independent of the number of jobs in the system, unlike
in Markov chains for QNs where the size grows exponentially.

c) The ODE system will then be discretized in time such that
it can give a finite set of constraints for the MPC problem. The
constraints further encode the feasible ranges of the adaptation
knobs and the values for all other parameters, which are
assumed to be fixed (i.e., non-controllable). The adaptation
goal is translated into the objective function of the MPC
problem. This can be systematically turned into the equivalent
MIP problem, which can be efficiently solvable by a wide
array of both commercial and open-source solvers.

d) The MPC philosophy leads to a natural implementation
as a MAPE-K loop controller. In the Monitor phase the current
system state is measured and used as input parameter for
updating the system model embedded in the MIP formulation.
The solution of the optimization problem implements the
Analysis Planning phase. Finally, in the Execution phase the
computed control signals are applied to the running system.
The Knowledge block is thus represented by the model con-
straints embedded in optimization problem.

Running example: We use a load balancing system but
we remark that the proposed approach is applicable to QN
models of any topology. Load balancing is an established
design technique in performance engineering [44], whose goal
is to distribute incoming requests/jobs across several compu-
tational units in order to prevent overload conditions and the
consequent performance degradation. Once a request enters
the system, at runtime a dispatcher (the load balancer) selects
a particular station to which the processing is delegated. This
system can be configured by tuning a number of parameters,
related to both the software and the hardware, such as the
dispatcher’s strategy and the concurrency level (i.e., how many
servers can work in parallel) at each station. Events that may
jeopardize the performance of the system include: degradation
of the quality of a server (e.g., to account for a hardware
issue); or unexpected increases in the system workload (e.g.,
as a consequence of peak/off-peak patterns).

The goal of self-adaptation is to efficiently explore the
system’s configuration space guided by QoS requirements such
as throughput maximization and balancing of the station’s
load, under given resource constraints such as the maximum
concurrency level at the stations.

III. EFFICIENT QOS ADAPTATION

In this section we precisely define all the steps informally
overviewed in Section II.

A. Parametric QN

Let us consider a set of stations S. A parametric QN is
described by a set of parameters, denoted by P , as follows:

• si ∈ P is the concurrency level of station i, with i ∈ S;
• µi ∈ P is the service rate of station i, with i ∈ S;
• pi,j ∈ P is the routing probability, i.e., the probability

that a request from station i goes to j, with i, j ∈ S;

Fig. 2: Parametric QN for a load balancing system

To formally define the adaptation space, we denote by
V ⊆ S the subset of adaptation knobs, consisting of the user-
defined parameters that can be controlled at runtime. For each
adaptation knob v ∈ V we indicate by vi and v̄i the minimum
and maximum values allowed for that parameter, respectively.
For each parameter that is fixed, i.e., p ∈ S−V , p̂ is its given
value. Finally we denote by xi(0), i ∈ S the initial condition,
i.e., the initial number of jobs assigned to station i.

We consider a set of R QoS requirements. For the r-th
requirement, we let kindr be either Thi or Qi, to denote the
throughput or the queue length at some station i, respectively.
Analogously, the corresponding setpoint is denoted by valuer.

Similarly to [13], [14], [16] we focus on a model supporting
the specification of a single class of jobs. We comment on the
limitations of this assumption and on possible ways to mitigate
it in Section VII. To formally justify the ODE approximation,
the service rates µi are assumed to be exponentially dis-
tributed. However, using [14] our framework can be extended
to the nonexponential case via an approximation based on
phase type distributions [45].

Figure 2 depicts the parametric QN for the load balancing
system. Station N0 is the dispatcher while stations N1 and
N2 are the two processing ones. The adaptation knobs are
indicated in red. In Section IV we consider the adaptation goal
to have balanced queue lengths at stations N1 and N2 with
15 jobs. In our framework this can be done by having R = 2
requirements with kind1 = Q1, value1 = 15, kind2 = Q2,
and value2 = 15. As intuition suggests, if stations N1 and N2

are identical, then the optimal strategy chooses equal routing
probabilities p0,1 = p0,2 = 1/2. However, this does not hold
any longer if, at runtime, there is an event that breaks this
symmetry, such as the degradation of the service rate of either
server. Intuitively, such a degradation can be compensated by
increasing the probability that a job is sent to the faster server
and/or increasing the concurrency level of the degraded one.

B. ODE Model

The ODE model is automatically derived from the paramet-
ric QN and it gives estimate of the average queue lengths xi(t)
as a function of the QN parameters (i.e., service rate, routing
probabilities, number of servers). The evolution of the QN is
described by the following ODE system:

dxi(t)

dt
= −µi(t) min{xi(t), si(t)}

+
∑
j∈S

pj,i(t)µj(t) min{xj(t), sj(t)}



with initial condition xi(0), for all i ∈ S.
The quantity µi(t) min{xi(t), si(t)} represents the overall

nonlinear instantaneous throughput of each station: when the
queue length xi(t) in station i is less than the available servers
si(t), then the xi(t) jobs are served in parallel; otherwise
some of the jobs are enqueued and only si(t) of them are
processed at once. The throughputs may be weighted by the
routing probabilities pj,i(t) because a station may receive only
a fraction of the jobs elsewhere.

The validation of the ODE model has been performed by
comparing prediction results against real measurements in
order to assess its accuracy, see Section IV for further details.

C. Nonlinear MPC Formulation

Discrete-time model: In order to employ MPC, we rely
on a time discretization of the ODE model with a finite step
size ∆t. MPC finds the optimal values of the adaptation knobs
over a time horizon of H steps. Simple algebraic manipula-
tions yield a formulation that reads, in matrix notation:

x(k + 1) = A(x(k)) + x(k) (1)

where x(k) = (xi(k))i∈S are the queue lengths of the QN at
step k (i.e., at time k∆t) and matrix A(x(k)) has components
ai,j(x(k)), with i, j ∈ S, given by:

ai,j(x(k)) =

{
−µi(k)∆tmin{xi(k), si(k)} , i = j

pj,i(k)µj(k)∆tmin{xj(k), sj(k)} , i 6= j.

Objective function: We now define the objective function
of the MPC optimization problem, starting from the QoS
requirements in the parametric QN. Specifically, for each
time step k = 0, 1, . . . ,H − 1, we consider the vector of
performance metrics m(k) =

(
m1(k), . . . ,mR(k)

)
where

each mi(k), 1 ≤ i ≤ R can be either of the following:

mi(k)=

{
µj(k) min{xj(k), sj(k)} if kind(Ri) = Thj
xj(k) if kind(Ri) = Qj

Similarly, the required set points are collected in the vectors
r(k) = (r1(k), . . . , rR(k)), with ri(k) = value(Ri).

Our goal is to minimize the error between the performance
indices and their reference values, i.e., e(k) = m(k) − r(k),
across all time steps in the horizon k = 0, 1, . . . ,H−1. Thus,
overall the objective function is defined as follows:

minimize
H−1∑
k=0

e(k)T e(k) (2)

where (·)T indicates matrix transposition.
The discretization in (1) allows us to embed the dynamics

of the model as a discrete set of constraints in the optimization
problem by unfolding (1) over H time steps:

x(1) = A(x(0)) + x(0)

x(2) = A(x(1)) + x(1)

. . .

x(H) = A(x(H − 1)) + x(H − 1)

(3)

To these, we add:

si(k) ∈ {si, si + 1, . . . , si}, si(k) ∈ V (4)
µ
i
≤ µi(k) ≤ µi, µi(k) ∈ V (5)

0 ≤ pi,j(k) ≤ 1,
∑
j∈S

pi,j(k) = 1, pi,j(k) ∈ V (6)

si(k) = ŝi, si(k) ∈ S − V (7)
µi(k) = µ̂i, µi(k) ∈ S − V (8)
pi,j(k) = p̂i,j , pi,j(k) ∈ S − V (9)

for k = 0, . . . ,H − 1

where (4)–(6) define the ranges for the adaptation knobs, and
(7)–(9) set the values for the fixed parameters. We remark that
the specification of (4) includes integer variables because they
represent server multiplicities which may vary discretely.

MPC is the problem of minimizing (2) subject to the
constraints (3)–(9). In addition to all QN parameters, the
decision variables of this problem are also the vectors x(1),
x(2), . . . , x(H); these represent the predictions on future states
of the system once the optimal values of the adaptation knobs
are applied. Instead, x(0) is the vector of the current queue
lengths, which are measured and plugged into the problem
at runtime. The efficiency issues of this MPC setup (as will
be demonstrated numerically in Section IV) are due to the
nonlinearities from the multiplication of decision variables,
i.e., pi,j(k)µi(k) and the threshold-type service dynamics
arising from expressions such as min{xi(k), si(k)}.

In the next section we will use this nonlinear problem as
the basis for developing an equivalent MIP formulation.

D. MIP Formulation

The MIP formulation relies on a linear time-varying system
with auxiliary, “virtual” adaptation knobs which will be then
related to the original ones. We define the new ODE system:

dxi(t)

dt
= cni(t) +

∑
j∈S

(−cnj(t) + cpj,i(t)), i ∈ S, (10)

where cni(t) represents the virtual service rate for station i
and cpi,j(t) is a virtual routing probability. Setting cn(k) =
(cni(k))i∈S and cp(k) = (cpi,j(k))i,j∈S , (10) can be written

x(k + 1) = x(k) + cn(k) + 1(−cn(k)) + 1cp(k) (11)

where 1 denotes a matrix of all ones of appropriate size.
In Appendix A we demonstrate an exact correspondence

between the original nonlinear MPC problem (2) and the MIP
formulation over the variables appearing in (11). This leads us
to state the following theorem:

Theorem 1. Denoting by S = {µ∗i (k), p∗i,j(k), s∗i (k)} an
optimal solution to (2), there exists an MPC problem based on
an MIP formulation with dynamics (11) such that its optimal
solution S ′ = {cn′i(k), x′i(k), cp′i,j(k), s′i(k)} satisfies:



µ∗i (k) =

{
− cn′

i(k)
x′
i(k)∆t if x′i(k) ≤ s′i(k)

− cn′
i(k)

s′i(k)∆t if x′i(k) > s′i(k)

p∗i,j(k) =
cn′i(k)− cp′i,j(k)

cn′i(k)
, s∗i (k) = s′i(k).

for all k = 0, . . . ,H − 1.

This is of key relevance in our formulation since all nonlinear-
ities have been removed and solutions are efficiently derived.

E. Adaptation Logic

The MIP problem can be used for performance self-
adaptation. The algorithm is re-iterated at each time step:
a) Feed the MIP program with the state of the QN by

assigning:
- the current queue length at station i to variable xi(0);
- the fixed service rates of station i to variables µ̂i;
- the fixed routing probability between station i and

station j to variables p̂i,j ;
- the fixed number of servers of station i to the variable
ŝi;

b) Solve the MIP problem, obtaining the optimal sequence
cn′i(k), x′i(k), cp′i,j(k), s′i(k), , for k = 0, . . . ,H − 1.

c) With Theorem 1, obtain the values for the concrete adap-
tation knobs, µ∗i (k), s∗i (k), and p∗i,j(k) for k = 0 only,
discarding the others.

d) Apply µ∗i (0), s∗i (0), and p∗i,j(0) to the system.
By discarding the future predictions and running the opti-
mization at every time step instead (i.e., the receding horizon
control), the system can react to changes as early as possible.
We postpone to Section VII the discussion on how to track
the state of the system and parameterize the QN model.

MPC parameter setting. In our approach, the modeler is
required to choose two parameters: the ODE discretization
step ∆t and the optimization horizon H . Here we discuss
how these parameters may be chosen in practice.

The discretization step ∆t affects the quality of the nu-
merical solution of the ODE model for the QN network—the
smaller ∆t the more accurate the solution. On the other hand,
H represents the optimization horizon in terms of the number
of such ∆t steps. So, for a given time interval of interest,
smaller values ∆t require larger values of H . This has an
effect of the computational cost of the optimization because
constraints and decision variables grow with H , see (3)–(9).

Since the optimization is performed at runtime, the time to
complete an entire adaptation loop (consisting of measuring
the current state of the system, running MPC, and applying the
control) should be comparable to the dynamics of the system
under control. Indeed, an adaptation loop that is slow relatively
to the system will not be able to keep track of the possibly
many events occurring during the adaptation itself.

Taking into account these constraints, we propose the fol-
lowing strategy for choosing H and ∆t:

i) Choose a duration A of the adaptation loop comparable
to the system dynamics. This can be done by examining

Fig. 3: HAT architecture

the service rates of the QN model, which provide an
estimation of the time required to process the different
activities in the system.

ii) Fix a value of ∆t that ensures an accurate enough
ODE solution. This can be done by solving the ODE
with standard numerical solvers, imposing a desired level
of accuracy. Their output will provide the sequence of
discrete time steps to maintain that accuracy.

iii) Choose a value of H such that the adaptation loop can
execute within A time units. This can be done off-line
by running tests on the hardware on which the controller
will be deployed.

With this procedure, it may be possible that H becomes small
enough that it does not cover the time of the adaptation loop
D, i.e., H · ∆t ≤ A. This invalidates the controller. To
tackle this issue, steps i)–iii) may be repeated by, for instance,
considering a faster hardware for the controller (to decrease
A) or accepting a larger tolerance by increasing ∆t.

Finally, we remark that it is possible to take into account
the interplay between A and H in the MPC setup: one
may additionally impose that the control signals do not vary
for a number of ∆t steps equal to A, so as to exclude
optimal control sequences that vary faster than A, which is
the technological constraint of the problem. Formally, this is
done by extending the constraint set (3)–(9) with

v(0) = v(1) = . . . = v(c),

v(c+ 1) = v(c+ 2) = . . . = v(2c),

and so on, for all decision variables v ∈ V , where c is the
least integer such that c∆t ≥ A. We used this approach in the
experiments reported in the next section.

IV. EVALUATION

We evaluate the effectiveness and the scalability of the
proposed MPC approach on a real system. A virtual machine
hosting the experimental infrastructure is publicly available at
https://goo.gl/rpWCHv.

A. System Description and Implementation

For conducting our study we relied on an in-house devel-
oped web application, called HAT (Heavy Task Processing
application), meant to serve user requests characterized by a
CPU-intensive load. HAT was deployed as a NodeJs based
load-balancing system running on the Ubuntu server 14.04
Linux distribution. Figure 3 depicts the architecture: C1 and
C2 represent the processing nodes, LB identifies the dis-
patcher, while CTRL is the controller component. Component



TABLE I: System parameters for the validation experiments

Parameter Value Description

µ0 0.1 User’s think rate
s0 ∞ Users think activities are independent
s1 1 Number of cores for node C1
s2 1 Number of cores for node C2

p01, p02 0.5 Balanced routing
p10, p20 1 User issues a new request after service

W represents the workload generator, issuing requests to
LB. In particular, following the load balancing paradigm (see
Section II), user requests are randomly distributed across the
processing components according to the routing probabilities
p01, p02. Requests are processed on the server using PHP and
reported to the user as a HTML page.

We implemented W as a multi-threaded Python based
workload generator. Each thread runs an independent concur-
rent user that iteratively accesses the system, interposing an
exponentially distributed delay (i.e., the think time) between
successive requests. Nodes LB, C1, and C2 are NodeJs
servers equipped with runtime reconfiguration capabilities. In
particular, relying on the HTTP-PROXY and Cluster libraries
we enabled the reconfigurations of the routing probabilities
used by LB, and the number of active processes and CPU cores
assigned to C1 and C2. These reconfigurations are triggered
at runtime by the CTRL component, in a MAPE-K [46] loop,
through operating system signals (see Figure 3). CTRL ran
the MIP optimizations using the well-known CPLEX tool. To
this end, we defined a model to text transformation (M2T)
suitable to translate the system of a ODEs in a Julia [47]
specification that, combined with the JuMp library, provides a
common programming interface (API) for different optimiza-
tion solvers. Finally, we monitored the queue lengths of C1
and C2 using the netstat utility.

To facilitate the replicability of our experiments, we de-
ployed all nodes of HAT on a single Linux machine equipped
with 24 GB of RAM, 400 GB SSD and 12 Xeon cores at
2.0 GHz. Each HAT node was assigned dedicated CPU cores.
B. Model Parametrization and Validation

The model for this system is the QN in Figure 2. Station N0

represents the workload generator. The service rate accounts
for both the think time of the users and the time spent by
the controller to dispatch the requests. Indeed, since the latter
was negligible, CTRL is not explicitly represented in the QN.
Instead, stations N1 and N2 model the processing nodes of
HAT. The number of servers s1 and s2 represent the number
of CPU cores assigned to the processing nodes.

With our hardware configuration we measured the average
time to serve a request as 0.3125 s. Hence we fixed rate
parameters µ1 = µ2 = 1/0.3125 = 3.20. To validate the
model, we executed the system with a balanced configuration
consisting of equal routing probabilities and one core for both
C1 and C2, while increasing the population of circulating
users, denoted by W , with W ∈ {10, 25, 50, 75, 100}. Each
user has an average think time of 10 s (drawn from an
exponential distribution). The corresponding parameters of the
QN model are summarized in Table I.
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Fig. 4: QN model validation

For each value of W we measured the following average
indices in steady state: throughput, response time, and uti-
lization of the processing nodes. We verified that a session
duration of 10 minutes was sufficient to attain steady state in
all cases. Figure 4 depicts the validation results by comparing
the steady-state prediction values of the QN model (dashed
lines) with the measured ones of the real system averaged
on 30 repetitions. The error bars on the measurements curves
show the 95% confidence intervals. The results demonstrate
that the model can predict the trends of the real system
satisfactorily. We consider the errors acceptable, especially
since a fairly simple three-equation deterministic model ab-
stracts away from many low-level interactions (e.g., virtual
machine/host operating system, message passing, networking
stack) which introduce sources of disturbance, in addition to
the stochasticity of the workload.
C. Adaptation Evaluation

We evaluated the effectiveness of our approach by studying
two non trivial adaptation scenarios:
S1) Hardware degradation. Starting from a balanced set-up

where the processing nodes C1 and C2 are identical, we
inject degradation events where the service rate of C1 is
drastically reduced. The objective of the adaptation is to
properly redirect users to C2 with higher probability.

S2) Workload fluctuation. We inject an increasing number of
users into the system. The objective of the adaptation is to
keep the queue lengths at C1 and C2 balanced and around
a target value, by acting on both the routing probabilities
and the number of cores at the processing nodes.
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Fig. 5: Hardware degradation experiment

1) Hardware degradation: We synthesized hardware degra-
dation events by allowing node C1 to perform six times
the amount of original processing of a request whenever
instructed to do so by our experimental infrastructure (by
means of a signal triggered by the workload generator). Thus,
upon degradation the service rate of C1 was assumed to
be µ1 = 3.20/6 ≈ 0.53. We ran the system for 8-minute
long sessions under a workload of W = 70 concurrent
users, where we alternated periods of normal operation (i.e.,
µ1 = 3.20) and degradation every 2 minutes. During normal
operation we considered settings as in Table I (the number
of server cores was fixed). The control objective has been
set to find the value for the routing probabilities p01, p02

that maximize the system throughput. Following the strategy
described in Section III-E, we fixed an ODE sampling interval
∆t = 0.1 s and an activation loop A = 0.5 s after a profiling
and simulation phase. This allowed a control horizon H = 10
which ensured a look-ahead of two adaptation loops. In that
phase we numerically verified that the chosen parameters did
not reduce the accuracy of the ODEs steady state solution.

We ran the system both with and without the controller,
for comparison. Figure 5a reports the average throughput
dynamics in both cases averaged over 30 repetitions (the x-axis
reports time steps with a granularity of 0.2 s). The occurrence
of hardware degradation events is indicated by the dotted
vertical lines. The straight horizontal lines indicate the max-
imum theoretical system throughputs under the degradation
condition, simply estimated as the sum of the processing rates
of nodes C1 and C2 (equal to 3.73).

During normal operations, the controlled system and the
uncontrolled achieve the same throughput. This is because the
balanced deployment (p01 = p02 = 0.5) represents the optimal
solution. When degradation kicks in, the effect of the control is
evident: the throughput of the uncontrolled system decreases
to as little as 1.2 requests per second, while the controlled
system attains values around the theoretical maximum.

Maintaining equal probabilities when C1 is degraded causes
the majority of user requests to be waiting at C1. Instead, the
controller tends to increase p02 during degradation. These con-
siderations are supported by Figure 5b, showing the statistics
(averages and standard deviations) of the optimal values of the
control signals. During degradation, the controller sends 84%
of requests to C2 on average. Instead without degradation, the
MIP returns the balanced configuration as the optimal one.

2) Workload fluctuation: We designed this experiment by
starting with a workload of W = 80 users and introducing
10 new users into the system every minute, until reaching
W = 120. Here the control objective is to maintain the queue
lengths of C1 and C2 at the fixed threshold, i.e., Ql = 15.
This represents a critical condition for the balanced single-
server deployment, from Figures 4a and 4b it is possible to
observe that the system could not maintain the requirement on
its own for larger workloads than 90 concurrent users. Here,
the decision variables are the routing probabilities of the load
balancer and s1 and s2, i.e., the number of cores for C1 and
C2, respectively, with s1, s2 ∈ {1, 2}. For the uncontrolled
case used for comparison we chose s1 = s2 = 1 and
p01 = p02 = 0.5. We also chose H = 10,∆t = 0.1, A = 0.5
following similar reasoning made for the previous scenario.

Figures 6a and 6b report the queue lengths dynamics (aver-
aged over 30 repetitions) for C1 and C2, respectively. The dot-
ted vertical lines denote the points when the workload changes.
The straight horizontal lines indicate the average queue length
computed at each workload level. At low workload levels
(W = 80 and W = 90) the behavior of both cases is similar
since the balanced single-server version is still suitable to fulfil
the requirement Ql = 15, as expected from Figures 4a and
4b. However, for larger workloads the queue lengths of the
uncontrolled system start to increase. Larger values of W
lead to less balanced queues in the uncontrolled case. This
is not in contradiction with the intuitive argument that they
should be equal on average, because this holds true for a large
enough number of replicas. Instead, the 30 replicas analyzed
do show a strong stochastic noise. This is robustly controlled
by our MPC approach which considerably reduces the queue
length difference between C1 and C2 at all workload levels.
More importantly it keeps the queue lengths always under the
prescribed threshold on average.

Figure 6c reports the statistics (averages and standard devia-
tions) of the optimal values of the control signals during each
level of workload intensity. The average number of servers
used increases with W . To reach the target for W = 120
the optimal strategy used about 1.5 servers on average. The
statistics on the routing probabilities confirm that the average
optimal strategy is to direct users to either server equally likely.

D. Scalability Evaluation

In this section we provide the numerical evidence that the
main technical result of the paper, namely the equivalent
MIP formulation and correspondence through Theorem 1,
appears to be essential for the applicability of MPC to the
QN models previously examined. We argue this by reporting
considerably larger runtimes for the solution of the original
nonlinear program, which preclude its use in our experiments.
To this end, we used the well-known Couenne algorithm [48],
[49] for solving the nonlinear instances. We remark that since
our problem formulation is convex, its solutions are globally
optimal; thus for a fair comparison we compared against a
nonlinear solver that searches a global solution as well.
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Fig. 6: Workload fluctuation experiment

TABLE II: Optimization runtimes (TO: timeout after 120 s)

Hardware degradation Workload fluctuation

H MINLP(s) MIP(s) MINLP(s) MIP(s)

5 1.1735 0.0070 3.2633 0.0103
8 2.6391 0.0093 38.8508 0.0229

12 16.9091 0.0117 TO 0.0530
15 TO 0.0150 TO 0.0950
20 TO 0.0215 TO 0.2260

We parameterized the optimization problems for both the
adaptation scenarios of Section IV-C as a function of the
control horizon H , since it represents the largest source of
complexity for both the linear and the nonlinear formulations.
Each entry of Table II gives the optimization runtimes (ex-
pressed in seconds), averaged over 100 adaptation steps. In
the experiments we set a timeout of 120 s.

Three main observations can be made based on these
results. i) The solution of our formulation is obtained orders
of magnitude faster than the globally optimal solution of
the equivalent nonlinear problem for the most challenging
examples; this promotes our approach as an effective one when
fast adaptation times are required, being able to optimize over
300 variables in few tenths of a second. ii) As expected, thanks
to the linearity of the MIP problem, the required solution time
does not explode when the control horizon H is increased. iii)
The workload fluctuation scenario is harder than the hardware
degradation one for equal values of H . This is due to the larger
number of integer variables involved, required to represent the
multiplicities of CPU cores at C1 and C2. We stress how, in
that case, even for smaller values of H the nonlinear solution
becomes practically inapplicable while our formulation is still
feasible for H = 20. For instance, MINLP controller would
not be able to track the workload fluctuation experiment since
its average solution time with H ≥ 10 is larger than the time
between changes of the workload (i.e., 60 s).

E. Comparison with Markov Decision Processes

In this section we compare our MIP formulation against
an analogous one using probabilistic model checking, when
both are employed for solving the same adaptation step of
the Workload fluctuation scenario. We used the Markov chain
interpretation of a QN (which is approximated by our ODEs),

TABLE III: MDP comparison (TO: timeout after 120 s)

MIP Markov Decision Processes

W Runtime(s) Runtime(s) # States # Transitions

80 0.0037 71 3 018 789 334 732 743
90 0.0036 87 3 805 074 421 958 628

100 0.0040 TO 4 682 259 519 272 613
110 0.0038 TO 5 650 344 626 674 698
120 0.0041 TO 6 709 329 744 164 883

and developed a Markov Decision Process (MDP) controller
in the PRISM model checker [35], similarly to what presented
in [36]. In order to allow the adaptation of routing probabilities
in the discrete state space, we discretized the interval [0, 1] in
100 steps, a granularity used by real-world load balancers [50],
[51]. Table III compares the runtimes for the first adaptation
step as a function of the workload level W (varying from 80
to 120), and with a control horizon fixed to H = 15.

We observe that MIP is orders of magnitude faster than
MDP, which appears to be inapplicable for that adaptation
scenario since its solution time is larger than the time between
two workload variations (i.e., the control signals are computed
when the workload level is already changed). Furthermore, due
to the state space explosion the MDP runtime depends on the
workload size, while the MIP formulation is almost unaffected.
We remark, however, that MDP is a general approach to self-
adaptation, whereas our MIP formulation is specific to QNs
(for any topology).

V. THREATS TO VALIDITY

The building of a QN model brings about two main
concerns: the definition of the structure/topology and its pa-
rameterization. These are, in general, specific to the system
under study. However we remark that there are already robust
solutions for particular classes of systems. For well-known
software architectures such as multi-tiered and load-balancing
systems there is substantial literature with validated models
(see Section VI). Moreover, as discussed in Section II, many
approaches have been proposed to derive QN models from
higher-level software designs (e.g., [37], [38], [39]).

In our experiments we considered a straightforward param-
eterization of the parameters that were not adaptation knobs
(e.g., the service rates) performing it off-line. For the hardware



degradation scenario, we assumed to detect the decrease in the
service rate when it happened. These choices were made for
simplicity, the parameterization being outside the scope of this
work. However, we remark that our MPC formulation naturally
allows for a more careful on-line parameterization: the current
estimates may be encoded in the optimization problem as
new constraints. On-line estimation can be done using: (i)
measurement-based approaches that monitor the actual system
and update parameters accordingly, e.g., with Kalman filters
[52], [53], [54] and Bayesian estimators [55]; (ii) model-based
predictions to derive missing parameters [56], [57]; (iii) user
defined probability distribution functions [58], [59].

As already discussed in Section IV-D, our simple load
balancing system would not be controllable using a naive
nonlinear MPC approach. It is easy to see that the number
of variables in the MPC problem grows quadratically with
the system size. A thorough study of how this impacts on
the practical usability of our approach will be part of our
future work as will further experimentation in other hard-
ware/software settings, such as different servers (e.g., Apache
with graceful restart) or deployment platforms.

VI. RELATED WORK

Research challenges for self-adaptive software systems [60]
are provided in [61], [62], [11]. Our approach focuses on two
main critical points of self-adaptation, i.e., expressiveness and
effectiveness, as discussed hereafter.

Adaptation expressiveness. Some approaches aim to control
and adapt the admission of incoming requests. In [32] a load
control mechanism for a web-server system with control-
theoretic methods is designed. The system is modeled as a
G/G/1 queue and the server is controlled by an admission
system that collects the steady-state server utilization and
adapts the probability of incoming requests. In [18] a QN
model predictor is used to strengthen the adaptive feedback.
Similarly to [32], the controller checks steady-state perfor-
mance results vs requirements, and adjusts the admitting
probability to meet such requirements. Predictions of the QN
model are demonstrated to provide a better accuracy for the
adaptation. Our work differs from [32], [18] since it considers
transient dynamics and is not restricting to admission control.

In [63], [34] an MPC algorithm is developed to forecast
incoming workload and derive adaptation strategies on cloud
resources. Differently from our approach, the optimization is
limited to the allocation of resources, and performance results
are computed with the MVA algorithm, without considering
transient dynamics. In [64] a control-theoretic solution to
the dynamic capacity provisioning for cloud is presented.
Specifically, the number of active servers is adapted with
MPC to reduce the total operational cost in terms of energy
consumption. Our approach is different since our adaptation
is not limited to switching on and off servers.

Adaptation effectiveness. In [33] an auto-scaling method-
ology for cloud resources is presented for web application
providers. It predicts the workload of web requests and returns
the optimal number of VMs by utilizing queueing theory.

However, the optimization results to be a complex nonlinear
function that is hard to simplify by mathematical methods. On
the contrary, our approach enables the formulation of the QoS
adaptation problem as an efficient MIP one.

Further approaches that make use of control theory formal
guarantees are [26], [27] where a closed-loop strategy is
proposed to enable an adaptive software system’s dynamic
behavior. In [26] the designed controller continuously de-
termines the value of a single control variable (e.g., the
processor’s clock speed) which represents a setting for the
corresponding tunable parameter. In [27] QN performance
models are investigated, and each queueing center is equipped
with a controller that considers predefined values of service
rates and provides as output the rate of that specific QN center
while considering external disturbances. Differently from [26],
[27], our approach simultaneously considers multiple adaptive
parameters of different nature, and the optimal control pro-
vides as output values to scale service rates, number of servers,
and routing probabilities at the same time.

Recently, Baresi et al. presented a technique to auto-scale
the CPU cores of containerized applications by means of
a planner which consists of a discrete-time feedback con-
troller [65]. Instead, our approach considers the system tran-
sient dynamics relying on a model predictive technique with
receding control horizon to forecast the system evolution.

VII. CONCLUSION

In this paper we have presented an efficient self-adaptive ap-
proach to continuously meet performance requirements using
model predictive control. Selected adaptation knobs of a QN
(such as routing probabilities, service rates, and concurrency
levels) are automatically and continuously configured.

A technical limitation of our own approach is the single-
class assumption in the QN model. We remark however, that
for some real-world systems this can be sufficiently expressive,
e.g., [17]. Furthermore, the linearization technique proposed
in this paper can be straightforwardly applied to other more
expressive models such as stochastic Petri nets (which feature
minimum-like expressions for the firing rates due to the
amount of tokens at each incoming place, e.g., [66]). Instead,
in future work we aim to develop similar ideas for other multi-
class models such as fluid layered queuing networks [42].

APPENDIX

In this Appendix we describe how to get our linear represen-
tation from the original one of (1), which contains nonlinear
terms such as pi,j(k)µi(k)∆tmin{xi(k), si(k)}. To do so,
we initially consider the case where xi(k) ≤ si(k); then we
remove the nonlinearity by using appropriate constraints to
account for the fact that the actual instantaneous throughput
cannot exceed µi(k)si(k).

Under the assumption that xi(k) ≤ si(k) the consistency
between (1) and (11) is ensured by the relations:

cni(k) = −µi(k)xi(k)∆t

−cni(k) + cpi,j(k) = pi,j(k)µi(k)xi(k)∆t
(12)



Solving (12) as a function of the variables µi(k) and pj,i(k)
gives:

µi(k) = − cni(k)

xi(k)∆t
, pi,j(k) =

cni(k)− cpi,j(k)

cni(k)
(13)

Substituting these expressions in (5) and (6) we get the
following constraints for the new variables:

cni(k) ≥ −xi(k)∆tµi (14)
cni(k) ≤ −xi(k)∆tµi (15)

cpi,j(k) ≥ cni(k) (16)∑
j∈S

cpi,j(k) = cni(k)(|S| − 1) (17)

To account for the nonlinearity of the service rates, we
interpret the expressions for throughput as follows:

µi(k) min{xi(k), si(k)}

This means that at most si(k) jobs can be served at once (i.e.,
a concurrency-level limitation). Using the upper bound for the
service rate

µi(k) ≤ µi (18)

we can write:

µi(k)xi(k) ≤ µisi(k)⇐⇒ µi(k) ≤ µisi(k)

xi(k)
(19)

The basic idea under these equations is that we are trans-
lating the upper bound on the throughput into an upper bound
of the service rate µi(k). In particular, if xi(k) > si(k) then
µisi(k)
xi(k) < µi; thus the maximum service rate for station i

is limited by constraint (19), instead, if xi(k) ≤ si(k) then
µisi(k)
xi(k) ≥ µi hence the service rate of station i is limited

by the resource constraints (18) as if the system was linear.
Using (13), we are able to translate the constraints (18)-(19)
over the original adaptation knobs into linear constraints over
the virtual ones, yielding:

cni(k) ≥ −µixi(k)∆t, cni(k) ≥ −µisi(k)∆t (20)

A similar reasoning is made for the lower bound of each
service rate. The constraint

µi(k) ≥ min

{
µ
i
,
µ
i
si(k)

xi(k)

}
(21)

captures the fact that the chosen rate cannot be less than its
given lower bound µ

i
. The second argument of the above

minimum expression, instead, handles the case when xi(k) >
si(k). The minimum allowed service rate will be scaled down
by the factor si(k)/xi(k) with respect to the user-defined
minimum value µ

i
. This ensures that the minimum throughput

allowed in the linear model it is always equal to the minimum
throughput specified in the original formulation. In this case,
as expected, using (12) Equation (21) can be written as

cni(k) ≤ −µ
i
∆tmin{xi(k), si(k)}

We remove the nonlinearity of the above min expression by
introducing the binary variables di(k), for each i ∈ S. With

the further variables dmini(k), i ∈ S, we encode the value
min{xi(k), si(k)} using the constraints:

dmini(k) ≥ xi(k)− αdi(k)

dmini(k) ≥ si(k)− α(1− di(k))

dmini(k) ≤ xi(k)

dmini(k) ≤ si(k)

(22)

where α is an arbitrary scaling factor chosen such that α ≥
|xi(k) − si(k)| for ∀i ∈ S. This leads to the desired upper
bound for cni(k):

cni(k) ≤ −µ
i
dmini(k)∆t (23)

We develop an objective function consistent with (2), specif-
ically we denote by m′(k) =

(
m′1(k), . . . ,m′R(k)

)
the vector

of performance metrics to be tracked where each mi(k),
1 ≤ i ≤ R is defined as follows:

m′i(k) =

{
−cnj(k) if kind(Ri) = Thj
xj(k) if kind(Ri) = Qj

Similarly to (2), r(k) is the vector of reference values for each
time step k with ri(k) = value(Ri), and e′(k) = m′(k)−r(k)
is the error to be minimized. The objective function for the
MIP formulation is given by:

f :=

H−1∑
k=0

e′(k)T e′(k) (24)

Putting all these results together, the MIP formulation results
to be specified as follows:

minimizeu′(k) f (25)
u′(k) = {cni(k), cpi,j(k), si(k), di(k)}

subject to:
Eqs. (11), (16), (17),

(20), (22), (23),
si(k) = ŝi, si(k) ∈ S − V (26)
cni(k) = −µ̂ixi(k)∆t, µi ∈ S − V (27)
cpi,j(k) = cni(k)(1− p̂i,j), pi,j ∈ S − V (28)

for k = 0, . . . ,H − 1,

where with (26)–(28) we set the values for the QN parameters.
The integer variables di(k) ensure that the lower bounds

used during the optimization are consistent with the user-
defined values µi. Indeed, the removal of (22) from our
formulation leads the minimum throughput µ

i
xi(k) to increase

by a factor xi(k)
si(k) when xi(k) > si(k).

It is worth noticing that the objective function is composed
only of quadratic terms over the decision variables, making
the above MIP program a quadratic one and still efficiently
solvable with standard convex optimization techniques. This
theoretical formulation results to be of key relevance for the
efficiency of our MPC formulation.
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