Towards Compositional Software Engineering

Jan Bosch VP, Engineering Process Professor of Software Engineering

September 22nd, 2010

"If you are not moving at the speed of the marketplace you're already dead – you just haven't stopped breathing yet"

Jack Welch

Three Key Take-Aways

 Increasing SPEED trumps ANY other improvement R&D can provide to the company – it is the foundation for everything else

 Software engineering is at an inflection point – from "integration-oriented" to "compositionoriented" software engineering

 In a world of continuous deployment and software ecosystems, automation is fundamental

Overview

Vem är jag? Wie ben ik? Who am I?

- Introducing Intuit
- Speed matters: implications for software engineering
- Building *delightful* products
- Software ecosystems
- Implications for software engineering automation
- Conclusion

From Research to Industry

Industrial development

Industrial research

Academia (+ consulting)

Intuit Company Information

Who We Are...

A leading provider of business and financial management solutions

- Founded in 1983
- FY 2010 revenue of \$3.5 billion
- Intuit is traded on the NASDAQ: INTU
- Employs around ~8,000 people
- Major offices across the U.S. and in Canada and the United Kingdom
- More than 40 million people use our QuickBooks, Payroll, Payments, TurboTax, Digital Insight and Quicken products and services.

Mission: why we exist as a company...

Intuit

Proven formula: lots of delighted customers...

Help families find \$1,000 annually... \$400M in consumer savings

Help small businesses be 20% more profitable... Customers revenues ~20% of U.S. GDP, pay 1 in 12 American workers

Help people get the maximum tax refund... \$33B in tax refunds, 1 out of every 3 tax returns e-filed

Improve FI profit per customer by 20%... IB customers equal to the 5th largest U.S. bank

Help accountants be 20% more productive today... Serve half of all accounting firms INTUIT

Proven Formula: talented & engaged employees

Most Admired: Software Industry

Strong Employee Engagement

Fortune Top 100 Places to Work

Secular Shifts: transforming our company...

Trends

Demographic Shifts

Value Creation Shifts

Technology Shifts

Geographic Shifts

Implications

Intuit is driving: <u>"Connected Services"</u>

- Software-Advantaged Services
- Software-as-a-Service
- Platform-as-a-Service

Intuit is embracing:

Social

capitalize on our large and growing customer bases to unleash the collective power of user contributions, behaviors and data

Mobile

deliver "in the pocket" when that is the preferred solution

Global

employ the world's talents to find & solve important problems around the globe

intuit

Overview

- Vem är jag? Wie ben ik? Who am I?
- Introducing Intuit
- Speed matters: implications for software engineering
- Building *delightful* products
- Software ecosystems
- Implications for software engineering automation
- Conclusion

Where are we going? How fast?

Accelerating User Adoption

Value Creation Shifts

Emerging companies highlight importance of user contribution and social connectedness

		Level of User Contribution				
Founded	1984	1995	2004			
1M users	~6 years	30 months	10 months			
50M users	N/A	~80 months	~44 months			

Need for Speed in R&D – An Example

- Company X: R&D is 10% of revenue, e.g. 100M\$ for a 1B\$ product
- New product development cycle: 12 months
- Alternative 1: improve efficiency of development with 10%
 - -10 M\$ reduction in development cost
- Alternative 2: reduce development cycle with 10%
 -100M\$ add to top line revenue (product starts to sell 1.2 months earlier)

No efficiency improvement will outperform cycle time reduction

Integration-centric software engineering

software product lines global software development software ecosystems

causing

unacceptable complexity and coordination cost

Web 2.0 Rules to SW Development (1/2)

Wikis

Focus on Simplicity

Jov of Use

XALA

CSS-Design

Team size

• 3x3 = 3 persons x 3 months (Google)

2 pizza rule (Amazon)

Principle: What is required is a team, where the roles are defined and each member has the right skill for that role, and following a lean, agile, method — all focused on the customer.

Release cycle

Weeks, not months

Continuous deployment

Principle: short cycles are key for agility, speed and decoupling

OpenAPIs

Architecture

• 3 API rule

Mash-ups and web services

RSS

 Principle: architecture provides simplicity, compositionality and is designed in parallel with software development

Focus on one thing: Minimize Dependencies

Web 2.0 Rules to SW Development (2/2) Focus on Simplicity **Requirements and Roadmapping** The POWER of Public Humiliation Each team (3 persons) announces what to release Some (QA) requirements are shar rd, e.q. performance, latency, etc. • Principle: the cost of over much lower than the cost of synchroni maps and plans Process BITS CMMi and mity approaches address the sympto ensive illusion causing LOTS of esign chitecture not process should manage • Prir ation and alignment COOr

From the Cathedral to the Bazaar

Implications for Software Engineering

From process to architecture From centralized to decentralized From planning to experimentation From long cycles to short cycles • From large teams to small teams From internal to ecosystem • From CMM(I) to agile From cathedral to bazaar

Classification – Five Approaches

Overview

- Vem är jag? Wie ben ik? Who am I?
- Introducing Intuit
- Speed matters: implications for software engineering
- Building *delightful* products
- Software ecosystems
- Implications for software engineering automation
- Conclusion

Designing Pleasurable Products

Hierarchy of Consumer needs

pleasure

usability

functionality

"People seek pleasure"

Jordan's four pleasures framework (based on Tiger 1992):

Physio-pleasure

• Pleasure from sensory organs, e.g. tactile feedback

Socio-pleasure

• Enjoyment from social interactions

Psycho-pleasure

• Cognitive and emotional responses, e.g. usability

Ideo-pleasure

Supporting people's values,
e.g. green values

Jordan, P (2002): Designing Pleasurable Products, Taylor and Francis.

"Design for Delight" at Intuit

= WOW

Going <u>beyond customer expectations</u> in delivering <u>ease and benefit</u>, evoking positive emotion throughout the customer journey... ...So folks buy more & tell their friends

Benefit = the improvement in the customer's life or business outcome

Growing our business is the goal

The "How"

Uncover what's most important to customers

In that focus, create better solutions, within available resources

Overview

- Vem är jag? Wie ben ik? Who am I?
- Introducing Intuit
- Speed matters: implications for software engineering
- Building *delightful* products
 - Software ecosystems
- Implications for software engineering automation
- Conclusion

Towards Web 3.0

3 Atomisation. Globalisation and networking technologies will enable firms to use the world as their supply base for talent and materials. Processes, firms, customers and supply chains will fragment as companies expand overseas, as work flows to where it is best done and as information digitises. As a result, effective collaboration will become more important. The boundaries between different functions, organisations and even industries will blur. Data formats and technologies will standardise.

^{*}My prediction would be that Web 3.0 will ultimately been seen as applications which are pieced together. There are a number of characteristics: the applications are relatively small, the data is in the cloud, the applications can run on any device, PC or mobile phone, the applications are very fast and they're very customizable. Furthermore, the applications are distributed virally: literally by social networks, by email. You won't go to the store and purchase them... That's a very different

application model than we've ever seen in computing. — Eric Schmidt

Intuit

Toward Product Composition ...

From Pre-Packaged Offerings to Customer-Assembled

One View of the Intuit Ecosystem

Classifying Software Ecosystems

end-user programming	MS Excel, Mathematica, VHDL	Yahoo! Pipes, Microsoft PopFly, Google's mashup editor	none so far
application	MS Office	SalesForce, eBay, Amazon, Ning	none so far
operating system	MS Windows, Linux, Apple OS X	Google AppEngine, Yahoo developer, Coghead, Bungee Labs	Nokia S60, Palm, Android, iPhone
category platform	desktop	web	mobile

Comparing Existing Ecosystems

			SalesForce	eBay	Facebook	Amazon	LongJump	Ning	PopFly	AppEngine	Android
		Customer									
	Co	nfigurability									
	Co	onsistent UX									
Dynamic composition											
Ecosystem developer											
	E	Equal access									
Be	ehaviora	l integration									
I	Hosting	alternatives									
3	3 rd party	data access									
Dev	veloper	environment									
E	xternal o	lata storage									
	[DAAA access									
		Charges									
Pla	atform a	rchitecture									
	Platfo	orm services									
Desk	top app	lication sync									
E	External	ecosystems									
		No/limited supp	ort		Some support			Supporte	b		N/A

Overview

- Vem är jag? Wie ben ik? Who am I?
- Introducing Intuit
- Speed matters: implications for software engineering
- Building *delightful* products
- Software ecosystems
 - Implications for software engineering automation
- Conclusion

Implications

- Simplify, simplify, simplify
 - Make it easy to do the right thing, e.g. no versioning
 - Decouple components, teams and organizations
- Continuous Deployment
- Scale: Make teams effective in large systems
- Support software ecosystems
- Help manage design erosion

Simplify, Simplify, Simplify

Our life is frittered away by detail. Simplify, simplify, simplify! I say, let your affairs be as two or three, and not a hundred or a thousand; instead of a million count half a dozen, and keep your accounts on your thumb-nail – Henry Thoreau (Walden)

- Each design decision adds design rules and constraints that need to be observed by engineers
- Collectively, these decisions cause major complexity that decrease productivity
- What to do: Hide it, platformize it, make it happen automatically

Decoupling: No Versions!

Intuit

Decouple Components and Teams

Sequential feature development (90%)

Concurrent development, independent deployment enforced (8%)

Second States (3) Exploratory development (2%)

Strive For Continuous Deployment

- Software engineer checks in code => system compiles, links, tests and deploys the new code
- The automated QA infrastructure, NOT the engineer, is responsible for making sure the system does not go down
- If that's too much, aim for Independent Deployment
- If that's too much, aim for Release Trains

Open research topic: tool support for continuous deployment in safety/business critical systems

Scale: Make teams effective in large systems

- Components, especially over time, build major dependencies, complicating development
- Component teams are dependent on each other along the lines of the component dependencies
- Feature teams tend to make changes in all components affected by the feature, adding risk and affecting release schedules
- Systems that require software assets from multiple organizations suffer even more from dependencies between components

Open research topic: tool support for feature teams that mitigate aforementioned risks

Support Software Ecosystems

- Software ecosystems do not allow for process-based coordination
- Architecture forms the basis for coordination
- Enforced process by platform owner major source of frustration for external developers

Open research topic: Tool support to minimize/remove "process-based" interaction

Evolve architecture; fight erosion

Overview

- Vem är jag? Wie ben ik? Who am I?
- Introducing Intuit
- Speed matters: implications for software engineering
- Building *delightful* products
- Software ecosystems
- Implications for software engineering automation
 Conclusion

Intuit

Speed

Increasing **SPEED** trumps ANY other improvement R&D can provide to the company – it is the foundation for everything else

As a process, methods or tools professional, there is only ONE measure that justifies your existence: how have you helped teams move faster?
Don't optimize efficiency, optimize speed

Inflection Point

 Software engineering is at an inflection point – from "integration-oriented" to "compositionoriented" software engineering

- Design for automated compositionality, not manual integration
- Minimize dependencies
- Focus on small teams of engineers, give them direction and get out of their way

Automated Software Engineering 2.0

 In a world of continuous deployment and software ecosystems, automation is fundamental

- Simplify, simplify, simplify
- Continuous Deployment
- Scale: Make teams effective in large systems
- Support software ecosystems
- Help manage design erosion

Not My Job?!

Strong LEADERSHIP needed from YOU

Software Engineering Research

What it is NOT

- Science, i.e. proving that something can be done
- Research is leading
- Validation can be done "invitro"
- Researchers understand what is important
- Research can focus on one narrow, often technological, aspect
- A niche activity

What it is

- Engineering, i.e. establish the benefit of a solution
- Industrial practice is ahead of research
- Validation occurs "in-vivo"
- Without industrial experience, relevant research is hard
- Research needs to be holistic, addressing organizational, process and business issues
- Supporting a multi-billion dollar industry and critical

Intuit

