
Intuit Proprietary & Confidential

September 22nd, 2010

Towards Compositional Software Engineering

Jan Bosch
VP, Engineering Process
Professor of Software Engineering

Intuit Proprietary & Confidential 2

“If you are not moving at the
speed of the marketplace
you’re already dead –
you just haven’t stopped
breathing yet”

Jack Welch

Intuit Proprietary & Confidential

Three Key Take-Aways

• Increasing SPEED trumps ANY other improvement
R&D can provide to the company – it is the
foundation for everything else

• Software engineering is at an inflection point –
from “integration-oriented” to “composition-
oriented” software engineering

• In a world of continuous deployment and
software ecosystems, automation is fundamental

3

Intuit Proprietary & Confidential

Overview

• Vem är jag? Wie ben ik? Who am I?
•  Introducing Intuit
• Speed matters: implications for software engineering
• Building delightful products
• Software ecosystems
•  Implications for software engineering automation
• Conclusion

Intuit Proprietary & Confidential

From Research to Industry

Professor of software
engineering
(RuG, Netherlands)
(BIT, Sweden)

Academia
(+ consulting)

Head of research lab
(Nokia, Finland)

Industrial
research

Engineering Process
(Intuit, USA)

Industrial
development

?

Intuit Proprietary & Confidential

Who We Are…

A leading provider of business
and financial management
solutions

Intuit Company Information

•  Founded in 1983

•  FY 2010 revenue of $3.5 billion

•  Intuit is traded on the NASDAQ: INTU

• Employs around ~8,000 people

• Major offices across the U.S. and in Canada and
the United Kingdom

• More than 40 million people use our QuickBooks,
Payroll, Payments, TurboTax, Digital Insight and
Quicken products and services.

Intuit Proprietary & Confidential

Mission: why we exist as a company…

Financial… making & saving
money, grow & profit

“Better Money Outcomes”

Productivity… turning drudgery
into time for what matters most

Compliance… without even
having to think about it

Confidence… from the wisdom &
experience of others

To be a premier innovative growth company
that improves our customers’ financial lives so profoundly…

they can’t imagine going back to the old way

7

…and those who serve them

We serve these end customers

Consumers Small Businesses

Accountants Financial
Institutions

Health
Care

Players

Intuit Proprietary & Confidential

Proven formula: lots of delighted customers…

Help small businesses be 20%
more profitable… Customers
revenues ~20% of U.S. GDP,
pay 1 in 12 American workers

Help people get the
maximum tax refund…

$33B in tax refunds,
1 out of every 3

tax returns e-filed

Help families find $1,000
annually… $400M in

consumer savings

Help accountants be 20%
more productive today…

Serve half of all
accounting firms

Improving

Lives
40M

Improve FI profit per
customer by 20%…

IB customers equal to the
5th largest U.S. bank

8

Intuit Proprietary & Confidential

Proven Formula: talented & engaged employees

Most Admired: Software Industry

Fortune Top 100 Places to Work

Strong Employee Engagement

9

Intuit Proprietary & Confidential

Secular Shifts: transforming our company…

Value Creation Shifts

Technology Shifts

Geographic Shifts

Intuit is driving:
“Connected Services”

•  Software-Advantaged
Services

•  Software-as-a-Service

•  Platform-as-a-Service

capitalize on our large and
growing customer bases to

unleash the collective power of
user contributions, behaviors and

data

deliver “in the pocket” when
that is the preferred solution

employ the world’s talents
to find & solve important

problems around the globe

Implications

Demographic Shifts

Trends

10

Intuit Proprietary & Confidential

Overview

• Vem är jag? Wie ben ik? Who am I?
•  Introducing Intuit
• Speed matters: implications for software engineering
• Building delightful products
• Software ecosystems
•  Implications for software engineering automation
• Conclusion

Intuit Proprietary & Confidential

6000 BC

Agrarian age

Industrial age

Information age

Bioterial age

1760

360 years

50 years

20 years

Time

Ec
on

om
ic

 v
al

ue
 a

dd
ed

Source: “The Coming Biotech Age”, Richard W. Oliver- McGraw-Hill

Where are we going? How fast?

Intuit Proprietary & Confidential

Emerging companies highlight importance
of user contribution and social connectedness

Value Creation Shifts

Level of User
Contribution

Accelerating User Adoption

Founded 1984 1995 2004

1M users ~6 years 30 months 10 months

50M users N/A ~80 months ~44 months

Intuit Proprietary & Confidential

Need for Speed in R&D – An Example

• Company X: R&D is 10% of revenue, e.g. 100M$
for a 1B$ product
• New product development cycle: 12 months

• Alternative 1: improve efficiency of development
with 10%
– 10 M$ reduction in development cost

• Alternative 2: reduce development cycle with 10%
– 100M$ add to top line revenue (product starts to
sell 1.2 months earlier)

No efficiency improvement will
outperform cycle time reduction

Intuit Proprietary & Confidential 15

yearly cycles

roadmapping
& req. mgmt

pre-integrated products

build & maintain

meetings

global R&D

software product lines
global software development

software ecosystems

causing

unacceptable complexity and
coordination cost

Integration-centric software engineering

Intuit Proprietary & Confidential

Web 2.0 Rules to SW Development (1/2)

16
Focus on one thing: Minimize Dependencies

Team size
•  3x3 = 3 persons x 3 months (Google)
•  2 pizza rule (Amazon)
•  Principle: What is required is a team, where the roles are defined and

each member has the right skill for that role, and following a lean,
agile, method — all focused on the customer.

Release cycle
•  Weeks, not months
•  Continuous deployment
•  Principle: short cycles are key for agility, speed and decoupling
Architecture
•  3 API rule
•  Mash-ups and web services
•  Principle: architecture provides simplicity, compositionality and is

designed in parallel with software development

Intuit Proprietary & Confidential

Web 2.0 Rules to SW Development (2/2)

Requirements and Roadmapping
• Each team (3 persons) announces what they intend to release
• Some (QA) requirements are shared across the board, e.g.
performance, latency, etc.
• Principle: the cost of overlapping teams is much lower than
the cost of synchronized, planned roadmaps and plans

Process
• CMMi and other process maturity approaches address the
symptoms, not the root cause
• Control is a very expensive illusion causing LOTS of
inefficiency in the system
• Principle: Architecture not process should manage
coordination and alignment

17
From the Cathedral to the Bazaar

Intuit Proprietary & Confidential

Towards Composition …

18

teams are self-selected
(2 pizza rule)

components are backward

compatible and negotiate interfaces

architecture prioritizes simplicity

(3 API rule)

architectural compositionality

teams can be external
(ecosystem)

Intuit Proprietary & Confidential

Implications for Software Engineering

• From process to architecture
• From centralized to decentralized
• From planning to experimentation
• From long cycles to short cycles
• From large teams to small teams
• From internal to ecosystem
• From CMM(I) to agile
• From cathedral to bazaar

19

Intuit Proprietary & Confidential

Classification – Five Approaches

traditional product
development

ecosystem
development

integration-centric
development

release
groupings

release trains

independent
deployment

open ecosystem

Intuit Proprietary & Confidential

Overview

• Vem är jag? Wie ben ik? Who am I?
•  Introducing Intuit
• Speed matters: implications for software engineering
• Building delightful products
• Software ecosystems
•  Implications for software engineering automation
• Conclusion

Intuit Proprietary & Confidential

What Do These Product Have in Common?

Intuit Proprietary & Confidential

Designing Pleasurable Products

Hierarchy of
Consumer needs

Jordan, P (2002): Designing Pleasurable Products,
Taylor and Francis.

”People seek pleasure”

Jordan’s four pleasures framework
(based on Tiger 1992):

Physio-pleasure
•  Pleasure from sensory
 organs, e.g. tactile feedback

Socio-pleasure
•  Enjoyment from social
 interactions

Psycho-pleasure
•  Cognitive and emotional
 responses, e.g. usability

Ideo-pleasure
•  Supporting people’s values,
 e.g. green values

functionality

usability

pleasure

Intuit Proprietary & Confidential

“Design for Delight” at Intuit

Going beyond customer expectations in
delivering ease and benefit, evoking positive
emotion throughout the customer journey…
…So folks buy more & tell their friends

= WOW

Growing our business is
the goal

Benefit = the
improvement in the
customer’s life or
business outcome

Intuit Proprietary & Confidential

Observe Understand Prototype lots
of Ideas

Test Pick a Focus

Fast
 Iteration

Intuit Design4Delight Framework

} Uncover what’s most
important to customers

In that focus, create better solutions,
within available resources

The “How”

}
Repeat

Intuit Proprietary & Confidential

Overview

• Vem är jag? Wie ben ik? Who am I?
•  Introducing Intuit
• Speed matters: implications for software engineering
• Building delightful products
• Software ecosystems
•  Implications for software engineering automation
• Conclusion

Intuit Proprietary & Confidential

Towards Web 3.0

“My prediction would be that Web 3.0 will ultimately been seen as applications which are pieced
together. There are a number of characteristics: the applications are relatively small, the data is in

the cloud, the applications can run on any device, PC or mobile phone, the applications are very
fast and they're very customizable. Furthermore, the applications are distributed virally: literally by

social networks, by email. You won't go to the store and purchase them... That's a very different

application model than we've ever seen in computing.”—Eric Schmidt

Intuit Proprietary & Confidential

Toward Product Composition …

platform BG platform/
InnerSource

product

Integration-
oriented

Hierarchical
platform

Compositional
platform

Architectural guidelines guarantee composability

Components/subsystems guarantee quality

InnerSource
Reference
integrations
are created

Intuit Proprietary & Confidential

From Pre-Packaged Offerings to Customer-Assembled

platform

application

traditional

componentized
platform

offering

contemporary

ecosystem
platform

each customer his/her offering

the vision

3rd party asset

prosumer asset

Intuit Proprietary & Confidential

e
co

sy
st

e
m

 p
la

tf
o

rm

One View of the Intuit Ecosystem

World of opportunities: jobs to be supported and
automated

app app app

app

non-differentiating, generic functionality, e.g.
subscription, billing, entitlement, etc.

domain functionality, e.g. accounting, customer,
employee, payments, etc.

compositional applications, e.g. accounting,
customer, employee, payments, etc.

U
X

, w
o

rk
flo

w
 &

 d
a
ta

co

m
p

o
sitio

n

b
re

a
d

th
 o

f
a
p

p
li
ca

b
il
it

y

v
a
lu

e
 t

o
 i
n

d
iv

id
u

a
l
u

se
r

app app app

app app app app

app app

app

app app app

experiment
&
innovate

p
la

tf
o

rm
iz

e

maintain
sustainable
competitive
advantage

co
m

m
o

d
it

iz
e

minimize TCO
through putting
in OSS or replace
with COTS

Intuit Proprietary & Confidential

Classifying Software Ecosystems

31

Intuit Proprietary & Confidential

Questions One Might Ask …

customer data

Intuit ecosystem platform

DAAA Data Ecosystem developer data

Intuit
domain
service

Intuit
domain
service

Intuit
domain
service

Intuit
domain
service

Intuit
domain
service

Intuit
domain
service

Eco
dev.

domain
service

Eco
dev.

domain
service

Eco
dev.

domain
service

Eco dev. joblet

Eco dev. joblet

Eco dev. joblet

Intuit ecosystem portal

Eco dev. joblet

Eco dev. joblet

Eco dev. joblet

Intuit joblet

Intuit joblet

Intuit joblet

Intuit joblet

Intuit joblet

other portals

Eco dev. joblet

Eco dev. joblet

other platforms

Eco dev. joblet

Intuit joblet

desktop apps

Can ecosystem
developers store data

outside Intuit’s
repository?

Are other platforms
allowed in the ecosystem

and, if so, are these
integrated?

Can ecosystem
developers access

aggregated customer
(DAAA) data?

Can ecosystem developers
host their solutions outside

Intuit’s hosting
infrastructure?

Does Intuit provide
access to data defined by
ecosystem developers to

other ecosystem
developers

Does Intuit provide a
development

environment for
ecosystem developers?

How do we manage
variability & configurability

for customers?

What mechanisms exist to insert
ecosystem domain services into other

domain service workflows?

How do we maintain
consistent user experience

between Intuit and
ecosystem joblets?

Do ecosystem joblets have the
same access to domain services

and data as Intuit joblets?

Do we sync desktop and
cloud data real-time or

batch-wise?

How do we manage dynamic
composition of joblets by

customers?

How rich is the set of basic services provided by the
platform, e.g. authentication, authorization,
monitoring, billing, search, marketing, etc.

Do we charge developers for
developing and hosting in our

ecosystem (beyond revenue share)?

Intuit Proprietary & Confidential

Comparing Existing Ecosystems

Intuit Proprietary & Confidential

Overview

• Vem är jag? Wie ben ik? Who am I?
•  Introducing Intuit
• Speed matters: implications for software engineering
• Building delightful products
• Software ecosystems
•  Implications for software engineering automation
• Conclusion

Intuit Proprietary & Confidential

Implications

• Simplify, simplify, simplify
– Make it easy to do the right thing, e.g. no versioning
– Decouple components, teams and organizations

• Continuous Deployment

• Scale: Make teams effective in large systems

• Support software ecosystems

• Help manage design erosion

35

Intuit Proprietary & Confidential

Simplify, Simplify, Simplify

 Our life is frittered away by detail. Simplify, simplify, simplify!
I say, let your affairs be as two or three, and not a hundred or
a thousand; instead of a million count half a dozen, and keep
your accounts on your thumb-nail – Henry Thoreau (Walden)

• Each design decision adds design rules and constraints that
need to be observed by engineers

• Collectively, these decisions cause major complexity that
decrease productivity

• What to do: Hide it, platformize it, make it happen
automatically

36

Intuit Proprietary & Confidential

Decoupling: No Versions!

37

Shared Component,
e.g. Engine, etc.
V1.01

Provided interface
(SOA style, maximal
decoupling)

required interface

Configuration
 interface

Syntactically and semantically equivalent
until a deliberate sunset is planned No offering or shared component may

depend on the implementation

Automated test suites
for each interface

Shared Component,
e.g. Engine, etc.
V1.02

Frequent (4 week) releases of
production quality component

Respect Independent Deployment:
still usable in context where this interface can not be bound

Intuit Proprietary & Confidential

Decouple Components and Teams

Sequential feature development (90%)
Concurrent development, independent deployment enforced

(8%)
Exploratory development (2%)

platform

engine

offering

iteration i iteration i+1 iteration i+2

Fx

Fy

Fz

1

1
2

Fy

2

Fx

Fz

Independent deployment!!!

3

Fx

Fy

Fz

3

stubs

Intuit Proprietary & Confidential

Strive For Continuous Deployment

• Software engineer checks in code => system compiles, links,
tests and deploys the new code

• The automated QA infrastructure, NOT the engineer, is
responsible for making sure the system does not go down

•  If that’s too much, aim for Independent Deployment

•  If that’s too much, aim for Release Trains

39

Open research topic: tool support for continuous
deployment in safety/business critical systems

Intuit Proprietary & Confidential

Scale: Make teams effective in large systems

• Components, especially over time, build major dependencies,
complicating development

• Component teams are dependent on each other along the
lines of the component dependencies

•  Feature teams tend to make changes in all components
affected by the feature, adding risk and affecting release
schedules

• Systems that require software assets from multiple
organizations suffer even more from dependencies between
components

40

Open research topic: tool support for feature teams
that mitigate aforementioned risks

Intuit Proprietary & Confidential

Support Software Ecosystems

• Software ecosystems do not allow for process-based
coordination
• Architecture forms the basis for coordination
• Enforced process by platform owner major source of
frustration for external developers

41

Open research topic: Tool support to
minimize/remove “process-based” interaction

Intuit Proprietary & Confidential

Evolve architecture; fight erosion

42

Intuit Proprietary & Confidential

Overview

• Vem är jag? Wie ben ik? Who am I?
•  Introducing Intuit
• Speed matters: implications for software engineering
• Building delightful products
• Software ecosystems
•  Implications for software engineering automation
• Conclusion

Intuit Proprietary & Confidential

Speed

 Increasing SPEED trumps ANY other improvement
R&D can provide to the company – it is the
foundation for everything else

• As a process, methods or tools professional, there is
only ONE measure that justifies your existence:
how have you helped teams move faster?
• Don’t optimize efficiency, optimize speed

44

Intuit Proprietary & Confidential

Inflection Point

• Software engineering is at an inflection point –
from “integration-oriented” to “composition-
oriented” software engineering

• Design for automated compositionality, not manual
integration
• Minimize dependencies
• Focus on small teams of engineers, give them
direction and get out of their way

45

Intuit Proprietary & Confidential

Automated Software Engineering 2.0

• In a world of continuous deployment and
software ecosystems, automation is
fundamental

• Simplify, simplify, simplify
• Continuous Deployment
• Scale: Make teams effective in large systems
• Support software ecosystems
• Help manage design erosion

46

Intuit Proprietary & Confidential

Not My Job?!

Strong LEADERSHIP needed from YOU

Intuit Proprietary & Confidential

Software Engineering Research

What it is NOT
• Science, i.e. proving that
something can be done
• Research is leading

• Validation can be done “in-
vitro”
• Researchers understand what
is important
• Research can focus on one
narrow, often technological,
aspect
• A niche activity

What it is
• Engineering, i.e. establish the
benefit of a solution
•  Industrial practice is ahead of
research
• Validation occurs “in-vivo”

• Without industrial experience,
relevant research is hard
• Research needs to be holistic,
addressing organizational,
process and business issues
• Supporting a multi-billion
dollar industry and critical

48

Intuit Proprietary & Confidential 49

THANK YOU

Mount Shasta (CA) - 4,322m, July 2009

Intuit Proprietary & Confidential Page 50

