UCEd: atool for Use Cases based requirements acquisition*

Stéphane S. Somé
School of Information Technology and Engineering (SITE) University of Ottawa
800 King Edward, P.O. Box 450, Stn. A Ottawa, Ontario, K1IN 6N5, Canada
ssome@site.uottawa.ca

Abstract

We present UCEd a toolset for use cases edition, use
cases verification, prototype generation, and simulation.
UCEd accepts use cases expressed in a constrained form
of natural language. UCEd integrates the use cases in finite
state machines using domain knowledge, and provides an
interface for system simulation.

1. Background

Requirements engineering includes the elicitation, un-
derstanding and representation of customers needs for a sys-
tem. It is a critical tasks in software engineering; the source
of a great number of software failures.

The main reason for requirements induced failures is a
gap existing between customers and the system develop-
ment process. This gap is due to the manual nature of the
requirement engineering process. Requirements are infor-
mally sought by analysts from customers who then pursue
others development activities according to what they un-
derstand about customers needs. The understanding of re-
quirements is generally represented as an abstract specifica-
tion often not comprehensible by customers. That added to
the difficulty to automatically ensure consistency between
specifications and informal requirements makes difficult to
ascertain, before later phases of a development process, if
a specification is right according to its requirements and if
there are no missing requirements.

A Use Case is "the specification of a sequence of actions,
including variants, that a system (or a subsystem) can per-
form, interacting with actors of the system” [4]. A use case
describes a piece of behavior of a system without reveal-
ing the internal structure of the system. As such use cases
are effective means for requirements elicitation and analy-
sis, and various software development approaches including
the Unified Software Development Process [3] recommend
use cases for requirements description.

Use cases are useful to capture and document require-
ments from the point of view of customers. They can also
be used for prototyping and validation. The partial nature of
use cases allows several customers with different views of
a same system to provide different but possibly overlapping
use cases describing its behavior. The partial nature also
helps developing a system by incremental addition of ser-
vices. A problem however, is that it is often difficult to vi-
sualize the global behavior resulting from the combination
of the use cases. Moreover, separately defined use cases
may be inconsistent one with the other and the set of use
cases may be incomplete.

The objective of the Use Case Editor (UCEd) is to pro-
vide automatic support to use cases acquisition, use cases
verification, prototype generation, and use cases simulation.
UCEC takes a set of related use cases written in a restricted
form of natural language and generates and executable spec-
ification that integrates the partial behaviors of the use cases
[2]. UCEd uses information contained in an application do-
main model (a high-level class model of the system) for the
syntactical analysis of use cases and specification genera-
tion.

UCEd approach is rooted in the Unified Modeling Lan-
guage (UML) [4]. The domain model is a UML class di-
agram [5], and we assume the use cases definition and se-
mantics of the UML specification. The UML seems appeal-
ing because of the great acceptance it has gained among
software developers and tool vendors. An advantage of us-
ing UML is the possibility of integration of UCEd to the
various existing UML based methodologies and tools.

2. UCEd process

UCEd is a toolset that includes a Use Case Capture mod-
ule, a Domain Model Editor, a Use Case Composition Mod-
ule and a Use Case Simulator. Figure 1 describes UCEd
requirement engineering process involving these tools. The
process starts with an early view of requirements consist-
ing of “rough” domain model and use cases, and produces
a high-level state model specification of the system as well



domain model

|

use cases

|

- domain elements
Domain Model > Use Case Capture
Editor ~ - module
11 domain elements 1 1
domain u
elements /S
changesto | UseCases changesto
“domain | COMPOSItion I iqp cageg
elements module
State
model
Y
changes to Use Case changesto
domain Simulator | use cases
elements

Figure 1. UCEd process. The boxes are
tools and the arrows show data elements ex-
changed between these tools.

as clarified use cases and domain model.

A domain model is a high-level class model that captures
domain concepts and their relationships. Domain concepts
are the most important types of objects in the context of a
system. The domain concepts include the system as a black
box with the “things” that exist or events that transpire in
the environment in which the system works [3]. We use
UML class diagrams extended with stereotypes [4] to de-
scribe domain models. UCEd Domain Model Editor pro-
vides a tree interface for domain model capture. UCEd uses
XMI [4] for interoperability with UML diagramming tools
giving the possibility to load domain models created with
tools such as ArgoUML[1].

The Use Case Writing module allows the edition of
UML use case models and use cases contents. Use case
models are described in a tree form. As for the domain
model, UCEd allows importation of XMI represented use
cases models. The Use Case Writing module also provides
a field-based editor for use cases contents specification. Use
cases elements are written in a restricted form of natural lan-
guage. The benefit of a field-oriented form is that use case
writers do not have to worry about delimiting the different
parts of their use cases. UCEd checks use cases and the do-
main model against each other and reports inconsistencies
and omissions.

The Use Case Composition module implements a finite
state transition machine (FSM) generation algorithm de-
scribed in [2]. The Use Case Composition module analyzes

use cases and merges their partial behaviors with a FSM ob-
tained from previously composed use cases. The Use Case
Composition module uses information in the domain model
to drive the composition process. Some inconsistencies in
the use cases and in the domain can be found and reported
during use cases compaosition.

Use cases composition results in a FSM specification
that combines all the use cases partial behaviors. Finite
state transition machines can be used as prototypes. The
Use Case Simulator generates a prototype with a graphi-
cal user interface from the FSM specification. Using the
interface, UCEd allows “playing” the use cases giving an
opportunity to validate requirements and uncover possible
interactions between use cases.

References

[1] ArgoUML project. http://argouml.tigris.org.

[2] An approach for the synthesis of state transition graphs from
use cases. In Proceedings of the International Conference
on Software Engineering Research and Practice (SERP’03),
volume I, pages 456-462, june 2003.

[3] 1. Jacobson, G. Booch, and J. Rumbaugh. The Unifi ed Soft-
ware Development Process. Addison Wesley, 1998.

[4] OMG. OMG Unified Modeling Language Specification ver-
sion 1.4, 2001.

[5] J. Rumbaugh, I. Jacobson, and G. Booch. The Unifi ed Mod-
eling Language Reference Manual. Addison-Wesley, 1998.



