
J-Orchestra: Automatic Java Application Partitioning (a Demonstration Proposal)

Eli Tilevich and Yannis Smaragdakis
College of Computing

Georgia Institute of Technology

Atlanta, GA 30332

{tilevich, yannis}@cc.gatech.edu

http://j-orchestra.org

Abstract

This demonstration will present J-Orchestra [1] -- an 

automatic partitioning system for Java programs. J-

Orchestra takes as input a Java application in bytecode 

format and transforms it into a distributed application, 

running across multiple Java Virtual Machines. To accom-

plish such automatic partitioning, J-Orchestra uses byte-

code rewriting to substitute method calls with remote 

method calls, direct object references with proxy refer-

ences, etc. The partitioning is performed without program-

ming and without making any modifications to the JVM or 

its standard runtime classes. The main novelty and source 

of scalability of J-Orchestra is in its approach to dealing 

with unmodifiable code (e.g., Java system classes). The 

approach consists of an analysis algorithm to determine 

what references can leak to what parts of unmodifiable 

code, and a rewrite algorithm that maintains the refer-

ences in the right form for the code that manipulates them. 

Introduction
The focus of distributed computing has been shifting 

from �distribution for parallelism� to �resource-driven dis-

tribution�, with the resources of an application being 

remote to each other or to the computation. Because of this 

shift, more and more distributed applications need to be 

adapted for distributed execution. Examples abound. A 

local database grows too large and needs to be moved to a 

powerful server, becoming remote to the rest of the appli-

cation. An application wants to redirect its output to a 

superior remote graphical screen or to receive input from a 

remote digital camera. A desktop application when exe-

cuted on a PDA might not find all the referenced APIs and 

their corresponding hardware resources available locally 

and wants to access them remotely. 

All the aforementioned scenarios give rise to applica-

tion partitioning [2]. Application partitioning is the task of 

splitting up the functionality of a centralized application 

into distinct entities running across different network sites. 

A standard way to accomplish such partitioning is to mod-

ify the source code of the original application by hand to 

use a middleware mechanism. This approach is tedious, 

error prone, and often simply infeasible due to the unavail-

ability of source code, which is usually the case for com-

mercial applications. We use an alternative approach that 

entails using a tool that under human guidance handles all 

the tedious details of distribution. This relieves the pro-

grammer of the necessity to deal with middleware directly 

and to understand all the potentially complex data sharing 

through pointers. Our tool, J-Orchestra, operates on binary 

(Java bytecode) applications and enables the user to deter-

mine object placement and mobility to obtain a meaning-

ful partitioning. The application is then re-written to be 

partitioned automatically and different parts can run on 

different machines, on unmodified versions of the Java 

VM. For a large subset of Java, the resulting partitioned 

application is guaranteed to behave exactly like its origi-

nal, centralized version. The requirement that the VM not 

be modified is important. We do not want to change the 

runtime, both because of deployment reasons (it is easy to 

run a partitioned application on a standard VM) and 

because of complexity reasons (Java code is platform-

independent but the runtime system has a platform-spe-

cific, native-code implementation). 

Demonstrating J-Orchestra�s Partitioning
For this demonstration, we have prepared several cen-

tralized applications that run on a single JVM and use 

some system resources such as sound, graphics, etc. 

Among them are a graphical demo of the Java speech API 

(the user selects parameters and a sound synthesizer com-

poses phrases), PowerPoint controller (a small Java GUI 

application that controls MS PowerPoint through its COM 

interface), an application for monitoring server load and 

displaying real-time graphical statistics, and some other 

graphical demos. All of the above will be partitioned in a 

client-server model, where the I/Opart of the functionality 

(graphics, text, etc.) is displayed on a client machine, 

while processing or execution of commands takes place on 

a server. Our client machine is a hand-held iPAQ PDA, 

running Linux. This environment is good for showcasing 

the capabilities of J-Orchestra� even relatively uninterest-



ing centralized applications become exciting demos when 

they are automatically turned into distributed applications, 

partly running on a hand-held device that communicates 

over a wireless network with a central server.

Availability
J-Orchestra is freely distributed under the LGPL. 

Check http://j-orchestra.org for details.

References
[1] Eli Tilevich and Yannis Smaragdakis, �J-Orchestra: 
Automatic Java Application Partitioning�, European Conference 
on Object-Oriented Programming (ECOOP), Malaga, June 
2002.
[2] Eli Tilevich and Yannis Smaragdakis, �Automatic 
Application Partitioning: the J-Orchestra Approach�, 8th 
ECOOP Worshop on Mobile Object Systems, Malaga, June 2002.

Sites

group of co-

anchored

classes 

(speech-

related)

all applica-

tion classes

Figure 1. Example user interaction with J-Orchestra. An application controlling speech output is parti-
tioned so that the machine doing the speech synthesis is different from the machine controlling the appli-
cation through a GUI.




