
GOTECH: Aspectizing Server-Side Distribution (a Demonstration Proposal)

Eli Tilevich Stephan Urbanski Yannis Smaragdakis
College of Computing, Georgia Institute of Technology

Atlanta, GA 30332

{tilevich, stephan, yannis}@cc.gatech.edu

Abstract

This demonstration will present the GOTECH (General

Object to EJB Conversion Helper) framework. GOTECH

can be used with a large class of unaware applications to

turn their objects into distributed objects with minimal

programming effort. Our framework is developed on top of

three main components: AspectJ (a high-level aspect lan-

guage), XDoclet (a low-level aspect language), and NRMI

[2] (a middleware facility that makes remote calls behave

more like local calls).

This demonstration is a supplement to our paper in the

ASE 2003 technical program [1]. Here, we do not describe

specific technical contributions, but instead give a high

level description of GOTECH.

Introduction
This demonstration presents a general framework for

separating distribution concerns from application logic.

Our approach is a mixture of aspect-oriented techniques

and domain-specific tools. Just like all other research in

aspect-orientation, our goal is to remove low-level techni-

cal barriers to the separation of distribution concerns� the

assumption remains that the structure of the application is

amenable to adding distribution. The specific technical

substrate that we target is that of server-side Java applica-

tions as captured by the J2EE specification. This domain is

technically challenging (due to complex conventions) and

has been particularly important for applied software devel-

opment in the last decade. We show how a combination of

three tools can yield very powerful separation of distribu-

tion concerns in a server-side application. We call this sep-

aration �aspectization�, following other aspect-oriented

work.

In this demonstration we use our GOTECH frame-

work, to turn an existing scientific application (a thermal

plate simulator) into a distributed application. The applica-

tion-specific code required for the distribution consists of

only a few lines of annotations. The rest of the distribu-

tion-specific code is provided by the GOTECH frame-

work.

The GOTECH Framework
The GOTECH framework offers the programmer an

annotation language1 for describing which classes of the

original application need to be converted into EJBs and

how (e.g. where on the network they need to be placed and

what distribution semantics they support). The EJBs are

then generated and deployed in an application server: a

run-time system taking care of caching, distribution, per-

sistence, etc. of EJBs. The result is a server-side applica-

tion following the J2EE specification� the predominant

server-side standard.

Converting an existing Java class to conform to the

EJB protocol requires several changes and extensions. An

EJB consists of the following parts:

� the actual bean class implementing the functionality

� a home interface to access life cycle methods (creation,

termination, state transitions, persistent storing, etc.)

� a remote interface for the clients to access the bean

� a deployment descriptor (XML-formatted meta-data for

application deployment).

In our approach this means deriving an EJB from the

original class, generating the necessary interfaces and the

deployment descriptor and finally redirecting all the calls

to the original class from anywhere in the client to the

newly created remote interface. The process of adding dis-

tribution consists of the following steps:

1. The programmer introduces annotations in the source

2. XDoclet processes the annotations and generates the

aspect code for AspectJ

3. XDoclet does the EJB generation

4. XDoclet generates the EJB interface and deployment

descriptor

5. AspectJ compiler compiles all generated code (includ-

ing regular EJB code and AspectJ aspect code from step

1. The annotations are introduced in Java source comments as �JavaDoc

tags�. We use the term �annotation� instead of the term �tag� as

much as possible to prevent confusion with the XDoclet �tags�, i.e.

the XDoclet aspect-language keywords, like forAllClass-

Methods.

1) to introduce distribution to the client by redirecting

all client calls to the EJB instead of the original object.

(The XDoclet templates used in step 4 are among the

pre-defined XDoclet templates and not part of the

GOTECH framework.)

In high-level terms, GOTECH is interesting as an

instance of a collaboration of generative and aspect-ori-

ented techniques. The generative elements of GOTECH

are very simple exactly because AspectJ handles much of

the complexity of where to apply transformations and

how. On the other hand, AspectJ alone would not suffice

to implement GOTECH.

Availability
All source code for the GOTECH framework and the

thermal plate simulator application is publicly available at

http://j-orchestra.org.

References
[1] Eli Tilevich, Stephan Urbanski, Yannis Smaragdakis, and
Marc Fleury, �Aspectizing Server-Side Distribution�, to appear
in Proc. ASE 2003.
[2] Eli Tilevich and Yannis Smaragdakis, �NRMI: Natural and
Efficient Middleware�, Int. Conf. on Distributed Computer
Systems (ICDCS), 2003. Extended version available from
http://www.cc.gatech.edu/~yannis .

GOTECH Poster to be used for the presentation.

