
GReAT: A Metamodel Based Model Transformation Language

Aditya Agrawal
Institute for Software Integrated Systems (ISIS),

Vanderbilt University
aditya.agrawal@Vanderbilt.edu

Abstract

The Model Driven Architecture (MDA) can have a
greater impact by expanding its scope to Domain Specific
MDA (DSMDA). DSMDA is the use of MDA for a
particular domain. This helps developers to represent
their systems using familiar domain concepts. For each
DSMDA, a transformer is needed to convert DSPIM to
DSPDM. Such model transformers are time consuming
and error prone to develop and maintain. Hence, a high-
level specification language to formally specify the
behavior of model transformers is required. The language
must also have an execution framework, which can be
used to execute the specifications in the language. This
research proposes to develop such a language and
execution framework that will help to considerably speed-
up the development time for model transformers.

1. The Problem Statement

The MDA [4] effort by OMG has drawn focus to the
aims of Model Integrated Computing (MIC) [1]. MIC has
benefits in terms of high productivity when applied to
specific domains where users are familiar with the use of
modeling. To leverage the benefits of MIC in MDA, the
MDA scope needs to be expanded to Domain Specific
MDA where the focus is on developing the MDA process
for specific domains. MIC however, has its own problems
such as high development cost, lack of standardization
and vendor support [11].

To tackle these problems, we propose a solution that
advocates the development of a framework to support the
development and use of Domain Specific Modeling
Environments (DSME). This approach helps distribute
the cost of the framework to a larger community. It can
lead to standardization that will allow vendors to support
various domain-specific modeling environments within
the framework. A particular DSMDA will consist of a
Domain Specific Modeling Environment. This
environment is then used to develop Domain Specific
Platform Independent Models (DSPIM). These models
represent the behavior and structure of the system with no
implementation details. Such models then need to be
converted to a Domain Specific Platform Specific Models
(DSPSM). Theses models may use domain specific

libraries and frameworks or they could be not domain
specific.

Tools such as GME [2] and DOME [6] already
provide a major portion of the framework support. They
allow developers to specify the abstract syntax and static
semantics of the modeling environments/languages.
However, developers spend significant effort in writing
code that implements the transformation from Domain
Specific Platform Independent Model (DSPIM) to
Domain Specific Platform Specific Model (DSPSM).

In order to speed up the development of DSMDAs a
high-level specification language it required for the
specification of model transformers. An execution
framework can then be used to execute specifications
expressed in the language. Design of such a language is
non-trivial as a model transformer can work with
arbitrarily different domains and can perform fairly
complex computations.

When observed from a mathematical viewpoint we see
that models in MIC are graphs, to be more precise they
are vertex and edge labelled multi-graphs. We can then
use the mathematical concepts of graph transformations
[7] to formally specify the intended behaviour of a model
interpreter.

There exists a variety of graph transformation
techniques described in [7][8][9][10]. The prominent
among these are node replacement grammars, hyperedge
replacement grammars, algebraic approaches and
programmed graph replacement systems. These
techniques have been developed mostly for the
specification and recognition of graph languages, and
performing transformations within the same “domain”
(i.e. graph), while we need a graph transformer that works
on two different kinds of graphs. Moreover, these
transformation techniques rarely use a widely used well-
defined language for the specification structural
constraints on the graphs. In summary, the following
features are required in the transformation language:
1. The language should provide the user with a way to

specify the different graph domains being used. This
helps to ensure that graphs/models of a particular
domain do not violate the syntax and static semantics of
the domain.

2. There should be support for transformations that create
independent models/graphs conforming to different
domains than the input models/graphs. In the more

general case there can be n input model/domain pairs
and m output model/domain pairs.

3. The language should be expressive enough to specify
arbitrary transformations and specifically for the
transformation of models from a high-level of
abstraction to models with low-level details. Turing
completeness is a measure of the expressiveness of a
language and the language must be Turing complete.

4. The language should have efficient implementations of
its programming constructs. The generated
implementation should be only a constant factor slower
that its equivalent hand written code.

5. All the previous points aim to increase productivity and
achieve speed up in the time required for writing model
interpreters. This is the primary goal and the most
important.

2. GReAT

The transformation language we have developed to
address the needs discussed above is called Graph
Rewriting and Transformation language (GReAT). This
language can be divided into 3 distinct parts: (1) Pattern
Specification language, (2) Graph transformation
language, and (3) Control flow language.

2.1. Pattern Specification Language

The heart of a graph transformation language is the
pattern specification language and pattern matching. The
pattern specifications found in graph grammars and
transformation languages [7][8][9] are not sufficient for
our purposes. A more expressive easy to use pattern
specification language is introduces that allows
specification of complex graph patterns.

The pattern specification language uses a notion of
cardinality on each pattern vertex and each edge. The
exact semantic meaning of such a construct in terms of
pattern matching wasn’t immediately obvious. Such
patterns have then been associated with unambiguous
semantic meaning.

2.2. Rewriting & Transformation Language

In model-interpreters, structural integrity is a bigger
concern because model-to-model transformations usually
transform models from one domain to models that
conform to another domain. This makes the problem two-
fold. The first problem is to specify and maintain two
different models conforming to two different meta-model
(in MIC meta-models are used to specify structural
integrity constraints). A greater problem to be addressed
is that of maintaining references between the two models.
It is important to maintain some sort of reference, link

and other intermediate values. These are required to
correlate graph objects across the two domains.

The solution to these problems is to use the source and
destination meta-models to explicitly specify the
temporary vertices and edges. This creates a unified meta-
model along with the temporary objects. The advantage
of this approach is that we can then treat the source
model, destination model and temporary objects as a
single graph. Standard graph grammar and transformation
techniques can then be used to specify the transformation.
The rewriting language uses the pattern language
described above. Each pattern object’s type conforms to
the unified metamodel and only transformations that do
not violate the metamodel are allowed. At the end of the
transformation, the temporary objects are removed and
the two models conform exactly to their respective meta-
models. The transformation language is inspired by many
previous efforts such as [7][8][9][10].

2.3. Controlled Graph Rewriting and
Transformation

There exists a need for a high-level control flow
language that can control the application of the
productions and allow the user to manage the complexity
of the transformation. This prompted us to add a high-
level control flow language to GreAT. The control flow
language supports the following features:
 Sequencing – rules can be sequenced to fire one after

another.
 Non-Determinism – rules can be specified to be

executed “in parallel”, where the order of firing of
the parallel rules is non deterministic.

 Hierarchy – Compound rules can contain other
compound rules or primitive rules.

 Recursion – A high level rule can call itself.
 Test/Case – A conditional branching construct that

can be use to choose between different control flow
paths.

3. Acknowledgements

The DARPA/IXO MOBIES and NSF ITR on
"Foundations of Hybrid and Embedded Software
Systems" programs have supported, in part, the activities
described in this paper.

4. References

[1] J. Sztipanovits, and G. Karsai, “Model-Integrated
Computing”, Computer, Apr. 1997, pp. 110-112

[2] A. Ledeczi, et al., “Composing Domain-Specific
Design Environments”, Computer, Nov. 2001, pp. 44-51.

[3] J. Rumbaugh, I. Jacobson, and G. Booch, “The
Unified Modeling Language Reference Manual”,
Addison-Wesley, 1998.

[4] “The Model-Driven Architecture”,
http://www.omg.org/mda/, OMG, Needham, MA, 2002.

[5] Agrawal A., Levendovszky T., Sprinkle J., Shi F.,
Karsai G., “Generative Programming via Graph
Transformations in the Model-Driven Architecture”,
Workshop on Generative Techniques in the Context of
Model Driven Architecture, OOPSLA , Nov. 5, 2002,
Seattle, WA.

[6] “Dome Guide”, Honeywell, Inc. Morris Township,
N.J, 1999.

[7] Grzegorz Rozenberg, “Handbook of Graph
Grammars and Computing by Graph Transformation”,
World Scientific Publishing Co. Pte. Ltd., 1997.

[8] Blostein D., Schürr A., ”Computing with Graphs and
Graph Rewriting”, Technical Report AIB 97-8,
Fachgruppe Informatik, RWTH Aachen, Germany.

[9] H. Gottler, “Attributed graph grammars for
graphics”, H. Ehrig, M. Nagl, and G. Rosenberg, editors,
Graph Grammars and their Application lo Computer
Science, LNCS 153, pages 130-142, Springer-Verlag,
1982.

[10] H. Göttler, "Diagram Editors = Graphs + Attributes +
Graph Grammars," International Journal of Man-Machine
Studies, Vol 37, No 4, Oct. 1992, pp. 481-502.

[11] Agrawal A., Karsai G., Ledeczi A.: “An End-to-End
Domain-Driven Development Framework”, 18th Annual
ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
(accepted), Anaheim, California, October 26, 2003.

http://www.omg.org/mda/

	The Problem Statement
	GReAT
	Pattern Specification Language
	Rewriting & Transformation Language
	Controlled Graph Rewriting and Transformation

	Acknowledgements
	References

