BZ-Testing-Tools:
Model-Based Test generation

Bruno Legeard
LIFC - CNRS - INRIA
, Université de Franche-Comté
16, route de Gray - 25030 Besancon, France
Email: legeard@lifc.univ-fcomte.fr

1 What is BZ-Testing-Tools

BZ-Testing-Tools — BZ-TT - is a tool-set for ani-
mation and test generation from B, Z and Statechart
specifications. BZ-Testing-Tools provides several test-
ing strategies (partition analysis, cause-effect testing,
boundary-value testing and domain testing), and sev-
eral test model coverage criteria (multiple condition
coverage, boundary coverage and transition coverage).

BZ-TT takes as an input a formal model of the tech-
nical requirements of the system under test. In fact,
the BZ-TT uses one internal form (BZP). The formal
model are automatically translated into this form.

BZ-TT uses a customized constraint solver to sym-
bolically execute the input formal model, both for
model animation (Animator) and for test computation
(Test Generator).

BZ-TT generates abstract test cases which are trans-
lated into executable test scripts in order to harness the
test execution on the test bed (Test Reification).

@ =
Ay e Animator
Parser
Test
Translator Generator
\ / -
Internal form : BZP Cases
Mapping —
Table Executable\
Test Test Scripts /
Reification

Figure 1. Architecture of BZ-Testing-Tools

2 BZ-TT test coverage criteria

The main idea of BZ-TT is to produce a test case for
each behavior defined in the formal model and for each
boundary value. Therefore, BZ-TT generates the test
suite using three families of model coverage criteria:

e Multiple condition coverage — This family re-
lates to multiple conditions in the decisions that
appear in the model,

¢ Boundary value coverage — This family relates
to the choice of values in equivalence classes,

e Transition coverage — This family relates to the
coverage of transitions or transition-pairs in the
model.

3 The BZ-TT test generation process

BZ-TT steps C) Input/Output file
C) Internal file
Formal Model * Data processing

(B, StateCharts, Z)
Coverage Control

Translator
Multiple Condition coverage choices:
Internal Form (BZP) - Decision coverage (DC)
- Decision/Condition Coverage (D/CC)
Effect comput. < - - - —Full Predicate Coverage (FPC)

- Multiple Condition Coverage (MCC)

Effect Predicates
Effect Predicates

Test construction

Generated Test
Cases

4 Unique features of BZ-TT

.

Boundary-Value coverage choices:
< - - - —Onevalue (WBVC)
- All values (SBVC)

.

Transition coverage choices:
< - - - —All-Transition (TC)
- All-Transition—Pair (TPC)

The unique features of the BZ-TT method are that
it:

e takes B, Z and Statecharts specifications as input;

e automatically produces boundary-value test cases
(both boundary states and boundary input val-
ues);

e produces both nominal and robustness test cases;

e is fully supported by tools: the BZ-TT environ-
ment;



e has been validated in several industry case stud-
ies(GSM 11-11 smart card software, Java Card
Virtual Machine Transaction mechanism, a ticket
validation algorithm in the transport industry and
an automobile windscreen wiper controller);

e allows the validation engineer to drive the test gen-
eration process.

5 What is a generated test case

The BZ-TT method consists of testing the system
when it is in a boundary state, which is a state where
at least one state variable has a value at an extremum
— minimum or maximum — of its sub-domains. At this
boundary state, we want to test all the possible be-
haviours of the specification. That is, the goal is to in-
voke each operation (or external event) with extremum
values of the sub-domains of the input parameters.

We divide the trace constituting the test case into
four sub sequences:

e Preamble: this takes the system from its initial
state to a boundary state.

e Body: this invokes one update operation with in-
put boundary values.

e Identification: this is a sequence of observation
operations to enable a pass/fail verdict to be as-
signed.

e Postamble: this takes the system back to the
boundary state, or to an initial state. This en-
ables test cases to be concatenated.

Preambule Body Identification Postambule

Figure 2. Test sequence

The test generation algorithm computes positive
test cases with valid boundary input values at body
invocations. A set of one or more test cases, concate-
nated together, defines a test sequence. For negative
test cases, the body part is generated with invalid in-
put boundary values, and no identification or postam-
ble parts are generated, because the system arrives at
an indeterminate state from the formal model point of
view. Instead, the test engineer must manually define
an oracle for negative test cases (typically something
like the system terminates without crashing).

After positive and negative test cases are generated
by this procedure, they are automatically translated
into executable test scripts, using a test script pattern
and a reification relation between the abstract and con-
crete operation names, inputs and outputs.

6 The validation engineer drives the
test generation process

BZ-TT is a model-based test generator which helps
to automate black-box testing for systems or compo-
nents. But it is a tool for the validation engineer and it
gives him/her all the facilities to drive the test gener-
ation. Firstly, the validation engineer adapts (or con-
structs) the formal model for the test purpose. This
means that it is light-weight formal modeling taking in
account the test objectives and the point of control and
observation of the system under test to define the level
of abstraction of the model. Secondly, the validation
engineer uses the GUI provided by BZ-TT to choose
the model coverage criteria (see the screenshot below).

J=IE]

Figure 3. Test generation GUI

7 Maturity of the BZ-TT technology

The BZ-TT tool-set is developed at the Computer
Science Laboratory of the University of Franche-Comté
CNRS INRIA (France), in the Constraint group led
by Professor Bruno Legeard, and in partnership with
Dr. Mark Utting, from the University of Waikato (New
Zealand).

The BZ-TT technology is currently in an industri-
alisation process in a new start-up company, LEIRIOS
Technologies — www.leirios.com.



Some publications of the BZ-Testing-
Tools project

B. Legeard, F. Bouquet

Reification of Executable Test Scripts in
Formal Specification-Based Test Genera-
tion: The Java Card Transaction Mecha-
nism Case Study

In proc. of FME’03, Formal Methods Europe,
LNCS n° xxxx, pages xx-xx, Springer, September
2003, Pisa, Italy.

F. Ambert, F. Bouquet, S. Chemin, S. Guenaud,
B. Legeard, F. Peureux, M. Utting, N. Vacelet
BZ-Testing-Tools: A Tool-Set for Test
Generation from Z and B using Constraint
Logic Programming

In proc. of FATES’02, Formal Approaches to
Testing of Software, Workshop of CONCUR’02,
Brng, Czech Republic, August 2002, Technical
Report, INRIA, pp 105-120.

B. Legeard, F. Peureux, M. Utting

Automated boundary testing from Z and B
In proc. of FME’02, Formal Methods Europe,
LNCS n° 2391, pages 21-40, Springer, July 2002,
Copenhaguen, Denmark.

F. Bouquet, B. Legeard, F. Peureux

CLPS-B - A Constraint Solver for B

In proc. of the conference on Tools and
Algorithms for the Construction and Analy-
sis of Systems, TACAS’02, ETAPS, LNCS 2280,
p-188-204, Springer, April 2002, Grenoble, France.

B. Legeard, F. Peureux, M. Utting

A comparison of the BTT and TTF/Z
Test-Generation Methods

In proc. of ZB’02, International Conference on Z
and B Formal Methods, LNCS 2272, p. 309- 329,
Springer, January 2002, Grenoble.

B. Legeard, F. Peureux

Generation of functional test sequences
from B formal specifications presentation
and industrial case study

In proc. of ASE’01, International Conference on
Automated Software Engineering, IEEE Com-
puter Society Press, p. 377-381,November 2001,
San Diego, USA.



