
A Model of Planning and Enactment Support in
Software Development Projects

Sigrid Goldmann
University of Kaiserslautern
sigig@informatik.uni-kl.de

Abstract
In recent years, software development has become
increasingly complex as requirements multiplied, and
geographically distributed development became
necessary and/or desirable. This complicates not only
the enactment of software development projects, but also
makes project planning and management much more
difficult. Especially keeping the plan up to date, and
distributing information about changes during project
planning as well as plan enactment to everybody
concerned, become more difficult with increasing
project complexity while at the same time growing in
importance.
 In this paper, we propose an approach to facilitating
not only project enactment but also project planning and
management, by tracking all decisions made during
project planning and enactment, and managing
dependencies between these decisions. This allows us to
feed enactment data back into the plan, either by
automatically reacting to enactment events and plan
changes, or by notifying the appropriate person(s).
We introduce an extendable model of planning and plan
enactment that formalizes the dependencies between
activities likely to occur during project planning and
enactment, and provides the means to specify
appropriate actions to be taken during change
management.

1. Introduction

In complex software development projects, several
problems frequently arise:
• Since software development is a highly creative

process, unexpected changes occur on a regular
basis. This means that initial plans are out-of-date
almost immediately after project enactment has
started, and coordinating the project, especially
keeping everybody involved informed about
information relevant to them, is a significantly
important, as well as significantly difficult,
responsibility that software project managers are
confronted with.

• Decisions made by individuals, project planners as
well as software developers, are often made and
implemented informally, their rationales being known
to the person making the decision and maybe a few

others, but never documented in a way that makes
them available for later reference. This means that
reasons for a decision might be lost, complicating
later changes.

• These problems become even more complex when
geographical dispersion of project participants
comes into play. In that case, informal means of
communication, e.g. the casual exchange of
information during coffee break, are no longer
available, placing an even greater emphasis on the
need to formalize and, where possible, automate the
distribution of relevant project information.

Implement
Components

Development Site Testing Site

Test Components

Test System

Programmers

Planner Joe

Planner Tim

Manager Jane

Planner Sue

Tester

Tester

QA
Manager

Responsible Agent

Dependency

Figure 1: Planning Scenario for a Distributed Software
Development Project

Suppose for example that a large software company with
several development sites takes on an EJB-based
software development project for an accounting system
(see Figure 1). Implementation planner Joe needs to
create a detailed plan for the component implementation
phase. As inputs for his planning activity, he needs to
have the system design, as well as information about
what predefined Java classes will be available to facilitate
implementation. The latter depends on which
development tool is to be used, since some tools include
EJB basic classes, and others do not. The decision for the
development tool will be made by the project’s central
manager, Jane. Testing will be done at some other
development site, so that Joe also needs to coordinate
with Tim, who is responsible for planning the component
tests, and Sue, the planner of the system integration tests.

Thus, Joe’s planning decisions depend not only on Jane’s
management decision about what tool to use, but also on
design decisions made during software development. On
the other hand, the plan that Joe creates has an impact on
Tim’s and Sue’s planning decisions, as well as any quality
assurance planning concerned with component
implementation. Figure 1 gives an overview over the
wealth of dependencies occurring even in this small
example scenario. Given the fact that changes are prone
to occur frequently as design enhancement are released
and errors are discovered in system components, these
dependencies will quickly become difficult to manage
without automatic support.

In this paper, we propose an approach that addresses the
problems described above by tracking decisions made
during project planning and plan enactment. In order to
identify those dependencies relevant for a decision, we
established a Model of Planning and Plan Enactment,
which explicitly describes the activities likely to occur
while planning and enacting a software development
project. In order to formalize this model, we will adapt
the Redux Model of Design [14] to record planning and
management decision dependencies, as well as project
enactment decisions. Furthermore, we are currently
identifying heuristics to automatically capture typical
dependencies, and defining rules to provide automatic
planning support where possible.

In the remainder of this paper, we outline the current
state of research regarding the problems described above
(see section 2), summarize our proposed solution (section
3), and give a summary and short overview over
remaining questions (section 4).

2. State of the Art

SW Process Modeling (PM) approaches [2], [5], [9],
[12] provide mechanisms for modeling the software
development process itself, i.e. the technical activities
necessary to create the software project deliverables (e.g.
system documentation, executable code). Some of these
approaches also provide some support for modeling
planning and management activities. However, none of
them provide a systematic approach to supporting
planning and management activities: while such PM
approaches support plan enactment by actively providing
change notifications as well as passively giving access to
relevant information whenever necessary, they do not do
so for planning activities.

Artificial Intelligence (AI) planning research has
yielded some interesting results in the field of Reactive or
Mixed Initiative Planning [13], [16], [18]. These
approaches are based on a systematic model of planning
and management and provide some dependency
management between planning decisions. However, AI
planning approaches put their emphasis on automatic
planning and plan enactment. User interaction is
supported, but seen as an exception rather than the rule.

Thus, AI planning approaches are difficult to adapt to
complex and creative processes like software
engineering, where decisions depend on too many chaotic
factors to be effectively automated. This is especially true
for recent research concerning Agile Methods (e.g. [3]),
which tend to discard rigidly defined processes in favor
of entirely reactive support of software development.
Furthermore, AI planning approaches concentrate on
structural planning, i.e., deciding what tasks to do in what
order. Some also allow task scheduling, but other
planning or management tasks are not taken into account.

Conventional business planning and workflow
management tools are available commercially. These
tools tend to concentrate either solely on project planning,
[1], [10] and do not provide enactment support, or they
concentrate almost entirely on project enactment [8],
[17], and provide little or no support for project planning
and management. None of these tools support feeding
enactment information back into the plan.
Recently, tools have been presented that provide both
planning support and workflow enactment, allowing for
some feedback between enactment and planning, e.g.[11].
However, none of these COTS tools provide systematic
planning support, i.e. no explicit model of planning exists,
and no dependency management between planning and
enactment decisions is provided. What planning support
commercial business tools do support (e.g. planning
wizards, critical path calculation, resource management)
concentrates on individual technical details rather than an
overall support for the process of planning as a whole.

None of the approaches mentioned above explicitly
store dependencies between decisions in a comprehensive
model. This issue is covered by design rationale and
decision management research [3], [14], [16]. Design
rationale approaches provide representation mechanisms
to store decisions and their rationales, thus providing
dependency and change management. However, existing
design rationale approaches track arbitrary, untyped
decisions, with no notion about how these decisions
interact. Modeling decisions and dependencies is entirely
left to the user, and little or no support exists for
automatically capturing dependencies.

To summarize, we find that existing approaches and tools
lack support for project planning and management in the
following areas:
1. Planning and management activities are not

supported systematically. We maintain that an
explicit model of planning is needed, enabling an
automatic planning support system to recognize the
necessity of planning and replanning activities.

2. Existing approaches do not explicitly track the
process of creating a plan. We believe that explicitly
capturing planning and management decisions, as
well as the dependencies between them, is necessary
for effective planning support.

3. Without an explicit planning model, existing
approaches cannot automatically capture decision

rationales, since that would require knowledge about
planning, and typical planning dependencies and
rationales. Heuristics are needed to automatically
determine rationales for frequently occurring classes
of decisions and dependencies, therefore only
requiring the user to state extraordinary decision
rationales and dependencies.

Below, we address these issues in more detail.

3 Approach

3.1 A Model of Planning and Enactment

In modeling the activities that typically occur in a
software development project, we found that there are
two classes of activities, creating two interleaved, but
basically separate process levels distinguished by the
results the corresponding activities produce:
1. The object-level process is the domain-specific

process that produces the project deliverables. In
other words, the object-level process corresponds to
the project plan. It models the activities done during
software development as (sub-) processes, with the
project deliverables as their outputs.

2. The meta-level process is the process that describes
the planning activities necessary to create and
maintain the object-level process. It models these
activities as meta tasks, which create parts of the
object-level process as their outputs (see Figure 2).

Plan
Implementation

Plan QA for
Implementation

Schedule
Implementation

Implement
Component A

Implement
Component C

Implement
Component B

Component
Code A

Component
Code B

Component
Code C

Meta-level Process

Meta-level
Products

Object-level
Process

Object-
 level
 Products

Produce/
Manipulate

Produce/
Manipulate

Figure 2: Meta-Level and Object-Level Entities

Accordingly, our model of planning and enactment
distinguishes between object-level entities and meta-level
entities, which can be manipulated by operations.
Decisions represent the performance of operations, and
connect the two levels, as decision rationales can refer to
entities on either level.

Object-level entities represent data structures which
can occur in a software-development process or project
plan, e.g. the software development processes occurring
in the project plan, development methods that can be
selected to solve a process, and process parameters
determining the product flow between processes.

Meta-level entities represent data structures occurring in
the meta-level process, i.e. during project planning and
management. Examples for such entities are tasks to
schedule an object-level process, select a solution method
for it, or to plan necessary quality assurance activities for
a process. Outputs of such meta tasks are object level
data structures (e.g. processes, method selections,
product flow definitions, etc.).

Operations performed during project planning or
enactment are formally represented by decisions. A
decision depends on facts and other decisions. When such
a decision prerequisite is invalidated, dependent decisions
need to be reconsidered.
The above model is extendable both on the object level
and the meta level, and new decision types and
dependencies can be defined. This is necessary in order to
allow the user to model additional and unforeseen tasks
and dependencies to provide as extensive a support for
project planning and plan enactment as possible.

In the scenario delineated above, object-level entities
are for example the process of implementing the
accounting system’s components, and the component
code produced by the implementation process. Joe’s task
of planning and scheduling the implementation process is
a meta task, which can be solved by the operation of
dividing the object-level process into subprocesses, and
scheduling them. This operation will be represented as a
planning decision that depends on other decisions, namely
Jane’s selection of a development tool, and the (object-
level) decisions made by the software designers. In turn,
any scheduling decisions made by Tim and Sue for the
component and system integration test processes depend
on Joe’s schedule for the implementation process, as well
as on events occurring during component implementation.

The user must be allowed to model meta-tasks
manually, as the necessity to plan or re-plan certain parts
of the project becomes evident. On the other hand, the
burden of having to model every single plan step cannot
be charged solely on the user. Therefore, we need to
automatically generate meta-tasks in certain situations.
For example, if the plan is inconsistent in some way (e.g.
a process has not been planned or scheduled yet, or a
process input is not produced anywhere in the plan) a
meta-task can be generated for the user to correct this
situation. Other meta-tasks can be created by generation
rules, either system-inherent (e.g. a replanning task
should be generated if a process is started too late to
meet a deadline), or user-defined (e.g. an additional
quality assurance planning task should be generated if the
system design exceeds a certain complexity).

3.2 Formal Representation

As mentioned above, various representation formalisms
for decisions and their dependencies have been proposed
in literature. Therefore, we did not develop a new

representation mechanism to formalize our model, but
adapted an existing approach to our purposes:
Petrie’s Redux Model of Design [14] is a model of
decision dependencies in engineering design projects. It
tracks decisions made for design goals, captures the
rationales that led to these decisions, and stores their
results, i.e. assignments made to design parts, and
subgoals that are still open after a decision was made for
a particular goal. Decision rationales can be arbitrary
facts stored in a database, or assignments supported by
other decisions. Redux uses a Truth Maintenance System
(TMS) [5] to represent goals and decision in a network of
dependencies. Based on the state of the TMS, Redux
sends notifications to the concerned agents whenever a
change elsewhere in the project necessitates that they
rethink their own decisions.

It has been stated before that planning and design
share many similarities [16], and the concepts Redux
supports (goals, decisions, assignments, etc.) easily lend
themselves to representing planning tasks as well as
software development processes [15]. The fact that
Redux provides active notification services as well as
passive “bookkeeping” of decisions made, makes it
especially suitable to our purposes.

In order to maintain two separate (but interleaved)
Redux goal trees for the meta-level and object-level
processes, some redundancy in the data structures is
necessary, since decision results on the meta level also
have to be represented as data structures on the object
level (see Figure 3). In order to keep the Redux
representations of the two process levels consistent with
each other, we had to slightly extend Redux’ underlying
TMS, adding rules that allow data-structures on the
object-level to depend on decisions and assignments on
the meta level.

Redux – Meta Level Redux – Object Level

Plan Component
Implementation

Implement
Component A

Implement
Component B

Implement
System

Components

subgoal(process Implement Component B,
process Implement System Components)

subgoal(process Implement Component A,
process Implement System Components)

valid(Dec1.1) => valid(Dec2.1)

valid(Assignment2) => valid(Goal2)

Dec 1.1

Dec 2.1

Figure 3: Interdependent Redux Goal Trees for Meta

Level and Object Level

3.3 Tracing Project History

In capturing the project history, i.e. tracking the decisions
made during project planning and enactment, two
problems arise which need to be solved:

1. How to capture dependencies between decisions: We
need to find heuristics what user behavior, i.e. which
order of user actions, suggests which dependencies
to define, respectively, which rationales to
automatically record.

2. How to represent temporary relation between
decisions, or rather, networks of decisions: A
representation is needed which allows us to capture
“snapshots” of decision networks at certain points in
time.

Redux – Meta Level Redux – Object Level

Plan Component
Implementation

Implement
Component A

Implement
Component B

Implement
System

Components

subgoal(process Implement Component B,
process Implement System Components)

Development Tool
:= Visual Age

Implement
EJB Classes

subgoal(process Implement Component A,
process Implement System Components)

subgoal(process Implement Component A,
process Implement System Components)

Dec 1.1 Dec 1.2
Dec 2.1Dec 2.2

Component A Code := A.version 1

Dec 3.1

Figure 4: Temporal Dependencies between Decisions

Figure 4 shows an example for a temporal relationship
between decisions and their rationales: If in the above
scenario the selected development tool is unavailable for
some reason, and some other tool is selected which does
not contain EJB basic classes, several decisions need to
be reconsidered. The meta-level decision made for the
implementation plan will have to provide for the new
need to implement EJB classes, and dependent object-
level decisions need to be reconsidered. For example,
components whose interface depends on VisualAge
classes might need to be adjusted to the new
requirements. Capturing “snapshots“ of the situations
before and after the change from one development tool to
another will be useful for later analysis. Also, storing the
causal relationship between the availability of the
originally selected development and the decisions
retracted and remade because of the tool’s unavailability
will allow the system to notify the planners and
programmers in question if for some reason VisualAge
should become available in the future.

3.4 Heuristics

Other typical dependencies between decisions made
during project planning and plan enactment are for
example:
• Any decision made for a meta task or object-level

process depends on the currently valid assignment to
the corresponding process’ or task’s input variables.

• A decision determining process precedence depends
on that process’s input variables, preconditions, and

possibly also on the resource assignments made for
the process.

These are examples for dependencies that can be
deduced from the context in which a decision was made.
Rules (e.g. in the form of Event-Condition-Action rules,
[6]) can be constructed that automatically add the
corresponding dependencies to a decision if the context
meets certain conditions:

Event: DecisionMade(<task>)
Condition: HasInputs(<task>,<inputs>)
Action: rationale:= CreateRationale(<inputs>)

CreateDecision(<task>, rationale)

Event: PrededenceDecisionMade(<task>)
Condition: HasPrecondition(<task>, <cond>)
Action: rationale := CreateRationale(<cond>)

CreateDecision(<task>, rationale)

The functions called in the above examples are events
happening in an underlying process-centered software
engineering environment (PSEE), or create data
structures in the Redux dependency management system.
For example, the event DecisionMade(<task>) indicates
that some (object-level or meta-level) operation has been
executed in the PSEE, and the function
CreateDecision((<task>, <rationale>) builds a Redux
decision with its dependencies which represents the
operation in question.

The above examples illustrate single events that indicate a
clearly defined set of dependencies to be captured. Other
situations exist where a series of interrelated events need
to captured in a set of interdependent decisions. An
example for such a situation is the development tool
change illustrated in Figure 4: The fact that EJB basic
classes are no longer available will cause a number of
interrelated changes to plan and enactment state; e.g. a
plan change allowing for additional implementation steps,
additional inputs (i.e. the new EJB classes) to existing
processes, and changes to already implemented
components to accommodate for the interface
requirements the new EJB classes pose. All these
changes will cause events in the underlying PSEE, which
in turn should be captured by a tracking component, and
represented as a network of interdependent decisions in
Redux.

Finding a formalism to ensure
a) that interrelated events can be identified as such, and
b) that the correct dependencies are extracted from

these events, and the desired responses and
notifications are triggered if the initiating fact
changes for a series of interrelated decisions

is still ongoing research.

In the above example, desired change notifications would
be notifications to the planner and programmers involved
in the original change if the original development

(including the EJB classes in question) should become
available again for some reason: The planner might want
to remove the additional implementation processes from
the plan, the additional input parameters might be
removed from the processes changed after the tool
became unavailable, and earlier implementations based on
the original EJB interface might be reconsidered. On the
other hand, implementing the new EJB classes might be
so far advanced that it is decided not to make use of the
VisualAge classes. In this case, the interdependent
decisions made after the original change need to stay in
place as a whole.

4 Summary and State of Ongoing
Research

This paper outlines an approach to facilitating planning
and management activities in software development
projects. We define an extendable model of planning and
enactment interactions that allows us to portray the
object-level process of software development activities as
well as the meta-level process of project planning
activities. Operations performed on these data structures
are captured as decisions, which can depend on any other
decision on the object or meta level. The knowledge
contained in this model can be utilized to automatically
capture decision rationales, identify the necessity of
planning and replanning activities, and notify project
participants whenever changes of impact to their
activities occur.

Thus, our approach aims at providing extensive
support for the process of planning and enacting software
development projects, in the form of dependency
management, user notifications, and, where possible,
automation of selective process steps.

So far, we have finished analyzing the typical activities
likely to occur during project planning and management,
and formally represented them as Redux goal types.
Operations solving meta-tasks have also been formalized
in Redux, in the form of typed decisions with standard
dependencies represented as rationales to be instantiated
when such a decision is made. An interface between an
underlying PSEE and our dependency management
system has been developed which utilizes the PSEE’s
events to create and maintain the corresponding Redux
data structures and dependencies via ECA rules (see
Figure 5).
Remaining conceptual steps to be done are:
• Identifying heuristics for capturing non-standard

dependencies between decisions.
• Finding a formalism that facilitates identifying

interrelated events in the underlying PSEE.
• Defining a formalism that captures such interrelated

events in interdependent decisions in the dependency
management system.

• Extending the ECA rule-based interface to include
these non-standard dependencies and their

representation in the dependency management
system.

Figure 5: Interface between PSEE and Dependency
Management

These concepts will be implemented in a prototype based
on the PSEE MILOS [12] as its underlying PSEE, and
Redux as its dependency management system. Necessary
implementation steps are:
• The definition of an interface between MILOS and

Redux as specified above.
• The implementation of a tracking component which

captures and groups interrelated MILOS events
based on the formalisms outlined above.

• The creation of a wrapper around the basic Redux
system which implements decision types and their
dependencies suitable to our purposes.

• The adaptation of existing Redux notifications to the
needs of project planners as well as software
developers. These notifications will be delivered via
email.

• The implementation of a graphical user interface
which provides access to the networks of
dependencies captured by the tracing component.
This GUI will be based on an existing HTML
interface to the MILOS Project Trace component,
which allows access to the trace of events happening
in a project, as well as their temporal relationships.

The resulting prototype will be deployed and used in the
MILOS development process, allowing us to assess the
usefulness of automatically captured dependencies and
resulting notifications, and if necessary adapt the
heuristics implemented in the prototype.

References

[1] AutoPlan:

http://www.tufan.com/autoplan/autoplan_enterprise.htm
[2] S. Bandinelli, E. Di Nitto, A. Fugetta: Policies and

Mechanisms to Support Process Evolution in PSEEs.
Proceedings of the 3rd International Conference on the
Software Process, Reston, USA, Oct. 1994.

[3] Beck, K., Fowler, M.: Planning Extreme Programming.
Addison Wesley Longman, USA 2000. ISBN
0201710919.

[4] Conklin, J. and M. Begeman: gIBIS: A Hypertext Tool
for Exploratory Policy Discussion. Proceedings of
CSCW '88 (Computer Supported Cooperative Work),
September 1988.

[5] Jon Doyle, A Truth Maintenance System. In Journal of
Artificial Intelligence, 12(3), pp 231-272, 1979.

[6] Barbara Dellen: Change Impact Analysis Support for
Software Development Processes. Dissertation,
University of Kaiserslautern, Germany, Feb. 2000.

[7] J.C. Grundy and J.G. Hosking,: Serendipity: integrated
environment support for process modelling, enactment
and work coordination. In Automated Software
Engineering: Special Issue on Process Technology 5(1),
January 1998, Kluwer Academic Publishers, pp. 27-60.

[8] IBM MQSeries:
http://www-3.ibm.com/software/ts/mqseries/workflow/

[9] G. E. Kaiser, St. E. Dossick, W. Jiang, J. Jingshuang
Yang and S. X. Ye,: WWW-based Collaboration
Environments with Distributed Tool Services. In World
Wide Web, Baltzer Science Publishers, 1999.

[10] Microsoft Project: http://www.microsoft.com/project/
[11] MicroTool InStep:

http://www.formulabls.com/e/html/body_instep.htm
[12] Maurer, F., Dellen, B., Bendeck, F., Goldmann, S., Holz,

H., Kötting, B., Schaaf, M.: Merging project planning
and web-enabled dynamic workflow for software
development. In IEEE Internet Computing, Special Issue
on Internet-Based Workflow - May/June 2000.

[13] Muñoz-Avila, H. & Weberskirch F.: Planning for
Manufacturing Workpieces by Storing, Indexing and
Replaying Planning Decisions. In: Proc. 3rd Int.
Conference on AI Planning Systems (AIPS-96), AAAI-
Press, 1996.

[14] Charles J. Petrie: The Redux’ Server. In Proceedings of
the International Conference on Intelligent and
Cooperative Information Systems (ICICIS), Rotterdam,
May 1993.

[15] Petrie, C., Goldmann, S., Raquet, A.: Agent-Based
Project Management. In Springer LNAI 1500 Journal on
"Artificial Intelligence Today", Springer, 1999.

[16] Stephen T. Polyak: Austin Tate, Rationale in Planning:
Causality, Dependencies, and Decisions. In Knowledge
Engineering Review 13 (3), September 1998, pp 247-
262.

[17] TIBCO InConcert:
http://www.tibco.com/products/in_concert/

[18] Manuela M. Veloso: Towards Mixed-Initiative
Rationale-Supported Planning. In A. Tate (ed.),
Advanced Planning Technology, pp 277-282. AAAI
Press, May 1996.

PSEE Dependency ManagementInterfacePSEE

Task

Operation

Goal

Decision

Product

Action

Event

causes

represents

solves

produces

triggers

solves

constructs

Assignment

represents

supports

represents

