
 1

Process Support for Tools Interoperability

Anh-Tuyet LE

Laboratoire Logiciels, Systèmes Réseaux - IMAG
220 Rue de la Chimie, Domaine Universitaire - B.P. 53

38041 Grenoble Cedex 9
Anh-Tuyet. Le@imag.fr

Abstract

Commercial tools are heavily used, relatively
cheap, well maintained, and provide powerful
functionalities. However, composing these tools in
order to build larger applications raises a lot of
difficulties not found in component based system.
Our work seeks at building a platform that makes
entities of various types (component, COTS, tools,
etc.) interoperate in order to build a new
application. We call this new kind of application a
federation.

Our federations use workflow as a support for
applications integration and interoperability. In this
approach, the process is not defined in term of tools
and their parameters; instead, the process is high
level and describes only abstract steps without
knowledge on how these steps will be carried out.
Therefore, the federation offers a mean to describe
and control the synchronization between the abstract
and executable process, and a set of concrete tools.
The federation ensures that the execution of the
abstract level involves a compatible real execution at
the concrete level. Moreover, the real execution
requires the collaboration of several tools. The
description on how the abstract level is refined into
the real execution satisfies consistency rules and
interoperability paradigms.

We think our work contributes by providing a
high level view in which the application can be
described, independently from the real tools
specificities, and by providing the means to describe
the application behavior and the tools can be used
and modified flexibly and dynamically.

Keywords: Federation, tools, interoperability,
Software Engineering Environment, component,
Process support

1 Introduction

Commercial tools (called simply tool in the
following) are heavily used, relatively cheap, well
maintained and provide powerful functionalities.
However, composing these tools in order to build
larger applications raises a lot of difficulties not
found in component based system. Our work seeks at
building a platform that makes entities of various
types (component, COTS, tools, etc.) interoperate in
order to build a new application. We call this new
kind of application a federation.

 2

In this context, three major issues needs to be
overcame:

1. Overlapping of tools functionality and
knowledge.

2. Mismatch between the concepts definition
and imple mentation of the different tools

3. Non-determinism apparent behavior of tools
and the federation.

Indeed, tools have not been designed to be used
in a specific federation; it is common they provide
similar functionality, and thus propose similar but
not identical concepts. Furthermore, they provide
user interface that allows the user to interact freely
giving the impression that tool acts in a non-
deterministic way [4].

Recently the idea to use a workflow as a support
for applications integration and interoperability
became more common [3][8]. In fact, the main
objective of workflows is to automate the
information flow in a working group composed by a
number of tools and persons. The workflow drives
the behavior of the integrated tools [9].

Using workflow as a support for integration is
developed by the last generation of EAI tools
(Enterprise Application Integration) [2][3]. In their
vision, an elementary activity corresponds to the
execution of an application; the workflow is then
charged to connect these activities and to transfer
information (files generally) between the
participating applications. Let us note that the EAI
objective is to integrate applications, i.e., to offer a
means to exchange information between
applications. The workflow is thus used as a means
to express and control the informa tion flows between
participating applications. This approach, called
data-centric integration, is inflexible and complex.
Changing the scenario of integration or one
participating application is expensive because the
process is defined directly in term of the applications
and their parameters.

Contrary to EAI, our federation approach is a top-
down approach. It means that the process is not
defined in term of tools and their parameters. Indeed,
the process is abstract and describes only abstract
steps without knowledge on how these steps will be
carried out[1][4].

Executable specification:
abstract process describedin

term of abstract steps

Federation: a bridge between
the executable specification

and the implementation

Implementation: tools,
applications, packages, etc.

App. Tool Tool

Executable specification:
abstract process describedin

term of abstract steps

Federation: a bridge between
the executable specification

and the implementation

Implementation: tools,
applications, packages, etc.

App. Tool Tool

Therefore, the federation should offer a means to
describe and control the synchronization between the
abstract and executable process, and the set of
concrete tools. Thus, from the federation designer
point of view, the abstract process can be seen as an
executable specification. The set of concrete tools
can be considered as an implementation of this
specification.

2 Architecture of federation

This part uses the following example in order to
make easier the presentation about architecture of
federation.

We want to construct a federation of document
management which is a complete environment aimed
to manage the life cycle of complex documents, i.e.
documents which may contain a set of directories
and files. Once a document is created; it will be then
edited, and modified simultaneously by some
developers. After modifications, it will be validated
to be communicated with external persons. However,
at any time, a validated document can be subject of
modifications to create a new version.

 3

To create this federation, we need a lot of
components: CVS tool (Concurrent Version Control)
to manage multiple physic versions of documents; a
Workspace Manager tool to manage workspace of
developers, i.e. to let developers to select their
workspace, to make available documents that they
need, etc.; a Product Manager to manage logic
document which contains some properties of
document; APEL which is a process tool, to define
and manage the steps that developers work on a
document [1][5] and some agenda tools by which the
developers does a unit of work in the federation.

2.1 Common Universe

Let us note that when tools pertain to one
federation, they should all recognize roughly the
same concepts (the document, etc.) and they are
likely to share a large body of knowledge.

The solution we propose consists in defining the
main model of the application, the Common
Universe (CU), which abstracts and subsumes the
most important concepts used by participating tools.
At execution time, the CU contains entities,
instances of concepts of this model. Each tool can
have a partial view of this model which may overlap
with some other.

In general, the information in the CU represents
the basic semantic of the application. This semantic
should be supplemented and extended by semantics
used by participating tools, through their information
and operations. Thus, the federation must ensure the
synchronization between the basic semantic and the
extended semantic realized by tools in order to give
the complete semantic of the application.

The simplest strategy is based on the concept of
notifications. Each tool asks to be notified when a
piece of information it (also) handles is changed in

the CU. Conversely, when a common piece of
information is changed in a tool (remember that most
tools are interactive), the CU changes accordingly. In
this case, the CU is main way tools synchronize. It
provides a place where the common information is
stored in a format, which allows each tool to
synchronize (both ways) its local knowledge with the
common one.

For example, suppose a developer creates a
document by help of his agenda. Then, a product
object is created in the CU. All others tools will be
notified and will prepare for the work of developer.
The Workspace Manager will ask the developer for
his prefer workspace, the Product Manager will let
him specify some property on his product like the
description, who will be validator for the document,
what is deadline for finish the document, etc. Then,
the CVS tool will create a new physic document in
its repository and send a copy of the document to the
workspace of the developer created by Workspace
Manager.

The CU is the central part of a federation which
allows tools to synchronize. The evolution of CU
represents the application behaviour. So, in our
system, a process model will be used to describe the
application behaviour in term of the CU evolution.

There are two possible places for the process tool.
The first solution consists in regarding the process
tool as other tools. Thus, the process model is
considered as the local information of the process
tool. The synchronization between the process,
which is enacted be the process tool, and the CU
make the CU evolutes, which then guides the set of
concrete tools to coordinate in order to achieve the
goal of the application. In this case, there is a large
amount of information in the CU related to the
process. The figure bellow shows the case where the
process tool is used like other tools.

 4

CU

App
Tool

Tool

Conrete tools

Engine

Abstract process

CU

App
Tool

Tool

Conrete tools

Engine

Abstract process

The second solution consists in putting the
process directly in the CU. The others tools
synchronize around the CU, which is enacted by the
process tool. This solution is more reasonable than
the first solution because it avoids the loss of
performance to synchronize between the process
tool, which is the central tool of the applications
guided by a process model, and the CU.

In the document management federation, these
two solutions have been tested. In this particular
case, the second solution seem better because it did
eliminate many duplication and thus many
consistency issues. On the other hand, in the first
solution any process tool can be used, while in the
second solution the process environment is a
federation; the CU contains the process model and
instances; various tools likes agenda, process engine,
monitoring are seen as the tools making up this
federation. The federation of application (i.e.
document Manager) is one extension of the process
federation.

2.2 Managing heterogeneity

In a federation, the tools can use similar concepts.
However, these concepts can be represented in a
different way according to each tool and differently
with those in the CU. The adaptation between the
common concepts, abstracted into the CU, and those
in the concrete tools must be solved.

The adaptation uses the concepts of adapter or
connector. Thus, each tool uses an adapter for the
semantic and syntactic translation between the
vocabulary, including the concepts, the methods, and
the events, of the CU and these that it uses. We call
the whole of the tool and its adapter a component.
Each component offers services to a federation
through roles that it implements.

App /toolConnector

ComponentRole

App /toolConnector

ComponentRole

A federation sees tools or applications only
through their roles. All controls towards a tool,
which will be presented in the following part, will be
pressed on its roles. The role thus represents an
abstract component while the whole of the tool and
its adapter is the concrete one. In execution, there are
only concrete components, which satisfy all the
properties of the corresponding abstract components.
Separation between concrete and abstract
components helps us to use tools offering the same
services.

2.3 Control in federations

The interoperability strategy by notifications
above may work fine but only in specific cases. It
lacks any kind of control; tools are free to react and
change anything in the CU at anytime. Therefore,
there is nothing to ensure that the additional
semantics realized by tools correspond with the basic
semantic in the CU. Moreover, in certain cases, this
additional semantics should be the result of the
coordination, with transactional or temporal
constraints, of some tools.

We add a layer of control. This layer uses the
Control Common Universe (CCU), which stores
information concerning the rights of the tools and

 5

coordination between them. We distinguish three
parts of control: observation control, initiative
control, and coordination control.

Observation control

This part of control prevents the components to
subscribe to the not-allowed notifications. Thus, a
component can receive only allowed notifications
from the CU.

Initiative control

This part of control allows only components
having the right to change the CU. Indeed, it
captures all the requests of change on the CU to
check if this request is legal or not. The request will
be rejected if the request is not legal.

Coordination and consistence control (CCC)

Each method of an object in the CU is potentially
linked with a protocol which extend its semantics by
the semantics of concrete tools. Thus, this part
controls explicitly the extension protocol of each CU
method.

A extension protocol consists in set of aspects.
Each aspect is in charge of defining an extended
semantics, realized by some concrete tool, to the
correspondent operation of the CU that it extends .

The CCC receives the CU change requests,
computes the extension protocol involved (if any),
defines the consistency required (transaction control,
temporal constraints, and so on); and then executes
the extension protocol, enforcing the required
consistency constraints. To do so, the CCC interprets
a “coordination model” stored in a CCU. The CCC
has also the knowledge of the components forming
the federated application (a component model),
rights and duties of each component and enforces the
coordination.

CU

Comp Comp
Comp

Concrete tools

CCU
OC IC CCC

Engine

Abstract process

CU

Comp Comp
Comp

Concrete tools

CCU
OC IC CCC

Engine

Abstract process

It is interesting to note we use actually AOP
technique (Aspect Oriented Programming) to insert,
modify and remove dynamically aspect in our
system. More interesting, we can use a coordination
language to implement each aspect. Our current
implementation uses a very simple language within
which the body of aspect is a method that calls the
different components.

3 Experimentation

Our example of Document Management
federation is now in phase of industrial exploitation.

The federation is fully distributed; we use RMI or
Socket as the communication protocol between
wrappers and proxy. The foundation also contains a
“launcher” which, based on the component model
stored in the CCU, is in charge of instantiating and
initialising automatically and remotely tools,
wrappers and proxies, subscribing a new tool to what
it is allowed to observe (this is how observation
control is performed). A component is launched
either on user request or on predefined conditions
(often a notification or an aspect request), as
indicated in the component model for that tool.

The special effort has been done for the complete
environment support for definition, development and
administration of federations. We have defined an
environment with graphical interfaces allowing
designing quickly and easily a federation. The
federation engine will execute the package generated

 6

by the conception and deployment tool. It is the
charge to ensure that the federation will be executed
as defined.

Actually, the federation handles different classes
of tools: local tools, i.e. the unique instance of tool
execute in the server of federation; remote tools that
can be instantiated a number of times and on
different machines like Workspace Manager, tools
that work in a client server mode (e.g. CVS), ad hoc
tools (i.e. developed on purpose like Product
Manager) and so on.

4 Conclusions

The majority of the research groups tend to use
process in order to construct co-operative systems
with automatic guidance. With the federation
architecture, the process becomes much more
important in integrated systems.

We think our work contributes by providing a
high level view where the application can be
described independently from the real tools
specificities, and where the application behavior and
tools can be inserted and modified flexibly and
dynamically.

Once the objectives are defined at high level, the
process one, the work consists in implementing that
new application by using the existing component or
existing tools. The CU containing concepts utilized
by these tools will be defined (in an abstract
representation or not). The adaptor of each tool will
be created if necessary.

This decoupling allows us to consider a
federation at different levels of abstraction; which
simplifies vastly the definition control and change of
the application behaviours and properties; and which
gives a large flexibility in the choice of the tools to
use and the way to use them.

The federation technology gives also a solution to
the objectives of the EAI, while proposing a process
guidance of the heterogeneous tools constituting an
enterprise application. However, contrary to the EAI,
the process is not a workflow expressed in term of
tool and their parameters.

5 References

[1] J. Estublier, P.Y. Cunin, N. Belkhatir,
Architectures for Process Support System
Interoperability. In Proceedings of the 5th
International Conference on The Software Process,
The International Software Process Association
Press, Lisle, IL, June 1998.

[2] Jeffrey C. Lutz. EAI Architecture Patterns.
EAI Journal, March 2000, P64-73.

[3] John E. Mann. Workflow and EAI. EAI
Journal, September/October 1999, P49-53.

[8] David S. Linthicum, “Process Automation
and EAI”, EAI journal, March 2000, P12-18.

[4] J. Estublier, and T. Le Anh. “Early experience
in Modelling and Managing Software Federations”.
ICSSEA Paris-France 2001.

[5] J. Estublier, S. Dami, and M. Amiour. “APEL:
A graphical yet Executable Formalism for Process
Modelling”. Automated Software Engineering, ASE
journal. Vol. 5, Issue 1, 1998.

[7] Jeffrey T.Pollock. “The Big issue :
Interoperability vs. integration”. EAI Journal,
Octobre 2001, P48-52.

[8] WFDL, “WDPL”. WFMC TC-0020,
Workflow Management Coalition, 1996.

