
AML: an Architecture Meta-Language

David Wile
University of Southern California / Information Sciences Institute

wile@isi.edu

Abstract
The language AML is used to specify the semantics of

architecture description languages, ADLs. It is a very
primitive language, having declarations for only three
constructs: elements, kinds, and relationships. Each of
these constructs may be constrained via predicates in
temporal logic. The essence of AML is the ability to
specify structure and to constrain the dynamic evolution of
that structure. Dynamic evolution concerns arise with
considerable variation in time scale. One may constrain
how a system can evolve by monitoring its development
lifecycle. Another approach to such concerns involves
limiting systems’ construction primitives to those from
appropriate styles. One may wish to constrain what
implementations are appropriate; concerns for interface
compatibility are then germane. And finally, one may
want to constrain the ability of the architecture to be
modified as it is running. AML attempts to provide
specification constructs that can be used to express all of
these constraints without committing to which time scale
will be used to enforce them.

1 Architecture semantics

Considerable confusion reigns in the architecture
description community about what exactly constitutes an
Architecture Description Language (ADL). The spectrum
of languages runs from something as “obviously” relevant
as Rapide [8] or Wright [1] to languages only loosely
construed as ADLs, such as StateMate or UML[2]. An
intention of this report is to set straight precisely what I
mean by an architecture description and to provide a
somewhat rigorous foundation for describing and
reasoning about architecture descriptions and architecture
description languages. In effect, all ADLs should be
specializations of AML, semantically. Naturally, syntactic
variations will abound.

I make no pretense to justifying my definition of
architecture as fundamentally related to the natural
language definition or even to definitions within the ADL
community, although I certainly hope to have captured the
intent of both. To me an appeal to “the architecture” of
some thing is an appeal to properties related to its form
rather than its functionality. One might not even be able
to perceive what it does, but one might understand very
well how it works or what basic elements are involved in
accomplishing the activity and how they are related.
Imagine coming upon a piece of machinery you have
never seen. You may very well understand much of how
the machine works, from the arrangement of gears,
pulleys, levers, etc. You may even be able to look at it
and see that it could not possibly work (in the obvious
way) or that it may be a Rube Goldberg device. Very
often, considerable understanding of its form arises from
understanding the architectural style used to describe it.
For example, you might recognize it as a piece of farm
equipment – it’s big and green! The reason such
understanding arises quickly is that properties of the style
pertain from instance to instance and need not be
reinvented afresh. A surprising amount of leverage comes
from reasoning about what is not present. This is very
uncharacteristic of most approaches to specification and
abstraction in software engineering.

The role of semantics of architectures is key in the
design of AML. The development of the language is
based on what each construct brings to the semantics –
each introducing a form of shorthand for a few basic
concepts on which the language is founded. At the base,
we have objects that we identify called architectural
elements, or just “elements,” for short.

One states predicates that are assumed to hold on the
elements. Architectural descriptions are always ultimately
describing artifacts in the real world whose properties they
are trying to model; these assumptions must be shown to
hold there. It is fundamental to the model that the elements
can be identified in the artifact and that the properties of
those elements upon which further specification will rely
can be assured of the artifact itself.
__
This work was sponsored by the Defense Advanced
Research Projects Agency under contract nos. MDA903-
87-C-0641, DABT63-91-K-0006, and F3062-96-2-0224.

For example, say we have:
 elements Controller, Main, Helper;

describing parts of a computer system. First of all, we
must identify these elements in the system we are
modeling. In AML it is assumed that no two uniquely
named elements refer to the same element in the artifact.
This is very unlike variables in programming languages,
but is quite analogous to unique nullary constructors in an
abstract data type. The element(s) declaration is really a
primitive form of assumption for our logical theory about
the particular architecture we are describing. We can state
such assumptions in AML:

assume all x : id x == exists y : identified-with(x,y)
assume id Main ^ (id Controller | id Helper);

Logically, the elements are Skolem constants for which we
could substitute nullary functions. The unary predicate
indicating that an element has been identified is
represented using the prefix operator, id

Now we may want to constrain the structure of the
Controller to be as follows:

assume has-part(Controller, Main)
 ^ has-part (Controller, Helper);

That is, we assume that Controller has-part Main and
Controller has-part Helper, whatever “has part” means.
It will be common to need to constrain such topological
relationships between architectural elements.

Furthermore, a distinguishing feature of architecture
descriptions is the preponderance of “closedness axioms”
of the form:

assume all x : has-part(Controller, x)
 => x =Helper | x = Main

That is, Helper and Main are Controller’s only parts.
These are used to guarantee properties where
completeness of information affects the assumptions, such
as with security and fairness issues. Much of the syntactic
leverage of AML arises from shortcut ways of stating
these last two assumptions.

After convincing oneself that elements and assumptions
hold in an artifact, there will be derivative propositions
about the specification that follow logically from the
assumptions. For example, we can specify:

derive id Controller || id Helper
Naturally, these must be proved within some logical
framework.

We have assumed that architectural elements are a
distinct type that we want to reason about identifying
within an artifact. The sets of relationships that might be
of interest to identify of these architectural elements and
the types of elements themselves are not so clear-cut.
Each ADL seems to have a slightly different vocabulary,
concerning connectors, ports, components, interfaces, etc.
Hence, two abstraction constructs are introduced into
AML. The kind declaration allows one to declare new
architectural element types; the relationship declaration
allows one to characterize relationships whose

identification within the artifact will be of interest. Above,
we assumed has-part was such a relationship.

The remainder of the paper will lay out the various
language constructs that are tuned to the architecture
specification concerns mentioned above. Then examples
of semantics for a well-known style and ADL will be
given. Finally, issues of dynamism and a variety of uses
for the semantics are indicated – including a surprisingly
practical one involving monitoring running systems for
architectural compliance.

2 The AML language

To summarize: software architectures are to be
represented as a set of elements among which
distinguished topological relationships are carefully
described and constrained. These relationships may be
time varying, or event-based. In effect, AML is designed
to facilitate specification of these concepts only: elements,
topological relationships, domain-specific relationships on
the elements, and temporal constraints, along with
facilities for organizing and describing these concepts
more concisely.

AML semantics require several different validation and
verification activities on the part of its users and/or support
tools. Having proved the derivations, one must:
• Identify the elements of the model with items in the

artifact. Again, it is assumed that no two differently
named items be identified with the same artifact.

• Ensure that these identified elements satisfy
appropriate topological relationships, again in the
artifact itself. Specifically, if an element is identified,
this usually requires that other topologically related
elements be identified as well.

• Ensure that certain closure properties hold in the
artifact. This involves establishing that e.g. all of the
parts, and only the parts are accounted for that
participate in part relationships.

• Establish the non-topological properties. This is a
purely domain-specific activity, and is actually the
major source of leverage of ADLs.

The semantics of AML use only a very small part of the
predicate calculus along with some elementary set theory.
It is my intention that AML be adapted to different logics
for different analysis purposes. In what follows the
predicate language will include simple temporal
predicates, sometimes and always, conventional
quantifiers (with typed variables), and the usual
connectives and propositions, as illustrated in the
examples above.

It must be emphasized that AML is a framework. Any
extension of it consistent with the underlying logic is
encouraged. Hence, I would expect e.g. someone
describing Wright semantics to introduce CSP expressions
into the specification, perhaps along with a special purpose
reasoning engine that understands those semantics in

conjunction with the topological semantics of AML.

3 Relationships

The structural building block in AML is the
relationship. Over the past 25 years in the Software
Sciences Division at ISI we have built many languages
based on “relational abstraction” wherein we model all
data access as manipulations of abstract relationships [5].
Some of the conventions adopted there are brought over
into AML. In AML the relationship declaration is used to
describe topological relationships among elements and
domain relationships between elements and other external
types, such as integers or strings, or even modules in a
programming language, for example.

A relationship declaration may simply describe a
relation name and its parameters. Assumptions about
which tuples are in or out of the relationship may be
described. For example,

relationship has-part(b,a)
 assume ~ exists p : has-part(p,a) ^ p <> b

This relationship declaration declares has-part and says
that nothing is part of two different parents. The
assumption is logically equivalent to having written:

assume all a,b : has-part(b,a)
 => ~ exists p : has-part(p,a) ^ p <> b
Relationships may also be defined to be equivalent to

other predicates as follows:
relationship attached-to(a,b)
relationship lower(a,b)
 == attached-to(a,b)

 | exists c : attached-to(a,c) ^ lower(c,b)
This declares the lower relationship to be the transitive
closure of the attached-to relationship.

Some special shortcuts have been found to be useful
when relationships form a basis for a language [5, 18]. Of
course, relationships are used as propositions in predicates
in the normal way. However, a particularly useful shortcut
is to use the wildcard symbol, $, to indicate an unnamed
existential variable, to be bound in the immediately
enclosing scope. For example,

attached-to(Controller,$)
^ attached-to($,Controller.Helper)

is equivalent to:
(exists x1 :attached-to(Controller, x1))
 ^ (exists x2: attached-to (x2,Controller.Helper))

There are two symbols used to select values from a
relationship in expressions:? and ??. The former selects
an arbitrary element from the corresponding slot of the
tuples that are in the relationship, consistent with the rest
of the parameters; the latter refers to the set of all such
elements. For example,

attached-to(?,a)
refers to any element which is attached to a. On the other
hand,

attached-to(a,??)

refers to the set of all elements to which a is attached.
There must be at most one occurrence of ? or ?? in any
particular relation access.

Relationships’ slots may have multiplicity constraints
attached to them. Although these seem at first a bit tricky,
they are extremely useful for characterizing common
constraints rather concisely, and they form the foundation
for extensions to the element declaration already
introduced. The multiplicity of any slot qualifies the range
of elements that can be in that slot for any random
selection of other elements in the other slots.

The multiplicity is specified using a standard
mathematical range notation, viz. N .. M. If M is omitted,
an indefinite number of elements (>= N) may be related.

relationship attached-to(0 .. n bottom, top);
means:

relationship attached-to(bottom, top);
 assume all y: size attached-to(??,y) in 0 .. n

where the size operator is the cardinality of its argument
set, the in operator is just an element test, and 0..n refers
to the set of integers in the indicated range. When
multiplicity is unspecified, there is no constraint on the
slot; that is, several elements can be related to the same set
of elements in the other slots. Hence, the default
multiplicity of a parameter is “0 ..”

Another notational convenience, called “mapping,”
specifies that a binary relationship holds between an object
and several others, simultaneously. The “trick” is to use
the relation name as an infix operator whose first argument
is a single object and the rest of which are specified in set
braces, viz.

Controller has-part {Main,Helper}
 == has-part(Controller, Main)

 ^ has-part(Controller, Helper)
The final concept needed to specify architectures

concisely is that of “closedness”1 of relationships.
Consider the mapped relationship above. It is often
desirable to say, “and those are all the parts.” Logically,
this translates into an assumption:

has-part(Controller,??) = {Main,Helper}
written

Controller has-part ! {Main,Helper}
Obviously, this is not any more concise than the previous
line, but its utility will become apparent, presently.

4 Elements revisited

Above, the element was introduced as the fundamental
structural building block of AML, the mechanism for
introducing Skolem constants into the semantics. The
element declaration is extended here to introduce further
elements related to the one being declared, to allow rather
concise specification of topological relationships between

1 This rather awkward word is used instead of

“closure,” which is technically quite different.

the element and those introduced, and to specify
closedness properties over those relationships. Generally,
indentation is used to introduce assumptions about the
element, leaving the element implicit (much as in object-
oriented programming). Given a topological relation
declaration for has-part,

relationship has-part(1..1 whole, part)
the indented declaration of has-part beneath an element
declaration can use set notation to specify several parts.
The notation is an extension of the relation mapping
notation above. For example,

element Controller
 has-part { element Main; element Helper}

(The number of parts must be consistent with the
multiplicity declaration for has-part.)

This declaration introduces three assumptions:
(1) That the three element instances, Controller,
Controller.Main, and Controller.Helper, are unique
names. The latter qualified names occur because the
declarations are inside the scope of the Controller
declaration.23 It is important to emphasize that these
instances are to be created afresh. To relate already-
introduced elements to Controller, one would use the
names without the element declaration.
(2) That the parts must be identified whenever the
controller is, viz.

assume id Controller =>
 id Controller.Main ^ id Controller.Helper

(3) That topological relations hold:
assume id Controller

 => has-part(Controller, Controller.Main)
 ^ has-part(Controller, Controller.Helper)

The number of parts (in this case) allowed and the
elements’ closedness properties can be constrained using
the same notation as with relationships, viz.

element Controller
 has-part ! { element Main

 has-part { element Surfaces;
 0 .. 1 element

 Instruments};
 0 .. 1 element Helper

 has-part { 1 .. 2 element
 Instruments }}

means that Controller has one element called Main and an
optional element, Helper. Unlike with the slots of
relations, an element’s multiplicity defaults to “1 .. 1,” i.e.
there is exactly one instance of it. Main itself has a
required element Surfaces and an optional element,
Instruments. And although Helper itself is optional,

2 If relations are declared within the scope of an
element, they too must be qualified if used outside of the
element’s scope.

3 To use the dot notation, the name of the related
subordinate element must uniquely belong to only one
topological relationship.

when present, it must have at least one part, called
Instruments[1], and may have a second, called
Instruments[2]. Notice the cascading of assumptions that
must occur, regarding conditional identification of the
elements and statement of the part relationships. It is
important to emphasize that elements are not generic
specifications; they specify a single instance of an artifact.
The kind declaration is used to specify generic elements
and will be described shortly.

Notice that the “! ” after the has-part restriction
indicates closedness as in the relationship mapping
construct above. Hence, the only parts Controller can
have are Main and Helper. Main itself may have parts in
addition to Surfaces and (possibly) Instruments.
Similarly, Helper may have elements other than
Instruments.

5 Constraints: assumptions and derivations

Again, elements may be constrained in two ways:
through constraints that are assumed to be true of the
element and through constraints that should be able to be
logically derived as holding. The constraints that are
assumed to hold must be validated in the artifact being
modeled. So far, we have only considered topological
relationships, those that relate different elements of the
architecture.

Most “interesting relationships” are non-topological,
i.e. relationships between architecture elements and other
models. So most assumptions and derivations will not be
predicates in terms of purely topological relationships, but
in terms of more domain-specific relationships. Almost all
of the power of an ADL stems from its ability to model
some aspect of the application of the architecture that can
be analyzed and reasoned about a priori. Although ADLs
are normally used to express non-functional aspects, the
framework indeed supports the expression of functional
constraints, such as detailed requirement specifications on
components and system invariants. The derivation of
axioms involving the non-topological relations in fact
constitutes the (a) semantics of an architectural
description.

The following example attempts to put some semantics
on the simple controller above. The idea is that there are
potentially two processors within it that can run in parallel.
Here it is possible that the Helper processor will fail, in
which case it will not be identified. The state of the
system in which this occurs is called “Emergency;”
otherwise things are “Normal.” In the former case, a
subprocess of Main, called Instruments, will take over
for the missing Helper process. These concepts are
entirely outside of the architecture domain itself, but in a
modeling domain for the dynamics of the system itself.

Consider:
element Controller
 has-part! {element Main

 has-part { element Surfaces;
 0 .. 1 element Instruments}

 0 .. 1 element Helper
 has-part {1 .. 2 element Instruments }}

 assume mode(Controller) = Normal == id Helper;
 assume mode(Controller) = Emergency

 => id Main.Instruments
 assume mode(Controller)= Emergency

 => ~ id Main.Surfaces.Secondary;
 * * *
 assume swap-time(Main) < 1.5 seconds;
 assume sometimes id Helper;

 derive id Main.Surfaces.Secondary
 || id Helper.Instruments[$];

 derive start-time id Main.Instruments
 - start-time ~ id Helper
 < 2 seconds;

The first set of assumptions refers to the states the system
might be in, and what processes must be identified. With
a few more such domain-specific assumptions –
necessarily checked within the artifact – derivations such
as the first could possibly be proved.

The final assumption, that the Helper processor must
be provided for, both constrains further development and
refinement of the specification as well as has dynamic
implications. Notice that the final derive statement refers
to dynamic event times when the Helper cuts out and
Main.Instruments takes up the slack. Even with the
assumption that the process swap-time is less than 1.5
seconds, there is not enough information in the
specification to prove this – nor have we introduced a
powerful enough logic to deal with such events in this
report –, but it is indicative of the kind of dynamic
constraint one wishes to impose on architectures. It is
possible that the proofs of such predicates will not be
amenable to automated reasoning approaches, but perhaps
a kernel of constraints to be checked dynamically during
the running of the system can be derived from them (see
Real Use section).

Notice just how open this specification still remains.
Surfaces, Instruments (in both processes), and even
Main and Helper may have additional parts. In fact, just
this openness may cause trouble in trying to prove the first
derivative fact (which might be aided by knowing that the
only processes in Helper were the Instruments).

6 Kinds

In AML kinds play the role of both architecture types
and architectural styles, introducing and restricting new
element types. The word was chosen for its lack of

associations in modern programming or specification
languages. A kind declaration looks like an element
declaration, but the meaning of closed (!) is extended
somewhat. Consider the kind declaration below:

kind component
 has-part ! {0..1 element top;
 0..1 element bottom};

This introduces a new type of element into the
specification and a unary predicate, component, to test
whether an element is of this type. One can now use
component, in boldface (stylistically), to introduce a new
kind of element, viz.

component StackADT;
This is the only way to have an element of type

component introduced, unlike in Acme, e.g., where types
are predicates [13]. Because the has-part relation was
closed in the kind declaration, this component cannot have
any parts other than possibly a top and possibly a bottom.
One could be more specific and specify:

component StackADT
 has-part ! {element bottom};

Notice that it is necessary to close off the specification if
one does not intend to leave open the possibility that a top
element be introduced later.

The next obvious thing to do is extend the relationship
declaration to allow the slots to be restricted to certain
kinds. In fact, more generally, it is desirable to restrict
them to elements satisfying arbitrary unary predicates.
Hence, type specifications may be added to formal
parameter specifications. For example,

relationship attached-to (b: n-bottom, t: n-top)
 assume above(t,b)
The signatures are treated as patterns in the

polymorphic programming sense. This specification in and
of itself does not require that all instances of the
attached-to relationship require n-bottom and n-top
arguments. Rather, when such arguments are given, the
stated assumptions must hold when the relationship holds.
Hence, that declaration entails the following assumption:

assume all b,t : n-bottom(b) ^ n-top(t)
 => (attached-to(b,t) => above(t,b))

(Notice that == would replace the second implication if
used in the relationship declaration instead of assume.)

The entire set of declarations for the attachToCom
relation is used to determine the type restrictions on the
relationship. Hence, if the following are also declared:

relationship
 attached-to (0 ..1 b: n-bottom, t: m-top);

relationship
 attached-to (b: m-bottom, 0 ..1 t: n-top);

and these are all the declarations of the relationship, the
following assumption holds:

assume all b,t : attached-to (b,t) =>
 n-bottom(b) ^ m-top(t)
| m-bottom(b) ^ n-top(t)
| n-bottom(b) ^ n-top(t)

The semantics of multiplicity restrictions are
complicated slightly by the typing.

relationship attached-to(0 .. 1 b:n-bottom, t:m-top);
means:

relationship attached-to(b:n-bottom, t:m-top);
assume all y: m-top(y) =>

size { x | n-bottom(x)
 ^ attached-to(x,y)} in 0 ..1

where standard “set comprehension” is indicated with the
“|” inside the braces.

In AML, the effect of styles in other ADLs is obtained
through the use of the element declaration and
constraining constructs from a specific kind. The C2
system [17] will be used as an example style, since it is
well-known to the architecture community. C2 has
components and connectors, both of which have
(potential) attachment points at the top and bottom. The
attachments are subject to the following explicit design
rules:
• The top of a component may be attached to the

bottom of a single connector.
• The bottom of a component may be attached to the

top of a single connector.
• There is no bound on the number of components or

connectors that may be attached to a single connector.
• When two connectors are attached to each other, it

must be from the bottom of one to the top of the other.
The idea is to build a C2-system kind. AML overloads

kinds to be used as styles using the following observation.
If we limit the declarative facilities that one can use to
describe an element to those introduced by a kind
declaration, we have effectively captured the goal
mentioned early on for ADLs: limiting the use of element
declarations to what constitutes an architectural style.
Consider the kind declaration below:

kind C2-system
 kinds m-top, m-bottom, n-top, n-bottom;
 relationship C2-element(x)
 == component(x) | connector(x);
 relationship part-of(1..1 C2-system, C2-element);
 relationship

 attaches-at (t: C2-element, b: C2-element);
 kind component
 attaches-at ! {0..1 m-top t;
 0..1 m-bottom b};
 kind connector
 attaches-at ! { n-top t;
 n-bottom b};
 relationship attaches-at (element, p:connector);

The C2-element relationship has been introduced as a
type (unary predicate) to restrict the attaches-at
relationships to those whose range is either a component
or connector, when a declaration of a C2-system is made.

We can restrict an element to a style by using the

closed symbol (!) after the kind name in a declaration.
C2-system ! StackVisualizationSystem

 part-of {component StackADT
 attaches-at ! {bottom b};
 components StackVisualization1,

 StackVisualization2
 attaches-at ! {bottom b,top t};
 component GraphicsServer
 attaches-at ! {top t};

 connectors TopConnector,
 BottomConnector}

In this example, the StackVisualizationSystem is
restricted to being a C2-system. Here, only components
and connectors can be used. When a kind has named
elements, the required elements are implicitly declared to
be elements of each instance of the kind. Hence, both
TopConnector and BottomConnector have top and
bottom parts. When the elements in the kind declaration
are optional, then they must explicitly be declared with the
instance of the kind, or identified later, perhaps even at
run-time.

In order to describe how the various tops and bottoms
can be legally attached, the following set of relationships
should be added to the C2-System kind declaration so
that they are enforced as assumptions in elements of that
kind.

relationship attached-to(0 ..1 b:n-bottom, t:m-top);
relationship attached-to(b:m-bottom, 0 ..1 t:n-top);
relationship attached-to(b:n-bottom, t:n-top);

Notice that these relationships convey exactly the same
constraints as required by the C2 design rules: the first two
requirements are conveyed by the first two relationship
declarations; the third constraint is conveyed by the lack of
a restriction on how many m-tops and m-bottoms
(respectively) can be connected in the first two
relationship restrictions; and the final restriction is
conveyed by the last relationship declaration.

A UML model of the C2 style is presented in [15] using
constraints on stereotypes. The AML model is more
concise, in part, because it is designed to capture these
kinds of constraints. The polymorphism of the single
attached-to relationship gains leverage as well.
Unfortunately, the analogous facilities of the UML model
constraining multiplicities could not be used in their
model; they had to resort to the reflection capabilities,
making the descriptions quite clumsy.

(Other example ADLs and styles specified in AML will
be available at the author’s web-site [19].)

7 Uses for AML semantics

Frequently in the above discussion, when a construct
was introduced without closedness assumptions,
references were made to further constraining the
closedness later in the specification or implementation
process. One may wish to constrain how a system can

evolve in various parts of its development lifecycle. Laws
such as Minsky proposes [12] or constraints as in
Monroe’s Armani system [13] address such evolution
concerns during system specification. Another approach to
such concerns involves limiting systems’ construction
primitives to those from appropriate styles, such as in
Wright [1] and UniCon [16], or embodied by the choice to
use C2 [17]. One may wish to constrain what
implementations are appropriate; concerns for interface
compatibility such as evidenced in SADL [11] are then
germane. And finally, one may want to constrain the
ability of the architecture to be modified as it is running;
languages such as Rapide [8] and Darwin [9] emphasize
these issues. Using AML’s specification constructs
allows one to express all of these constraints without
committing to which time scale will be used to enforce
them. Each of the above approaches should map readily
into AML. Naturally, different logical systems may be
necessary. That is consistent with the philosophy of AML.
If more restrictive constraints require more “reflective”
capabilities of an ADL than are present here, one should
seek to regularize them and introduce them into AML.

Normally, the existence of a formal “semantics” for a
language is simply a confidence-building device for its
designers. An interesting consequence of AML semantics
is that they can actually be useful in realistic settings. If
the topmost element of an architectural description is
presumed to be identified, there will generally be several
other elements that must be identified as well. If these are
furthermore assumed to hold, there will still be a residue
of assumptions about the identification of optional
elements and replicated elements that cannot be assumed.

This residue can be manipulated and used in testing the
running architecture for conformance, for example, by
instrumenting it with probes that detect the identification
and perhaps subsequent non-identification of elements. A
“shadow architecture” specification – the residue – can
then be monitored for compliance. The Flea system [3,14]
has been used for such purposes, although the residue was
concocted in an ad hoc fashion.

I expect variants of AML to be developed, tuned for
specific logic and event languages and perhaps specific
theorem prover aids. In such cases, it may be useful to use
predicate completion techniques or circumscription in
place of the closedness axioms.

8 Previous work

In addition to the dynamic specification techniques of
ADLs already discussed, AML is related to three areas:
architecture description languages, programming
languages, and specification languages. Acme [4] has
goals similar to AML but has been unable to achieve
community-wide consensus because of some awkwardness
with modeling a few prominent languages, namely Rapide
and C2, and because of a lack of support for dynamic

architectures. AML was inspired by an attempt to add
dynamism to Acme.

It is worth repeating the ADL-specific concerns:
1. To specify instances, made up of examinable

elements;
2. To specify non-functional properties of the instances;
3. To reasoning based on knowing the extent of

instances – what is not present;
4. And, to restrict the style or styles used to construct

them.
If we look to programming languages for hints as to

how to satisfy these concerns we come up surprisingly
short. Indeed, they are all capable of describing a single
instance, but the constructs introduced are generally based
on abstractions. Activities such as specifying a variable
whose only instance has a specific structure (1) is usually
very awkward, requiring, for example, the introduction of
a nonsense intermediate type declaration. With
programming languages one always describes
functionality, and only rarely, functionality properties;
never, non-functional properties (2). Restricting the
reasoning process to specific programs is notoriously
difficult (3); witness global variables, aliasing problems,
gotos and exception handling. Indeed, applicative
languages are designed to make this more perspicuous. In
fact, there is a proposal to use Haskell [7] to describe
architecture evolution, based on a reflective capability on
the architecture’s construction primitives. That is a more
prescriptive presentation than AML. Finally, we cannot
generally limit program construction (4) even to the use of
a specific set of types.

Specification languages come closer to providing for
some of these, but they are generally clumsy at describing
a single instance of a thing (1). Abstraction is emphasized
in languages such as Larch [6] and other algebraic
approaches, where instances are often nullary constructors
of a data type. Indeed, they can be used to describe non-
functional properties well (2), based on equational
reasoning generally, but sometimes on richer logical
foundations (that AML presumes will be used).
Specification of the limitations of what can be used is
generally difficult (3); in some ways, it is really the same
as “the frame problem.” Notice that it is a much harder
problem for programming languages, where the effects of
operations are characterized. Restricting topological
relationships is a much easier task. Finally, specification
languages also lack the ability to restrict specifications to
the use of a subset of all language constructs (4).

Object-oriented languages help somewhat; they have
some aspects of both programming languages and
specification languages, especially the modern tool suites
for OO design, e.g. based on UML. However, they miss
the mark on (3) and (4) especially, where constraints using
facilities as powerful as reflection are needed to provide
the necessary limitation to particular styles. Some of the
systems do allow constraining instances (1) as easily as

classes. However, protests to the contrary, they are not
good for specifying non-functional properties; they have
made too many representation-like commitments in the
language to think of them as describing anything but
imperative programs.

9 Conclusions

Most architecture description languages emphasize
particular domain relationships and leave the semantics of
the topological relationships and the identification process
implicit. AML is an attempt to tease out just that aspect of
ADL design and formalize it.

Only a small part of AML has been implemented: a
translator into constraints from nested element part
declarations. Moreover, some semantic issues remain
open, particularly around how kinds should be defined.
Although it has been used to specify portions of C2 and
Acme, more examples must be tried to see if it can
represent ADLs, such as Rapide and Darwin.

Architecture description languages have not been
formulated on a strong semantic base in the past; AML is
an attempt to provide such a base. Indeed, it is
fundamentally very simple: elements are described, their
number and relationships with one another are
constrained, domain-specific properties are assumed to
pertain, and derivations from these assumptions are stated.
In the artifact described, once the elements are identified,
their part relationships verified, and their properties
checked, any formally established derivations can be
trusted to hold.

It is this minimal semantic baggage that probably
represents the appeal of ADLs – one can make them mean
just about anything. But not just anything.

Acknowledgements
I wish to thank David Garlan, Neil Goldman, Jose

Messeguer, Bob Monroe, Peter Pepper, and Carolyn
Talcott for influential conversations on this topic.

References
[1] R. Allen. A Formal Approach to Software Architecture. Ph.D.

Thesis. Carnegie Mellon University CMU Tech. Report
CMU-CS-97-144, May, 1997.

[2] G. Booch, I Jacobson, and J. Rumbaugh The Unified
Modeling Language for Object-0Oriented Development.
Documentation Set. Rational Software Corporation. 1997.

 [3] S. Fickas and M. Feather. Requirements monitoring in
dynamic environments. Proceedings of the Second IEEE
International Symposium on Requirements Engineering,
York, England, March, 1995, Pp. 140-147.

[4] D. Garlan, R. Monroe, and D. Wile. Acme: an architecture
description interchange language. In Proceedings of
GASCON ’97. (See also: http//www.cs.cmu.edu/~acme/)

[5] N. Goldman and K. Naryanaswamy. Software evolution
through iterative prototyping. ICSE 1992. Pp. 158-172

[6] John Guttag and James Horning. Report on the Larch shared
language. Science of Computer Programming,(6):1984, Pp.
103-134.

[7] Paul Hudak et al. Acme HOT. Draft Report. Yale Computer
Science, 1998.

[8] D. Luckham, et al. Specification and analysis of system
architecture using Rapide. IEEE Transactions on Software
Engineereing 21(4) April, 1995. Pp. 336-355. (See also:
http://anna.stanford.edu/rapide/).

 [9] J. Magee and J. Kramer. Dynamic structure in software
architectures. In Proceeding of the ACM SIGSOFT ’96:
Fourth Symposium on the Foundations of Software
Engineering. San Francisco, CA Oct., 1996. Pp. 24-32.

[10] N. Medvidovic and R. N. Taylor. A classification and
comparison framework for software architecture description
languages. IEEE Transactions of Software Engineering. To
appear.

[11] M. Moriconi, X. Qian, and R.A. Riemenschneider. Correct
architecture refinement. IEEE Transactions on Software
Engineering 21(4) Apr. 1995. Pp. 356-372.

[12] N. Minsky. Independent on-line monitoring of evolving
systems. ICSE 96, Berlin, Germany. Pp. 134-143.

[13] R. Monroe Capturing software architecture design expertise
with Armani. TR CMU-CS-98-163, Carnegie Mellon
University. 1998.

[14] K. Narayanaswamy.
http://www.darpa.mil/ito/Summaries97/D931_0.html

[15] J. Robbins, N. Medvidovic, D. Redmiles, and D.
Rosenblum. Integrating Architecture Description
Languages with a Standard Design Method Proceedings of
the Twentieth International Conference on Software
Engineering (ICSE Ô98, Kyoto, Japan), IEEE Computer
Society Press, April 19-25, 1998, pp. 209-218.

[16] M. Shaw, et al. Abstractions for software architecture and
tools to support them. IEEE Transactions of Software
Engineering 21(4) Apr., 1995. pp. 314-335.

[17] Richard N. Taylor, et al. "A Component- and Message-
Based Architectural Style for GUI Software", IEEE
Transactions on Software Engineering, June 1996.

[18] David Wile. Adding relational abstraction to programming
languages. In Proceedings of the ACM SIGSOFT
International Workshop on Formal Methods in Software
Development. Napa, CA. 1990. Pp. 128-139.

[19] David Wile. Web site. 1999. http://www.isi.edu/software-
sciences/wile/home-page.html.

