
Explanation-based Scenario Generation for Reactive System Models

Robert J. Hall

AT&T Labs Research

180 Park Ave, Bldg 103

Florham Park, NJ 07932
hall@research.att.com

Copyright 1998 IEEE. Published in the 13th Conference on Automated Software Engineering (ASE'98) Oc-
tober 13-16, 1998 in Honolulu, Hawaii. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works,
must be obtained from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445
Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.

IEEE made me say that. The actual paper starts on the next page.

Explanation-based Scenario Generation for Reactive System Models

Robert J. Hall

AT&T Labs Research

180 Park Ave, Bldg 103

Florham Park, NJ 07932

hall@research.att.com

Abstract

Reactive systems control many useful and complex
real-world devices. Tool-supported speci�cation model-
ing helps software engineers design such systems cor-
rectly. One such tool is a scenario generator, which
constructs an input event sequence for the spec model
that reaches a state satisfying given criteria. It can un-
cover counterexamples to desired safety properties, ex-
plain feature interactions in concrete terms to require-
ments analysts, and even provide online help to end
users learning how to use a system. However, while
exhaustive search algorithms work in limited domains,
the problem is highly intractable for the functionally
rich models that correspond naturally to complex sys-
tems engineers wish to design. This paper describes a
novel heuristic approach to the problem that is appli-
cable to a large class of in�nite state reactive systems.
The key idea is to piece together scenarios that achieve
subgoals into a single scenario achieving the conjunc-
tion of the subgoals. The scenarios are mined from
a library captured independently during requirements
acquisition. Explanation-based generalization then ab-
stracts them so they may be coinstantiated and inter-
leaved. The approach is implemented, and I present
the results of applying the tool to tasks arising from a
case study of telephony feature interactions.

1 Introduction

Reactive systems control many useful and complex
real-world devices, such as telephone switches, air and
space craft, and software agents. Such feature-rich
systems are di�cult to design correctly, particularly
when distinct functional features are designed by dif-
ferent people at di�erent times over the lifecycle of
a product family. Speci�cation modeling[11, 16] al-
lows engineers to apply relatively sophisticated val-
idation tools such as simulation, coverage analysis,

model checking[17, 5], or theorem proving[12, 20], to
relatively abstract models of the system's behavior in
order to �nd design errors before implementation. It
is the abstractness of the models that makes many of
the reasoning techniques tractable. The validated spec
model can be used as a starting point for code genera-
tion, as documentation of the behavior of the system,
and in support of maintenance and evolution[11].

A spec modeling tool suite bene�ts signi�cantly
from a scenario generator, which constructs an in-
put event sequence for the spec model that reaches
a state satisfying given criteria. Such a tool can un-
cover counterexamples to desired safety properties,
explain feature interactions in concrete terms to re-
quirements analysts, increase test coverage, and even
function as documentation, showing end users how to
achieve their goals while still learning how to use a
system. However, while some model checkers[17, 4]
are capable of generating scenarios for certain limited
classes of reactive systems, such as �nite state ma-
chines with small (or highly symmetric) state spaces,
the problem is intractable for functionally rich models
that arise as natural abstractions of systems engineers
wish to design. For example, in addition to requiring
search in an in�nite state space, models incorporating
arithmetic operators can require the scenario genera-
tor to �nd satisfying instances of arbitrary arithmetic
constraints, which is undecidable.

This paper describes a novel heuristic approach,
called SGEN2 (for \scenario generation via general-
ization") which is applicable to a large class of in�nite
state reactive systems. The key idea is to instantiate
and piece together abstracted scenarios that achieve
subsets of the conjuncts of a goal predicate into a
single scenario achieving the conjunction of the sub-
sets. The scenarios are mined from a library of con-
crete scenarios captured independently during require-
ments acquisition. Critically, they are then abstracted
via explanation-based generalization. The approach is

sound, but incomplete, so it will not succeed in �nd-
ing scenarios in all cases of satis�able goal predicates;
however, it is intended to be fast, even in failing cases,
so that it can be a practical interactive tool. Moreover,
the approach's power can be increased by adding more
scenarios to the library, so, as more requirements are
uncovered and speci�ed, the power of the tool grows
naturally. Even an incomplete generator is quite use-
ful. Typically, an engineer will discover (e.g. via static
analysis or proof attempts) descriptions of states in
which spec inconsistencies may arise, or correctness
properties may be violated; the scenario generator is
then run on these descriptions. Whenever the genera-
tor is successful, a de�nite design aw has been found,
so the engineer can focus attention there �rst. The
other cases, which may not even be satis�able, can be
put o� to later in the design process, after the known
problems are �xed. Fixing these �rst problems may
either alter or eliminate the other ones anyway. When
the generator fails, putting out a scenario coming as
close to the goal as possible can be helpful as well.

This paper can be summed up in three key ideas:

� Current limited-domain exhaustive search ap-
proaches (such as model checking[17]) to scenario
generation are not enough; we need a usable sce-
nario generator that accommodates more expres-
sive logics and large state spaces, even though the
problem is highly intractable;

� The heuristic SGEN2 approach, based on min-
ing and abstracting requirements knowledge us-
ing explanation-based generalization, applies to
richly expressive logics and large state spaces;

� A moderate sized case study involving feature in-
teractions in telephony gives initial empirical ev-
idence that SGEN2 is practical and useful.

After Section 2 de�nes terms and describes the tool
suite in which SGEN2 is implemented, the next three
sections make these key points. I conclude with dis-
cussion of related work, limitations, and future work.

2 Background: Spec Modeling

This work is performed within the Interactive
Speci�cation Acquisition Tools (ISAT) framework.
ISAT[11, 12, 13] is a prototype tool suite for reactive
system design that is intended to support full-lifecycle
spec modeling as well as code generation. A reactive
system is a (not necessarily �nite-) state machine that
reacts to parameterized input events by changing its

state and by performing acts, which can be thought
as output events. ISAT is based on two hypotheses:

� Functional requirements are most reliably elicited
from and validated by requirers as concrete, for-
mal behavior scenarios; and

� Speci�cations must be executable and amenable
to automatic analysis.

A designer constructs a reactive system model in the
executable spec language, while a requirer speci�es
functional requirements as concrete scenarios. The
latter are interleaved sequences of input events and
act or state observations required to be true. Thus,
crucially to SGEN2, a natural part of the design lifecy-
cle is the acquisition of a library of validated concrete
scenarios describing the system's behavior.

2.1 Model Formalism and Backpropagation

An ISAT spec model consists of a theory de�nition
together with a set of event handlers. The theory de-
�nes the types, functions, and semantic axioms of a
pure (side-e�ect-free) computational logic, as well as
the signatures of the state relations, events, and acts
that make up the system. In order to support model
simulation (execution), all primitive function declara-
tions in the model's theory must include a total op-
erational function capable of computing the value of
the function on inputs in its domain and some non-
error, type-compatible output value on inputs outside
its declared domain. (ISAT model theories are some-
what similar to computational logic as described in
[3].) Thus, ISAT supports arbitrary functional rich-
ness, bounded only by the user's willingness and abil-
ity to code implementations for the functions and pro-
vide the logical axioms supporting the other reasoning
tools (see below). For example, models can operate on
arbitrary data structures. I have used this richness to
good advantage in my work on applying ISAT to the
speci�cation and implementation of the Email Chan-
nels system[13]: the ISAT model operates on message
data structures, lists of users and messages, and even
database relation objects.

Event handlers are expressed in a limited procedu-
ral language P-EBF (\procedural event-based formal-
ism"), which is semantically related to the rule-based
EBF I described in [11]. The details of P-EBF are
not crucial to this paper, except that it supports a
predicate backpropagation operator BackProp. Note
that P-EBF need not be the input language seen by
the designer; many domain-appropriate front-end for-
malisms (e.g. domain-speci�c languages or graphical

programming environments) may be compiled into P-
EBF. Such formalisms are beyond the scope of the
present paper, however.

Formally, the state of an ISAT model is represented
as a collection of parameterized (partial) functional
relations rj : D1 � : : : �Dn 7! T , where T and each
Di are data domains (types). For example, the re-
lation CALL : Address 7! Call stores for an address
(i.e., phone number) the object representing its ongo-
ing call (if any). State values are referred to within P-
EBF expressions via the LOOKUP operator; for example,
(LOOKUP CALL "1234") returns the current call in which
extension "1234" is involved, if any. A state predicate
is a Boolean-typed ISAT expression. Predicates may
be parameterized by typed formal parameters. Here
is a state predicate of one address parameter, usr:

(and (member? usr (lookup known-addresses))
(equal IDLE (lookup mode usr))
(not (equal NO-CALL (lookup call usr))))

This predicate represents all states in which there is
an idle address that nevertheless still has a valid call
object. It is the negation of a desirable state invariant;
thus, a generated scenario reaching such a state proves
the existence of a design error.

The BackProp Operator. Formally, ISAT's
BackProp takes six arguments, (P 0; a0; s; e; s0;M),
and returns three values (P;E; a). P 0 is a state pred-
icate and a0 is a list of actual (concrete) parameters
for P 0 such that P 0 is true when evaluated in model
M 's state s0; s is a state for model M such that ap-
plying the concrete input event e to M in s results in
the new state s0. Pictorially, M : s

e
7! s0 and P 0(a0) is

true in s0. The return value E is an event schema for
(variablization of) the concrete event e, de�ning fresh
formal parameters. P is a state predicate taking the
same arguments as P 0 plus the formals of E, and a

is a list of actuals for P such that P (a) is true in s.
Moreover, we specify that

BackProp(P 0; a0; s; e; s0;M) = (P;E; a) if
and only if for all states S and actual pa-
rameters A = (AP 0 ; AE) satisfying P (S;A),
applying E(AE) to the model M in S results
in a state S0 in which P 0(AP 0 ; S0) holds.

To clarify, the formals of P are just the union of the
formals of P 0 and those of the event schema E. Thus,
the actual list A will have values both for the formals
of E and the formals of P 0. Intuitively, BackProp
computes a su�cient (not necessarily necessary) con-
dition on event E and the state prior to applying E,
such that P 0 is true afterward.

BackProp applies explanation-based generaliza-
tion [11, 8] to the P-EBF formalism. Others have de-
scribed similar operators, such as Dijkstra's predicate
transformers, or Igerashi et al's veri�cation condition
generators[18]. It is beyond the scope of this paper to
explain the algorithm in detail, but here is an exam-
ple. In state 1, user "1234" has MODE IDLE. The event
(OFFHOOK "1234") results in state 2 in which the MODE

of "1234" is DIALING. Then BackProp applied to the
1-parameter predicate (EQUAL DIALING (LOOKUP MODE

?x)) returns the event schema (OFFHOOK ?y) and predi-
cate (AND (EQUAL :IDLE (LOOKUP MODE ?x)) (EQUAL ?x

?y)). (The actuals lists bind both ?x and ?y to "1234".)
Intuitively, this means that if we o�hook any idle user,
that user will move to the dialing mode.
BackProp*. Note that if we have a succeeding

scenario trace involving a sequence of input events, we
can iteratively apply BackProp to get an entire gen-
eralized scenario, where the initial predicate will not
depend on the state at all (because ISAT scenarios are
de�ned never to succeed if they depend on uninitial-
ized state values). The rest of the paper will refer to
this operation as BackProp*; it takes in a model, a
scenario trace, and a predicate to be backpropagated
together with its satisfying actuals list, and returns
this fully backpropagated predicate, its actuals list,
and the list of event schemas making up the general-
ized scenario.

2.2 ISAT Tools Overview

ISAT exploits the two hypotheses above to provide
a suite of analysis tools to help the designer produce a
speci�cation that meets the true needs of the requirer.
ISAT includes the following tools:

� Scenario simulation takes a scenario and a model
and executes the model to determine whether the
scenario represents correct behavior of the model.
Thus, requirements scenarios can be directly val-
idated.

� Coverage analysis reports states never reached by,
and statements of the model that are not executed
by, any of the requirement scenarios. This helps
the designer elicit adequate requirements from the
requirer.

� Layered theorem proving[12, 20] is a technique for
proving arbitrary correctness properties, such as
state invariants and pseudo-state diagrams[12].

� Conict detection[14] returns predicates describ-
ing states in which the model, if it reaches them,

will derive an inconsistent next state (potentially
causing either a crash of the simulator or, worse,
the implemented system). Inconsistencies can re-
sult from setting state relations to two inconsis-
tent values or raising conicting output events,
such as playing both the ringback tone and the
busy tone at the same time to the same phone.

Coverage analysis, conict detection, and proof at-
tempts produce state predicates to which we can apply
a scenario generator in order to discover whether they
represent reachable states of the model.

3 The Scenario Generation Problem

Formally, the scenario generation problem is to take
a modelM and state predicate P 0 and �nd a sequence
L of concrete input events and a list of actual param-
eters AP 0 for P 0, such that executing L in M starting
from the unde�ned initial state results in a state s0 sat-
isfying P 0(AP 0 ; s0). For this work, I have concentrated
on conjunctive state predicates, i.e. those whose ex-
pression consists of the logical AND of a collection of
predicates. The method can be applied to disjunctions
of conjunctive state predicates by applying it concur-
rently to each of the disjuncts, but that requires engi-
neering for e�ciency that is beyond the scope of this
paper. Sections 1 and 2 discussed some ways a tool
suite can bene�t from solving this problem.
Why Rich Formalisms? Model checkers[17] and

symbolic model checkers[5] guarantee that when they
�nd a property not valid in a model, they return a
concrete counterexample (scenario) illustrating the vi-
olation. Thus, we should explore under what circum-
stances these tools solve the scenario generation prob-
lem before inventing di�erent ways to solve it.

Model checkers exhaustively search the state space
of the system, testing the property in each state.
Thus, they are limited by the size of the state space
they can handle. Some model checkers exploit limited
forms of state space symmetry to handle systems with
larger spaces, but all eventually run into this \state ex-
plosion problem". And while symbolic model checkers
have checked properties in impressively large (10120

[5], 1056 [2]) state spaces, it is not clear if the tech-
nique can be extended to handle nonboolean logics.
For a survey of model checking and its relation to the-
orem proving for veri�cation, see[6].

Should we simply avoid models with large state
spaces? I believe the answer is \no." Several common
types of design problems are only manifest in more
complex (large or unbounded state space) models of a

system. For example, complex systems are frequently
designed in a modular fashion by designing functional
\features" independently and then combining feature
sets to meet customization or market needs. Tele-
phone switching systems are a good example of this
approach, yet many other systems are built this way.
The problem is that even though individual features
are valid in isolation, their combination may lead to
undesirable interactions that lead to faulty behavior.
The only way for a tool to discover these interactions is
to model the feature combinations; it follows that the
more features a system has, the more complex must
its model be in order to detect interactions.

Another reason limited-space approaches are not
the �nal answer is that it is di�cult both to do enough
abstraction to make the problem tractable and yet
to retain enough detail to manifest the problems of
interest. In particular, each property to be checked
may require a di�erent, hand-constructed model ab-
straction. And since designers don't know in advance
which problems the system has, there could be a lot
of wasted e�ort and/or false con�dence in results. By
dealing with more complex models, the abstraction
can be relatively straight-forward, and a single one
can be used for all properties.

Finally, another reason to prefer a single, easily pro-
duced abstraction that is clearly faithful to the system,
is that there is the possibility of generating implemen-
tations directly from the models, either through code
synthesis or by direct manual implementation. Of-
ten, abstractions that are necessary for tractability are
missing too much detail to allow any direct mapping
to implementations. For example, Alur et al[1] report
on a model checking e�ort for a phone switch in which
it was necessary to model queue data structures by 7
bit integers (representing the number of items in the
queue). An implementation must supply all details of
queue implementation, as well as any system behavior
depending on the actual contents of the queues.

Why is scenario generation hard? As soon
as our representation language allows event and state
parameterization and functions, we have added an
uncomputable constraint satisfaction problem to the
problem of combinatorial search in large state spaces.
For example, designers commonly need models with
arithmetic, lists and other data structures, text ma-
nipulation functions such as pattern matching, etc.
But then it is possible to de�ne systems and prop-
erties that are only satis�ed when the system reaches
a state satisfying an arbitrary sentence of this rich
theory. Proving such a state reachable is undecidable,
by G�odel's Incompleteness Theorem; generating a sce-

nario that actually reaches it is even harder because
of the combinatorial search.

Thus, in summary, we want to be able to apply
scenario generation to complex modeling formalisms,
and yet the problem goes from merely search to un-
computable. Our only hope in these cases is to �nd an
approach that can solve the problem in usefully many
cases, and not take too long doing it. We also require
that whenever the tool returns a scenario, it actually
satis�es the goal predicate (soundness). These are the
goals of the SGEN2 approach.

4 The SGEN2 Approach

Let us term the overall conjunctive state predi-
cate the \goal predicate" and the individual conjuncts
making it up the \conjunct predicates" or simply the
\conjuncts." There are two key insights behind the
SGEN2 algorithm. First, the library of requirement
scenarios, while unlikely to have a scenario which
reaches a state satisfying the goal predicate, never-
theless is likely to have scenarios that reach states
satisfying sets of the conjuncts. Thus, we might �nd
such scenarios and somehow paste them together into
a single scenario that achieves the full conjunction.
Now, typically two such scenarios will operate on dif-
ferent data items; for example, scenario 1 may achieve
set 1 of the conjuncts for address "1234", while sce-
nario 2 achieves set 2 for address "5678". Thus, these
two concrete scenarios cannot be interleaved to form
a scenario that achieves the union of the sets for a
single address. However, the second key insight is
that we can solve this subproblem by abstracting the
two scenarios, using BackProp*, and �nding a com-
mon instantiation of them (binding of their variables
to data values) such that the union of the two pred-
icate subsets is satis�ed. Once such a common in-
stantiation is found, a heuristic search merges the two
event sequences into one, achieving the union of the
conjunct sets. Appendix A gives a precise high-level
pseudocode description of the SGEN2 algorithm.

The following illustrative example is taken from the
case study. Consider the goal predicate

(and (member ?y (lookup known-addresses))
(lookup fpr-active ?y)
(equal dialing (lookup mode ?x))
(lookup tcs-active ?y)
(member ?x (lookup tcs-screened-list ?y)))

This describes states in which known address ?y has
two features, \fpr" and \tcs" both active, with ?x on
its tcs-screened-list, and in which ?x is dialing.

Initialization. SGEN2 �rst mines its library and
discovers scenario S1:

(init)
(init-address "1234")
(activate-tcs "1234" "1234")
(offhook "1234")

which results in a state satisfying 4 of the 5 conjuncts:

(and (member ?y (lookup known-addresses))
(equal dialing (lookup mode ?x))
(lookup tcs-active ?y)
(member ?x (lookup tcs-screened-list ?y)))

when we bind both ?x and ?y to "1234". Since it is
unlikely we will �nd another scenario that fortuitously
achieves the rest of the goal for the constant "1234",
we apply BackProp* to the above predicate and the
trace of scenario S1 to get the generalized scenario G1:

(init)
(init-address ?x)
(activate-tcs ?y ?x)
(offhook ?x)

subject to the backpropagated condition (equal ?x

?y). SGEN2 also records the actual bindings f?x =

"1234", ?y = "1234"g

SGEN2 recursive step. SGEN2-REC continues
by searching the mined library information for satis-
�ers of the remaining conjunct(s) of the goal. In this
case, it discovers (among others) that the scenario S2

(activate-fpr "5678" 0 10 "1357")

achieves the remaining conjunct (lookup fpr-active

?y) when ?y is bound to "5678". Note that since S1
and S2 operate on di�erent constants, they cannot be
directly interleaved to get a scenario reaching the de-
sired conjunction. Applying BackProp* to the re-
maining conjunct and the trace of S2, we get the gen-
eralized scenario G2:

(activate-fpr ?y ?t1 ?t2 ?w)

subject to no constraints (other than implicit type
constraints), with actual bindings: f?y = "5678", ?t1

= 0, ?t2 = 10, ?w = "1357"g.
SGEN2-REC then calls the Coinstantiate rou-

tine which attempts to �nd a common instantiation
of G1 and G2 obeying both sets of constraints. In
this case, since the constraint set for G2 is empty,
Coinstantiate quickly �nds that the common in-
stantiation I = f?x = "1234", ?y = "1234", ?t1 = 0,

?t2 = 10, ?w = "1357"g satis�es both sets.
SGEN2-REC �nally calls MergeScenarios on

the two scenarios G1(I) and G2(I), which denote
the instances of G1 and G2 obtained by applying

I . MergeScenarios also takes the two predicates
P1(I) and P2(I) which are satis�ed by G1(I) and
G2(I) respectively, so that it can check whether its re-
sult satis�es both simultaneously. In the case above,
MergeScenarios �nds the following interleaving
which does, indeed, satisfy the conjunct sets.

(init)
(init-address "1234")
(activate-tcs "1234" "1234")
(activate-fpr "1234" 1 10 "1357")
(offhook "1234")

If at this point there were still unsatis�ed conjuncts
of the goal, SGEN2-REC would call BackProp* to
generalize this result scenario and then recur to search
for yet another scenario to satisfy the next subset.
If Coinstantiate or MergeScenarios fails, then
SGEN2 and SGEN2-REC move on to the next can-
didates in the search (cf Appendix A).

4.1 Library Mining

The �rst step of SGEN2 is to search the library of
execution traces of requirement scenarios for states in
which sets of conjuncts are satis�ed. The subroutine
MineLibrary accomplishes this as follows. For each
scenario in the requirements library, it �rst generates
an execution trace by calling the simulator. It then
extracts from the trace sets of data values (grouped
by type) appearing in the trace. Then, for each possi-
ble well-typed assignment of these data values to the
formal parameters of the goal predicate, it searches
the states of the execution trace for those in which
a conjunct �rst becomes true (for that parameter as-
signment). It creates a predicate group satis�er (pgs)
for that state, which records the assignment and which
set of conjuncts are satis�ed. This set of satis�ed con-
juncts is termed the satset of the pgs. MineLibrary

returns the entire collection of PGSs found in this way
in all traces. It sorts the list in decreasing order of the
size of the satset so that SGEN2 will consider earlier
those PGSs that satisfy the most predicates at once.

MineLibrary is linear in the total number of
states in all traces in the library. More importantly,
however, it is proportional to the number of parame-
ter assignments, which is exponential in the number of
goal predicate parameters. While the current imple-
mentation seems to work adequately fast on the case
study examples (� 5 parameters each), it may be nec-
essary to limit the number of assignments considered
when the goal predicate has many parameters.

4.2 Coinstantiation

Coinstantiate heuristically attacks the (in gen-
eral) uncomputable problem of coinstantiation by sim-
ply trying out all possible well-typed assignments of
constants to the parameters of G1 and G2, where the
constant pool is simply the union of all constants in
the actual-bindings of the PGSs from whichG1 andG2

were generalized. This has proven e�ective in the case
study, and takes negligible time (see statistics below).
If necessary, Coinstantiate can be made to consider
larger constant pools, such as those in all scenarios.

4.3 Scenario Merging

MergeScenarios takes in two scenario/predicate
pairs, where each scenario results in a state satisfy-
ing its predicate. The goal is to return an interleav-
ing of the two scenarios that satis�es both predicates.
MergeScenarios does not attempt to check all pos-
sible interleavings, as this would require checking ex-
ponentially many (in the sum of the lengths of the two
input scenarios) interleavings in the worst case. And
note that the worst case occurs any time no interleav-
ing exists, so it is fairly common. Designate the in-
put scenario/predicate pairs as the \left" scenario and
predicate and the \right" scenario and predicate. Our
approach is to sequentially select the front event o� of
either the left or right scenario and add it to the end of
the result scenario until both left and right are empty.
Doing this in all possible ways, waiting until left and
right are empty before checking the predicates, would
result in the exponential worst case mentioned above.

Instead, MergeScenarios heuristically limits the
search as follows. Each time it selects an event el
from the left scenario, it checks to see whether, if the
result scenario were extended from that point with
the remainder of the right scenario, the right predi-
cate would be satis�ed. If not, el is vetoed; otherwise,
it proceeds to the next choice. (By induction, one
can show that if instead we extended the result with
the remainder of the left scenario, the left predicate
would also be satis�ed.) The dual check is done when
the event is selected from the right. When the front
events on left and right are identical, the algorithm
also attempts the third option of adding one event
and discarding the other.

Note that since there can be interleavings that sat-
isfy both predicates at the end but which contain in-
termediate points at which the check would fail, this
approach is less powerful than brute force search; how-
ever, in the case study, MergeScenarios only failed

Total Scenario Satis�able/ Not
Attempts Generated No scenario Satis�able

63 24 36 3

Table 1: SGEN2 success on case study

once when a brute force search would have succeeded,
and yet was as much as 12 times faster (average: 2x).

5 Case Study

I ran SGEN2 on 63 distinct scenario generation
problems that arose in a larger case study of feature
interactions in a telephone switch speci�cation. (The
study actually produced 66 problems, but three were
duplicates, so were discarded for this paper.) The
larger study is actually a tool contest associated with
the 1998 Feature Interactions Workshop[7]. The sys-
tem being modeled is a telephone switch implementing
Plain Old Telephone Service (POTS), plus 12 func-
tional features such as Call Forwarding (CF), Ter-
minating Call Screening (TCS), FreePhone Routing
(FPR), and nine others. This SGEN2 case study was
performed before four of the twelve were modeled, so
only POTS and eight features are included here. In a
related paper[14], I explain how I used the ISAT tool
set to model these specs and to detect various types of
feature interactions among them, many of which are
predicates describing states in which undesired things
may happen, such as feature inconsistencies becoming
manifest (conicts) or feature correctness properties
being violated. In the absence of a scenario genera-
tor, it is left to the user to determine whether those
state predicates describe reachable states of the model.
Thus, these 63 problems provide a moderately com-
plex test of the power and usefulness of a scenario
generator, and are representative of the problems that
may be encountered by such a tool. The full data is
available at [15].

Results. The 63 predicates averaged 1.72 param-
eters and 5.98 conjuncts each. Table 1 shows the re-
sults of running the generator. \Scenario Generated"
refers to trials in which SGEN2 succeeded in �nd-
ing a scenario; \Satis�able/No Scenario" refers to the
cases when it failed to �nd a scenario, even though the
predicate is satis�able; and \Not satis�able" refers to
those cases determined (through external means) to
be unsatis�able and, hence, there exists no scenario
to generate.

Scen.Gen No Scen.Gen
All Only Only

63 24 39
Total 8938 603 8335
Library Mining 658 510 148
BackProp 1766 65 1701
Coinstantiation 0 0 0
Merge 6216 0 6216

Table 2: SGEN2 aggregate run times (rounded to
nearest second).

Table 2 shows run time statistics for the 63 tri-
als. All times are measured on a 225 MHz Macintosh
clone (144 MB memory) running the ISAT system un-
der Macintosh Common Lisp 4.2. For this table, the
\no.scen.gen only" condition includes all cases where
the tool did not �nd a scenario, whether or not the
goal predicate was satis�able (since to the user these
are equivalent when waiting for the tool to �nish).

Discussion. Of the 60 cases in which it was pos-
sible to generate a scenario, SGEN2 succeeded 40%
of the time. Thus, the user can be sure that at least
those cases illustrate real design errors and therefore
concentrate �rst on �xing them. Note that one er-
ror can cause scenarios to fail (due to conicts) that
would otherwise succeed far enough to reach a second
error state. Thus, �xing an error can cause SGEN2

to succeed when it failed previously. I know of one
de�nite case (and some others suspected) where this
sort of error interference occurred in the case study.

When I �rst ran the study, a few cases failed be-
cause individual conjuncts were not covered by the
scenario library. Of course, if there is no known way
to satisfy a single conjunct, the goal predicate won't
be satis�ed either. Fortunately, it is relatively easy to
discover a scenario covering a single conjunct, such as
(member ?x (lookup tcs-screened-list ?x)). I easily
created three scenarios to cover these cases, resulting
in one more success and several failures. The results
above reect these additional scenarios.

Turning to time, we see that the average time per
trial is 142 seconds overall, with succeeding cases tak-
ing 25 seconds on average (101 sec maximum) and
failing cases requiring 214 seconds (1054 sec maxi-
mum). Note that the distribution of time is radi-
cally di�erent between succeeding and failing cases,
with MergeScenarios dominating for failing cases
and MineLibrary dominating for succeeding cases.
Coinstantiate was never signi�cant, suggesting that

there is room to improve its power (by checking
larger constant pools, for example) without signi�-
cantly harming the overall run time. On the other
hand, we must be extremely careful in increasing the
power of MergeScenarios since that is the bottle-
neck in failing cases. These results are only intended
to be suggestive of future algorithmic improvements; I
believe they can be signi�cantly reduced by a careful
re-engineering e�ort. (The current ISAT system is an
exploratory prototype.) Note also that these results
depend on the model and scenario library as well.

In summary, it seems that at least for validation
purposes an imperfect scenario generator can still be
quite useful as long as it doesn't take too long. Of
course, we can always hope for a better success av-
erage, and future work will go into improving the
heuristics. However, it is desirable to keep the times
relatively low in all cases, including failure cases, so
the tool is still usable. Thus, we must engineer the
power/speed tradeo� carefully.

6 Related Work

Having discussed model checkers above, I will only
summarize here. Model checkers are useful solutions
to the problem of scenario generation as long as one
can e�ectively generate models in the limited formal-
ism necessary to run the tool tractably. However,
there is reason to believe that we need to handle the
more complex formalisms addressed in this work for
at least the reasons discussed in Section 3. In addi-
tion, we may wish to use scenario generation in ways
beyond validation, such as online help systems. For
comparison, it is amusing to estimate the state space
size necessary to model the telephony case study specs
in a �nite state formalism. If we model all 12 features
for n users, I estimate there are at least

S(n) > 2n
2+4n logn+12n

reachable states (logs are to base 2). If we consider
call-waiting and similar features, we need at least 3
users, but if we add forwarding and other multi-user
features, one can easily imagine properties referring to
6 or more users, leading to S(6) > 2170 � 1051 states,
which would challenge even the best model checkers.

Note that even in�nite-state model checkers, such
as that of Bultan et al[4], are highly restrictive. That
system is restricted to state spaces that are the cross
product of a boolean state space and one representing
integer inequalities (higher dimensional polyhedra).
While increasing model checking power by adding spe-
cialized constraint reasoners shows promise, it is not

even clear that most reactive systems people design
will be expressible within such restricted formalisms,
due to the common occurrence of functions mixing ar-
guments of several di�erent types.

Another class of approaches to the problem that
may seem applicable are AI-based planners, such as
STRIPS[9] or Prodigy[19]. The problem with applying
these systems, where the spec model provides the plan-
ning operators, is that planning operators must ex-
plicitly list their consequences; for example, STRIPS
operators must have ADD and DELETE lists. Simi-
larly, the macro operators learned by the EBG-based
PRODIGY system must explicitly include the goal(s)
they achieve. This is too limiting, because users of
scenario generation may give any goal statement they
wish in terms of functions de�ned in the logic. Any
planning operator derived from the spec model po-
tentially achieves too many (in�nitely many, in fact)
di�erent goals; far too many to be stored explicitly
even if we could bound the vocabulary. SGEN2 avoids
this problem by doing its abstraction and reasoning
on the y in MineLibrary and BackProp*. The
only knowledge stored is the \raw" scenario traces,
unadorned with any goal information.

There is also work in the traditional testing liter-
ature on generating test inputs to cover a given path
in a program. For example, Gotlieb et al[10] de-
scribe a constraint-based approach, which essentially
reduces to trying to �nd a satisfying assignment for a
boolean functional expression which is, of course, un-
computable once we enrich the formalism to include
(e.g.) arithmetic. However, the constraint based ap-
proach may prove useful in improvingCoinstantiate
andMineLibrary; it does not address the state space
search needed to handle reactive systems.

Finally, there are other spec modeling tool suites
providing some of the same (and many contrasting)
tools as ISAT, such as the SCR tool suite[16]. Such en-
vironments may incorporate model checking, but none
capable of dealing with rich formalisms have scenario
generators, to my knowledge.

7 Limitations and Future Work

The most basic limitation of SGEN2 is that it is
fundamentally a hill-climbing algorithm. In particu-
lar, there are examples in the case study which are
easily solved by merging two scenarios from the li-
brary, but which SGEN2 cannot �nd. As an example,
one scenario achieves a particular conjunct set halfway
through its event sequence, but then has several more
steps that are removed by BackProp* as irrelevant

to achieving that set. It turns out they are necessary,
however, if one wishes to later merge it with a sec-
ond scenario achieving the rest of the goal. (These
\extra" steps are things like hanging up a phone af-
ter activating a feature, because a subsequent scenario
must start from the idle state.)

SGEN2's power comes from the richness of the sce-
nario library; it is therefore likely to be more useful in
development processes and environments that encour-
age the formalization of such scenarios. SGEN2 pro-
vides, perhaps, a new argument in favor of integrating
formal scenarios into the software process.

SGEN2 is still in its early youth, and there are
many ways it can be improved. For example, in its
search, SGEN2 only considers the �rst PGS having
a given sat-set. A better, but more expensive, ap-
proach is to try a PGS if and only if its BackProp*-
generalization is not isomorphic to one seen previously.
The e�ect of this on run-time must be monitored, how-
ever. MergeScenarios, being the time bottleneck
on failing cases, may pro�t from more work on lim-
iting its search. MineLibrary needs to search fewer
cases when the predicate takes many parameters.

Of course, results from one case study are not con-
clusive, so future work should investigate SGEN2's
e�ectiveness on other domains and systems.

8 Conclusions

A scenario generation tool can be useful in a spec-
i�cation modeling tool suite, in focusing attention on
design errors demonstrably present, in helping com-
municate errors in the requirements, and even in im-
plementing online help systems. Exhaustive-search
approaches, such as model checking, while useful, are
not tractable in rich formalisms allowing more direct
system models to be expressed. SGEN2 is a heuristic
approach to a highly uncomputable problem, based
on the simple idea of piecing together partially sat-
isfying scenarios from the requirements library, us-
ing explanation-based generalization to abstract them
in order to be able to coinstantiate them. Results
from the case study are encouraging; SGEN2 seems
to succeed often enough to be useful and yet be e�-
cient enough to be engineered into an interactive tool.
While the work needs further empirical validation, it
seems promising and should be pursued.

References

[1] R.Alur, L.Jagadeesan, J.Kott, J.Von Olnhausen;
Model checking of real-time systems: a telecommuni-
cations application; In Proc. 19th Intl. Conf. Software
Eng., 1997, ACM Press, 514{524.

[2] R.J. Anderson, P. Beame, et al; Model-checking large
software speci�cations; In ACM SIGSOFT Software
Eng. Notes 21(6), Nov. 1996, 156{166.

[3] R.S. Boyer & J Moore; A computational logic hand-
book; Academic Press, 1988.

[4] T. Bultan, R. Gerber, & C. League; Verifying sys-
tems with integer constraints and boolean predicates:
a composite approach; In Proc. 1998 Intl. Symp. Soft-
ware Testing and Analysis, ACM SIGSOFT Software
Eng. Notes 23(2), 113{123, 1998.

[5] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill,
& L.J. Hwang; Symbolic model checking: 1020 states
and beyond; Info. and Comput. 98, 142{170, 1992.

[6] E.M. Clarke, J.M. Wing, et al; Formal methods: state
of the art and future directions; ACM Comput. Surv.
28(4), December 1996, 626{643.

[7] N. Gri�eth, T. Ohta, J-C. Gregoire, & R. Blumenthal;
FIW'98 Feature Interaction Detection Tool Contest;
http://www.tts.lth.se/FIW98/contest.html

[8] G. DeJong and R. Mooney; Explanation-Based learn-
ing: an alternative view; Machine Learning 1 (2)
(1986) 145{176.

[9] R.E. Fikes, P.E. Hart, and N.J. Nilsson; Learning and
executing generalized robot plans; Arti�cial Intelli-
gence 3 (1972) 251{288.

[10] A. Gotlieb, G. Botella, & M. Rueher; Automatic test
data generation using constraint solving techniques;
In Proc. 1998 Intl. Symp. Software Testing and Anal-
ysis, ACM SIGSOFT Software Eng. Notes 23(2), 53{
62, 1998.

[11] R.J. Hall; Systematic incremental validation of reac-
tive systems via sound scenario generalization; J. Au-
tomated Software Engineering 2(2), 131{166; Norwell,
MA: Kluwer Academic, 1995.

[12] R.J. Hall; Reactive system validation using auto-
mated reasoning over a fragment library; in Proc.
1997 IEEE Automated Software Engineering Confer-
ence (ASE'97). IEEE 1997.

[13] R.J. Hall; How to avoid unwanted email; Comm.
ACM 41(3), 88{95, March 1998.

[14] R.J. Hall; Feature combination and interaction detec-
tion via foreground/background models; to appear in
Proc. 1998 Intl. Workshop on Feature Interactions in
Telecommunications Systems, IOS Press.

[15] R.J. Hall; Complete case study data for this paper;
ftp://ftp.research.att.com/dist/hall/papers/isat/

sgen2-case-study.txt (1998).

[16] C.L. Heitmeyer, R.D. Je�ords, & B.G. Labaw; Au-
tomated consistency checking of requirements speci�-
cations; ACM Trans. Software Eng. and Methodology
5(3), 1996, 231{261.

[17] G.J. Holzmann; Design and validation of computer
protocols; Englewood Cli�s, NJ: Prentice Hall, 1991.

[18] S. Igerashi, R. London, & D. Luckham; Automatic
program veri�cation I: a logical basis and its imple-
mentation; Acta Informatica 4, 1974.

[19] S. Minton; Quantitative results concerning the utility
of explanation-based learning; Arti�cial Intelligence
42 (1990), 363{392.

[20] C. Rich & Y. Feldman; Seven layers of knowledge
representation and reasoning in support of software
development; IEEE Trans. on Software Eng. 18(6),
451{469, June 1992.

A SGEN2 Pseudocode

Figure 1 gives a pseudocode description of the top
level SGEN2 algorithm. SGEN2 takes in a goal pred-
icate GP and returns (on success) a predicate group
satis�er (pgs), a data type de�ned in Section 4.1. On
success, the returned pgs will satisfy the entire GP.
The function SGEN2-REC is a recursive subroutine
that keeps adding scenarios to the current (partial)
result until all conjuncts are satis�ed. Accordingly,
it takes several arguments: the current list of mined
PGSs, the abstraction of the current (partial) result
scenario (CurE), its constraint predicate (CurPi), the
conjunct set it achieves (CurPf), and the actual bind-
ings (CurI) needed to instantiate the scenario.

Note that Satset(p) is a function that returns the
set of conjuncts satis�ed by a pgs. Function Re-
duce(PGSList, pred-set) removes from each entry in
PGSList the conjuncts in pred-set, so they become
PGSs relative to the original goal predicate without
the conjuncts in pred-set. Reduce also sorts its out-
put in the same way as MineLibrary. CreatePGS
converts the merged concrete scenario into a PGS for
CurPf [Satset(p).

Parameter M : Model
Parameter L : Library

Function SGEN2 (GP)
PGSList := MineLibrary(GP, M, L)
SatSets := ()
For each p 2PGSList, do

If Satset(p) 62 SatSets
Add Satset(p) to SatSets
[CurPi, CurE, CurI] := BackProp*(p)
rPGSList := Reduce(PGSList, satset(p))
If rPGSList is empty

Return p ; (Success)
If SGEN2-REC(rPGSList,

CurP,
Satset(p),
CurE,
CurI) succeeds

Return its result. ; (Success)
Fail

Function SGEN2-REC(PGSList, CurPi, CurPf, CurE, CurI)
SatSets := ()
Foreach p 2PGSList, do

If Satset(p) 62 SatSets
Add Satset(p) to SatSets
[P, E, I] := BackProp*(p)
II := Coinstantiate(P, CurP, I, CurI)
If II 6= none

mm := MergeScenarios(CurE(II),
E(II),
CurPf,
Satset(p))

If mm 6= none
mmpgs := createPGS(mm,

CurPf,
Satset(p))

rPGSList := Reduce(PGSList,
Satset(p))

If rPGSList is empty
Return mmpgs ; (Success)

[CurP, CurE,CurI] :=
BackProp*(mmpgs)

If SGEN2-REC(rPGSList,
CurP,
CurPf [Satset(p),
CurE,
CurI) succeeds

Return its result. ; (Success)
Fail

Figure 1: Pseudo code description of SGEN2.

