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Abstract

Specification-based retrieval provides exact content-
oriented access to component libraries but requires too
much deductive power. Specification-based browsing
evades this bottleneck by moving any deduction into an off-
line indexing phase. In this paper, we show how match rela-
tions are used to build an appropriate index and how formal
concept analysis is used to build a suitable navigation struc-
ture. This structure has thesingle-focus property(i.e., any
sensible subset of a library is represented by a single node)
and supportsattribute-based(via explicit component prop-
erties) andobject-based(via implicit component similari-
ties) navigation styles. It thus combines the exact semantics
of formal methods with the interactive navigation possibil-
ities of informal methods. Experiments show that current
theorem provers can solve enough of the emerging proof
problems to make browsing feasible. The navigation struc-
ture also indicates situations where additional abstractions
are required to build a better index and thus helps to under-
stand and to re-engineer component libraries.

1 Introduction

Large software libraries represent valuable assets but the
larger they grow, the harder it becomes to capitalize them
for reuse purposes. The main problems are to keep the
overview over the library and to extract appropriate com-
ponents. This requires better library organizations and re-
trieval algorithms than a linear search through a flat list of
components.

Libraries are thus often structured by syntactic means,
e.g., inheritance hierarchies. But this is misleading because
it need not to express any semantic relation between com-
ponents. Information science offers semantic methods for
library organization and component retrieval e.g., [17, 24],
but these methods are informal because they rely only on
the meaning conveyed by words.

�This work is supported by the DFG within the Schwerpunkt “Deduk-
tion”, grant Sn11/2-3.

As a more exact alternative, the application of formal
specification methods to software libraries has been inves-
tigated, starting with [10, 23, 25]. The general idea is quite
simple. Each component is indexed with a formal specifi-
cation which captures its relevant behavior. Any desired re-
lation between two components (e.g., refinement or match-
ing) is expressed by a logical formula composed from the
indices. An automated theorem prover is used to check
the validity of the formula. If (and only if) the prover
succeeds the relation is considered to be established. The
most ambitious of these approaches isspecification-based
retrieval [21, 22, 19, 27, 5]. It allows arbitrary specifica-
tions as search keys and retrieves all components from a
library whose indexes satisfy a given match relation with
respect to the key.

However, in spite of all research efforts (cf. [20] for a
detailed survey), it is still far away from being practicable.
Notwithstanding all progress in automated deduction, the
required theorem proving capabilities remain the main bot-
tleneck. Here, we investigate a more practical approach,
specification-based browsingof component libraries. Its
crucial success factor is thatany time-consuming deduc-
tion can be moved into an off-line indexing phase (“pre-
processing”) and can thus be separated from navigation.
The user works only on the pre-processed, fixednaviga-
tion structurewhich reflects the semantic properties of the
components with respect to the index.

We show thatdifferentmatch relations must be used to
build an appropriate index and how formal concept analy-
sis can be used to build a concept lattice which serves as
navigation structure. Both techniques—specification-based
library organization [9, 19] and concept-based browsing
[8, 13]—have been proposed before, but their combination
is new and unique to this research. It thus combines the
exact semantics of formal methods with the interactive nav-
igation of informal methods.

Experiments show that this approach is feasible. Apart
from writing the specifications in the first place, indexing
can be fully automated. Current theorem provers can solve
enough of the emerging problems, even with modest time-
outs. Calculation of the concept lattice is fast enough and

1



navigation works without delay.
Specification-based browsing is not only useful for reuse

but also for analyzing, understanding, and re-engineering
component libraries. Although browsing is defined via
specifications, they are not actually required for navigation.
Instead, symbolic names can be used which “hide” the ac-
tual formulas. An intelligent choice of such abstractions
can thus speed-up and improve understanding. The lattice
even indicates situations where additional abstractions are
required to build a better index.

2 Browsing vs. retrieval

Library browsing and retrieval are closely related but fol-
lowing [20] a clear distinction can be made.Retrievalcon-
sists in extracting components which satisfy apredefined
matching criterion. Its main operation is thus the satisfac-
tion check ormatching. The criterion is usually given by an
arbitrary user-defined search key orquerywhich is matched
against the candidates’ indices. Retrieval supports a top-
down design approach: the desired component is first de-
signed (i.e., specified) and then looked up in the library. Its
main concern is thusprecision: components should not be
retrieved unless they are absolutely relevant.

Browsingconsists in inspecting candidates for possible
extraction, but without a predefined criterion. Its main op-
eration is thusnavigationwhich determines in what order
the components are visited and whether they are visited at
all. Browsing supports a bottom-up design approach: the
library is first inspected and then the system is designed
(i.e., composed) to take maximal advantage of the library.
Its main concern is thusrecall: components should not be
rejected unless they are absolutely irrelevant.

Browsing usually works stepwise and we denote the set
of all components which can be visited in the next step as
the focus. In contrast to retrieval, it requires no search key
but works on a pre-processed, usually hierarchical naviga-
tion structure. The obvious although not optimal way to
compute such a structure is to order the components by in-
clusion on their retrieval results using their own index as
query.

In the specification-based case, these differences prove
to be crucial for the greater practicability of browsing. The
pre-processing of the navigation structure allows us to re-
sort to off-line proving and thus to evade the deductive bot-
tleneck. Less obvious but equally important, the construc-
tion of the hierarchy via a cross-match of the component
library against itself benefits the proof problems. Since no
arbitrary user specifications are involved, the specifications
are much more uniform in style. This allows some obvi-
ous prover tuning; however, the real gain comes from the
absence of data mismatches. Consider for example a graph
library where the graphs are represented as map from nodes

to node sets and a query using a representation as a list
of node pairs. Then, the prover must repeatedly, for each
candidate, show that both data representations are equiv-
alent. Although signature matching can mitigate the data
mismatch problem [5], it is still the major source of com-
plexity in deduction-based retrieval.

3 Refinement lattices reconsidered

Formal specifications can be used to order components
and hence to organize libraries hierarchically. These hierar-
chies can then be exploited to optimize retrieval or to com-
pute a navigation structure. The obvious question is how
to order the components and the obvious answer is byre-
finementor plug-in-compatibility [21, 5]. Given two com-
ponentsG andS with respective axiomatic specifications
(preG; postG) and(preS ; postS), S is said to refineG (or to
be more specific thanG;S w G, orG to subsumeS), iff

(preG ) preS) ^ (preG ^ postS ) postG) (1)

holds.1 Intuitively, (1) expresses the fact thatS can be
plugged into any place whereG is used because it has a
wider domain and produces more specific results thanG.
Using a relational view (i.e., specifications are considered
as sets of valid(input, output)-pairs), [19] show that (1) de-
fines a partial order which induces a lattice-like structure
on the set of all specifications. This structure is generally
known as therefinement latticealthough strictly speaking it
is no lattice.

Turning the refinement lattice into a navigation structure
for library browsing exposes, however, some unexpected
problems. First of all, libraries do not offer enough struc-
ture, i.e., the refinement hierarchies they induce are too
shallow. While this is a good thing from a design point
of view—it simply says that the library contains only little
redundancy—it is a bad thing for browsing. It can be over-
come by the introduction of meta-nodes orabstractions.
Such specifications do not represent real, existing compo-
nents but just factor out similarities between some of them.
As an example, consider the specification of an abstract el-
ement filter:2

filter some (l : list) r : list
pre l 6= [ ]
post 9l1, l2 : list, i : item � l = l1 y [i] y l2 ^ r = l1 y l2

filter some specifies only that a singleton element is re-
moved from the list (hence it cannot be empty) but not

1For the sake of brevity, we shall omit the quantification over the re-
spective argument and return variables and their identification via type
compatibility predicates. For arguments~x and result variables~y, the full
form is 8~xG; ~xS; ~yG; ~yS � T (~xG � ~yG; ~xS � ~yS) ) ((preG(~xG) )

preS(~xS)) ^ (preG(~xG) ^ postS(~xS � ~yS) ) postG(~xG � ~yG))).
2We use VDM-SL for our example specifications. Here,y means con-

catenation of lists,[ ] the empty list,[i] a singleton list with itemi.



which one. It is thus via (1) refined by both components
tail andlead:

tail (l : list) r : list lead (l : list) r : list
pre l 6= [ ] pre l 6= [ ]

post 9i : item � l = [i] y r post 9i : item � l = r y [i]

However, a na¨ıve introduction of meta-nodes yields unex-
pected results. If we introduce another meta-nodesegment

segment (l : list) r : list
pre true
post 9l1, l2 : list � l = l1 y r y l2

to capture the property that both components return contin-
uous sublists of their argument, this does not work: nei-
ther tail nor lead refinesegment. The reason for this at first
glance counterintuitive behavior is thatsegment is speci-
fied as a total function (presegment = true) but bothtail and
lead are partial. And while we can fix this particular flaw
by settingsegment’s precondition also tol 6= [ ], this soon
becomes increasingly infeasible. If the library also contains
components which work on sorted lists only, we have to in-
tegrate this property into the precondition, too. In effect,
if we want an abstraction which captures all segment-like
components we have to adjoin all occurring preconditions
conjunctively. If, however, two of them are contradictory
the result becomes false andsegment subsumes the entire
library.

The solution to this dilemma is easy. While we can use
refinement to index components with abstractions, we addi-
tionally need a second relation to model the above situation.
Since we are only interested in the effect of the calculation
(i.e., the postconditionpostG) we can droppreG. We want
postG to hold on the appropriate domain only, hence

preS ^ postS ) postG (2)

which is also known as conditional compatibility [5] or
weak post match [21] in deduction-based retrieval. We
can then considerG asderived attributeor feature[22] of
S; S wf G because it holds whenever the execution ofS
was legal (preS holds) and terminated (postS holds.) In our
example,segment is a feature oftail andlead, as expected.
It is easy to verify that features are inherited along with the
refinement relation, i.e., ifR refinesS andG is a feature of
S, thenG is a feature ofR, too.

A similar problem arises when we want to consider pre-
conditions only. While we can use the abstractiontotal

total (l : list) r : list
pre true
post true

to subsume all total functions, it is much harder to index

partial functions properly. The meta-node

requires non empty (l : list) r : list
pre l 6= [ ]
post true

correctly subsumes all functions which work on non-empty
lists only but it is not really appropriate: it also subsumes
all total functions and is thus not discriminative.

Hence, we need a third relation. Since we are now only
interested in the properties of the legal domains, we can
drop the postconditions. But in contrast to refinement we
want the domain ofS now to be more restricted, hence

preS ) preG (3)

Again, G is a derived attribute ofS—it is a requisite,
S wr G—and using (3),requires non empty now works as
index. Requisites are also compatible with refinement but in
contrast to features theirabsenceis propagated. IfR refines
S andG is no requisite ofS, thenG cannot be a requisite
of R.
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Figure 1. Example index

Figure 1 shows the index for the examples in this paper.
The components are represented as rows, the attributes as
columns; the symbols indicate which relations have been
used to index the components with the respective attributes.
We also see that the library is indeed shallow: eachcompo-
nentindexes only itself.

However, (1-3) are not the only sensible relations we
could use. Instead of indexing a componentS with its req-
uisites, we could also indexS with all requisites itdoes not
require, i.e., with all its valid border conditions. In terms of
preconditions, this is formalized by

:preG ) preS (4)

and denoted byS w�r G: G is not a requisite forS, or
S also works onG. Hence, we have of coursetail 6w�r



requires non empty but for a topological sort function

top sort (l : list) r : list
pre acyclic(l)
post top ordered(l)^ permutation(l,r)

we havetop sort w�r requires non empty as expected. How-
ever, in principle, (4) is not necessary. We can achieve the
same effect using a modified version

works on empty (l : list) r : list
pre l = [ ]
post true

of requires non empty and refinement: top sort w
works on empty.3 However, this hides the fact thatre-
quires non empty andworks on empty are complementary
to each other.

We now use (1-3)4 to compute an appropriately modi-
fied version of the refinement lattice but even this variant is
not yet adequate for browsing. It still lacks thesingle-focus
property, i.e., it does not contain enough structure to repre-
sent the focus by a single node. Consider for examplelead
and tail. Apart from further refinements, they are the only
two components which have the featuresegment and are
subsumed byfilter some at the same time.5 Yet there is no
meta-node to represent this and a user has to keep his focus
on both distinguishing properties to capture the conceptual
similarity of the components.

The deeper reason for this is that even the modified re-
finement lattice has lattice-like properties only on the set
of all possiblespecifications, not on arbitrary subsets or li-
braries. True lattices, on the other hand, have the single-
focus property by definition and we will show how to trans-
form the refinement lattice into a true lattice using formal
concept analysis.

4 Concept lattices

4.1 Formal concept analysis

Formal concept analysis [31, 7, 2] applies lattice-
theoretic methods to investigate abstract relations between
objects and their attributes. A concept lattice is a structure
with strong mathematical properties which reveals hidden
structural and hierarchical properties of the original rela-
tion. It can be computed automatically from any given rela-
tion.

3Notice that this relies on the fact thatpostworks on empty = true—
otherwise, the postcondition part of (1) would not be valid.

4We still need refinement to represent all information of interest. E.g.,
we cannot splittotal into a requisite and a feature which have both the value
true because both of them index the entire library.

5By filter some we have to remove an element, but bysegment we are
not allowed to split the list. Hence, there are only the two choices to re-
move the element at either end of the list.

Definition 1 A formalcontextis a triple (O;A;R) where
O andA are sets of objects and attributes, respectively, and
R � O �A is an arbitrary relation.

Contexts can be imagined as cross tables where the rows
are objects and the columns are attributes. Hence, the index
shown in Figure 1 can also be considered as a formal con-
text, provided that the different relations (i.e.,w;wr and
wf ) are merged.

Definition 2 Let (O;A;R) be a context,O � O andA �

A. Thecommon attributesof O are defined by�(O)
def
=

fa 2 A j 8o 2 O : (o; a) 2 Rg, thecommon objectsofA

by!(A)
def
= fo 2 O j 8a 2 A : (o; a) 2 Rg.

Objects from a context share a set of common attributes
and vice versa. Concepts are pairs of objects and attributes
which are synonymous and thus characterize each other.

Definition 3 Let C be a context.c = (O;A) is called a

conceptof C iff �(O) = A and!(A) = O. �O(c)
def
= O and

�A(c)
def
= A are calledc’s extentand intent, respectively.

The set of all concepts ofC is denoted byB(C).

Concepts can be imagined as maximal rectangles (mod-
ulo permutation of rows and columns) in the context ta-
ble, e.g., (flead, tailg, fsegment, requires non empty, fil-
ter someg). They are partially ordered by inclusion of ex-
tents (and intents) such that a concept’s extent includes the
extent of all of its subconcepts (and its intent includes the
intent of all of its superconcepts).

Definition 4 Let C be a context,c1 = (O1; A1); c2 =
(O2; A2) 2 B(C). c1 and c2 are ordered by thesubcon-
cept relation, c1 � c2, iff O1 � O2. The structure ofB and
� is denoted byB(C).

The intent-part follows by duality. As an immediate con-
sequence of the preceding definitions we get that the strict
order corresponds to strict inclusion of extents and intents,
i.e.,c1 < c2 iff O1 � O2 andA1 � A2.

The following basic theorem of formal concept analysis
states that the structure induced by the concepts of a formal
context and their ordering is always a complete lattice and
that infimum and supremum can also be expressed by the
common attributes and objects. (Cf. Figure 2 for an exam-
ple lattice.)

Theorem 5 ([31]) LetC be a context. ThenB(C) is a com-
plete lattice, theconcept latticeof C. Its infimum and supre-
mum operation (for any setI � B(C) of concepts) are given
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The concept lattice is sometimes also refered to as the
Galois latticebecause� and! form a Galois connection
betweenO andA. Hence,�Æ! and!Æ � are closure opera-
tors; in Theorem 5 their application maintains the “maximal
rectangle” property of the resulting concepts.

Each attribute and object has a uniquely determined
defining concept in the lattice which allows a sparse la-
belling of the lattice. The defining concepts can directly
be calculated from the attribute or object, respectively, and
need not to be searched in the lattice.

Definition 6 Let B(O;A;R) be a concept lattice. The
defining conceptof an attributea 2 A (object o 2 O)
is the greatest (smallest) conceptc such thata 2 �A(c)
(o 2 �O(c)) holds. It is denoted by�(a) (�(o)).

Theorem 7 ([2]) In any concept lattice we have�(a) =
(!(fag); �(!(fag))) and�(o) = (!(�(fog)); �(fog)).

4.2 From refinement lattices to concept lattices

[13] has shown that keyword-indexed components can
be considered as a formal context with the components as
objects and the (informal) keywords as attributes. We now
lift this idea to formal specifications.

Definition 8 LetL = (L;R; F;A) be a formally specified
library with componentsL, requisitesR, featuresF , and
abstractionsA. Its induced contextis defined byCL =
(L;L [ R [ F [ A;wr [ wf [ w).

Again, we consider the components as objects, and, of
course, the keywords are replaced by (the names of) the
specifications6 but the context table is slightly more compli-
cated. To prevent different components from “collapsing”
into a single concept if the index is insufficient, the compo-
nent specificationsL double as objects and attributes. The
relations, however, remain original.

We then calculate the concept lattice from this context.
Figure 2 shows the result for the example context. Each bul-
let represents a concept. The labels over the bullet are the
attributes defined at this concept. E.g., the concept(iii) de-
fines the attributefilter some. However, since attributes in
this representation are inherited downwards, its intent�A is

6Wlog. we assume thatL;R; F , andA are pairwise disjoint.
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Figure 2. Example lattice

the setfsegment, requires non empty, filter someg. None
of the attributes are equivalent in the sense that they index
the same set of components. Hence, each concept intro-
duces only one attribute. The labels under the bullet denote
the objects defined at this concept, e.g.,leadat (iv). Since
none of the actual components subsumes an other, each con-
cept introduces at most one object and is atomic if it intro-
duces an object at all.

The concept lattice is not an “extension” of the refine-
ment lattice: for two attributesa1; a2 with �(a1) � �(a2)
it is possible to be completely unrelated, i.e., neither of the
relations (1-3) holds. However, for two reasons, it is an ad-
equate representation of theindex. First, subconcepts pre-
serve refinement of the original components. Second, a su-
perconcept can be distinguished from any subconcept by an
attribute which isnotvalid for at least one component in the
extent of the superconcept but is valid forall components in
the extent of the subconcept. Formally:

Proposition 9 LetB(CL) be the concept lattice of the con-
textCL induced by a libraryL andc1; c2 2 CL with c1 < c2.
Then existsn 2 �O(c2) such that either

1. 9m 2 �O(c1) �m 6= n ^m w n, or

2. 9 a 2 R � a 2 �A(c1) ^ a =2 �A(c2) ^ n 6wr a _
9 a 2 F � a 2 �A(c1) ^ a =2 �A(c2) ^ n 6wf a _
9 a 2 A � a 2 �A(c1) ^ a =2 �A(c2) ^ n 6w a.

This proposition, which follows from definitions 3 and 4,
makes the concept lattice already suitable for specification-
based navigation: when we move from a superconcept to a
subconcept, we either follow an original refinement relation
on components, or we discard at least one and thus due to



the lattice structure all components from the extent which
do not share the propertyn. However, we can impose even
more structure if we doubleR and usew�r in addition to
define the induced context. Then, Proposition 9 holds ap-
propriately and, additionally, we get

Proposition 10 LetB(CL) be the concept lattice of the con-
textCL induced by a libraryL. Then, for any two comple-
mentary requisitesa; �a 2 R we have8c 2 L �n wr a,6w�r

�a and consequently�(a)u�(�a) = ? and�(a)t�(�a) = >.

Hence, the defining concepts of two complementary req-
uisites are complementary to each other in the lattice. More-
over, their extents divide the entire library into two parti-
tions which is not the case for two arbitrary complementary
nodes in the lattice.

5 Navigation in concept lattices

[13] has also shown how concept lattices can be used
as navigation structure for interactive and incremental re-
trieval (i.e., browsing in our terminology). The focus is rep-
resented by (the extent of) a concept. Narrowing the focus
is a downward movement in the lattice and is done in two
steps:

1. The user selects an additional attribute. As a conse-
quence of the lattice structure, the system can support
this selection by calculating all attributes which ac-
tually narrow the focus but do not sweep it entirely.
It can thus prevent navigation into dead ends (i.e., an
empty focus.)

2. The system calculates the new focus in the lattice as
the meet (which exists due to Theorem 5) of the actual
focus and the defining concept of the selected attribute
(obtained by Theorem 7.)

Similarly, the focus can also be widened again by de-
selecting an attribute. The system then calculates the new
focus using the join operation.

In the specification-based case, navigation works quite
similar. We use the derived properties (i.e.,R;F , andA) as
navigation attributes. Since the property sets are pairwise
disjoint, we can even split the set of navigation attributes
into three dimensions. These dimensions are not indepen-
dent of each other but can be selected independently be-
cause all interdependencies are contained in the concepts
of the lattice. If we use the modified context (i.e., double
R and use (1-4)), we get a fourth dimension. This is still
independent but due to Proposition 10, independent selec-
tion fromR and �R is not beneficial. Instead, we can toggle
between them, in addition to selection/de-selection.

Initially, all attributes are de-selected and the focus con-
cept is>: the focus is the entire library. Now, for an exam-
ple, assume that we selectsegment. This reduces the focus
to �O(i) = frun, lead, tailg. Further refinement is possible
by attributes whose defining concepts have a strictly smaller
but non-bottom meet with the current focus concept. Thus,
for (i), any navigation attribute is possible. If we select
requires non empty, the new focus concept is(i) u (ii) =
(iii), i.e., the choice ofrequires non empty eliminatesrun
from the focus. Moreover, it leavesfront segment as the
only possible further refinement.

This navigation style isattribute-based: the focus is es-
sentially a function of the selected attributes. Due to their
dual nature, concept-lattices also allowobject-based navi-
gation. Here, the user selects or de-selects a single com-
ponent and the system calculates the new focus similarly.
However, selecting an additional component widens the fo-
cus and is thus realized by the join operation.

While attribute-based navigation depends on the explicit
and learned choice of functional properties and thus is more
suited for reuse purposes, object-based navigation exposes
implicit conceptual similarities of components: the intent of
the focus concept contains all properties which are common
to all selected components; its extent also contains all other
components which share these properties, even if they have
not been selected explicitly. Hence, it is more appropriate
for library understanding and re-engineering.

6 Practical aspects

We made a series of experiments to support the claim
that browsing is more practical in the specification-based
case than retrieval. For these, we used a variant of the list
processing library which we also used in our retrieval ex-
periments [5]. It comprises 5 requisites, 31 features, and 86
components and abstractions. All example specifications in
this paper are taken from that library.

6.1 Calculation of the refinement lattice

Even if the calculation of the refinement lattice is done
in advance and is thus not time-criticle in principle, it is not
obvious that it is feasible at all. Two questions are of main
concern:

1. How high is the computational effort in practice?

2. How difficult are the proof problems in practice? Are
current theorem provers powerful enough?

The answer to both questions depends on the number and
structure of the arising proof problems.

At first glance, it seems that we have to check each requi-
site, feature, abstraction, and component against each other



to calculate the modified refinement lattice. However, in
practice this can be optimized due to three observations.
First, we do not need to compare the components and ab-
stractions pairwise but can use recursive comparison as in
[9] because refinement is transitive. Then, we do not need
to check requisites and features against each other but only
against the components and abstractions. Finally, since the
former are compatible with refinement, we can “sink them
in” once we have the refinement lattice on the other nodes
ready. In the worst case, the number of problems is thus
jR [ F [ A [ Lj � jA [ Lj. Nevertheless, still too many
problems arise to be handled manually. As in other soft-
ware engineering applications, a fully automated system is
required which feeds and controls the prover. However, the
sheer numbers become a problem only because most of the
proof problems (approximately 85% in our experiments) are
logically invalid and thus not provable at all. But theorem
provers do usually not check for unprovability and are thus
stopped by time-out only. Hence, dedicated disproving fil-
ters are required.

Nevertheless, the computation is practically feasible.
Using techniques from [5] we generated the full set of more
than 14.000 proof tasks (i.e., “ready-to-run” versions of the
problems which also contain appropriate axioms and prover
control information) and filtered out approximately 9.100 as
unprovable. This took approximately 7 hours on a Sun Ul-
traSparc 170. For simplicity, we did not use the optimiza-
tions explained above. This would have reduced the original
number of tasks to about 11.000.

We then used the automated theorem proverSPASS[30]
on a network of 16 PCs to check the surviving tasks. With
a time-out of 60 seconds,SPASSwas able to solve 1.250
tasks. For the remaining 3.080 problems, we re-generated
the tasks, using a different subset of the axioms. After a
third iteration,SPASShad solved a total of 1.460 or almost
80% of the valid problems. This required a total of approx-
imately 210 hours runtime, or equivalently, a weekend of
real time.

6.2 Calculation of the concept lattice

Concept lattices can grow exponentially in the number
of attributes and objects. In practice, however, the worst
case rarely occurs and a polynomial behavior is usual. [13]
contains more experimental evidence for this.

For our example library, the concept lattices from the full
(i.e., manually computed) and the approximated (i.e., com-
puted usingSPASS) refinement lattices contained 153 and
180 concepts, respectively. Their computation took approx-
imately a second and is thus negligible compared to the time
required for proving.

6.3 Navigation

During our experiments it became quickly obvious that
neither the modified refinement lattice nor the concept lat-
tice are suitable for presentation because they are too big
and complex. [13] makes the same observation and de-
scribes a simple text-based interface which works on the
attribute and object names only. We are currently adapting
this system. The navigation process itself, however, is very
fast: the system responds without noticeable delay, even for
much larger concept lattices than we are currently investi-
gating.

6.4 Scale-up

Scaling specification-based browsing to large libraries is
a serious challenge: a library with 10 requisites, 100 fea-
tures and 1000 abstractions and components gives in the
worst case already rise to more than 1.1 million proof tasks.

To handle such many tasks, it is necessary to exploit the
structure of thesubsumptionlattice as soon as it emerges.
E.g., if front segment w segment has already been estab-
lished7 thenlead wf front segment should be checked be-
fore lead wf segment. If the former holds, the latter holds
automatically, due to transitivity.

Similarly, invalid proof tasks can be saved, if theabsence
of features (requisites, abstractions) is exploited. If, e.g.,
top sort 6wf segment can be shown,top sort cannot satisfy
any of the features more specific thansegment, and the cor-
responding proof tasks can be dismissed. However, due to
the undecidability of first-order logics, it is not legal to con-
clude the absence of the featuresegment from the failure to
provetop sort wf segment. Instead, in practice an appro-
priately modified version

preS ^ postS ) :postG

of the proof task must be checked which unfortunately in-
creases the total number of tasks.

Computationally more complicated components, e.g.,
graph or numerical algorithms, obviously induce more com-
plicated proof tasks. Here the key to scaling is to find an ab-
stract domain representation which factors out most of the
complexity, supported by using the right abstractions and
features. Then the conceptual difference between the speci-
ficationsS andG which accounts for most of the difficulties
can be kept small and the prover has a reasonable chance to
succeed.

Using the above techniques, even large, diverse libraries
of functional components can be tackled. Other component
types, e.g., objects or entire modules, fit in principle also
into this framework but require an appropriate redefinition

7Note that this need not necessarily to be checked because both
front segment and segment are features.



of the different match conditions. However, components
whose effects cannot be expressed naturally in a pre/post-
condition style, e.g., graphical routines, cannot be handled
and there is no obvious way to extend specification-based
browsing appropriately.

6.5 Knowledge acquisition

The formal specifications of the library components and
some initial abstractions8 must be supplied. Once this seed
is available, specification-based browsing can already sup-
port further knowledge acquisition.

Consider for example a seed comprisingfilter some, seg-
ment, tail, lead, and

run (l : list) r : list
pre true
post 9l1 : list � l = r y l1 ^ ordered(r)
^ 8i : item, l2 : list � l = r y [i] y l2 ) :ordered(ry [i])

which computes the longest ordered initial subsegment (i.e.,
run) of a list. From this seed, an initial concept lattice is
calculated. Object-based navigation confirms that bothtail
and lead already have a common superconcept, which has
the attributesfilter some andsegment, and, as expected, no
other objects. But it also reveals that there is no concept
which has the extent oflead and run only—selecting both
also causestail to appear. To disambiguatetail, the user must
introduce a feature

front segment (l : list) r : list
pre true
post 9l1 : list � l = r y l1

which factors out the common property oflead andrun.

7 Related work

Most work on applying specification-based techniques
to software libraries examines retrieval only. Relevant for
browsing are the investigation of different match relations
[21] and their effect on software reuse [6, 5]. [22] intro-
duced features as indexes to speed up retrieval. The deduc-
tive synthesis systemAMPHION [29] composes programs
from retrieved matching components but does not support
user-guided library exploration.

[9] builds a two-tiered hierarchy from the library. The
lower level is based on a modified definition of subsumption
which works modulo arbitrary user-defined congruences on
literals and is thus unsound in general. The upper level uses
a similarity metric derived from the normal forms of the

8Initial requisites and features can be derived automatically by splitting
of the supplied specifications. Any resulting indiscriminate attributes are
merged into a single concept by construction of the lattice.

specifications. This hierarchy is then visualized to support
browsing. [19] only use subsumption to build a hierarchical
representation of a library and exploit that only to optimize
retrieval.

In programming language research, [15] and [12] ap-
ply formal methods to the specification and verification of
object-oriented class libraries. There, behavioral subtyping
corresponds to subsumption.

Concept lattices or Galois lattices have been developed
as a means to structure arbitrary observations. They have
already been applied to various problems in software en-
gineering, e.g., inference of configuration structures [11]
or identification of modules [14, 28] and objects [26] in
legacy programs. Their application to software component
libraries, however, seems to be obvious only in retrospect,
and there is only little related work. [8] also uses concept
lattices for navigation but presents the entire lattice to the
user and offers only a subset of all possible attributes for se-
lection. As far as navigation is concerned, [13] is thus most
closely related to our own work. But there, object-based
navigation, which is instrumental in knowledge acquisition,
is not supported.

8 Conclusions

Only specification-based methods can provide exact
content-oriented access to software components. Retrieval,
however, still requires more deductive power than current
theorem provers and hardware can offer. Browsing can
evade this bottleneck by moving any time-consuming de-
duction into an off-line indexing phase.

In this paper, we have shown that different match rela-
tions must be used to index a library properly and how this
index is turned into a navigation structure using formal con-
cept analysis. Experiments show that it is feasible to calcu-
late an approximation of the index which is accurate enough
for browsing purposes, using current theorem provers and
hardware (e.g.,SPASSon a small network of PCs.) The
computational effort, however, is still high.

The concept lattice reveals the implicit structure of a li-
brary as it follows from the index. It can even indicate sit-
uations where a finer index is required. Due to its dual na-
ture, the lattice allows two complementary navigation styles
which are based either on attributes or on objects. Due to the
lattice nature, both navigation styles automatically have the
single-focus property and refrain the user from dead ends.

In our approach, theorem provers are used to derive
formally defined properties of components. For naviga-
tion, these formal definitions are still available but not actu-
ally required—symbolic property names suffice. However,
since informally defined and derived properties (e.g., relia-
bility) are usually also represented by symbolic names (e.g.,
trusthworty), concept-based browsing allows a smooth inte-



gration of formal and informal attributes and thus refutes a
conjecture of [1] that formal and informal methods are in-
compatible. Moreover, informal attributes can even be used
to distinguish functional equivalent variants of a component
from each other.

Future work especially concerns scale-up. We expect the
fraction of non-theorems to grow further with increasing
library size; dedicated disproving techniques are thus one
area of interest. Since the remaining tasks are homogeneous
in style, learning theorem provers [4, 3] can be expected to
perform well on them.
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