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Abstract in the analysis model lead to spurious errors in the analy-

sis output. Spurious errors are conditions that are reported
Statically analyzing requirements specifications to as- as errors, but information that was abstracted out of the
sure that they possess desirable properties is an importantanalysis model precludes the reported conditions from be-
activity in any rigorous software development project. The ing satisfied. For example, information about relational
analysis is performed on an abstraction of the original re- expressions is abstracted from the model and the analysis
guirements specification. Abstractions in the model mayincorrectly reports that there is a problem if the condition
lead to spurious errors in the analysis output. Spurious er- [z —y > 1200] A [z < (1200 + y)] is satisfied. A high
rors are conditions that are reported as errors, but infor- ratio of spurious errors to true errors in the analysis output
mation abstracted out of the model precludes the reportedmakes it difficult, error-prone, and time consuming to find
conditions from being satisfied. A high ratio of spurious er- and correct the true errors in the specification.
rors to true errors in the analysis output makes it difficult, Two desirable properties that certain requirements docu-
error-prone, and time consuming to find and correct the true ments should satisfy (for example, the requirements for crit-
errors. In this paper we describe an iterative and integra- ical systems) are completeness (a behavior is specified for
tive approach for analyzing state-based requirements thatevery possible input) and consistency (no conflicting behav-
capitalizes on the strengths of a symbolic analysis compo-jors are specified). Analyzing for completeness and consis-
nent and a reasoning component while circumventing their tency in state-based requirements generalizes to analyzing
weaknesses. The resulting analysis method is fast enouglbgical expressions for satisfiability and mutual exclusion.
and automated enough to be used on a day-to-day basis byfwo methods for analyzing logical expressions for satis-
practicing engineers, and generates analysis reports with afiability and mutual exclusion are symbolic methods such
small ratio of spurious errors to true errors. as those that rely on Binary Decision Diagrams (BDDs),
and reasoning methods such as theorem proving. Symbolic
methods are fast and fully automated, but generate output
1. Introduction that may contain many spurious errors since the analysis
model contains many abstractions. Reasoning methods tend
Statically analyzing requirements specifications to as- t0 be slower and require more manual intervention, but gen-
sure that they possess desirable properties is an importarfératé more accurate output since the analysis model con-
activity in any rigorous software development project. Er- t@ins fewer abstractions.
rors in the requirements that go undetected and propagate \We developed an iterative approach for analyzing state-
to later stages of development are the most costly to cor-based requirements that integrates a symbolic analysis com-
rect [15, 18]. Therefore, it is desirable to ensure that the re-ponent and a reasoning component. Our method is auto-
quirements document satisfies certain properties before promated and easy to use. It capitalizes on the strengths of
ceeding to later stages of the development process. the individual components while circumventing their weak-
However, static analysis is performed on a formal model nesses, thus, resulting in an analysis process that is fast
of the requirements that is an abstraction of the original enough and automated enough to be used on a day-to-day
requirements specification. Some degree of abstraction idasis by practicing engineers, and that generates analysis
necessary or the analysis becomes intractable. The outreports with a small ratio of spurious errors to true errors.
put from the analysis is a report of the desired properties The remainder of this paper is organized as follows: Sec-
that the specification fails to satisfy. Often, abstractions tion 2 overviews related work in integrative analysis and



describes how our approach is different, Section 3 provideswords, if all of the missing information is identified, and the
some background information and describes in more detailoriginal guarding conditions are consistent (complete), then
the problem that we set out to solve, Section 4 describesaugmenting the analysis process with the missing informa-
the integrative and iterative analysis process we developedion will yield the correct output ofALSE (TRUE), showing

to analyze logical expressions for satisfiability and mutual that the guarding conditions are consistent (complete). In
exclusion, and Section 5 describes the analysis of outputthis paper, we do not discuss our technique for identifying
and the iteration options available to the analyst. In Sec-the missing information; see [6] for a detailed description
tion 6 we discuss the results we obtained from applying our of this technique.

method to a large real-world avionics specification. Finally,

in Section 7 we present our conclusions. 3. Background and problem

2. Related work In state-based languages such as Statecharts [8, 9],
SCR [14], and RSML [18], the transitions between states

The integrative approach in itself is not unique. There are guarded by conditions; the guarding condition must be
are Severa' others WhO have a|so deve'oped integrative ana'true before the transition can be taken. In the deﬁnition of
ysis techniques. Most of these techniques have been applie§ompleteness and consistency provided in [12] the proper-
in the area of hardware verification, or analysis of concur- ties imply the following:
rent programs. Joyce and Seger developed an integrated ap-1 - gyery state must have a deterministic behavior (transi-
proach to form.al hardwgre venﬂcgtlon thgt cgmbme§ BDD- tion) defined for every possible input event,
based symbollc simulation techniques with interactive the- 5 o logicalor of the guarding conditions on every
orem proving [16]. Young, Taylor, Forester, and Brodbeck transition out of any state must form a tautology; for
have integrated static concurrency analysis with symbolic 5,y condition, there is always a transition that can be
execution to detect anomalous synchronization patterns in taken, and

concurrent Ada programs [22, 23, 24]. In [10], Havelund 3 1pe ogicalanp between the guarding conditions on
and Shankar describe a series of protocol verification exper- two transitions out of a state must form a contradiction:

iments that combine theorem proving and model checking. {6 each possible condition, there is only one feasible

IF is c.Iear thgt an .|ntegrat|ve gpproac_h to analysis is essen- transition out of every state.

tial, since all individual analysis techniques suffer from lim-

itations of one form or another. The integrative approachesThus, verifying consistency and completeness in state-

represent attempts to capitalize on the strengths of the indi-based requirements primarily involves calculating Ane

vidual techniques and circumvent their weaknesses. andor of the guarding conditions on the transitions to see
Our integrative analysis approach is based on trying theif they form contradictions and tautologies.

simple, straightforward methods first and, if these methods

fail, apply the more complex and computationally expen- 3.1. Analysis procedures

sive methods. Our iterative analysis is based on identifying

the information that was abstracted out of the model that In our work, we have investigated two main approaches

is leading to spurious errors, feeding the information back for manipulating the guarding conditions to check for con-

into the model, and re-running the analysis. Our approachtradictions and tautologies: (1) theorem proving (reasoning)

is unique in that it provides guidelines to help the analyst and (2) symbolic manipulation using Binary Decision Dia-

decide which analysis component to apply on the first itera- grams (BDDs). BDDs are directed acyclic graphs that rep-

tion based on the input and it provides guidelines for which resent Boolean formulas in a canonical form. Algorithms

actions to take on subsequent iterations based on the outfor manipulating BDDs, for exampleynDing andoRring

put. In addition, we provide a method to help the analyst Boolean formulas, are efficient and provide good average

identify the missing information so the spurious errors can performance [2]. For the theorem proving component of our

be eliminated and the true errors can be more readily ideninethod, we chose the Prototype Verification System (PVS).

tified. In this paper, we refer to the missing information as PVS is a specification and verification system that provides

augmenting information since its inclusion into the analy- an interactive environmentfor the developmentand analysis

sis process augments the accuracy of the analysis output byf formal specifications [5, 20, 21].

eliminating spurious errors. The idea is that since the spuri-

ous errors are the result of missing information (abstraction) 3.2. Spurious errors

in the model, identifying the missing information leading to

the spurious errors and adding it back into the analysis pro-  Since all analysis techniques rely on abstraction to gener-

cess, should make the spurious errors disappear. In otheate a system model that can be analyzed in a computation-



ally tractable manner (i.e., avoid the state explosion prob-  Tools using reasoning components augmented with deci-
lem), spurious errors may be reported that would be elimi- sion procedures, such as PVS, can easily eliminate all types
nated if certain abstractions were not made. Thus, the prob-of class 1 and class 2 spurious errors. PVS can also elim-
lem of spurious errors is common to all analysis techniques.inate some spurious errors involving simple non-linear in-
Currently, itis left up to the analyst to determine which error equalities.
reports represent true errors and which error reports repre- In general, no analysis technique can eliminate class 4
sent spurious errors. spurious errors, since this class of spurious errors results
In essence, in each spurious error report, there is someébecause information that is required by the analysis process
undetected contradiction that exists between the constituenhas been abstracted from the model, or is related to some
components of the reported expression that actually pre-environmental constraints that were not modeled. To elim-
cludes the reported error from being a true error. After inate spurious errors of class 4 requires one to identify the
numerous case studies and experiments, we identified fourelevant information that is missing from the analysis pro-
classes of undetected contradictions that lead to spuriousess and to augment the analysis process with this informa-
errors. We classified the spurious errors according to thetion.
undetected contradictions that cause them. From our experiments we discovered that no one individ-
) ) ) ] . ual static technique for performing the analysis is sufficient
1. S_pgrlous errors |nvoIV|.ng simple and obvious contra- {, satisfy the desired goals of analysis [24]; speed, automa-
dictions between predicates such as enumerated typgjon and accuracy. There are trade-offs between the amount
predicates and predicates involving simple arithmetic of apstraction an analysis method relies on, the degree of au-
expressions. For example, an error report that requiresys mation, the speed with which the analysis completes, and
the expressiof(z —y) > 1200] A [z < (1200 + y)] the level of accuracy in the analysis output. When more de-
to beTRUE. tails are included in the analysis process, the analysis often
requires costly and time consuming user intervention.
Furthermore, we know that even the most powerful anal-
ysis techniques will generate spurious errors when informa-
tion required for the analysis has been abstracted out of the

2. Spurious errors involving three or more predicates con-
taining related linear arithmetic expressions. For ex-
ample, an error report that requires the expression
(i>7) AN (G >k) AN (i—k<0)tobeTRUE

model.
3. Spurious errors involving non-linear expressions. For ~ To summarize, symbolic methods are fully automated,
example, an error reportrequirifg? < z/y) A (22 > but may generate inaccurate analysis reports because many
z/y) to beTRUE. functions are not interpreted; i.e., the semantics of the func-

tions are abstracted away. Reasoning methods can gen-

4. Spurious errors related to the structure of the state ma-erate more accurate analysis reports, but are more costly
chine, or spurious errors related to information about to use. If static analysis techniques are going to be used
the environment in which the system will operate. more frequently in industrial applications, they must be au-
tomated [7, 13, 19]. We want an analysis method that is au-

Different analy5|§ techniques are able.to eliminate .d|ffer- tomated, fast, and that generates accurate analysis reports so
ent classes of spurious errors, but no single analysis tech-

. iminate all . Souri fit is feasible to use in industrial settings. This paper specif-
nique can eliminate all SpUrious errors. Spurious errors o ically addresses the need for automation and speed by de-
the types involved in the first two classes listed above can

A . ; . scribing an automated process to check logical expressions
b.e .ellmlnated by augmetn.tmg the analysis process with de'for satisfiability and mutual exclusion that is feasible in in-
cision procedures. Decision prqcedures are algquthms Ole'dustrial settings. In [6] we also address the issue of accuracy
signed to reason about expressions and, if possible, to per: :

L . in the analysis output.

form simplifications on those expressions. For example,
we know that symbolic analysis using BDDs cannot rea- ) i
son about the components of the expressions and thereford- Integrative analysis
cannot make decisions about whether or not two or more
interdependent expressions contradict each other. This in- In this section we describe the integrative and iterative
ability to reason about relationships between expressionsanalysis approach we developed to analyze disjunctive and
may lead to many spurious error reports in the analysis out-conjunctive expressions for satisfiability and mutual exclu-
put. Adding procedures to the symbolic analysis processsion. An application of the process developed in this re-
that can perform some simple reasoning about the interdesearch is in the analysis of state-based requirements for
pendencies between expressions will strengthen the overaltompleteness and consistency. To demonstrate the scala-
analysis process and result in fewer numbers of spurious erbility of our analysis process to industrial problems, we ap-

ror reports. plied our method to a large real-world avionics specifica-



tion, specified in RSML, to check parts of the specification bolic analysis, then the tool performs symbolic analysis us-
for completeness and consistency. The results of this appliing BDDs and generates two outputs: a BDD node prhfile

cation are reported in Section 6. and an analysis report in disjunctive normal form in a tabu-
lar format (anaND/OR table). The latter output of the sym-
4.1. General analysis process bolic analysis component may be samples of the resulting

disjunctive normal form expression; the analyst may specify

The inputs to the analysis process for mutual exclusion samplgs i'f the rgsulting disjunctive expression is too large to
are two logical expressions. If the expressions are mutually"€POrt in its entirety; for example, we encountered expres-

exclusive, the conjunction will reduce FLSE. If the ex- sions that contained thousands or millions of disjuncts.
pressions are not mutually exclusive, i.e., the conjunctionof  If the analyst chooses to create a PVS specification, the
the expressions does not reduceAese, the analysis will {00l converts the internal representation of the logical ex-

report the logical expressions that are satisfiable by both ofPressions into a PVS specification. The output of the PVS

the disjuncts at the same time. The analyst is then left with @halysis is either a finished proof (no unprovable subgoals),

the task of determining how to modify the two original log- ©F @ report of unprovable subgoals. The analyst can also

ical expressions so they are mutually exclusive. choose to create a .PVS specification for the .d|SJunct|\./e
The input to the analysis process for satisfiability may be Normal form expression output from the symbolic analysis

one or more logical expressions. The analysis process form&omponent (this option is shown in the figure by the data

the disjunction of the logical expressions. If the disjunction flow from theBDD analysisprocess to th&VsS translator

of the expressions is satisfiable, then the disjunction reduce®rocess)-

to TRUE. If the disjunction of the expressions is not satisfi-

able, the analysis will report the logical expressions to the 4.2. Tools and tool integration

analyst that are not satisfiable by any of the original logical

expressions. The analyst can then determine the logical ex- The specific tools we use in our analysis process and the

pressions that need to be added to make the disjunction oflow of data between the tools are shown in Figure 2. The

the expressions a tautology. We do not address the issue ofools described in this section are specific to the applica-

how the analyst corrects the problems once they are identition of our analysis process to the analysis of state-based

fied; this is a difficult problem and requires further research. requirements (namely, RSML requirements) for complete-
Figure 1 shows the general analysis process and the inness and consistency. The symbolic analysis component sits

tegration of the symbolic and reasoning components. Theon top of a BDD library created by Long at Carnegie Mellon

University [1].
Symbolic /-/\nalysis Component
Analysis Process BDD Node
/ [ BDD o _Profile
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o Logical Disunctiva Normal | Apayas [ oo (ws) ats
e orm / Internal Reprseﬁtaion
Of State Machine PVSCopfiands | sirategies
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File Object F?ﬁ
CreatePVS| ______________ PVS /S PVS. = DaaFow Analyst S
Specification - O Process PVS Andysis
Legend Réésnning Component
File Object ——— DaaFlow . . .
BN o () o Figure 2. Overview of analysis tools and
data flow between the tools.
Figure 1. General analysis process and in-
tegration of symbolic and reasoning com- The symbolic analysis component consists of three sub-
ponents. processes: @DD translator that translates the RSML

AND/OR tablée? representation of guarding conditions to Bi-
logical expressions to be analyzed are stored in some mahary Decision Diagrams, BDD analyzerthat manipulates
chine readable form; for example, a machine readmbleL . e imol i Howing th .
specification. The analysis process begins by first parsing__,/ BPD node profile is simply a histogram showing the number o

. ) . ) . nodes at each level in a BDD.
the logical expressions and converting them into an inter-

) 2An AND/ORtable is a disjunctive normal form tabular representation
nal representation. If the analyst chooses to perform sym-of logical expressions.




the BDD representation of the guarding conditions to check form that is presented to the analyst. Error reports from
for tautologies and contradictions, and AND/OR table our analysis process are presented to the analyst as Boolean
translator that converts the result BDDs output from the expressions in disjunctive normal formND/OR table for-

BDD analyzer process taND/OR table format to present mat). In terms of analyzing requirements for completeness
to the analyst. and consistency, each report represents either (1) an incom-

The PVS translatorconverts the internal representation pleteness, that is, a condition the requirements do not han-
of the state machine to a PVS specification. We do not dis-dle, or (2) an inconsistency, that is, a condition where two or
cuss the translation process fromreML specificationto  more responses are specified. We now describe the iteration
a PVS specification in this paper. For details regarding this options available to the analyst, and the analysis of output.
translation process see [6, 11]. Once the translation pro-
cess is complete, the analyst initiates PVS and automati-5  |teration options and analysis of output
cally parses and typechecks the theories and declarations
generated from thesmML specification. When parsing and
typecheckingis finished, the analyst invokes the PVS prover
on the conjecture to be proved.

We developed a set of proof strategies that allow the PVS
analysis to be more automated, and largely free the analys
from having intimate knowledge of the PVS prover com-
mands. When the analyst invokes the prover, the set o
strategies developed during this research is loaded into PV
and the strategies become available to the PVS prover. W
developed strategies for proving that the pairwise conjunc-
tion of two logical expressions is a contradiction (i.e., the
logical expressions are mutually exclusive, or consistent),
and we developed strategies for proving that the disjunction
of logical expressions is a tautology (i.e., the disjunction
of the logical expressions is satisfiable). In most cases, th

In this section we describe the analysis of output and
the iteration options available to the analyst. Again, in
this section we apply our method KsML requirements to
check the requirements for completeness and consistency,
but the approach could be generalized to apply to any anal-
fysis that requires the manipulation of large Boolean expres-
sions. Figure 4 shows the possible outputs from the analysis

rocess, the possible outcomes of the output analysis pro-
tess, and the options available to the analyst based on the
outcome of theAnalyze Outpuprocess.

After the automated portion of the analysis is finished
and the analysis report is generated, the analyst inspects
the output to determine the next course of action;Alne
ealyze Outpuprocess in the figure. If the report shows the

strategies allow the analyst to perform proofs of complete- S
. . . -~~~ Manageablé - - -
ness and consistency with a single command (the strategy TR
name). An example strategy is shown in Figure 3; this strat- £ ANDIOR Tabre -
. . . Andysis AND/OR Table Andyze 1\ Consstent
egy is used to check guarding conditions for completeness. , BDD Node Pofile \ Complde
’ ' \PVSM \\Oulpulsz?
Lo | : g \ Man: e
e[ IR o o Ry

(defstep complete2 P8 ouur |
(apply (then (skolem!) __Spediication ‘\\ Misnd
(rewrite-msg-off)
(auto-rewrite-defs$)

(do-rewrite$)
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(skip)))))

Figure 4. Analysis of output and iteration op-
Figure 3. PVS strategy for proving guard- tions of the analysis.
ing conditions complete.

guarding conditions complete or consistent, the process is
In addition, our tool provides command line options that finished and no further iterations are required. If the output
allow the analyst to choose which analysis she wants to persize from either analysis process is manageable (for exam-
form. For example, the analyst might choose to run PVS ple, 30 or fewer errors), the analyst manually inspects the
or BDD analysis on the original expressions, or she might output for the true errors. For the purposes of this discus-
choose to translate the BDD analysis output to a PVS specsion we assume that symbolic analysis using BDDs is ap-
ification. plied first. If the output size from the symbolic analysis is
The outcome of any analysis is an error report of some not manageable for an analyst, but is manageable for PVS



(as determined by the analyst), it is fed back into the anal- straint:c3 < ¢4, ¢5 < c4. In all of these cases the predicates
ysis process, a PVS specification is generated, and the PV$annot be botlfRUE or bothFALSE at the same time.

outputis reported to the analyst. Second, for guarding conditions that contain a large
If the output size from either analysis process is not number of enumerated type predicates, either symbolic
manageable, we assume that most of the error reports ar@nalysis with our decision procedures, or PVS can be ap-
spurious and exist because there is some information missplied first. However, since PVS has more decision pro-
ing from the model. We can make this assumption since cedures available, applying PVS on the first iteration may
the initial specification was intended to be consistent (com- yjeld fewer spurious or redundant error reports.
plete) and we assume the analyst produced a specification
that does not stray too far from this intention. The outputs
from the symbolic analysis, the BDD node profile and the
AND/OR table, are used to identify the information that is
missing; the process labeldédentify Missing Information

Third, if the guarding conditions being analyzed are very
large, it is best to apply symbolic analysis on the first iter-

ation. The symbolic analysis report may show that some
of the guarding conditions are consistent (complete). When
the report from the symbolic analysis shows many inconsis-

Causing Spurious Errori Figure 4 (the details of this pro- tencies (incompletenesses) then apply our process described
cess are beyond the scope of this paper; see [6] for Oletalls)in [6] to identify any missing information. Once the miss-

If no missing information can be found, and both analysis . "' . . . o
9 y ng information has been identified, it is best to augment

processes have been tried, then the errors must be true elt . ; coor .
rors, and the analyst must examine them manually. If only the PVS specification with the missing information, and use

symbolic analysis has been tried and no missing informa—gvs. on the augmented _f,lp(ka)?ﬂctﬁtlon.t&rtlce PVS hatsfmore
tion can be found, either the symbolic analysis output is ecision procedures avarable, the output may report fewer

converted to a PVS specification and PVS analysis is run spurious errors and fewer redundant errors when true er-

or PVS analysis is applied to the original expressions. If rors exist. We do not start with PVS for complex guard-

missing information is found, it is added to either the ma- ing conditions since, as our results showed, there are some

chine readablesmL specification or the PVS specification guardlng conditions that PV.S fails 0 h".’“t on, .th's failure
generated from the machine readablemL specification, is generally because some information is lacking from the

and either symbolic analysis or PVS analysis is run on theSpEC'f'C"’ltlon and the proof process. Once the PVS speci-

augmented specification. Adding augmenting information flcatlon and proof process are augmented with the missing

to the analysis process is discussed in Section 5.1. information, PVS is effective.

Note that it is not necessary to start the analysis pro- Fourth, for guarding conditions that contain a significant
cess using symbolic analysis. The analyst may choose tgumber of linear arithmetic predicates, non-linear arith-
start with PVS. A situation where it would be useful to start Metic predicates with constants, or expressions involving
with PVS is when the predicates contain many arithmetic division by constants when the expressions are structurally
linear expressions, for example. Should PVS result in too auivalent, itis best to apply PVS to the guarding conditions
many error reports or fail to halt, then the analyst can apply N the; first iteration; symbolic analysis using BDDs cannot
symbolic analysis to the original specification and attempt €ffectively manage any of the aforementioned problems un-
to identify missing information using the process described less all of the predmates are strucFuraIIy equwalent_and there
in [6]. We developed a set of heuristics to help the ana- are no mult|-waymterdependeques bgtween predicates (for
lyst choose which analysis process to apply. The heuristicsexample, two or more arithmetic predicates that cannot be
are based on what the constituent components of the logSatisfied at the same time).
ical expressions are comprised of, and what the results of
an application of an analysis are. We learned the heuristics
during application of our method. 5.1. Adding augmenting information to the analysis

First, for guarding conditions that contain a large number process
of relational type predicates with a large number of possi-
ble multi-way interdependencies, it is best to apply PVS on
the first iteration. Symbolic analysis (without some addi-  To add augmenting information to our symbolic analysis
tional decision procedures) will not be effective for such component, we create a disjunctive normal form expression
types of expressions. For example, expressions such agin the form of anaND/ORtable) representing the augment-
(x < cl,x >= cl), (x <= 2,z > ¢2) wherez is an ing information and add it to the RSML specification. To
integer or integer function anel andc2 are integer con-  add augmenting information to the PVS analysis we create
stants. And expressions such(@s< ¢3,z >= c4) and an axiom representing the augmenting information, add it
(zr >= 4,z <= cb) wherez is an integer or an integer to the PVS specification, and introduce the axiom into the
function and:3, ¢4, andceb are constants subject to the con- proof process when the PVS prover is invoked.



5.2. Future work in automating the process Proximate-Traffic Potential-Threatand Threat A transi-
tion from Proximate-Traffic Potential-Threator Threatto

We can further automate our process by creating a shellthe stateOther-Trafficmeans that the intruder aircraft is no
script and applying some heuristics we learned when we ap4onger in the airspace close to own aircraft but is still be-
plied our method to the application described in Section 6. ing monitored; in other words, the status of the intruder in
Since our analysis is driven by command line options, we relation to the monitoring aircraft has been downgraded. A
can create a shell script to initiate the analysis, examine thetransition from eitheiProximate-Traffic Potential-Threat
output for some specific situations, and based on the out-or Other-Trafficto Threatmeans a potential collision is im-
put, decide on the next course of action. For example, ourminent and own aircraft is directed to take evasive action to
script could start the analysis process to use BDDs to checkavoid a collision.

a specification for consistency. Once the analysis is com-  Figures 5 and 6 show the guarding conditions for the
plete, the script would check to see how many error reportstransitions from statBroximate-Traffi¢o Other-Trafficand
were generated. If the number of error reports is betweenfiom stateProximate-Traffico Threat The guarding con-
50 and 1000, for example, the script could take the error gitions are expressed asiD/oR tables. ThexND/OR table
reports (inAND/OR table format) and start the analysis pro- shows the predicates to the left, and the columns of truth
cess with the option to translate the tabular output into ayalues represent different truth assignments the predicates
PVS specification. PVS is equipped with a batch mode, can have. The table is interpreted as the disjunction of the
so the script could also initiate PVS once the translation is conjunction of the truth values in the individual columns.
complete. If the number of error reports from the symbolic |n other words, if any of the columns IRUE, the entire
analysis is under 50, for example, the script could presentigple isTRUE. The predicates sub-scripted with anrep-
the symbolic analysis results to the analyst for review. resent macro predicates. THé@reat-Conditionmacro is

Itis also possible for us to incorporate our heuristics into shown in Figure 7. As th&hreat-Conditiormacro shows,
the shell script and provide guidance to the analyst in whata macro may contain other macros. Thus, there may be
the best options are for the analyst to try next. This is useful seyeral levels of indirection within the guarding conditions.
for parts of our analysis process that require the analyststhe Threatmacro when fully expanded, is one of the most
input. For example, if the number of error reports is large, complex macros in the TCAS Il requirements specification.
say on the order of thousands, the script could inform the The macros included in thehreat-Conditiormacro range

analyst that information may be missing from the model and j, sjze from the smallest, a one column two row table, to the
print out some hints to help the analyst identify the missing |argest, a six column ten row table.

information. The analyst can then use the hints provided by
the script to locate the missing information in the original
specification.

We used our symbolic analysis componentto check these
conditions for consistency. The symbolic analysis reported
over four million potential inconsistencies between the two
. guarding conditions. With this many error reports we con-
6. Application of method and results cluded that most of them were spurious and that there was

some information missing from the symbolic model that

We applied our iterative and integrative analysis processwas causing the spurious errors. We applied our technique
to the TCAS (Traffic alert and Collision Avoidance System) described in [6] to identify the missing information. In this
Il requirements specification [17]. TCAS Il is a complex case, we found that there was a relation between a particu-
avionics system that is required on all commercial aircraft lar input variableQOther-Alt-Reportingand a state machine
carrying 30 or more passengers through US Airspace. ThenamedAlt-Reportingthat consists of the three stat¥ss
system monitors the airspace around the aircraft for otherLost andNo. Whenever the variabl®ther-Alt-Reporting
aircraft that may be on a collision course, and takes eva-is TRUE, Alt-Reportingmust be in the stat¥es We codi-
sive action if a collision is imminent. The entire specifi- fied this information in the form of aaND/OR table (Fig-
cation for TCAS Il (version 6.04A) comprises a little over ure 8) and augmented the analysis model with the informa-
400 pages [3]. The requirements consist of two main parts,tion. We reran our symbolic analysis component including
Own-Aircraftand Other-Aircraft[4]. We concentrated our the augmenting information and with our decision proce-
efforts on several transitions with some of the most complex dures enabled. The results of this second iteration showed
guarding conditions in one of the most complex portions of that the guarding conditions were consistent. We also trans-
the TCAS Il requirements specification. lated the original guarding conditions to a PVS specifica-

One of the states within the stat®ther-Aircraft, tion and initiated PVS analysis. PVS ran for over a day
Intruder-Status tracks the status of aircraft within the on asparcserver 1000 with 256 MB main memory and
proximity of the tracking aircraft (own aircraft). Four four 856MHz CPUs. We aborted the process. We then aug-
states within the staténtruder-Statusare Other-Traffig mented the PVS specification with the information we iden-



Transition(s): |Proximate-Traffi¢ —s | Other-Traffid

Location: Other-Aircraft> Intruder-Statug;zg

Trigger Event: Air-Status-Evaluated-Evefip7g

Condition:

Alt-Reporting;_101 in state Lost T
RA-Mode-Canceleg.199 B
Alt-Reporting;.10z1 in state No L
Other-Range-Valigi 17 = True F|

o=>

Proximate-Traffic-Condition.216

Potential-Threat-Range-Tgsh14

Potential-Threat-ConditigRo13

Threat-Conditiop,_g

T
Other-Bearing-Valigl;og = True |F]
Other-Air-Statug 101 in state On-Ground | - |
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Output Action: Intruder-Status-Evaluated-Eventg
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Figure 5. Transition from Proximate-Traffic to Other-Traffic.

Transition(s): |Proximate-Traffi¢ — | Threaf]

Location: Other-Aircraft> Intruder-Statug;zg

Trigger Event: Air-Status-Evaluated-Evenip7g

Condition:

[ Threat-Conditiop. g |

Output Action: Intruder-Status-Evaluated-Event,g

Figure 6. Transition from Proximate-Traffic to Threat.

Macro: Threat-Condition

Definition:

o=>

RA-Inhibitm.217

Other-Air-Statuso; in state Airborne

Threat-Range-Tegto4

Threat-Alt-Test.o23

Reply-Invalid-Test 218

TCAS-TCAS-Crossing-Tegto21

Level-Wait_1o; in state 3

Alt-Separation-Tegt 196

Low-Firmness-Separation-Tesio?

RERREEEEE

Figure 7. The Threat-Condition Macro.
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Macro: Other-Alt-Reporting-Alt-Reporting-Assertion
Definition:

Other-Alt-Reporting 113 = True
Alt-Reporting,.101 in state Yes
Alt-Reporting,.101 in state Lost
Alt-Reporting,.101 in state No

o=>

Figure 8. Augmenting information in tabular form.

tified above, and reran the PVS analysis. PVS showed theiant activity in any rigorous software development project.
guarding conditions consistent in 44.87 seconds. However, static analysis is performed on a formal model
For two other states in the TCAS Il specification, we an- of the requirements that is an abstraction of the original re-
alyzed a total of fourteen pairs of guarding conditions. Of quirements specification. In many cases, abstractions in the
these fourteen, five proved consistent after a single iterationanalysis model lead to spurious errors in the analysis output.
of both the symbolic analysis and the PVS analysis. Both A high ratio of spurious errors to true errors in the analysis
the symbolic analysis and the PVS analysis required onlyoutput makes it difficult, error-prone, and time consuming
a few seconds to report that the guarding conditions wereto find and correct the true errors in the specification.
consistent. Three desirable criteria for any analysis technique to sat-
For the remaining nine pairs, the first iteration of the isfy are efficiency (in terms of speed), accuracy (a small
symbolic analysis reported from four to 403 inconsisten- ratio of spurious errors to true errors in the analysis output),
cies. We automatically translated all of the reported incon- and automation. From our experience, it is clear that sym-
sistencies from the symbolic analysis to a PVS specificationbolic manipulation and reasoning methods applied individ-
and ran PVS to see if any further reductions in the reportedually cannot sufficiently satisfy all three criteria. Therefore,
inconsistencies could be achieved. In all cases (except foran approach that integrates the strengths of the individual
the minimum output of four inconsistencies from symbolic components and circumvents their weaknesses is needed.
analysis), the PVS output was significantly reduced. The In this paper we described an iterative approach for ana-
number of inconsistencies reported by PVS ranged fromlyzing state-based requirements for completeness and con-
one to 46. sistency that integrates a symbolic component using BDDs
Manual inspection of the reported inconsistencies With areasoning componentusing PVS. Our approach takes
seemed to confirm that the guarding conditions could bothadvantage of the strengths of the individual techniques
be satisfied at the same time (i.e., they were inconsistent)While circumventing their weaknesses. The resulting anal-
These potential inconsistencies were reported to the main¥sis process is fast and automated enough to be used on
tainers of the specification. The maintainers reviewed thea day-to-day basis by practicing engineers, and generates
reported inconsistencies and noted that in their definition @nalysis reports with a small ratio of spurious errors to true
of the semantics okRsML, transitions out of a higher level ~ €rrors.
state take precedence over transitions out of a lower level ~Since our approach is simple to apply and is driven by
state. Thus, both transitions cannot be satisfied at the samgommand line options, we can further automate it by cre-
time; the transition from the higher level state overrides the ating a shell script which incorporates the heuristics we
transition from the lower level state. Therefore, all of the learned from applying our method. This makes it more ac-
guarding conditions for transitions out of the two states, in cessible to practicing engineers and easier to use.
their choice of semantics, are mutually exclusive. We applied our method to several large real-world case
We applied our analysis method to many other guarding Studies and the results were promising.
conditions from the TCAS Il specification and all of our
results were promising (see [6] for additional case studies). References
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