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Abstract

Statically analyzing requirements specifications to as-
sure that they possess desirable properties is an important
activity in any rigorous software development project. The
analysis is performed on an abstraction of the original re-
quirements specification. Abstractions in the model may
lead to spurious errors in the analysis output. Spurious er-
rors are conditions that are reported as errors, but infor-
mation abstracted out of the model precludes the reported
conditions from being satisfied. A high ratio of spurious er-
rors to true errors in the analysis output makes it difficult,
error-prone, and time consuming to find and correct the true
errors. In this paper we describe an iterative and integra-
tive approach for analyzing state-based requirements that
capitalizes on the strengths of a symbolic analysis compo-
nent and a reasoning component while circumventing their
weaknesses. The resulting analysis method is fast enough
and automated enough to be used on a day-to-day basis by
practicing engineers, and generates analysis reports with a
small ratio of spurious errors to true errors.

1. Introduction

Statically analyzing requirements specifications to as-
sure that they possess desirable properties is an important
activity in any rigorous software development project. Er-
rors in the requirements that go undetected and propagate
to later stages of development are the most costly to cor-
rect [15, 18]. Therefore, it is desirable to ensure that the re-
quirements document satisfies certain properties before pro-
ceeding to later stages of the development process.

However, static analysis is performed on a formal model
of the requirements that is an abstraction of the original
requirements specification. Some degree of abstraction is
necessary or the analysis becomes intractable. The out-
put from the analysis is a report of the desired properties
that the specification fails to satisfy. Often, abstractions

in the analysis model lead to spurious errors in the analy-
sis output. Spurious errors are conditions that are reported
as errors, but information that was abstracted out of the
analysis model precludes the reported conditions from be-
ing satisfied. For example, information about relational
expressions is abstracted from the model and the analysis
incorrectly reports that there is a problem if the condition
[x � y > 1200] ^ [x � (1200 + y)] is satisfied. A high
ratio of spurious errors to true errors in the analysis output
makes it difficult, error-prone, and time consuming to find
and correct the true errors in the specification.

Two desirable properties that certain requirements docu-
ments should satisfy (for example, the requirements for crit-
ical systems) are completeness (a behavior is specified for
every possible input) and consistency (no conflicting behav-
iors are specified). Analyzing for completeness and consis-
tency in state-based requirements generalizes to analyzing
logical expressions for satisfiability and mutual exclusion.
Two methods for analyzing logical expressions for satis-
fiability and mutual exclusion are symbolic methods such
as those that rely on Binary Decision Diagrams (BDDs),
and reasoning methods such as theorem proving. Symbolic
methods are fast and fully automated, but generate output
that may contain many spurious errors since the analysis
model contains many abstractions. Reasoning methods tend
to be slower and require more manual intervention, but gen-
erate more accurate output since the analysis model con-
tains fewer abstractions.

We developed an iterative approach for analyzing state-
based requirements that integrates a symbolic analysis com-
ponent and a reasoning component. Our method is auto-
mated and easy to use. It capitalizes on the strengths of
the individual components while circumventing their weak-
nesses, thus, resulting in an analysis process that is fast
enough and automated enough to be used on a day-to-day
basis by practicing engineers, and that generates analysis
reports with a small ratio of spurious errors to true errors.

The remainder of this paper is organized as follows: Sec-
tion 2 overviews related work in integrative analysis and



describes how our approach is different, Section 3 provides
some background information and describes in more detail
the problem that we set out to solve, Section 4 describes
the integrative and iterative analysis process we developed
to analyze logical expressions for satisfiability and mutual
exclusion, and Section 5 describes the analysis of output
and the iteration options available to the analyst. In Sec-
tion 6 we discuss the results we obtained from applying our
method to a large real-world avionics specification. Finally,
in Section 7 we present our conclusions.

2. Related work

The integrative approach in itself is not unique. There
are several others who have also developed integrative anal-
ysis techniques. Most of these techniques have been applied
in the area of hardware verification, or analysis of concur-
rent programs. Joyce and Seger developed an integrated ap-
proach to formal hardware verification that combines BDD-
based symbolic simulation techniques with interactive the-
orem proving [16]. Young, Taylor, Forester, and Brodbeck
have integrated static concurrency analysis with symbolic
execution to detect anomalous synchronization patterns in
concurrent Ada programs [22, 23, 24]. In [10], Havelund
and Shankar describe a series of protocol verification exper-
iments that combine theorem proving and model checking.
It is clear that an integrative approach to analysis is essen-
tial, since all individual analysis techniques suffer from lim-
itations of one form or another. The integrative approaches
represent attempts to capitalize on the strengths of the indi-
vidual techniques and circumvent their weaknesses.

Our integrative analysis approach is based on trying the
simple, straightforward methods first and, if these methods
fail, apply the more complex and computationally expen-
sive methods. Our iterative analysis is based on identifying
the information that was abstracted out of the model that
is leading to spurious errors, feeding the information back
into the model, and re-running the analysis. Our approach
is unique in that it provides guidelines to help the analyst
decide which analysis component to apply on the first itera-
tion based on the input and it provides guidelines for which
actions to take on subsequent iterations based on the out-
put. In addition, we provide a method to help the analyst
identify the missing information so the spurious errors can
be eliminated and the true errors can be more readily iden-
tified. In this paper, we refer to the missing information as
augmenting information since its inclusion into the analy-
sis process augments the accuracy of the analysis output by
eliminating spurious errors. The idea is that since the spuri-
ous errors are the result of missing information (abstraction)
in the model, identifying the missing information leading to
the spurious errors and adding it back into the analysis pro-
cess, should make the spurious errors disappear. In other

words, if all of the missing information is identified, and the
original guarding conditions are consistent (complete), then
augmenting the analysis process with the missing informa-
tion will yield the correct output ofFALSE (TRUE), showing
that the guarding conditions are consistent (complete). In
this paper, we do not discuss our technique for identifying
the missing information; see [6] for a detailed description
of this technique.

3. Background and problem

In state-based languages such as Statecharts [8, 9],
SCR [14], and RSML [18], the transitions between states
are guarded by conditions; the guarding condition must be
true before the transition can be taken. In the definition of
completeness and consistency provided in [12] the proper-
ties imply the following:

1. Every state must have a deterministic behavior (transi-
tion) defined for every possible input event,

2. The logicalOR of the guarding conditions on every
transition out of any state must form a tautology; for
any condition, there is always a transition that can be
taken, and

3. The logicalAND between the guarding conditions on
two transitions out of a state must form a contradiction;
for each possible condition, there is only one feasible
transition out of every state.

Thus, verifying consistency and completeness in state-
based requirements primarily involves calculating theAND

andOR of the guarding conditions on the transitions to see
if they form contradictions and tautologies.

3.1. Analysis procedures

In our work, we have investigated two main approaches
for manipulating the guarding conditions to check for con-
tradictions and tautologies: (1) theorem proving (reasoning)
and (2) symbolic manipulation using Binary Decision Dia-
grams (BDDs). BDDs are directed acyclic graphs that rep-
resent Boolean formulas in a canonical form. Algorithms
for manipulating BDDs, for example,ANDing andORing
Boolean formulas, are efficient and provide good average
performance [2]. For the theorem proving component of our
method, we chose the Prototype Verification System (PVS).
PVS is a specification and verification system that provides
an interactive environment for the development and analysis
of formal specifications [5, 20, 21].

3.2. Spurious errors

Since all analysis techniques rely on abstraction to gener-
ate a system model that can be analyzed in a computation-



ally tractable manner (i.e., avoid the state explosion prob-
lem), spurious errors may be reported that would be elimi-
nated if certain abstractions were not made. Thus, the prob-
lem of spurious errors is common to all analysis techniques.
Currently, it is left up to the analyst to determine which error
reports represent true errors and which error reports repre-
sent spurious errors.

In essence, in each spurious error report, there is some
undetected contradiction that exists between the constituent
components of the reported expression that actually pre-
cludes the reported error from being a true error. After
numerous case studies and experiments, we identified four
classes of undetected contradictions that lead to spurious
errors. We classified the spurious errors according to the
undetected contradictions that cause them.

1. Spurious errors involving simple and obvious contra-
dictions between predicates such as enumerated type
predicates and predicates involving simple arithmetic
expressions. For example, an error report that requires
the expression[(x � y) > 1200] ^ [x � (1200 + y)]
to beTRUE.

2. Spurious errors involving three or more predicates con-
taining related linear arithmetic expressions. For ex-
ample, an error report that requires the expression
(i > j) ^ (j > k) ^ (i� k < 0) to beTRUE.

3. Spurious errors involving non-linear expressions. For
example, an error report requiring(z2 < x=y) ^ (z2 �
x=y) to beTRUE.

4. Spurious errors related to the structure of the state ma-
chine, or spurious errors related to information about
the environment in which the system will operate.

Different analysis techniques are able to eliminate differ-
ent classes of spurious errors, but no single analysis tech-
nique can eliminate all spurious errors. Spurious errors of
the types involved in the first two classes listed above can
be eliminated by augmenting the analysis process with de-
cision procedures. Decision procedures are algorithms de-
signed to reason about expressions and, if possible, to per-
form simplifications on those expressions. For example,
we know that symbolic analysis using BDDs cannot rea-
son about the components of the expressions and therefore
cannot make decisions about whether or not two or more
interdependent expressions contradict each other. This in-
ability to reason about relationships between expressions
may lead to many spurious error reports in the analysis out-
put. Adding procedures to the symbolic analysis process
that can perform some simple reasoning about the interde-
pendencies between expressions will strengthen the overall
analysis process and result in fewer numbers of spurious er-
ror reports.

Tools using reasoning components augmented with deci-
sion procedures, such as PVS, can easily eliminate all types
of class 1 and class 2 spurious errors. PVS can also elim-
inate some spurious errors involving simple non-linear in-
equalities.

In general, no analysis technique can eliminate class 4
spurious errors, since this class of spurious errors results
because information that is required by the analysis process
has been abstracted from the model, or is related to some
environmental constraints that were not modeled. To elim-
inate spurious errors of class 4 requires one to identify the
relevant information that is missing from the analysis pro-
cess and to augment the analysis process with this informa-
tion.

From our experiments we discovered that no one individ-
ual static technique for performing the analysis is sufficient
to satisfy the desired goals of analysis [24]; speed, automa-
tion, and accuracy. There are trade-offs between the amount
of abstraction an analysis method relies on, the degree of au-
tomation, the speed with which the analysis completes, and
the level of accuracy in the analysis output. When more de-
tails are included in the analysis process, the analysis often
requires costly and time consuming user intervention.

Furthermore, we know that even the most powerful anal-
ysis techniques will generate spurious errors when informa-
tion required for the analysis has been abstracted out of the
model.

To summarize, symbolic methods are fully automated,
but may generate inaccurate analysis reports because many
functions are not interpreted; i.e., the semantics of the func-
tions are abstracted away. Reasoning methods can gen-
erate more accurate analysis reports, but are more costly
to use. If static analysis techniques are going to be used
more frequently in industrial applications, they must be au-
tomated [7, 13, 19]. We want an analysis method that is au-
tomated, fast, and that generates accurate analysis reports so
it is feasible to use in industrial settings. This paper specif-
ically addresses the need for automation and speed by de-
scribing an automated process to check logical expressions
for satisfiability and mutual exclusion that is feasible in in-
dustrial settings. In [6] we also address the issue of accuracy
in the analysis output.

4. Integrative analysis

In this section we describe the integrative and iterative
analysis approach we developed to analyze disjunctive and
conjunctive expressions for satisfiability and mutual exclu-
sion. An application of the process developed in this re-
search is in the analysis of state-based requirements for
completeness and consistency. To demonstrate the scala-
bility of our analysis process to industrial problems, we ap-
plied our method to a large real-world avionics specifica-



tion, specified in RSML, to check parts of the specification
for completeness and consistency. The results of this appli-
cation are reported in Section 6.

4.1. General analysis process

The inputs to the analysis process for mutual exclusion
are two logical expressions. If the expressions are mutually
exclusive, the conjunction will reduce toFALSE. If the ex-
pressions are not mutually exclusive, i.e., the conjunction of
the expressions does not reduce toFALSE, the analysis will
report the logical expressions that are satisfiable by both of
the disjuncts at the same time. The analyst is then left with
the task of determining how to modify the two original log-
ical expressions so they are mutually exclusive.

The input to the analysis process for satisfiability may be
one or more logical expressions. The analysis process forms
the disjunction of the logical expressions. If the disjunction
of the expressions is satisfiable, then the disjunction reduces
to TRUE. If the disjunction of the expressions is not satisfi-
able, the analysis will report the logical expressions to the
analyst that are not satisfiable by any of the original logical
expressions. The analyst can then determine the logical ex-
pressions that need to be added to make the disjunction of
the expressions a tautology. We do not address the issue of
how the analyst corrects the problems once they are identi-
fied; this is a difficult problem and requires further research.

Figure 1 shows the general analysis process and the in-
tegration of the symbolic and reasoning components. The
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Figure 1. General analysis process and in-
tegration of symbolic and reasoning com-
ponents.

logical expressions to be analyzed are stored in some ma-
chine readable form; for example, a machine readableRSML

specification. The analysis process begins by first parsing
the logical expressions and converting them into an inter-
nal representation. If the analyst chooses to perform sym-

bolic analysis, then the tool performs symbolic analysis us-
ing BDDs and generates two outputs: a BDD node profile1,
and an analysis report in disjunctive normal form in a tabu-
lar format (anAND/OR table). The latter output of the sym-
bolic analysis component may be samples of the resulting
disjunctive normal form expression; the analyst may specify
samples if the resulting disjunctive expression is too large to
report in its entirety; for example, we encountered expres-
sions that contained thousands or millions of disjuncts.

If the analyst chooses to create a PVS specification, the
tool converts the internal representation of the logical ex-
pressions into a PVS specification. The output of the PVS
analysis is either a finished proof (no unprovable subgoals),
or a report of unprovable subgoals. The analyst can also
choose to create a PVS specification for the disjunctive
normal form expression output from the symbolic analysis
component (this option is shown in the figure by the data
flow from theBDD analysisprocess to thePVS translator
process).

4.2. Tools and tool integration

The specific tools we use in our analysis process and the
flow of data between the tools are shown in Figure 2. The
tools described in this section are specific to the applica-
tion of our analysis process to the analysis of state-based
requirements (namely, RSML requirements) for complete-
ness and consistency. The symbolic analysis component sits
on top of a BDD library created by Long at Carnegie Mellon
University [1].
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Figure 2. Overview of analysis tools and
data flow between the tools.

The symbolic analysis component consists of three sub-
processes: aBDD translator that translates the RSML
AND/OR table2 representation of guarding conditions to Bi-
nary Decision Diagrams, aBDD analyzerthat manipulates

1A BDD node profile is simply a histogram showing the number of
nodes at each level in a BDD.

2An AND/OR table is a disjunctive normal form tabular representation
of logical expressions.



the BDD representation of the guarding conditions to check
for tautologies and contradictions, and anAND/OR table
translator that converts the result BDDs output from the
BDD analyzer process toAND/OR table format to present
to the analyst.

The PVS translatorconverts the internal representation
of the state machine to a PVS specification. We do not dis-
cuss the translation process from anRSML specification to
a PVS specification in this paper. For details regarding this
translation process see [6, 11]. Once the translation pro-
cess is complete, the analyst initiates PVS and automati-
cally parses and typechecks the theories and declarations
generated from theRSML specification. When parsing and
typechecking is finished, the analyst invokes the PVS prover
on the conjecture to be proved.

We developed a set of proof strategies that allow the PVS
analysis to be more automated, and largely free the analyst
from having intimate knowledge of the PVS prover com-
mands. When the analyst invokes the prover, the set of
strategies developed during this research is loaded into PVS
and the strategies become available to the PVS prover. We
developed strategies for proving that the pairwise conjunc-
tion of two logical expressions is a contradiction (i.e., the
logical expressions are mutually exclusive, or consistent),
and we developed strategies for proving that the disjunction
of logical expressions is a tautology (i.e., the disjunction
of the logical expressions is satisfiable). In most cases, the
strategies allow the analyst to perform proofs of complete-
ness and consistency with a single command (the strategy
name). An example strategy is shown in Figure 3; this strat-
egy is used to check guarding conditions for completeness.

(defstep complete2
(apply (then (skolem!)

(rewrite-msg-off)
(auto-rewrite-defs$)
(do-rewrite$)
(repeat*

(try (bddsimp)
(try (record) (assert) (postpone))

(skip))))))

Figure 3. PVS strategy for proving guard-
ing conditions complete.

In addition, our tool provides command line options that
allow the analyst to choose which analysis she wants to per-
form. For example, the analyst might choose to run PVS
or BDD analysis on the original expressions, or she might
choose to translate the BDD analysis output to a PVS spec-
ification.

The outcome of any analysis is an error report of some

form that is presented to the analyst. Error reports from
our analysis process are presented to the analyst as Boolean
expressions in disjunctive normal form (AND/OR table for-
mat). In terms of analyzing requirements for completeness
and consistency, each report represents either (1) an incom-
pleteness, that is, a condition the requirements do not han-
dle, or (2) an inconsistency, that is, a condition where two or
more responses are specified. We now describe the iteration
options available to the analyst, and the analysis of output.

5 Iteration options and analysis of output

In this section we describe the analysis of output and
the iteration options available to the analyst. Again, in
this section we apply our method toRSML requirements to
check the requirements for completeness and consistency,
but the approach could be generalized to apply to any anal-
ysis that requires the manipulation of large Boolean expres-
sions. Figure 4 shows the possible outputs from the analysis
process, the possible outcomes of the output analysis pro-
cess, and the options available to the analyst based on the
outcome of theAnalyze Outputprocess.

After the automated portion of the analysis is finished
and the analysis report is generated, the analyst inspects
the output to determine the next course of action; theAn-
alyze Outputprocess in the figure. If the report shows the
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Figure 4. Analysis of output and iteration op-
tions of the analysis.

guarding conditions complete or consistent, the process is
finished and no further iterations are required. If the output
size from either analysis process is manageable (for exam-
ple, 30 or fewer errors), the analyst manually inspects the
output for the true errors. For the purposes of this discus-
sion we assume that symbolic analysis using BDDs is ap-
plied first. If the output size from the symbolic analysis is
not manageable for an analyst, but is manageable for PVS



(as determined by the analyst), it is fed back into the anal-
ysis process, a PVS specification is generated, and the PVS
output is reported to the analyst.

If the output size from either analysis process is not
manageable, we assume that most of the error reports are
spurious and exist because there is some information miss-
ing from the model. We can make this assumption since
the initial specification was intended to be consistent (com-
plete) and we assume the analyst produced a specification
that does not stray too far from this intention. The outputs
from the symbolic analysis, the BDD node profile and the
AND/OR table, are used to identify the information that is
missing; the process labeledIdentify Missing Information
Causing Spurious Errorsin Figure 4 (the details of this pro-
cess are beyond the scope of this paper; see [6] for details).
If no missing information can be found, and both analysis
processes have been tried, then the errors must be true er-
rors, and the analyst must examine them manually. If only
symbolic analysis has been tried and no missing informa-
tion can be found, either the symbolic analysis output is
converted to a PVS specification and PVS analysis is run,
or PVS analysis is applied to the original expressions. If
missing information is found, it is added to either the ma-
chine readableRSML specification or the PVS specification
generated from the machine readableRSML specification,
and either symbolic analysis or PVS analysis is run on the
augmented specification. Adding augmenting information
to the analysis process is discussed in Section 5.1.

Note that it is not necessary to start the analysis pro-
cess using symbolic analysis. The analyst may choose to
start with PVS. A situation where it would be useful to start
with PVS is when the predicates contain many arithmetic
linear expressions, for example. Should PVS result in too
many error reports or fail to halt, then the analyst can apply
symbolic analysis to the original specification and attempt
to identify missing information using the process described
in [6]. We developed a set of heuristics to help the ana-
lyst choose which analysis process to apply. The heuristics
are based on what the constituent components of the log-
ical expressions are comprised of, and what the results of
an application of an analysis are. We learned the heuristics
during application of our method.

First, for guarding conditions that contain a large number
of relational type predicates with a large number of possi-
ble multi-way interdependencies, it is best to apply PVS on
the first iteration. Symbolic analysis (without some addi-
tional decision procedures) will not be effective for such
types of expressions. For example, expressions such as
(x < c1; x >= c1), (x <= c2; x > c2) wherex is an
integer or integer function andc1 andc2 are integer con-
stants. And expressions such as(x < c3; x >= c4) and
(x >= c4; x <= c5) wherex is an integer or an integer
function andc3, c4, andc5 are constants subject to the con-

straint:c3 < c4; c5 < c4. In all of these cases the predicates
cannot be bothTRUE or bothFALSE at the same time.

Second, for guarding conditions that contain a large
number of enumerated type predicates, either symbolic
analysis with our decision procedures, or PVS can be ap-
plied first. However, since PVS has more decision pro-
cedures available, applying PVS on the first iteration may
yield fewer spurious or redundant error reports.

Third, if the guarding conditions being analyzed are very
large, it is best to apply symbolic analysis on the first iter-
ation. The symbolic analysis report may show that some
of the guarding conditions are consistent (complete). When
the report from the symbolic analysis shows many inconsis-
tencies (incompletenesses) then apply our process described
in [6] to identify any missing information. Once the miss-
ing information has been identified, it is best to augment
the PVS specification with the missing information, and use
PVS on the augmented specification. Since PVS has more
decision procedures available, the output may report fewer
spurious errors and fewer redundant errors when true er-
rors exist. We do not start with PVS for complex guard-
ing conditions since, as our results showed, there are some
guarding conditions that PVS fails to halt on; this failure
is generally because some information is lacking from the
specification and the proof process. Once the PVS speci-
fication and proof process are augmented with the missing
information, PVS is effective.

Fourth, for guarding conditions that contain a significant
number of linear arithmetic predicates, non-linear arith-
metic predicates with constants, or expressions involving
division by constants when the expressions are structurally
equivalent, it is best to apply PVS to the guarding conditions
on the first iteration; symbolic analysis using BDDs cannot
effectively manage any of the aforementioned problems un-
less all of the predicates are structurally equivalent and there
are no multi-way interdependencies between predicates (for
example, two or more arithmetic predicates that cannot be
satisfied at the same time).

5.1. Adding augmenting information to the analysis
process

To add augmenting information to our symbolic analysis
component, we create a disjunctive normal form expression
(in the form of anAND/OR table) representing the augment-
ing information and add it to the RSML specification. To
add augmenting information to the PVS analysis we create
an axiom representing the augmenting information, add it
to the PVS specification, and introduce the axiom into the
proof process when the PVS prover is invoked.



5.2. Future work in automating the process

We can further automate our process by creating a shell
script and applying some heuristics we learned when we ap-
plied our method to the application described in Section 6.
Since our analysis is driven by command line options, we
can create a shell script to initiate the analysis, examine the
output for some specific situations, and based on the out-
put, decide on the next course of action. For example, our
script could start the analysis process to use BDDs to check
a specification for consistency. Once the analysis is com-
plete, the script would check to see how many error reports
were generated. If the number of error reports is between
50 and 1000, for example, the script could take the error
reports (inAND/OR table format) and start the analysis pro-
cess with the option to translate the tabular output into a
PVS specification. PVS is equipped with a batch mode,
so the script could also initiate PVS once the translation is
complete. If the number of error reports from the symbolic
analysis is under 50, for example, the script could present
the symbolic analysis results to the analyst for review.

It is also possible for us to incorporate our heuristics into
the shell script and provide guidance to the analyst in what
the best options are for the analyst to try next. This is useful
for parts of our analysis process that require the analysts
input. For example, if the number of error reports is large,
say on the order of thousands, the script could inform the
analyst that information may be missing from the model and
print out some hints to help the analyst identify the missing
information. The analyst can then use the hints provided by
the script to locate the missing information in the original
specification.

6. Application of method and results

We applied our iterative and integrative analysis process
to the TCAS (Traffic alert and Collision Avoidance System)
II requirements specification [17]. TCAS II is a complex
avionics system that is required on all commercial aircraft
carrying 30 or more passengers through US Airspace. The
system monitors the airspace around the aircraft for other
aircraft that may be on a collision course, and takes eva-
sive action if a collision is imminent. The entire specifi-
cation for TCAS II (version 6.04A) comprises a little over
400 pages [3]. The requirements consist of two main parts,
Own-AircraftandOther-Aircraft [4]. We concentrated our
efforts on several transitions with some of the most complex
guarding conditions in one of the most complex portions of
the TCAS II requirements specification.

One of the states within the stateOther-Aircraft,
Intruder-Status, tracks the status of aircraft within the
proximity of the tracking aircraft (own aircraft). Four
states within the stateIntruder-Statusare Other-Traffic,

Proximate-Traffic, Potential-Threat, andThreat. A transi-
tion from Proximate-Traffic, Potential-Threat, or Threatto
the stateOther-Trafficmeans that the intruder aircraft is no
longer in the airspace close to own aircraft but is still be-
ing monitored; in other words, the status of the intruder in
relation to the monitoring aircraft has been downgraded. A
transition from eitherProximate-Traffic, Potential-Threat,
or Other-Trafficto Threatmeans a potential collision is im-
minent and own aircraft is directed to take evasive action to
avoid a collision.

Figures 5 and 6 show the guarding conditions for the
transitions from stateProximate-Trafficto Other-Trafficand
from stateProximate-Trafficto Threat. The guarding con-
ditions are expressed asAND/OR tables. TheAND/OR table
shows the predicates to the left, and the columns of truth
values represent different truth assignments the predicates
can have. The table is interpreted as the disjunction of the
conjunction of the truth values in the individual columns.
In other words, if any of the columns isTRUE, the entire
table isTRUE. The predicates sub-scripted with anm rep-
resent macro predicates. TheThreat-Conditionmacro is
shown in Figure 7. As theThreat-Conditionmacro shows,
a macro may contain other macros. Thus, there may be
several levels of indirection within the guarding conditions.
TheThreatmacro when fully expanded, is one of the most
complex macros in the TCAS II requirements specification.
The macros included in theThreat-Conditionmacro range
in size from the smallest, a one column two row table, to the
largest, a six column ten row table.

We used our symbolic analysis component to check these
conditions for consistency. The symbolic analysis reported
over four million potential inconsistencies between the two
guarding conditions. With this many error reports we con-
cluded that most of them were spurious and that there was
some information missing from the symbolic model that
was causing the spurious errors. We applied our technique
described in [6] to identify the missing information. In this
case, we found that there was a relation between a particu-
lar input variable,Other-Alt-Reporting, and a state machine
namedAlt-Reportingthat consists of the three statesYes,
Lost, andNo. Whenever the variableOther-Alt-Reporting
is TRUE, Alt-Reportingmust be in the stateYes. We codi-
fied this information in the form of anAND/OR table (Fig-
ure 8) and augmented the analysis model with the informa-
tion. We reran our symbolic analysis component including
the augmenting information and with our decision proce-
dures enabled. The results of this second iteration showed
that the guarding conditions were consistent. We also trans-
lated the original guarding conditions to a PVS specifica-
tion and initiated PVS analysis. PVS ran for over a day
on a SPARCserver 1000 with 256 MB main memory and
four 85MHz CPUs. We aborted the process. We then aug-
mented the PVS specification with the information we iden-



Transition(s): Proximate-Traffic�! Other-Traffic

Location: Other-Aircraft. Intruder-Statuss-136

Trigger Event: Air-Status-Evaluated-Evente-279
Condition:

A
N
D

OR
Alt-Reportings-101 in stateLost T T � � � � � �

RA-Mode-Canceledm-199 � � T T � � � �

Alt-Reportings-101 in stateNo � � T T T T � �

Other-Bearing-Validv-120= True F � F � F � � �

Other-Range-Validv-117= True � F � F � F � �

Proximate-Traffic-Conditionm-216 � � � � � � F �

Potential-Threat-Range-Testm-214 � � � � T T � �

Potential-Threat-Conditionm-213 � � � � � � F �

Threat-Conditionm-8 � � � � � � F �

Other-Air-Statuss-101 in stateOn-Ground � � � � � � � T

Output Action: Intruder-Status-Evaluated-Evente-279

Figure 5. Transition from Proximate-Traffic to Other-Traffic.

Transition(s): Proximate-Traffic�! Threat

Location: Other-Aircraft. Intruder-Statuss-136

Trigger Event: Air-Status-Evaluated-Evente-279
Condition:

Threat-Conditionm-8 T

Output Action: Intruder-Status-Evaluated-Evente-279

Figure 6. Transition from Proximate-Traffic to Threat.

Macro: Threat-Condition
Definition:

A
N
D

OR
RA-Inhibitm-217 F F
Other-Air-Statuss-101 in stateAirborne T T
Threat-Range-Testm-224 T T
Threat-Alt-Testm-223 T T
Reply-Invalid-Testm-218 F F
TCAS-TCAS-Crossing-Testm-221 F �

Level-Waits-101 in state3 F T
Alt-Separation-Testm-196 F F
Low-Firmness-Separation-Testm-207 F F

Figure 7. The Threat-Condition Macro.



Macro: Other-Alt-Reporting-Alt-Reporting-Assertion
Definition:

A
N
D

OR
Other-Alt-Reportingv-113= True T F F
Alt-Reportings-101 in stateYes T F F
Alt-Reportings-101 in stateLost F T F
Alt-Reportings-101 in stateNo F F T

Figure 8. Augmenting information in tabular form.

tified above, and reran the PVS analysis. PVS showed the
guarding conditions consistent in 44.87 seconds.

For two other states in the TCAS II specification, we an-
alyzed a total of fourteen pairs of guarding conditions. Of
these fourteen, five proved consistent after a single iteration
of both the symbolic analysis and the PVS analysis. Both
the symbolic analysis and the PVS analysis required only
a few seconds to report that the guarding conditions were
consistent.

For the remaining nine pairs, the first iteration of the
symbolic analysis reported from four to 403 inconsisten-
cies. We automatically translated all of the reported incon-
sistencies from the symbolic analysis to a PVS specification
and ran PVS to see if any further reductions in the reported
inconsistencies could be achieved. In all cases (except for
the minimum output of four inconsistencies from symbolic
analysis), the PVS output was significantly reduced. The
number of inconsistencies reported by PVS ranged from
one to 46.

Manual inspection of the reported inconsistencies
seemed to confirm that the guarding conditions could both
be satisfied at the same time (i.e., they were inconsistent).
These potential inconsistencies were reported to the main-
tainers of the specification. The maintainers reviewed the
reported inconsistencies and noted that in their definition
of the semantics ofRSML, transitions out of a higher level
state take precedence over transitions out of a lower level
state. Thus, both transitions cannot be satisfied at the same
time; the transition from the higher level state overrides the
transition from the lower level state. Therefore, all of the
guarding conditions for transitions out of the two states, in
their choice of semantics, are mutually exclusive.

We applied our analysis method to many other guarding
conditions from the TCAS II specification and all of our
results were promising (see [6] for additional case studies).

7. Conclusion

Statically analyzing requirements specifications to as-
sure that they possess desirable properties is an impor-

tant activity in any rigorous software development project.
However, static analysis is performed on a formal model
of the requirements that is an abstraction of the original re-
quirements specification. In many cases, abstractions in the
analysis model lead to spurious errors in the analysis output.
A high ratio of spurious errors to true errors in the analysis
output makes it difficult, error-prone, and time consuming
to find and correct the true errors in the specification.

Three desirable criteria for any analysis technique to sat-
isfy are efficiency (in terms of speed), accuracy (a small
ratio of spurious errors to true errors in the analysis output),
and automation. From our experience, it is clear that sym-
bolic manipulation and reasoning methods applied individ-
ually cannot sufficiently satisfy all three criteria. Therefore,
an approach that integrates the strengths of the individual
components and circumvents their weaknesses is needed.

In this paper we described an iterative approach for ana-
lyzing state-based requirements for completeness and con-
sistency that integrates a symbolic component using BDDs
with a reasoning component using PVS. Our approach takes
advantage of the strengths of the individual techniques
while circumventing their weaknesses. The resulting anal-
ysis process is fast and automated enough to be used on
a day-to-day basis by practicing engineers, and generates
analysis reports with a small ratio of spurious errors to true
errors.

Since our approach is simple to apply and is driven by
command line options, we can further automate it by cre-
ating a shell script which incorporates the heuristics we
learned from applying our method. This makes it more ac-
cessible to practicing engineers and easier to use.

We applied our method to several large real-world case
studies and the results were promising.
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