
1

Abstract
Domain-oriented design environments are cooperative

problem-solving systems that support designers in complex
design tasks. In this paper we present the facilities and
architecture of Argo, a domain-oriented design environment
for software architecture. Argo’s architecture is motivated
by the desire to achieve reuse and extensibility of the design
environment. It separates domain-neutral code from
domain-oriented code, which is distributed among intelli-
gent design materials as opposed to being centralized in the
design environment. Argo’s facilities are motivated by the
observed cognitive needs of designers. These facilities
extend previous work in design environments to support
reflection-in-action, opportunistic design, and comprehen-
sion and problem-solving.

Keywords: Domain-oriented design environments,
critics, software architectures, architectural styles, human-
computer interaction, human cognitive skills.

1. Introduction
Domain-oriented design environments (DODEs) are

cooperative problem-solving systems that support designers
in complex design tasks [6]. They are domain-oriented in
that important concepts and constructs in a particular
domain are built directly into the environment. They are
cooperative in that they take into account the
complementary strengths and weaknesses of humans and
computers. Domain orientation helps close the gap between
designers’ knowledge and the notation used by the
environment. Cooperative problem-solving lets designers
focus on specifying and adjusting design goals,
decomposing problems into subproblems, and so on, while
the computer supports designers by providing external

memory, hiding non-essential details, checking for
inconsistencies or potential design flaws, and providing
basic design guidance, analysis, and visualization
capabilities [19].

Domain-oriented design environments have been
recognized as complementary to more traditional
approaches to knowledge-based software engineering [6].
In contrast to program synthesis-oriented approaches,
DODEs provide a more interactive, iterative model that
takes into account the evolutionary nature of design and the
cognitive needs of designers. Motivated by the potential
benefit of using design environments to support the needs of
software architects, and, more generally, by the appealing
arguments of augmenting people’s ability to solve design
problems [3, 4], we have built a software architecture design
environment, called Argo1, to support the design of
complex software systems.

The design environment facilities explored by Fischer
and others [6-10] have provided an essential basis for our
work. In building Argo, however, we have found it
necessary to extend the basic facilities provided by these
earlier systems, and have devised an architecture that will
support further extensions and applications to new domains.
More specifically, our facilities extend previous work to
more fully support, and support in a more integrated
fashion, the cognitive needs of designers as identified by the
cognitive theories ofreflection-in-action, opportunistic
design, and comprehension and problem-solving.
Furthermore, our architecture motivates a shift from a large,
knowledge-rich design environment that manipulates
passive design materials to a smaller, knowledge-poor
design environment infrastructure that allows the user to
interact with intelligent design materials.

In Section 2, we briefly survey previous work on design
environments and identify key concepts and motivations. In
Section 3, we discuss architectural and representational

1. Argo was the name of the ship that the Argonauts sailed in
Greek Mythology. We hope that our Argo will aid software
architects in navigating design spaces.

Extending Design Environments to Software Architecture Design

Jason E. Robbins David M. Hilbert David F. Redmiles

{jrobbins,redmiles,dhilbert}@ics.uci.edu

Information & Computer Science
University of California, Irvine

Irvine, CA

Appeared in Proceeding of the IEEE Knowledge-Based Software Engineering Conference

This research is supported in part by the Air Force Material Command and
the Advanced Research Projects Agency under Contract Number F30602-
94-C-0218, and by the National Science Foundation under Contract Number
CCR-9624846. Additional support is provided by Rockwell International.
The content of the information does not necessarily reflect the position or the
policy of the funders and no official endorsement should be inferred.

2

issues that have allowed us to extend these themes. We
present our ideas in detail so other researchers can apply
them in building their own design environments. In Section
4, we describe our extended facilities for supporting the
cognitive needs of designers, and motivate our claims with
reference to cognitive theories of design. In particular, we
discuss how design feedback facilities support reflection-
in-action, how a design process model and a “to do” list
support opportunistic design, and finally, how multiple,
coordinated design perspectives support comprehension
and problem-solving. In each case, we explain how these
facilities are implemented in Argo. We conclude with a
summary of our contributions and future work.

2. Previous work on design environments
A domain-oriented design environment [7] is a tool that

augments a human designer’s ability to design complex
artifacts. The concept of human augmentation is based on
the work of Engelbart [3, 4] and others who researched
ways computers could help enhance peoples’ performance
of intellectual tasks. Design environments must address
systems-oriented issues such as design representation,
transformations on those representations (e.g., generating
code from a specification [11, 15]), and application of
analysis algorithms. Furthermore, they go beyond most
tools in their support for the designer’s cognitive needs [22].

The cognitive theory of reflection-in-action [23, 24]
observes that designers of complex systems do not conceive
a design fully-formed. Instead, they must construct a partial
design, evaluate, reflect on, and revise it, until they are ready
to extend it further. A similar process can be observed when
modifying an existing design.

Design environments support reflection-in-action by
using critics to give feedback on the design. Critics are
agents that watch for specific conditions in the partial
design as it is being constructed and notify the designer
when those conditions are detected. Critics can be used to
deliver knowledge to designers about the implications of, or
alternatives to, a design decision. In the vast majority of
cases, critics simply advise the designer of potential errors
or areas needing improvement in the design; only the most
severe errors are prevented outright, thus allowing the
designer to work through invalid intermediate design states.
Designers need not know that any particular type of
feedback is available or ask for it explicitly. Instead, they
simply receive feedback as they manipulate the design.
Often feedback on issues that the designer had overlooked
or was unaware of is the most valuable feedback.

Designers can benefit from domain knowledge when it is
delivered to them via critics. Examples of domain
knowledge include well-formedness of the design, hard
constraints on the design, rules of thumb about what makes
a good design, industry or organizational guidelines or style

rules, and the (potentially conflicting) opinions of domain
experts. Rather than place all the burden of precision and
restriction on the critic authors, design environments
assume that the designer is capable of making final
decisions regarding the application of the feedback given.

We can define a variety of potential types of critics, and
each type delivers a specific kind of knowledge. Correctness
critics detect syntactic and semantic flaws in the partial
design. Completeness critics detect when a design task has
been started but not yet finished. Consistency critics detect
contradictions within the design. Presentation critics detect
awkward use of the notation. Alternative critics remind the
designer of alternatives to a given design decision.
Optimization critics suggest better values for design
parameters. These types serve to aggregate critics so that
they may be understood and controlled as groups. Some
critics may be of multiple types, and new types may need to
be defined, as appropriate, for a given application domain.

Design environments such as Framer [19], Janus [6, 8,
9], and Hydra [10] support reflection-in-action. Figure 1
shows facilities of the Janus family of design environments.
The domain-oriented construction facility allows users to
graphically visualize and manipulate a design. The
construction analyzer critiquing facility critiques the design
to give design feedback that is linked into a hypertext
argumentation facility. The goal specification facility helps
to keep critics relevant to the designer’s objectives.
Reflection-in-action is also supported by simulation
facilities that allow what-if analysis as a further design
evaluation.

Designers will gain the most from design feedback that
is both timely and relevant to their current design task.
Design environments can address timeliness by linking
critics to a model of the design process. Framer uses a
checklist to model the process of designing a user interface
window. At any given time the designer is working on one
checklist item and only critics relevant to that item are
active. Design environments can also address relevance by

Construction Kit

Argumentative
Hypermedia

CatalogSpecification

Simulation

Catalog
Explorer

Argumentation
 Illustrator

Catalog
Explorer

Construction
Analyzer

Figure 1: Design environment facilities of
Janus (adapted from [6])

3

linking critics to specifications of design goals. For
example, Janus and Hydra allow the designer to specify
goals for kitchen floorplans, and thus activate only those
critics relevant to stated design goals. Furthermore, Hydra
uses critiquing perspectives, or modes, to activate critics
relevant to a given set of design issues and deactivate
irrelevant critics.

Existing design environments in the domain of software
architecture emphasize automatic generation from
formalisms instead of the cognitive needs of the software
architects in making design decisions. The Aesop [11]
system allows for a style-specific design environment to be
generated from a specification of the style. The DaTE [2]
system allows for construction of a running system from an
architectural description and a set of reusable software
components. AMPHION [15] is similar in that it allows
users to enter a graphical specification from which the
system can generate a running program. Each of these
systems provides support for design representation,
manipulation, transformation, and analysis, but none of
them explicitly supports designers’ cognitive processes.
Argo can generate main procedures which combine
software components into a running system. However, the
main contribution of Argo to the software architecture
community is its emphasis on the cognitive needs of the
architect.

3. Design environment implementation
In this section we discuss our approach to implementing

extensible design environments. First, we briefly describe
the design representation that Argo uses internally. We
follow that with a description of Argo’s architecture. In
describing our own design environment, we have attempted
to present themes and details to aid other researchers in
building their own design environments.

3.1. Internal representation
Argo stores designs internally as a connected graph with

annotations on the nodes and arcs. Nodes represent design
materials, while arcs represent relationships between those
materials. Nodes and arcs are both first class objects with
state and behavior. Annotations on nodes and arcs are also
first class objects. In addition to the connectivity of the
graph, annotations may be used to represent other important
features in design perspectives, e.g., the location and size of
design materials in a two-dimensional kitchen floorplan.
Design materials are intelligent in that they may carry their
own domain knowledge in the form of critics, simulation
routines, or predefined transformations.

Rather than define a simple model of the design that
selectively considers only a few design issues, we advocate
including diverse design material types and relationships
relevant to diverse design issues. This inclusive approach

better suits the breadth of design issues that designers must
consider.

The inclusion of diverse design issues can make for
large, unwieldy connected graphs. We address this with
design perspectives. Designs are manipulated through
connected graph editors each of which shows a single
design perspective, while annotations are edited via dialog
boxes. The various perspectives are projections, or
subgraphs, of the internal connected graph such that each
perspective presents only materials and relationships
relevant to a few design issues.

Since specific constraints on the design are handled in
the critics, Argo’s infrastructure makes very few
assumptions about the domain-oriented characteristics of
the graph. It is this simple, precise, and flexible design
representation that allows Argo to separate domain-neutral
code from domain-oriented code, present diverse design
perspectives, and make use of first class supporting artifacts
such as a process model. As will be seen in the next
subsection, reusable domain-neutral facilities reside at the
lowest level of the Argo virtual machine architecture, while
the domain-specific facilities reside at higher levels.

In the domain of software architecture, nodes correspond
to architectural elements such as conceptual software
components, programming language modules, source code
files, and operating system processes. Meanwhile, arcs
represent relationships between those elements such as
implements, communicates-with, andis-allocated-to.

3.2. Design environment architecture
Figure 2 presents facilities of our software architecture

design environment. The designer uses multiple,
coordinated design perspectives (Figure 3) to view and
manipulate Argo’s internal design representation.
Automated design critics in the environment monitor the
design and deliver design feedback when relevant and
timely. Critics place their feedback in the designer’s “to do”
list. Each “to do” item reminds the designer to address an
open design issue (Figure 4). The designer uses a process
model as a resource in carrying out a design process, while
the design environment uses that process model to ensure
the timeliness of delivered knowledge (Figure 5).

For comparison, Figure 1 shows facilities of the Janus
design environment. Like Janus, Argo provides a diverse set
of facilities to support reflection-in-action including
construction and critiquing mechanisms. Argo, however,
extends these facilities by integrating them with a flexible
process model and “to do” list that explicitly supports
opportunistic design, and multiple, coordinated design
perspectives to aid in comprehension and problem-solving.
Each of these facilities and the cognitive theories that
motivate them are discussed in the next section.

4

To Do List

Architect

Critics with Design Knowledge

Internal
Representation Design

Feedback

ControlSituated
Analysis

Design Interactions

Process
Model

Figure 2: Design environment facilities of Argo

Perspectives

Figure 3: Example design perspectives:
Conceptual, Modular, Execution

Figure 5: A software architecture design process perspective

Figure 4: The architect’s “to do” list

5

Figures 1 and 2 indicate what facilities are available to
designers, but they give little indication of how the design
environment is implemented. Janus and similar systems
have tended to have one major software component for each
facility. Those components form a knowledge-rich design
environment with tight user interface, data, control, and
process integration [16]. Our interest in software
architecture motivated us to seek a more flexible and
extensible architecture, while retaining a fairly high level of
integration.

Figure 6 shows a screen shot of Argo modeling its own
architecture in the C2 style [29]. The topmost row of
software components provides domain-neutral support
code. The second row allows multiple, independent,
domain-oriented extensions. Each extension defines new
facilities if needed, e.g., code generation support in the
software architecture extension. The third row holds active
design documents for the design being worked on. Design
documents are active in that they contain intelligent
materials with both state and behavior. Each extension also
provides shared domain-oriented active documents
containing a palette of intelligent materials, reusable design
templates, and supporting artifacts. User design documents
may reference (rather than include) code and data in the
shared active documents. The fourth row contains user
interfaces for designers to access the data and behavior of
the active documents. The lowest row of components
provides I/O needed to interact with the designer. In C2
style architectural models, components in a given row may
only send messages requesting operations upward, and
messages announcing state changes downward. Between
each row of components is a horizontal connector that
broadcasts messages sent from one side to all components
on the other side. Figure 7 presents the same architecture in

a more traditional and less detailed virtual machine
notation.

The first advantage of separating domain-oriented code
from domain-neutral code is increased reusability across
application domains. For example, the same critic run-time
system could be used in domains such as software
architecture or kitchen design. The second advantage is that
within a given application domain, various first class
supporting artifacts may be used together. Here “first class”
means that they may be visualized, manipulated, and
critiqued. For example, software architects can use the same
modeling and critiquing facilities for design rationale and
process modeling, provided that extensions for those
domains are present.

In designing this architecture we have attempted to shift
away from a large, knowledge-rich design environment that
manipulates passive design materials to a smaller,
knowledge-poor design environment infrastructure that
allows users to interact with intelligent materials. The same
trend can be observed in the general rise of object-oriented

Figure 6: A screen shot of Argo modeling its own architecture in the C2 style

Figure 7: Argo virtual machine diagram

Domain-Neutral Layer: connected graphs, critic run-time, “to do” list,
user interfaces, window system, sound server

SoftArch Extension: adds
support for code generation,
simulation, …

Process Extension: adds
support for enactment …

Shared
Process
Document

User’s
Active Design
Document …

Shared
SoftArch
Document

Active design documents store designs or reusable design tem-
plates with palettes of intelligent materials, critics, simulation
code, code generation templates, etc.

6

and component-based approaches to software design. The
advantages of this shift include increased scalability, better
separation of concerns, and more opportunity for
stakeholders with different skills to contribute to design
environment seeding [7]. All of these are important in
supporting the evolution of designs, design environments,
and design communities over time.

4. New facilities for supporting cognitive needs
Our extensions to previous design environment facilities

are motivated by theories of designers’ cognitive needs.
Designing a complex system is a cognitively challenging
task, thus designers need cognitive support to create good
designs. Specifically, we extend previous design environ-
ment facilities by enhancing support for reflection-in-action
and adding support for cognitive needs identified in the the-
ories of opportunistic design and comprehension and prob-
lem-solving.

4.1. Design feedback
Theory – reflection-in-action: As discussed in Section

2, Schoen’s theory of reflection-in-action [23, 24] indicates
that designers must iteratively construct designs, reflect on
and revise each intermediate, partial design. Guindon,
Krasner, and Curtis noted the same effect as part of one
study of software developers [13]. Calling it “serendipitous
design,” they noted that as the developers worked hands-on
with the design, their mental model of the problem
situation, and hence their design, improved.

However, there are inherent dangers in this “natural”
evolutionary design process. It can allow artifacts to rapidly
grow out of control: inconsistencies can evolve undetected,
and some requirements may be overlooked while the
designer focuses on more engaging ones.

Critics allow designers to follow the observed design
process of reflection-in-action while retaining some of the
positive properties of a rigorous software process. In
particular, they augment a human designer’s ability to
consistently detect potential breakdowns, especially in the
situations where designers are working with unfamiliar
materials.

Implementation in Argo: Argo’s infrastructure con-
tains specific features to support critics. First, Argo has a
framework for implementing critics and a run-time facility
for evaluating the predicates of active critics. Predicates are
currently implemented as a combination of code fragments
and cross-reference tags for critic type and decision cate-
gory. Second, Argo has a variety of feedback control mech-
anisms for controlling which critics are active at a given
time and for managing design feedback. Some examples of
critics in the domain of software architecture are given in
Table 1, while Table 2 presents one critic in detail.

Argo associates critics with intelligent design materials;
there is no central rule base of critics. When a new type of
design material is defined, new critics may be defined for it.
Critics which cannot easily be associated with any one
design element may be associated with one or more design
perspectives. For simplicity, Figure 2 presents critics as
looking down on the design from above. A more literal
presentation would show critics associated with each node
of the design representation, looking around at their
neighbors. Our current Argo prototype has less than 20
critics, but future research prototypes or deployed design

Table 1: Selected Argo architectural critics

Name of Critic Critic Type
Decision
Category

Explanation

Invalid Connection correctness checking Mandatory message signatures not satisfied by adjacent
components in the conceptual architecture

One Up One Down correctness checking Violation of C2 configuration rules

Simpler Comp. Avail. alternative choosing A “smaller” component will “fit” in place of what you have

Too Much Memory consistency profiling Calculated memory requirements exceed stated goals

Need more reuse consistency choosing Percentage of reusable components is below stated goals

OS Incompatibility consistency annotating Components have conflicting environmental requirements

Table 2: Details of the Invalid Connection critic

Attribute Value

Name Invalid Connection

Type Correctness

Decision
Category

Checking

Smalltalk
Predicate

[:comp | | invalidServices |
invalidServices :=

comp inputs , comp outputs
select:[:s | s isSatisfied

not].
invalidServices isEmpty not.]

Hushed False

Feedback “The following port protocols are unsatisfied
for these services:” <<a list of ports and ser-
vices>>

Expert jrobbins@ics.uci.edu

7

environments could have hundreds or thousands of critics.
Dividing critics among materials helps to make Argo more
scalable by loading only critics that could be useful in the
design at hand.

In the field of software architecture, several authors have
identified the need for architectural design guidance [1, 12,
29]. One approach to representing that knowledge is the
compilation of architectural styles. Architectural styles
provide design guidance by suggesting constraints on
design decisions and ways to factor design complexity.
Styles are based on a set of recurring patterns observed in a
given domain. Styles may also guide the design
environment builder, in that critics and perspectives may be
organized according to style.

While some of the assumptions of software components,
connectors, or styles are implicit, it is usually possible to
make them explicit as rules, even if merely as rules of
thumb. We anticipate that much of the practical, day-to-day
knowledge about software architectures will take the form
of guidelines or rules of thumb, and styles will accumulate
so many of them that automated support will be needed.
English grammar checking tools are in an analogous
situation: some rules are too complex or fuzzy to implement
precisely, and a typical critique produces enough feedback
to overwhelm the user.

We address this issue in Argo with feedback
management techniques. These techniques ensure that
criticism is timely and relevant, and also help designers
make sense of criticism by organizing it. Critics may be
active or inactive depending on the state of the design, the
design process, and stated design goals. A control panel
allows the designer to deactivate groups of critics by type. If
individual critics are providing inappropriate feedback or
are felt to be too intrusive, the designer may hush them,
rendering them temporarily disabled. Below we describe
two more powerful feedback control mechanisms in more
detail: associating critics with steps in a design process and
the “to do” list user interface.

4.2. Design process support
Theory – opportunistic design:The cognitive theory of

opportunistic design tells us that designers deviate from
plans, even their own plans, in order to minimize the
cognitive cost of context switches between design tasks [20,
27, 28, 30]. These deviations may be desirable from a
cognitive perspective, but they lead designers into a variety
of difficulties as discussed in the Guindon, Krasner, and
Curtis study [13].

We extend previous design environment work by
maintaining a model of the design process, and using it to
accommodate opportunistic design. Design environments
can address the cognitive needs of designers by focusing on
certain design process characteristics: flexibility, visibility,

reminding, delayed commitment to detail, and timeliness of
feedback.

Flexibility is the foremost design process characteristic.
Designers must be allowed to deviate from a prescribed
sequence and allowed to choose which goal or problem is
most effective for them to work on. Designers must be able
to add new goals or otherwise alter the design process as
their understanding of the design situation improves. The
process model serves primarily as a resource to the
designer’s cognitive process, and only secondarily as a
constraint on it.

Visibility helps designers orient themselves in the
process, thus supporting opportunistic choice of design
tasks. In particular, the design process model should be able
to represent what has been done so far and what is possible
to do next. Furthermore, visibility enables designers to take
a series of excursions into the design space and re-orient
themselves afterwards to continue the design process.

Reminding helps architects revisit incomplete details or
overlooked alternatives. Reminding is most needed when
design alternatives are many and when design processes are
complex or driven by exceptions.

Delayed commitment to details is supported by the
combination of flexibility, visibility, and reminding. If
architects are forced to fully formalize each tentative design
decision prior to doing any analysis, then the effort required
to explore design alternatives will be quite high. Higher
effort means that fewer alternatives will be considered,
which reduces confidence in the design. Higher effort also
shifts attention away from the design at hand and into
planning required to use the tool efficiently. In our
approach, the ability of critics to deliver partial critiques of
partial designs in a managed and usable form allows
designers to evaluate their designs without premature
commitment to design details.

Timeliness of feedback is the final design process
characteristic. Critics deliver information to aid designers in
decision making. To produce timely feedback, critics must
have an explicit model of the design process and the
designer’s progress in it. When the design process is
modeled as tasks that each address only a few design issues,
then knowing which tasks are in progress indicates which
decisions are being considered, and thus which critics are
timely. Criticism is distracting when it involves design
decisions that the architect has not yet begun considering.
The designer can also indicate when a task is considered
finished, and the design environment can generate
additional criticism at that time, perhaps marking the task as
still in progress if there are high priority “to do” list items
pending. In addition to improving design decisions, timely
feedback helps the designer make timely process decisions,
e.g., “is this design excursion complete?, “does a past

8

decision need reconsideration?”, “what decisions might be
considered next?”

Implementation in Argo: Motivated by the theory of
opportunistic design, we have attempted to move from
predefined processes that force a certain design decision
ordering to flexible process models that allow the architect
to minimize cognitive costs of context switches. We extend
previous work in design environments by introducing an
explicit, first class model of the design process with
progress information, and a more flexible “to do” list user
interface for presenting design feedback. The “to do” list
suggests, but does not force, a particular decision ordering.
The process model also supports reflection-in-action by
helping to keep design feedback timely.

Argo’s process modeling extension uses an IDEF0-like
notation to model the tasks involved in a typical design
process (Figure 5). Each task in the design process works on
input produced by upstream tasks and produces output for
consumption by downstream tasks. No control model is
mandated: tasks can be done in any order (provided needed
inputs are available), tasks can be repeated, and any number
of tasks can be in progress at a given moment. Each task is
marked with a status: future, in progress, or done. Status
information is shown graphically via color in the process
diagram. Each task is also marked with a decision category
symbol: building, choosing, checking, annotating, or
profiling. Decision category symbols and statuses are used
to limit the activity of critics and thus avoid producing
feedback that is not timely and relevant.

The design process model shown in Figure 5 is a fairly
simple one, partly because the C2 architectural style does
not impose any explicit process constraints, and partly
because this example does not consider issues of
organizational policy. In practice, the process would be
more complex. The process of defining and evolving the
process (usually called the meta-process) is itself a
complex, evolutionary task for which process designers
may need feedback and other design environment facilities.

The process model in Argo is first class. It is represented
as a connected graph of intelligent design materials.
Multiple perspectives may be defined to view the process as
appropriate for various stakeholders. The designer may
define, modify, and annotate the process model via the same
editor used to work on architectures. Critics may operate on
the process model to check that it is a “good” process and
guide its construction and modification. For instance, one
simple process completeness critic carried by task nodes
checks that “the output of this task should be used by some
other task.” The same techniques that are used to control
architecture critics can be used to manage process critics.
Those techniques include modeling the meta-process and
the designer’s progress in it, so that process critics will be
relevant and timely. While the ability to change the process

gives freedom to individual designers, critics provide a
mechanism to communicate or enforce externally imposed
process constraints.

The “to do” list user interface presents design feedback
to the designer (Figure 4). Most “to do” items are posted by
critics, however items may come from process enactment,
or the designer himself. When the designer selects a
pending feedback item from the upper pane, the associated
(or “offending”) design materials are highlighted in all
perspectives and details about the open design issue and
possible resolutions are displayed in the lower pane.

The priority of items on the designer’s “to do” list is
estimated based on the predefined severity of the criticism
and the state of the process model. Designers may address
issues in an order they choose, although items are sorted by
estimated priority. Designers may also reorder the list or
insert items as reminders to themselves. The “to do” list
complements the process model in providing flexibility,
visibility, and reminding.

4.3. Design perspectives
Theory – comprehension and problem-solving:The

theory of comprehension and problem-solving observes that
designers benefit from seeing their designs from different
design perspectives [5, 14, 17]. This is true, in part, because
the availability of multiple perspectives increases the
chance that the designer will see a simple mapping between
one of them and his or her mental model of the problem
being addressed. Coordination among the design
perspectives means that materials and relationships
presented in multiple perspectives may be viewed and
manipulated in any of those perspectives. Overlapping,
coordinated perspectives aid understanding of new
perspectives, and thus new design issues, by allowing the
designer to apply knowledge of one perspective to another
[18].

Dividing the complexity of the design into multiple
perspectives allows each perspective to be simpler than the
overall design. Moreover, separating concerns into separate
perspectives allows information relevant to certain related
issues to be presented together in an appropriate notation.

Good designs usually have organizational structures that
allow designers to locate design details. However, in
complex designs the expectation of a single unifying
structure is a naive one. Complex software system
development is driven by a multitude of forces: human
stakeholders in the process and product, functional and non-
functional requirements, and low-level implementation
constraints.

It is our contention that no fixed set of perspectives is
appropriate for every possible design; instead perspective
views should emphasize what is currently important in the
project. When a new set of issues arises in the design, it may

9

be appropriate to use a new perspective on the design in
addressing those issues. While we emphasize the
evolutionary character of design perspectives, useful sets of
initial perspectives can often be identified ahead of time in
specific domains.

Implementation in Argo: Figure 3 shows three per-
spectives produced with Argo. The system shown is a sim-
ple video game called KLAX where falling colored tiles
must be arranged in rows and columns. In theconceptual
architecture, small rectangles represent software compo-
nents and connectors, while arcs represent communication
pathways. Small ovals on the components represent the
communication ports of each component. Theexecution
architecture hierarchically groups modules into operating
system processes and threads. Themodular architecture
maps conceptual components to programming language
modules. These perspectives provide much of the informa-
tion needed for system generation, assuming the component
themselves are already written.

Argo supports multiple, coordinated perspectives with
customization [21]. In addition to the views described in
this paper, Argo allows for the construction of new
perspectives and their integration with existing
perspectives. As noted in [26], architects who are given a
fixed set of formal notations often revert to informal
drawings when those notations are not applicable. One goal
of Argo is to allow for the evolution of new notations as new
needs are recognized. In addition to the structured graphics
representing the architecture and process, Argo allows
designers to annotate perspectives with arbitrary,
unstructured graphics (as demonstrated in Figure 6).
Customizable presentation graphics are needed because the
unifying structures of the system under construction must
be communicated convincingly to other designers and
system implementors. To be convincing, the style of
presentation must fit the professional norms of the
development organization: it should look like a
presentation, not a designer’s scratch pad. Furthermore, ad-
hoc annotations that are found to be useful can be
incrementally formalized and incorporated into the
notations of future designs [25]. We expect that Argo’s low
barrier to customization will encourage evolution from
unstructured notations to structured ones as recurring
formalization needs are identified.

Soni, Nord, and Hofmeister [26] identify four
architectural views: (1) conceptual software architecture
describes major design elements and their relationships; (2)
modular architecture describes the decomposition of the
system into programming language modules; (3) execution
architecture describes the dynamic structure of the system;
and (4) code architecture describes the way that source code
and other artifacts are organized in the development
environment. Their experience indicates that separating the

concerns of each view leads to an overall architecture which
is more understandable and reusable. In demonstrating
Argo, we chose several of the same perspectives; however,
we believe that the choice of perspectives depends on the
type of software being built and the tasks and concerns of
design stakeholders.

5. Conclusions and future work
In this paper we have presented the architecture and

facilities of Argo, our software architecture design
environment. Argo’s architecture is motivated by the desire
for reuse and extensibility. Argo’s facilities are motivated by
the observed cognitive needs of designers. The architecture
separates domain-neutral code from domain-oriented code
and intelligent design materials. The facilities extend
previous work in design environments to support reflection-
in-action, opportunistic design, and comprehension and
problem-solving.

In future work we will continue the themes of our current
research. Further identification of the cognitive needs of
designers will lead to new design environment facilities to
support those needs. Also, we will seek ways to better
support the needs that we have identified in this paper, e.g.,
a process model that explicitly represents the cognitive cost
of switching design tasks. Customizability of design
environments is an important cross-cutting issue that we
will exploit further.

Our current prototype of Argo is robust enough for
experimental usage. In fact, we are using it to design the
next version. However, it is our goal to develop and
distribute a reusable design environment infrastructure that
others may apply to new application domains. Successful
usage of our infrastructure by others will serve to inform
and evaluate our approach. An initial Java version of Argo
is available via http://www.ics.uci.edu/pub/edcs.

 Acknowledgments
The authors would like to acknowledge Richard Taylor

(UCI), Gerhard Fischer (CU Boulder), David Morley
(Rockwell International), and Peyman Oreizy, Nenad
Medvidovic, and other members of the Chiron research
team at UCI.

References
1. Abowd, G., Allen, R., and Garlan, D. Using Style to Under-

stand Descriptions of Software Architecture.SIGSOFT Soft-
ware Engineering Notes, Dec. 1993, vol.18, no.5, 9-20.

2. Batory, D. and O’Malley, S. The Design and Implementation
of Hierarchical Software Systems with Reusable Compo-
nents.ACM Transactions on Software Engineering and Meth-
odology, Oct. 1992, vol.1, no.4, 355-98.

3. Engelbart, D. A Conceptual Framework for the Augmentation
of Man’s Intellect. In: Greif I, ed.Computer-Supported Coop-
erative Work: A Book of Readings. San Mateo, CA: Morgan
Kaufmann Publishers, Inc., 1988, 35-66.

10

4. Engelbart, D. Toward Augmenting the Human Intellect and
Boosting our Collective IQ.Communications of the ACM
1995, vol.38, no.8, 30-33.

5. Fischer, G. Cognitive View of Reuse and Redesign.IEEE
Software, Special Issue on Reusability 1987, vol.4, no.4, 60-
72.

6. Fischer, G. Domain-Oriented Design Environments.Proc. of
The 7th Knowledge-Based Software Engineering Conference,
204-213.

7. Fischer, G., Girgensohn, A., Nakakoji, K., and Redmiles, D.
Supporting Software Designers with Integrated Domain-Ori-
ented Design Environments.IEEE Transactions on Software
Engineering, June 1992, vol.18, no.6, 511-22.

8. Fischer, G., Lemke, A., Mastaglio, T., and Morch, A. The
Role of Critiquing in Cooperative Problem Solving.ACM
Transactions on Information Systems, April 1991, vol.9, no.2,
123-51.

9. Fischer, G., Lemke, A., McCall, R., and Morch, A. Making
Argumentation Serve Design.Human-Computer Interactions,
1991, vol.6, no.3-4, 393-419.

10. Fischer, G., Nakakoji, K., Ostwald, J., Stahl, G., and Sumner,
T. Embedding Computer-Based Critics in the Contexts of
Design. INTERCHI’93, April 1993, 157-164.

11. Garlan, D., Allen, R., and Ockerbloom, J. Exploiting Style in
Architectural Design Environments.Proceedings of the Sec-
ond ACM SIGSOFT Symposium on the Foundations of Soft-
ware Engineering, 1994. Software Engineering Notes,
December 1994, vol.19, no.5, 175-88.

12. Garlan, D., Allen, R., and Ockerbloom, J. Architectural Mis-
match: or Why it’s hard to build systems out of existing parts.
International Conference on Software Engineering 17, 1995,
179-185.

13. Guindon, R., Krasner, H., and Curtis, W. Breakdown and Pro-
cesses During Early Activities of Software Design by Profes-
sionals. In: G.M. Olson ES S. Sheppard, ed.Empirical
Studies of Programmers: Second Workshop. Norwood, NJ:
Ablex Publishing Corporation, Lawrence Erlbaum Associ-
ates, 1987, 65-82.

14. Kintsch, W. and Greeno, J. G. Understanding and Solving
Word Arithmetic Problems.Psychological Review, 1985,
vol.92, 109-129.

15. Lowry, M., Philpot, A., Pressburger, T., Underwood, I. A For-
mal Approach to Domain-Oriented Software Design Environ-
ments, KBSE’94, 48-57.

16. Thomas, I. and Nejmeh, B. Definitions of Tool Integration for
Environments.IEEE Software, March 1992, vol.9, no.2, 29-
35.

17. Pennington, N. Stimulus Structures and Mental Representa-
tions in Expert Comprehension of Computer Programs.Cog-
nitive Psychology, vol.19, 1987, 295-341.

18. Redmiles, D. F. Reducing the Variability of Programmers’
Performance Through Explained Examples.INTERCHI ‘93
Conference Proceedings, April 1993, 67-73.

19. Rettig, M. Cooperative Software.Communications of the
ACM, April 1993, vol.36, no.4. 23-28.

20. Rist, R. Variability in program design: the interaction of
knowledge and process.The International Journal of Man-
Machine Studies, 1990, 1-72.

21. Robbins, J. E., Morley, D. J., Redmiles, D. F., Filatov, V., and
Kononov, D. Visual Language Features Supporting Human-
Human and Human-Computer Communication.Proc. of
IEEE 1996 Symposium on Visual Languages, Sept. 1996.

22. Robbins, J. E. and Redmiles, D. F. Software Architecture
from the Perspective of Human Cognitive Needs.Proc. of the
California Software Symposium (CSS’96), April 1996, 16-27.

23. Schoen, D.The Reflective Practitioner: How Professionals
Think in Action. New York: Basic Books, 1983.

24. Schoen, D. Designing as Reflective Conversation with the
Materials of a Design Situation.Knowledge-Based Systems,
1992, vol.5, no.1, 3-14.

25. Shipman, F. and McCall, R. “Supporting Knowledge-Base
Evolution with Incremental Formalization,”Human Factors
in Computing Systems, CHI’94 Conference Proceedings, Bos-
ton, MA, 1994, 285-291.

26. Soni, D., Nord, R., and Hofmeister C. Software Architecture
in Industrial Applications.International Conference on Soft-
ware Engineering 17, 1995, 196-207.

27. Soloway, E. and Ehrlich, K. Empirical Studies of Program-
ming Knowledge.IEEE Transactions on Software Engineer-
ing, 1984, vol.10, no.5, 595-609.

28. Soloway, E., Pinto, J., Letovsky, S., Littman, D., and Lampert,
R. Designing Documentation to Compensate for Delocalized
Plans.Communications of the ACM, 1988, vol.31, no.11,
1259-1267.

29. Taylor, R. N., Medvidovic, N., Anderson, K., Whitehead, Jr.,
E. J., Robbins, J. E., Nies, K. A., Oreizy, P., and Dubrow, D.
L. A Component and Message-based Architectural Style for
GUI Software.IEEE Transactions on Software Engineering,
June 1996, vol.22, no.6, 390-406.

30. Visser, W. More or Less Following a Plan During Design:
Opportunistic Deviations in Specification.International Jour-
nal of Man-Machine Studies, 1990, 247-278.

