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Abstract

The KBSE community is actively engaged in finding ways
to represent software and the activities that relate to various
stages in its lifecycle. While the wealth of modeling activities
have, necessarily, been founded on first order logic based
representations, this paper reports on research into Software
Information Systems that has found the domain of software
knowledge to be inherently second order. A facility for accu-
rately representing second order constructs such as are
found in the software domain is also presented.

Keywords: Knowledge Representation, Domain Model-
ing, Program Understanding, Software Information Systems.

1 Introduction

The fields of Knowledge Representation, Domain Mod-
eling, and KBSE deal primarily with representation systems
that are first order. Often the users of these systems take for
granted the fact that their representations are limited to first
order, and forget that the world is full of knowledge requir-
ing higher order reasoning.

This paper begins with a brief but motivated review of
the nature of first order representations, and a few second
order extensions that exist in certain representation systems.
A representation problem that arose when studying ways to
make Software Information Systems more effective is then
presented, and a case is made that the source of the problem
is the need for second order reasoning. Finally, a facility for
supporting limited second order reasoning is described.

The main goal of this paper is not to propose a new repre-
sentation system, but to make the point that software repre-
sentations are inherently second order, and that regardless of
the approach taken, this fact should be considered to insure
the accuracy of a representation.

2 First Order Representations

Most symbolic representation systems are based on F
Order Logic (FOL), and thus have two basic kinds of sym
bols: predicate symbols and object symbols [Carnap, 1961].
Object symbols denote instances or individuals, and pre
cate symbols denote properties or attributes of those indiv
uals.

Although actual usage varies, the logical foundation
clear: set membership is a unary predicate, and therefore the
name of a set is a predicate symbol [Carnap, 1947] [Qui
1964]. This point may seem obvious or irrelevant, but t
simple fact is that many practitioners ignore it, and it do
come into play in the realm of software representations.

2.1 Classes, Instances, and Links

A common representation in FOL is something like th
following:

Eagle(E1)
Number(10)
Age(E1,10)

Those accustomed to reading representations will int
pret this as, “E1 is an Eagle, 10 is a Number, and E1’s age is
10.” This is not actually what it says according to the sema
tics of FOL, but because most representations follow t
general scheme, implemented representation systems (
as are provided by object-oriented languages or frame-ba
languages) present scaled down first order systems wh
allow for the definition of three special kinds of symbol
classes, instances, and links.

An instance is similar to an object symbol in FOL exce
that it must be the member of some class, as with E1 and 10.
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A class is a special unary predicate that denotes a set, as with
Eagle and Number. A link is a binary predicate that represents
a relationship between two instances, as with age. The inter-
pretation given above would be correct for a system with
these constructs.

2.2 Superclass Inheritance

Another common representation in FOL is:

∀ x Eagle(x) → Bird(x)

This would be interpreted as “All eagles are birds,” which
again is not entirely correct according to the semantics of
FOL, but is used so frequently to mean precisely this that
representation languages almost universally supply a short-
hand notation for expressing this taxonomic relationship,
called subclass. 

Although the subclass relationship is usually expressed
as a relationship between two classes, e.g Eagle is a subclass
of Bird, it is worthwhile to note that, by definition, relation-
ships between predicate symbols (classes are, as discussed
above, predicate symbols) are second order, and it is impor-
tant computationally to maintain the first order status of a
representation system [Gödel, 1931]. The subclass relation-
ship really is no more than a shorthand notation for the infer-
ence shown above, with a slightly different interpretation.

Clearly, via modus ponens, the result of making Eagle a
subclass of Bird would be that the instance E1 in the previous
example would now be inferred to be an instance of Bird.
This is known as superclass inheritance.

2.3 Identifying Non-First Order Objects

The previous section mentioned the importance of main-
taining a first order representation in a system. There are two
common pitfalls of representing a domain that can cause a
second order construct.

2.3.1 Instances of Instances. Most representation lan-
guages do not permit an instance to have instances. Consider
the implications of such a construct in FOL:

Eagle(E1)
E1(E2)

When E1 is used as a predicate symbol, the predicate
Eagle becomes second-order because it is the predicate of a
predicate. A common pitfall of modeling in FOL is to create
a two-place predicate for instance, such as:

instance(E1, Eagle)
instance(E2, E1)

Which, syntactically, is first order. It is not, however,

completely first order because, as stated in the beginnin
this section, set membership is a unary predicate. This exam-
ple violates the semantics of a first order system [Carn
1947] [Quine, 1964].

The point here is that, despite syntactic hacks like m
ing a predicate called instance, an instance of an instance is 
second-order construct.

2.3.2 Links between Classes. First order representation
languages also do not allow links between classes. A link 
two place predicate, and a class is a one place predic
making the PreysOn link second order:

Pigeon(P1)
Eagle(E1)
PreysOn(Eagle, Pigeon)
PreysOn(Eagle, P1)

A class can not, therefore, be predicated by a link. It
common to speak of the relationship between an insta
and its class as a link, but this must be understood to be
ferent than a link between two instances. 

2.4 Extensions to First Order Systems

Second order systems are generally avoided because
are undecidable. Many representation systems, howe
provide small extensions that, while second order, are tigh
controlled to avoid undecidability. 

2.4.1 Smalltalk Meta-Classes. Smalltalk [Goldberg and
Robson, 1983] provides the ability for classes to have cer
properties of instances. They can, like instances, be s
messages and have their own variables, which are define
part of the meta-class description of the class. While this is
second order, this aspect of the representation is not sub
to inference, (Smalltalk provides only for superclass inhe
ance) and undecidability is not a problem..

Smalltalk classes are also themselves instances of a 
cial class named class, making them instances which ca
have instances. Again, this second order relationship is c
trolled because there is no actual inference involved, i
provided more to keep the syntax cleaner, and make the m
sage passing paradigm pervasive in the language.

2.4.2 Classic Meta-Individuals. Classic [Brachman, et
al., 1991], a modern descendent of KL-ONE [Brachman a
Schmolze, 1985], employs an approach to representing li
on classes that has been called the abstraction relationship
[Brachman, 1983]. 

This approach involves creating, as part of the langua
a special kind of instance for each class which representsthe
class as an object. While these instances (called meta-indi-
viduals) behave like all other instances (having links an
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being instances of a concept called concept), they have a spe-
cial relationship, the abstraction relationship, between them-
selves and the class they represent. Each class in Classic,
then, can have instances and a meta-individual. 

Again, as with Smalltalk, this second order relationship
does not introduce undecidability because it is not used in
any inference.

3 Representing Software

This work is the result of studying Software Information
Systems [Devanbu, Selfridge, and Brachman, 1990] in order
to determine how to make them more effective [Welty,
1995]. A Software Information System (SIS) is a knowledge-
based system which serves to make software maintenance
less time-consuming by providing faster and more intelligent
access to the software.

An SIS contains two representational parts: a code model
and a domain model [Selfridge, 1990]. The former repre-
sents objects in the code (the software domain), which facili-
tates access to these objects, and the latter represents objects
in the application domain, which facilitates understanding
that domain.

3.1 Objects in the Application Domain

Knowledge of the application domain has long been rec-
ognized as a critical part of software maintenance [Curtis,
Iscoe, and Krasner, 1988]. Representing some of this knowl-
edge in a domain model is a fairly common practice, to assist
in understanding during any phase of the software lifecycle
[Iscoe, 1991]. 

Modeling a domain requires building an ontology for that
domain, the specifics of which are dependant on the repre-
sentation system being used. Typical elements of a domain
ontology are classes, a class hierarchy, links, and rules which
can infer these links between instances. 

An example class hierarchy from the application domain
of email distribution is shown in Figure 1. An instance of
mail-message would be an electronic mail message from some
instance of mail-sender to some instance of mail-recipient,
where from and to are links.

The goal of a domain model in SISs, and in software
engineering in general, is to provide an accurate description

of what the software “knows” about the objects in th
domain in a form which can be accessed by a maintainer. 

This latter point is critical in distinguishing domain-ori
ented techniques from the more generic software represe
tions common to KBSE: while all software inaccessib
includes domain knowledge, a domain-oriented system tre
the domain knowledge as distinct, and provides mechanis
for understanding it. Many KBSE systems take for grant
the fact that a user will be a domain expert, but experien
has shown this is frequently not the case [Curtis, Iscoe, 
Krasner, 1988]. Providing the capability to understand t
domain, is thus an important practical goal [Devanbu, Se
ridge, and Brachman, 1990].

3.2 Objects in the Software Domain

The software domain contains objects like function
data-types, and variables. It also contains assignment s
ments, for and while loops, if statements, parameters, 
These are all the constructs defined by the programming 
guage in which the software to be represented is written, 
they are some of the classes in an ontology for code-le
knowledge. Part of a possible class hierarchy for this dom
is shown in Figure 2. 

Instances of these classes would be lines of code, v
ables, and the aggregation of variables and lines of code 
functions, etc. For example, consider the following functio
in C:

void deliver_message_to_group (message,group)
MAIL_MESSAGE message;
GROUP group;
{ LIST members;

  members = get_members(group);
  while (! empty(members)) {
    deliver_message_to_person(message,
                              first(members));
    members = butfirst(members); 
  }
}

email-thing

mail-sender

group

mail-recipient

person

mail-message

FIGURE 1. A simple domain hierarchy.

code-thing

code-definition

variable

code-statement

parameter

function

data-type
assignment

function-call

returnwhile

FIGURE 2. A taxonomy of code-level concepts.
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local-variable-05

parameter-01

function-01

assignment-03

assignment-04

function-call-01

function-call-02

function-call-03

function-call-04

while-01

function-call-05return-04

members

group

message

start

while-true

new-value

changes

has-data-type

argument

has-data-type

test

next

argument

argument argument

argument

next

new-valuechanges

when false

has-data-type

FIGURE 3. A semantic network view of a C function.
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This entire function can be completely described as
instances of the classes in Figure 2, since each of the C-
guage statements has a very rigid form that can be rep
sented as links. For example, an assignment statem
always has a variable which is changed (the left-hand sid
the “=”), and a new value which is either another variable
a function of another variable or variables (the right-ha
side). An assignment statement, then, has two links: o
which relates it to the variable to be changed, and one 
relates it to another variable or to a function call. A seman
network view of the C function above represented in th
way is shown in Figure 3, this is very similar to an abstract
syntax tree.

Providing this level of representation for a progra
allows for significant benefits to maintainers engaged
understanding the program. For example, rules and ot
forms of inference have been employed to automatica
detect side-effects, delocalized plans, vestigial code, a
other common barriers to program understanding [Wel
1995].
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3.3 Integrating the Code and Domain Models

The LaSSIE SIS kept the code and domain models se
rate, and this led to two problems:

• There is implicit domain knowledge in the code mode
and there is no way to verify that this knowledge is t
same as what is explicitly represented in the doma
mode l .

• When a maintainer has engaged in understanding a 
ticular domain object through the domain model, th
maintainer can not then move to the parts in the co
model where that object is implemented.

For example, the objects mail-message and group appear
both in the domain hierarchy shown in Figure 1 and the fu
tion representation shown in Figure 3. This is because c
ceptually they refer to the same thing. Groups and m
messages are objects in the domain that the program d
with directly. 

3.3.1 Linking Object in Different Models. It is tempt-
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ing to offer a solution to the above problems that simply
“links” the objects in the domain model to the objects in the
code model which implement them, i.e. somehow connect
Group in the domain model to data-type-06 in the code model.

There is a problem in linking these pairs. They clearly do
represent the same concepts, however in the domain model
they are classes and in the code model they are instances of
the class data-type, and a class can not be linked to an
instance in a first order representation.

It may seem that making the domain model objects
instances would solve this problem. This would allow the
pairs to be linked, but what are the domain objects instances
of, and what becomes of their instances? All the people,
groups, and mail messages in the domain model would
become instances of instances, which is also not allowed in a
first order representation.

Numerous combinations and representation “hacks” can
be (and have been) attempted to address this problem, but
there actually is no first order solution. The reason is simply
that software representations are second order. The correct
representation is to make the domain objects instances of the
class data-type, and allow these instances to have instances of
their own.

3.3.2 Existing Systems. At a glance, it would seem that
this fits into the Smalltalk meta-class structure described in
Section 2.4.1, but it does not for two reasons:

• Smalltalk does no inference with meta-classes. The
whole purpose of representing the code-level knowledge
this way was to employ inference to make information
about the program more accessible to a maintainer try-
ing to understand it.

• Data-types are not the only second order objects in the
software domain. Functions, for example, can be repre-
sented in the domain model as plans [Devanbu and Lit-
man, 1991].

Classic meta-individuals, described in Section 2.4.2, are
also inadequate for this second order representation problem.
Each class in the domain model could have a meta-individual
which was linked to the corresponding instance of data-type
in the code-model. This does provide part of the representa-
tion desired, but, again, there is no inference. There is a
strong relationship between the domain model and code
model objects, and one goal of integrating the two models is
to verify that the corresponding objects accurately portray
each other. When the program changes, the domain model
must reflect that change.

4 Spanning Objects

A slightly more powerful second order extension to

frame-based knowledge representation languages has 
proposed [Welty and Ferrucci, 1994], and will eventually 
available as an extension to Classic. This extension delv
little deeper into second order representation, allowing 
some inferences, though still under tight control.

This extension, briefly, identifies first order predicate
that can themselves be predicated, as special objects ca
spanning objects. They are given this name because the re
resentation is divided into two (or more) universes of dis-
course. One universe contains the spanning object as
instance, the other contains the spanning object as a c
The object spans these two universes through a mapping
function that defines only the relationship between the tw
parts of the object. The mapping function can be set up 
to change the class in the one universe when the instanc
the other universe changes.

Decidability problems are avoided with this approach 
separating the objects that interact at the same level into 
tinct universes. No links are allowed between universes ot
than between the two parts of a spanning object via the m
ping function. 

4.1 Integrating Models Revisited

Spanning objects fully account for the problems of int
grating the domain and code models. Instances of data-type
and function (as well as a few others) are spanning objec
which span the two universes representing the code 
domain models, as shown in Figure 4. The mapping fun
tions insure that the domain model classes accurately re
their corresponding code model instances.

In order for the mapping function to be able to genera
accurate and useful domain objects, all the domain knowl-
edge must be represented in the code model. In other words,
the code model is a single model containing all the inform
tion needed to make the program run and all the information
needed to help someone understand the domain. 

4.1.1 Superclasses Aren’t Enough. Cons ider ing  the
view in Figure 4, it may seem that a first order solution cou

data-type

message-01

message-05

kbse-list

nl-kr-list

group

FIGURE 4. Spanning multiple universes.

mail-message

domain model

code
model
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be achieved by making group and mail-message subclasses of
the class data-type, rather than instances. There are several
reasons why this will not work:

• Recall that in Section 2.3 it was stated that classes can
not have links in a first order representation. Figure 3
shows the representation of a program as a set of
instances, and the purpose of this representation was to
allow inference that could assist a maintainer in under-
standing the program. If group and mail-message were
classes rather than instances, the links shown and thus
the inference would not be possible.

• Group and mail-message are simply not subclasses of
data-type. If there were, then by superclass inheritance
their instances would also be instances of data-type.
Clearly a mail message or a group like those shown in
Figure 4, are not data-types.

4.2 Epistemology

The second-order nature of the problem described here is
a simple example of the incompleteness of formal languages:
no language can represent itself.

The LaSSIE SIS had two models: a code model and a
domain model, and each separate model was represented in
Classic. The facilities of Classic were then used to make the
information in these models more accessible. 

The extended code-level ontology shown in Figure 2 is
itself a programming language. Adding the domain knowl-
edge to the code model in a way which supported the goals
of a domain-centered approach (see Section 3.1) would have
required additionally representing all the facilities of Classic
in the code-level ontology. In other words, representing Clas-
sic in Classic.

5 Conclusion

Software understanding requires support not just for
understanding the code, but the domain in which the soft-
ware operates. The domain knowledge should therefore be
represented explicitly and made available to maintainers as a
distinct model.

In order to insure that this represented domain knowl-
edge is consistent with the domain knowledge in the soft-
ware, and to facilitate understanding where specific domain
concepts appear in the software, it is desirable to include this
domain knowledge as part of the software specification.
Such a specification must use the domain knowledge in two
ways: as part of the program and as a separate model for
understanding the domain.

It was shown that supporting both these uses requires a
second order representation, and a facility called spanning
objects was presented that can represent integrated code and

domain knowledge, and will be added to the next ma
release of Classic [Brachman, et al., 1991].

It is important to note that within the realm of KBSE sy
tems, none has provided for both the ability to spec
domain knowledge in a program and use that same specified
knowledge to assist in understanding the domain. It is lik
that one reason for this is that, as shown here, doing
requires a second order representation. 
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