consist of time-system constants, program input variablesatisfiability procedures to a theorem-prover was sound and
and applications otonvert-time.The decision procedure complete. These results must be extended to DSDRAT and

automatically simplifies nested applicationgofivert-time

The final step in DSDRAT’s analysis obordinate-to-
timeis to add the instantiated theories from TableGraph an
Connected Groupoid to the cumulative set of axioms fo
instantiated decision procedures. DSDRAT then removeR

we are considering the framework reported in [2]. The
extension of DRAT's classification procedure to DSDRAT'’s
(élassification procedure is related to the work in [8,9]. We
pre also exploring the use of SPECWAR[E] as a tool for

art of the implementation of itA-AMPHION

the axioms in the NAIF domain theory that are implied by Acknowledgments

this set. The removed axioms include the three listed in
section 5. When these axioms are used by a general-purpos
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This step provides a signature morphism, labeled step 1 time-system conversions (a singleton set), yielding
Figure 2, between the language for the Conversions node 4 pa.fy iy, s aen et im0, 8, A< A ;5}]

and the NAIF domain theory: | &, S frme— v
o = - wherets; andts, are time systems andis a time co-
f, : itﬁl— et ordinate. Note that because Figure 3 is a commutative
A5 = R b B diagram, this also defines the theory morphism footo 3.

FORDESRALY = {nan et — frmat In step 4 the theory morphism is constructed from the Graph
node to the extended NAIF time-system conversi@)s (

In step 2 DSDRAT pushes further down the taxonomy byOnce again, because Figure 3 is a commutative diagram, this
extending this theory morphism to the Representatiofs simply the composition of the predefined morphism from
Conversions node by proving the instantiatastract  Graph toa and the morphism from to . This composition
identity property for time-system conversions (see themaps the graph sambdeto the sortime-systemand maps
axioms in section 5). the graph soredgeto the instantiated lambda expression.

conversions Graph Note that while DSDRAT needs to do proofs when pushing

O( @ < ( > down the hierarchy, in following the link from Conversions

- - _° to Graph no proofs need to be done by DSDRAT—it is
. Step 1 : _ simply performing syn_tactlc mampulaﬂqns that are jus_tl_fled
. . - by proofs done off-line when the library of decision

~ Step 3. é} Step 4. procedures was constructed.

i The rest of the analysis consists of the same kinds of steps
as those shown in Figures 2 and 3. Given the theory
morphism constructed in step 4, DSDRAT pushes down the

Figure 3. Following a link across the hierarchy. Graph taxonomy. However, to do so it needs to determine
the properties of the associated path algebra. DSDRAT

In step 3 and 4 DSDRAT follows the link (shown as afollows the link from Graph to Category, using the same
dashed line in Figure 1) from the Conversions node to theteps as described for Figure 3. DSDRAT then pushes down
Graph node, thereby constructing the definition of a grapthe hierarchy under the Category (Path Algebra) node,
whose edges are labelled by these conversions. An expandedrementally constructing theory morphisms using the
view of this link is shown in Figure 3. (All the arrows in same steps as described for Figure 2. DSDRAT classifies the
Figure 3 are theory morphisms.) This link consists of gath algebra foronvert-timeas a totally connected groupoid
predefined definitional extension (the solid arrow with a(labelled Connected Groupoid in Figure 1). Totally
rounded tail) from the Conversions node to an intermediateonnected means there is a path between any two nodes, and
nodea (not shown in Figure 1), and a predefined theorygroupoid means that for any path there is an inverse path. In
morphism from the Graph node ta Conceptually, the addition to determining the path algebra properties, this
definitional extension ‘expands out' the conversionclassification also produces an instantiation of the
functions to edges in a graph. The definitional extension i€onnected Groupoid decision procedure schema.

defineql by the lambda expression schema below. The theory p¢q, classifying the path algebra for the graph, DSDRAT
morphism maps the graph sandeto sortspand maps the  oryms to the Graph taxonomy and completes the
graph sortedgeto the ‘expanded out’ set of CONVersion g qgification of the graph. This classification yields the

functions: composite  decision procedure schema TableGraph
{applfl A, & leevses]n, &, 4w 5| 2 5 e [Connected Groupoid]. Table Graph is a specialization of
whereconvertis a conversion functiop, is the source of ~ Graph that precomputes a table representation of paths when
the edge ang, is the target of the edge. the schema is instantiated. For time systems this is possible
) i . because there are a finite number of time systems and paths
‘The theory morphisms DSDRAT constructs in following renresenting conversions between time systems are uniquely
this link for the NAIF time-system conversions are shown agjatermined by their endpoints. The instantiated
dashed lines in Figure 3. Step 1 was discussed previously. {3 pjeGraph[ConnectedGroupoid] decision procedure is
step 3 the predefined definitional extension is applied 10 thgseq o decide the satisfiability of conjunctions of equalities
result of step 1, yielding3. Specifically, the lambda pehveen terms of the form

expression schema is instantiated for all the collected NA”fabs (coordinate-to-time x) yJThis instantiated decision

procedure generates witness ground terms for existentially
quantified variables of sortime-coordinate;the terms

NAIF time
system conversions



Parameterized Abstraction Graph

Functions -
2 binary operations
-~
. ~

_ -~ finit End point ~ Ring
Conversions node det. paths
abstract identit N

Category
(Path Algebra)

Representation

L totally
Conversions

p connected
Graph Graph
Figure 1. Portions of DSDRAT's new hierarchies.

unification in a type theory.

conversion

Given a theory morphism from a node at the top of the ~ Step 1.
hierarchy, the classification is pushed down the hierarchy by  Abstract identit ~ g
incrementally proving additional properties in the domain ~
theory. For example, to push down the hierarchy from  yrepresentatio RN
Category (an algebra with nodes and composable arrows conversions\ f — — — _ _ _}
where composition is partial and associative) to Groupoid Step 2. NAIF time

requires proving the axiom that all arrows have inverses. system conversions

As classification is pushed down the hierarchy, DSDRAT Figure 2. Pushing down the hierarchy.
also follows links for definitional extensions and  DSDRAT's analyses afoordinates-to-tim&egins in the
reformulation rules across the hierarchy. For example, theréParameterized Abstraction Function taxonomy (Figure 1).
is a definitional extension from the Graph taxonomy to Parameterized abstraction functions have a signature of the
Category. To classify a graph can require determiningform ¥ .g&—*{c—=* d | where thes are the sorts
properties of its path algebra. Thus the path algebra isfor the parameters of the abstraction functids,a concrete
defined and classified. The classification begins at thesort and a is an abstract sort. Classification of a
Category node in the Algebra taxonomy (the paths of aparameterized abstraction function results in DSDRAT
graph are the arrows of the associated category)collecting the set of that abstraction functioroswersions
Furthermore, the instantiated decision procedure for a grapiThe conversions for an abstraction function are functions
takes as parameter the instantiated decision procedure fawhose signature isams< s o= ¢ wherdp= gx % 4
the path algebra. Hence, for Graph there is a link toConversions, given a source and target set of parameters
Category both for the purpose of determining further (sp, map between elements of the concrete sort
properties of a graph and also in order to instantiate theRepresentation conversiosatisfy the additional property
decision procedure parameter for the path algebra. of preserving the identity of abstract objectsbgtract

6.4 Example: Design of a decision procedure for an identity in Figure 2) with respect to the parameterized
abstraction function abstraction functioifabsfn)

dfuf dAE q), A= a0 a ), sl g, A, D
This subsection describes DSDRAT'’s design of the where rconvert is a representation conversion function.

decision procedure for theoordinates-to-timebstraction  Decision procedures for representation conversions are
function. This function was described in section 2 and itsinterfaced to the theorem-prover througtbsfn and
axioms were described in section 5. This example illustratesgenerate ground terms of the concrete sort

the design algorithm described in the previous subsection
It is typical of the analysis of thABS component of an
AMPHION domain theory, and similar to the analysis of the

A component. Although comparatively -simple, - the of corresponding conversions, resulting in the singleton set

example is complex enough to illustrate the steps in > . . L
. . . : . whose element isonvert-timea function with signature
DSDRAT'’s design algorithm as it traverses the hierarchy, . . . .
time-system x time-system x time-coordinate

and also to illustrate the design of a composite decision™ )
- time-coordinate
procedure.

Step 1 of the classification of the abstraction function
coordinates-to-timewhose signature is
time-system- time-coordinate- time is to collect the set



of ZA and ABS program fragments are returned in the Each decision procedure in the Graph taxonomy is
language of2C. A decision procedure replaces deductiveparameterized by a path algebra; this parameter is
inference on the axioms IDT. As in DRAT, the library is instantiated by a decision procedure in the hierarchy below
organized hierarchically; a new portion of the library isCategory (Path Algebra) in the Algebra taxonomy. Graph-
shown in Figure 1. Each node in the hierarchy is a 6-tuplbased procedures invoke their procedure parameter to check
<DT,2A2C,ABS,|,DP>where the first four elements are the consistency of paths in graphs they are constructing and
the indexDP is a decision procedure schema (implementedo determine if there are shorter equivalent paths. If an
as a common lisp object class), dnd a procedure for inconsistent path is found, the graph-based procedure
instantiating a decision procedure schema given asignals unsatisfiability. If the path algebra procedure
instantiation of the 4-tuple index. determines that there is a shorter equivalent path between
fyvo nodes than the existing path, the existing path is
replaced by the shorter one. This ensures that the terms
8Pnstructed by traversing a graph are always the simplest
terms possible.

When the theory resolution interface gives an instantiate
decision procedure a set of literals in the languag®and
ABS the decision procedure returns terms in the language
>C as bindings for existential variables in the literals
(universal variables when considered as an unsatisfiabilitg.3 DSDRAT’s design algorithm
problem). The decision procedure can also return a set of
residual literals, if it is unable to completely resolve th
literals given as input. More formally, given a ¢ef literals
in the language oA and ABS, the decision procedure
returns a set of literalg’ and set of termsin the language
of ZC, such thatqutsare variablesDT, is the instantiated
theory for the decision procedure):

e DSDRAT’s design algorithm is an extension of DRAT'’s
design algorithm. The top-level control loop is similar to the
pseudo-code description in Section 4. Given a structured
AMPHION domain theory<DT,ZA,2C,ABS>, DSDRAT
begins by classifying the symbolsi#\ andABS Relation
symbols and some function symbols (those whose semantics
are not given by implementation equations that can be

BT [# = @) oo converted to rewrite rules) A are classified. In addition,
in order to connect the decision procedures at the abstract
As an example, consider the decision procedures indexggle| to procedures at the concrete level, DSDRAT classifies
under the Graph taxonomy in Figure 1. These decisiofhe parameterized abstraction functionsABS The left-

procedures generate terms representing paths in a graphest taxonomy in Figure 1 is used for this purpose.
The specification languag&A4) sort ‘nodes’ consist of the

node labels of the graph, and the concrete langEAR)esort In the hierarchy in Figure 1, there are three taxonomies
‘edges’ consist of the edge labels of the graph. Th beled Parameterized Abstraction Function, Graph, and
properties of the graph determine which decision procedur@/9€Pra. Each taxonomy is an and-or tree with downward
in the taxonomy is used. A decision procedure is applicabl¥"ks [abeled by properties in roman, such as associativity of
if an instantiation of its theory (i.eDT,) is implied by the a7 alge_bra with a binary relation. Links with incompatible
domain theory defining a graph; the decision procedure witRroPerties have an arc drawn between them. Nodes are
the most specific such theory is best. Instantiated decisidh€0ries that accumulate their axioms (properties) along the
procedures from the Graph taxonomy take as inpdi’aths leading to them. Nodes with a bold label have an
conjunctions of literals and build internal graph datg@ssociated decision procedure schema. The dotted lines are
structures representing those conjunctions. These decisig§finitional extensions and reformulation links.

procedures decide satisfiability of the conjunctions (with Parts of a domain theory are classified by constructing
respect to the instantiated theory for the decision proceduréleory morphism&om the theories in the library hierarchy

by manipulating the graphs. They also determine wheto parts of the domain theory. Theory morphisms are the
variables in the conjunction are connected in the graph tgeneralization of DRAT's instantiation of individual
constants (program input variables) and construct groundinction, relation, and sort symbols. A theory morphism is a
terms for those variables by traversing the graph. map from the language of one theory to the language of

Instantiated decision procedures can be compose%fwther theory such .that the axioms of the first theiory are
horizontally or vertically (where the concrete language fof"@PPed to theorems in the second theory. DSDRAT invokes
one decision procedure is the same as the abstract languaé”H!ON t0 prove such theorems. Constructing theory
for the following decision procedure). When decision™orPhisms from the nodes in the top of the decision
procedures are combined, they communicate by passiﬁocgdure hlergrchy is mglnly syntactlc, since there are
variable bindings back and forth [7]. In addition, decision'€latively few axioms associated with such nodes. However,

procedures can be nested —one decision procedure can tGgRIStructing these morphisms can involve simple syntactic
another as a parameter in order to solve subproblems. reformulations, such as tupling together sorts and currying
functions. These reformulations are handled through



decision procedures for several different kinds of axiom set¢Technically, deductive synthesis through resolution
To test the effectiveness of these procedures, we developtttorem-proving solves the non-ground unsatisfiability
a test suite of forty specifications to compare total proofjuestion: “is£*7 { 4w e a7 dath} unsatisfiable?”
steps and run-times for three different configurations of th&@he decision procedures designed by DSDRAT also solve
theorem-prover: without the strategy described in section 2jnsatisfiability questions and work in conjunction with the
with that strategy, and with the combination of the strategyesolution proof process through theory resolution.)

and decision procedures. Attempts to prove specifications

ithout either the strat decisi d ded i In contrast to analytical reasoning problems, for
without either Ihe stralegy or decision procedures endec 1, qtye synthesis problems an important consideration is
failure to find any proofs in under 100 minutes, so thi h

She algebraic structure of output terms, e.g., the equivalence
configuration was abandoned. All of the forty problems g b » &9 d

. . ) classes of these terms. Inferences on this structure provide
were proved with the strategy-only configuration and th

- . . &BPS some of its advantage over the context-free, macro-
strategy/dec!s!on procedure conflgura.tlon. On average, t pansion code-generation process used in application
strategy/deC|S|on_ procedure cpnflguratlonfound proofsina enerators. Besides correctness we usually want to place
orde.r of .magmtude less _tlme than  the strate.g.y—o.nl dditional requirements on these output terms for deductive
configuration. For example, in the proof of one specificatio

. . thesis, h that th t the best i
the strategy-only configuration took 430 steps and 28 ynthesis, sucn as that tney represent the best program in

P ~~their equivalence class, by some measure. So far in this
seconds. On the same specification, the strategy/dems?ﬁ

q f tion 100k 58 st in 15 ds (E search we have made the assumption that the best
procedure configuration too Steps In seconds (Ea ograms satisfying a post-condition are represented by the
step is a resolution or a paramodulation).

ground terms with the smallest number of function
Perhaps more important than the above results is thapplications.
because these procedures take advantage of WeII—deﬁnedIn addition to these differences in the problem types and

mgthemaﬂcal §tructures in a domain t.h eory, as did DRA.T roof-process outputs,MPHION domain theories also differ
this approach is amenable to automation. The next secti

fbm analytical reasoning task domain theories. The latter
describes the design of our system DSDRAT, which exten y 9

DRAT f iical . bl o deducti re unstructured and primarily relational. In contrast,
rom analylical reasoning problems 10 deAUCIVeA .\ domain theories are structured into an abstract and

synthesis problems. We are currently implementing thesg concrete level, with abstraction maps between these levels.

extensions of DRAT.
inat d in th . lizati DRAT for deductive synthesis (DSDRAT) extends DRAT
6. Automating domain theory operationalization according to these differences. DSDRAT takes a structured

6.1 ExtendingDRAT to deductive synthesis AMPHION domain theory as input and produces a specialized

: . . theorem-prover as output, with a reduced set of axioms. The
Scaling up from analytical reasoning problems to

: . ; ) specialized theorem-prover includes a set of decision
deductive synthesis problems requires extensions for: 1) t%g

kinds of probl that ved. 2) th touts of th ocedures interfaced through theory resolution. These
INds of problems that are soved, ) the ou PUtS OF th€ Profe cision procedures construct complex terms for output
process, 3) the complexity of the domain theories

. ; . ariables in specifications; these terms represent program
Technically, analytical reasoning problems are groun

ragments in the output language. DSDRAT also
(un)satisfiability questions (i.e., is a ground formula g P guag

tisfiable i . th | trast. deduci mechanically generates a simple abstract-to-concrete
(umsa Istiable In a given eory). In contrast, ceduc IVe'strategy from the partitioning of the domain theory into an
synthesis problems forMPHION are specifications given as

L abstract and concrete part. (This mechanically-generated
pre- and post-conditions: strategy is a simplification of the existing manually-tuned
LT ¥ dpfont Fam = 805 ot AMPHION strategy (see [5]) and is not described in this
whereDT is the domain theoryns is a vector of input  paper.). Formally, DSDRAT takes as input a 4-tuple
variables anautsis a vector of output variables. In order to <DT,2A,2C,ABS> where DT is an AVPHION domain
simplify the exposition, we will assume the preconditiontheory,ZA is the abstract specification languaBg€, is the
(R(ins) is always true. There is a special subset of theoncrete target language, andBS is the set of
concrete part of the domain theory language, called thparameterized abstraction maps.
outputlanguage, whose symbols name components of t
target software library. Deductive synthesis proves
theorem by constructing substitutions for the output Decision procedures in DSDRAT's library are also
variables that are terms in the output language. The variabl#¥lexed by a 4-tupleDT,ZA,ZC,ABS> Conceptually, each
in these terms are input variables; hence these tern§&cision procedure schema in DSDRAT's library solves a
represent program fragments that compute the value of &nall, parameterized, program synthesis problem. Problems
output variable from the values of input variables.given to the decision procedure are specified in the language

h§.2 Decision procedures for deductive synthesis



query 0@ into a satisfiability questioBAT(). A literal 5, Empirical results of manual domain theory
satisfiability procedure designed by DRAT is independent of operationalization
the particular set of ground literals, including the ground

axioms ofT; it actually solves all problems with the same We manually applied the DRAT methodology to the
non-ground axioms &6 NAIF domain theory. The objective was twofold: First, to

, . e experimentally determine whether analogous speed-ups

The following pseudo-code is an abstract description of, 4 pe obtained for deductive synthesis as were obtained

DRAT's design algorithm: for analytical reasoning problems. Second, to understand the
procedures —{}, T | ~{, T T technical issues in extending DRAT to deductive program

UNTIihset?npég(T l?:ﬁoose-proce dure (T synthesis. This section describes the experimental results for
the first objective. The following section discusses the

IF null (instance) THEN EXIT o .
procedure(s - pro)cedures 0 instance second objective. Our experiment targeted parts of the NAIF

T, ~T, O theory(instance) domain theory that we had previously needed to manually
FOR EACH axiom in T'DO tune either through reformulation or through adjusting the
WHEN T, implies axiom DO theorem-proving strategy. If the DRAT methodology could
T ~T'-axiom successfully replace such parts of the domain theory with
END FOR decision procedures, then automation of this methodology
END UNTIL could likely replace manual tuning by deductive synthesis-
The set of decision procedure instances is built ugXperts.
incrementally while the set of axiomsTh is pared down One pattern of axioms that requires deductive-synthesis

incrementally. The process stops either wiienis empty  tyning is typified by those for conversions between time
or no more decision procedures are applicable. Each timgsiems (see section 2 for notation):

choose-procedures invoked, it chooses a sort, relation, or , 8§, &g, 0] et evcrdn e - g ), ) =

function symbol fromT’ , classifies that symbol in the o JEF U bt A e;}:mww#arm{ &, i, 8]
hierarchy as far down as possible, and then returns the _

decision procedureirfstance ) and associated theory & #f ceursmre i £ 6 1) = ¢ . .

(theory(instance) ) with the deepest node reached in ‘I " &, Al o ;ﬁ:‘? g*;ﬁmﬁm‘{ o B =

the hierarchy. (For DRAT, the top nodes of the hierarchy o

were defined syntactically (e.g. unary function, binary These axioms describe conversions between time
relation), nodes lower down were semantically specializedystems, and will be used as an example in section 6. The
(e.g. one-to-one function, total order)). Both the procedur@rst axiom states that a time co-ordinate in any time system
and the theory are instantiated by the classified symbol. Then be converted to another time system by an application of
new procedure is added poocedures  and its theory is  the functionconvert-time The second axiom describes the
added tal|. DRAT then determines which axiomsThcan  jdentity conversion, while the third states that nested
be removed, i.e., those axioms that are impliedbPRAT  applications ofconvert-time with matching time-system

is sound and complete, see [13] for details arguments can be replaced by a single application. The

Although this algorithm is not sensitive to the way axiomssecond and third equations can be oriented from left to right
are formulated, it is sensitive to the choice of language jand consequently are treated as simplification rewrite rules.
formulating a problem, for example, a function formulategHowever, equations like the first axiom need to be used in
as a relation. DRAT’s algorithm was augmented withboth directions and can not be oriented. As a result, SNARK
isomorphic reformulation[13], implemented by placing Uses paramodulation for inferences with the first axiom.
reformulation rules on nodes in the hierarchy. These rulegach paramodulation represents a multi-branched choice
change a problem’s formulation and also often restaOint in the search space. We developed a decision

classification at different nodes in the hierarchy. procedure to reason efficiently about representation
conversions and replaced the axioms above with an

DRAT has been successfully applied to analytical,iantiation of the procedure. We also replaced several
reasoning problems like those on the GREs. For examplgihar sets of similar axioms (e.g., co-ordinate frame
one representative problem took over three hours to SOIV&nversion, co-ordinate system conversion) by different
with a general-purpose resolution theorem-prover. BYnsiantiations of this same procedure. These instantiated
contrast, DRAT automatically produced a theorem-proverfieision procedures are very similar to modules that might

decision-procedure combination that solves the samgg developed by a KBSE expert when hand-crafting a KBPS
problem in a few seconds. DRAT was applied to twentys?/stem.

analytical reasoning problems and averaged two orders o . .
magnitude speed-up over the theorem-prover alone. We performed this manual replacement of axioms by



Up to now, no tools have existed to facilitate domainapproach to decision procedures is that automated analysis
theory development and extension for MEMION, of their applicability is far more tractable. The decision
particularly the task of tuning a domain theory and theoremprocedures are simply specified through the theories they
proving strategies for efficient program synthesisdecide. Given a theory of a decision procedure, DSDRAT
Definitional extension and specification of new softwareanalyzes a domain theory to identify sets of axioms that are
components is fairly routine. However, adding axioms thaequivalent to the theory. These sets of axioms are then
interact with existing axioms often leads to a combinatoriatemoved from the domain theory and, in their place,
explosion during deductive synthesis. To date, we havimstances of the decision procedure are interfaced to the
addressed these problems as is usually done in applicatiotieeorem-prover. This specialized theorem-prover, with the
of automated theorem-proving: manually reformulating theemaining axioms, performs the same inferences as the
domain theory and tuning the theorem-proving strategygeneral-purpose theorem-prover, with all the axioms, but
However, continuing this methodology will make it much more efficiently. Conceptually, this process is repeated
impossible to transition ®MPHION from a few application for all the decision procedures in the library.
domains in the research laboratory to a plethora of

N e i The actual operationalization process is made efficient by
application domains in the field.

arranging the theories for the decision procedures into a
3. META-AMPHION hierarchy; more specialized theories are lower in the
. hierarchy (e.g., ‘equivalence relation’ is below ‘symmetric

META-AMPHION is &  system, currently under,binary relation’). The nodes in the hierarchy are cross-

development, whose objective is to empower doma”?ndexed through reformulation rules to accommodate

experts (without substgntigl training ‘T‘ KBSE) to s.'pe(?ia“_zedifferent ways of formulating a domain theory. The next
thPH'OIN o Man :ppllcanqn Idgmam and .ntwaTtam ‘ ' section describes this process as it has already been applied
emselves. TETA-AMPHION Includes a user Interface 1o analytical reasoning problems, while subsequent sections

guide domain experts in creating and extending a doma'&‘escribe extensions for program synthesis problems.
theory, a subsystem to check that software components are
specified correctly in a domain theory through verificationrd. DRAT
against the_ component code, and a sub;yst(_em to chgck forDRAT (Designing Representations for Analytical Tasks)
missing axioms. The research described in this paper is for[f

) ) . 4] was inspired by human problem-solving performance
subsy.stem—DSDRA.T.—to autom.atlcally opgrat|onal|ze %n analytical reasoning problems, such as those found on
domain theory for efficient deductive synthesis.

graduate-level standardized admission tests (GREs). When
Our approach to operationalizing a declarative domaithese problems are encoded in FOL, they are surprisingly
theory is analogous to applyingu&HION at the meta-level: difficult for a general-purpose theorem-prover, taking hours
given a meta-theory of program synthesis and a domaifor problems solved in minutes by college students. Students
theory for a particular application domainEM-AMPHION  use specialized representations and procedures to reason
constructs an efficient domain-specific KBPS system bwbout these problems; in fact, GRE guidebooks show how
composing components from a library and then instantiatingiagrams can be used to assist in problem-solving. DRAT
the generic AMPHION architecture. parallels human performance in designing specialized
rrr(?presentations and procedures to solve analytical reasoning

The components are decision procedures that perfor
Iproblems.

specialized inference tasks much more efficiently tha
applying general-purpose theorem-proving to axioms. In the A problem is a paikT,®>, whereT is a first-order theory.
usual approach to decision procedures, the specializebis a set of queries. Possibility queries ask wherhapis
inference tasks are specified syntactically, e.g., ‘decide trgatisfiable and necessity queries ask whelheplies@or,
equality relation’. In contrast, in our approach theequivalently, whetheO{-¢} is unsatisfiable. (In both
specialized inference tasks are smaller-grained and specifiedses@ is a ground formula.) Given a problem, DRAT
semantically, e.g., ‘decide whether a set of ordered paimutomatically performs a semantic analysis of the non-
(represented as ground literals) defines a partial order’. lground axioms (i.e., axioms with quantified variables),in

our approach, the decision procedures decide theoriesd replaces as many as possible with instances of
related to standard mathematical structures, such as variosisecialized decision procedures. These decision procedures
algebras (e.g., groups, path algebras). The decisicre interfaced to a theorem-prover through theory resolution
procedures incorporate algorithms, such as graph-searft0]. Technically, DRAT designs diteral satisfiability
algorithms, that would also be found in hand-crafted KBP$rocedure, which decides for a theory whether a conjunction
systems that did not use automated theorem-proving. of ground literals is satisfiable. A literal satisfiability

The advantage of this semantic and small-graine&’rocedure is used to solve a problem by converting each



program transformations, ad-hoc procedures, or the intricate AMPHION has been applied so far to three application
workings of automated theorem-provers. We believe that thdomains at NASA: MAPHION/NAIF (solar system
knowledge-acquisition  bottleneck for KBSE is geometry), MPHION/CFD (computational fluid dynamics),
surmountable by domain experts only if domainand AvPHION/TOT (space shuttle navigation). Each of the
descriptions can be developed, validated, and maintainesiMPHION domain theories has been developed by an expert
with an underlying declarative semantics. Declarativen deductive program synthesis, in consultation with domain
semantics are a necessary but not sufficient requirement. experts. The NAIF domain theory is the most mature. It now

This paper describes research to automaticallfons"s‘ts of over three hundr_ed axioms anq has undergone
ver a dozen major extensions and revisiongP#oON/

operationalize a declarative domain theory for the purpos%A”: h read ted that in 1 ¢
of efficient, domain-specific KBPS. It is an essential as already generated programs that are In frequen

component for enabling domain experts to develop ant>¢ by space scientists. For examplaPAION/NAIF has
maintain their own KBPS systems. This research buildgepergted programs that perfqrm geometry calcglatlons, "?‘”.d
upon the MPHION system, reviewed in section 2, which is animations, for science planning for the upcoming Cassini

the KBPS analogue of a generic application—generatogq'SS'C.)n to Saturn. hMFA"T]MPH'ON WI”JF?LnabrI? hN('jASAl d
architecture. The BITA-AMPHION system (section 3), which omain experts, such as the group at which develope

is currently under development, is the KBPS analogue and maintains the NAIF software component library, to

application-generator generator technology. The researc{ﬁa'malln arflfjh extenq sptec;|al(|jzed Mml'ON. ?r)]/_stems
described in this paper is for one component of tiEaaAv EMSEIVes. 1he experiments and examples in this paper are

AMPHION system. from the AvPHION/NAIF system.

The technology for automatically operationalizing a An AMPHION domain theory has three parts: an abstract

declarative domain theory is an extension of the DRA'IIheor.y_ \{vhose language i swtab'le for ~ problem
ecifications, a concrete theory that includes the target

system (section 4). DRAT has previously been successful e . . .
omponent specifications, and an implementation relation

applied to automatically operationalizing FOL theories for
PP y op g hetween the abstract and concrete theory. The

analytical reasoning problems. The techniques used i | tati lation i . tized in the stvle of H

DRAT were manually applied to one of the existing'?aﬁmenhat')ort] retr?l lon 1 agr(loma 1€ Ln etsi/ec;) toatre

AMPHION applications. Section 5 describes the resultin& ] throughabs raction map&om concrete sorts to abstrac
orts. Abstraction maps are often parameterized. To

order-of-magnitude speed-ups in deductive progral fitat " traints during deducti thesi
synthesis. Section 6 describes extensions to DRAT, calleqf' ltate posting constraints during deductive syntnesis,
straction maps are reified, i.e., treated as first-order

DSDRAT, for automatically operationalizing domain ab' Theabs f . ) q | ified
theories for deductive program synthesis. Section 6 alsgPlects. eabs function is used to apply a reifie

presents a detailed example of the DSDRAT analysi%1bstractlon map to a concrete object. An example used in

applied to an existing MPHION domain theory. Section 7 :hls pap;ek: 'thOIVeS a? abstrtgctlon mapd|.n t?e NAIF doma'”
concludes the paper. eory that maps from time co-ordinates in various

. representations (e.g., ephemeris time or universal time) to
2. AMPHION overview abstract time (independent of representation). The term

AMPHION is a KBSE system that first guides a user inabs(coordinates-to—timeglj ¢) denotes an abstract time,

developing a formal specification of a problem. A user isc’bt""inEd by applying the abstraction mapordinates-to-

guided in creating a diagram that represents the formé'lmg parame_terlzed on a time systeny, T a time co-
specification through a structured editor and a Visualgrdmatg,c (time co-ordinates are translated to reals or
programming interface. (The tables that drive the GUI arétrmgs in FORTRAN).

compiled from a domain theory.) Then MAHION To synthesize programs,MRHION invokes SRI's FOL
implements this specification, through deductive synthesigesolution theorem-proveNaRrk [11]. Deductive synthesis

[6] using the same domain theory, as a program consistirgenerates a term (representing a program) in the concrete
of calls to components from a domain-oriented softwardanguage from a specification in the abstract language.
library. AMPHION is described in detail in [5]. AMPHION includes a strategy to guide/&Rk from abstract,

AMPHION is a generic system that enjoys the advantage (ﬁp ecification-level constructs towards concrete,

domain independence, being specialized to diﬁerenltmple'mentation-.level constructs. Thi‘?’ s’Frategy Is_highly
domains via different domain theories. MaintenanceeﬁeCt'Ve’ reducing program synthesis times from hours

modification, and extension of a specializedPNION {sometimes days) to minutes (see [5]). This strategy is also

system is done by editing the domain theory. This is faFObUSt and does not need to be tuned for individual

easier than maintaining and extending ad-hoc, hand-craftdfCPlems. but often does require manual tuning when a
KBSE systems. omain theory is modified.
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Abstract and template instantiation. KBPS research aims to overcome

. both these limitations.
AMPHION is a real-world knowledge-based software

engineering (KBSE) system whose program synthesis sub-A more important reason for the success of application-
system is based on deductive synthesiseHfON has a  generator technology is the ease with which application
domain-independent generic architecture that is specializedenerators can be generated themselves. In other words,
to a domain through a declarative theory. Program synthesigapplication-generator generator technology [1] has greatly
has been made efficient and automatic through manudbwered the expertise required to construct an application
tuning of theorem-proving strategies and tactics, and carefuyjenerator. Tools such as parser generators (e.g., YACC) and
formulation of domain theories. GUI-builders facilitate the development of application-
The META-AMPHION system is being developed to generator user interfaces_. _Semantic—attribute__grammar
empower domain experts to develop, maintain, and evolgchnology and macro-definition Iapguages facilitate the
their own AMPHION applications. MTaAwvpHion is  development of the code-generation subsystem of an
intended to be the knowledge-based analogue diPplication generator. Application-generator generator
app"cation-generator generator technok)gy_ This papert@ChﬂOlogy enables bachelor-level computer scientists to
describes technology for automatically transformingdevelop their own application generators.
declarative domain theories into efficient domain-specific

- In order for KBPS to achieve comparable success,
program synthesis systems.

technology is needed that greatly lowers the expertise
1. Introduction required to develop and maintain automatic domain-
o ) oriented KBPS systems. The goal of the research described
Application generator technology is a successfuli, hig paper is to develop the knowledge-based analogue of
mainstream,  domain-oriented  program  synthesi$,yyjication-generator generator technology. Specifically,
technology. For example, as early as the mid nineteeny,ing with a declarative description of an application
eighties, over half of the COBOL code generated a””“a”}fiomain, we aim to automatically generate an efficient,
was synthesized by application generators (such as scregfyomatic, domain-specific KBPS; roughly comparable to a

generators). In comparison, knowledge-based prograsiem that would be hand-crafted by an expert in KBSE.
synthesis (KBPS) technology has had little real-world

impact to date. One reason for this difference is A major premise of our approach is that it is essential for
technological maturity. Application generators rely uponthe application-domain description to be declarative, in

well-understood and mature compiler technology. kppPrder to enable domain experts to generate, validate, and
technology is far less mature. maintain such domain descriptions. We have found that our

. _ domain experts (mainly physical scientists and engineers at
Although relatively mature, current compiler technologyNASA) are familiar, through their training, with the

is limited in the kinds of transformations it can effect from yoc1arative semantics of first-order logic (FOL). They are
source language to target language. This limits the distancgyje g interact with us to validate FOL domain theories and
that can be spanned from source-language constructs dfgqest corrections and refinements. (This is not to say that
target-language constructs. Consequently, source languagggy find the current notation of our domain theories to be
for application generators are typically more programminggqngenial, but rather that they understand the idea of model-
oriented  than  specification-oriented. Furthermore, theneoretic interpretations.) In contrast, the operational
generated code is o_ften inefficient since the code-generat_l%mamics of KBPS systems are exceedingly difficult for
process usually relies upon context-free macro expansiqfiem to understand, whether such a system is based on



