
consist of time-system constants, program input variables,
and applications ofconvert-time.The decision procedure
automatically simplifies nested applications ofconvert-time.

The final step in DSDRAT’s analysis ofcoordinate-to-
time is to add the instantiated theories from TableGraph and
Connected Groupoid to the cumulative set of axioms for
instantiated decision procedures. DSDRAT then removes
the axioms in the NAIF domain theory that are implied by
this set. The removed axioms include the three listed in
section 5. When these axioms are used by a general-purpose
theorem-prover (e.g., SNARK) for deductive synthesis, they
typically invoke search through branch points introduced by
paramodulation. By replacing these axioms with efficient
decision procedures, DSDRAT speeds up program synthesis
without manual tuning. We expect that DSDRAT will
automatically achieve the same results as were manually
achieved with this methodology (section 5). This will
provide a key enabling technology for domain experts, such
as the JPL NAIF group, to maintain and extend their own
specialized AMPHION systems.

7. Conclusion

This paper addresses one aspect of scaling-up KBSE:
enabling domain experts to construct and maintain their own
domain-specific KBPS systems. The META-AMPHION

system, currently under development, is designed to provide
the KBSE analogue of application-generator generator
technology. A key component of META-AMPHION is a sub-
system to automatically operationalize a declarative domain
theory for efficient deductive program synthesis. This paper
describes extensions of a previous system, DRAT, that
speeds up a theorem-prover for analytical reasoning
problems by substituting decision procedures for axioms in
a theory. An experiment with AMPHION (a real-world KBPS
system) demonstrated that extending DRAT to deductive
synthesis would be successful. The design for these
extensions is described, and are currently being
implemented.

In parallel work we are also exploring suitable user
interfaces for META-AMPHION that will guide domain
experts in developing and maintaining domain theories.
There appears to be a useful synergy with the component
described in this paper: the same process described in
section 6 for operationalizing axioms in an existing domain
theory might be useful in eliciting axioms from a domain
expert. Instead of using a theorem-prover to answer
questions when searching the hierarchy, the domain expert
would be used as an oracle to construct portions of a domain
theory by traversing the same hierarchy.

In previous work on DRAT, the work reported in [7] was
extended to show that DRAT's attachment of literal

satisfiability procedures to a theorem-prover was sound and
complete. These results must be extended to DSDRAT and
we are considering the framework reported in [2]. The
extension of DRAT’s classification procedure to DSDRAT’s
classification procedure is related to the work in [8,9]. We
are also exploring the use of SPECWARE[4] as a tool for
part of the implementation of META-AMPHION

Acknowledgments

Sincere thanks to the anonymous reviewers and our
colleagues Arthur Reyes, Lise Geetoor, Thomas Pressburger
and Steven Roach for their helpful comments.

References
[1] J.C. Cleaveland and C. Kintala, “Tools for Building

Application Generators.”AT&T Technical Journal, Vol.
67, No. 4, 1988, pp. 46-58.

[2] F. Giunchigliam, P. Pecchiari, C. Talcott, “Reasoning
Theories: Towards an Architecture for Open Mechanized
Reasoning Systems,” Stanford CS Technical Report CS-
TN-94-15, 1994.

[3] C.A.R. Hoare, “Proof of Correctness of Data
Representations,”Acta Informatica 1973, pp. 271-281.

[4] R. Jullig and Y.V. Srinivas, “Diagrams for Software
Synthesis,”KBSE 1993.

[5] M. Lowry, A. Philpot, T. Pressburger, and I. Underwood, “A
Formal Approach to Domain-Oriented Software Design
Environments,”KBSE 1994.

[6] Z. Manna and R. Waldinger, “Fundamentals of Deductive
Program Synthesis,”IEEE Transactions on Software
Engineering,(18) 8, August 1992, pp. 674-704.

[7] G. Nelson, “Combining Satisfiability Procedures by Equality
Sharing,” inAutomated Theorem Proving after 25 Years,
Bledsoe and Loveland (Eds), American Mathematical
Society, 1984.

[8] D.R. Smith and M.R. Lowry, “Algorithm Theories and
Design Tactics,”Science of Computer Programming Vol.
14, 1990, pp. 305-321.

[9] D.R. Smith, “Classification Approach to Design,” 1993
Kestrel Institute Technical Report.

[10] M. Stickel, “Automated Deduction by Theory Resolution,”
Automated Reasoning, Vol. 1, 1985, pp. 333-355.

[11] M. Stickel, R. Waldinger, M. Lowry, T. Pressburger, and I.
Underwood, “Deductive Composition of Astronomical
Software from Subroutine Libraries,” CADE-12, 1994.

[12] E.H. Tyugu, Knowledge-Based Programming, Turing
Institute Press, Glasgow, Scotland, 1988.

[13] J. Van Baalen, “The Completeness of DRAT, A Technique for
Automatic Design of Satisfiability Procedures,”
International Conference of Knowledge Representation
and Reasoning, 1991.

[14] J. Van Baalen, “Automated design of specialized
representations,”Artificial Intelligence, Vol. 54, 1992.

This step provides a signature morphism, labeled step 1 in
Figure 2, between the language for the Conversions node
and the NAIF domain theory:

In step 2 DSDRAT pushes further down the taxonomy by
extending this theory morphism to the Representation
Conversions node by proving the instantiatedabstract
identity property for time-system conversions (see the
axioms in section 5).

In step 3 and 4 DSDRAT follows the link (shown as a
dashed line in Figure 1) from the Conversions node to the
Graph node, thereby constructing the definition of a graph
whose edges are labelled by these conversions. An expanded
view of this link is shown in Figure 3. (All the arrows in
Figure 3 are theory morphisms.) This link consists of a
predefined definitional extension (the solid arrow with a
rounded tail) from the Conversions node to an intermediate
nodeα (not shown in Figure 1), and a predefined theory
morphism from the Graph node toα. Conceptually, the
definitional extension ‘expands out’ the conversion
functions to edges in a graph. The definitional extension is
defined by the lambda expression schema below. The theory
morphism maps the graph sortnode to sortsp and maps the
graph sortedge to the ‘expanded out’ set of conversion
functions:

whereconvert is a conversion function,p1 is the source of
the edge andp2 is the target of the edge.

The theory morphisms DSDRAT constructs in following
this link for the NAIF time-system conversions are shown as
dashed lines in Figure 3. Step 1 was discussed previously. In
step 3 the predefined definitional extension is applied to the
result of step 1, yieldingβ. Specifically, the lambda
expression schema is instantiated for all the collected NAIF

time-system conversions (a singleton set), yielding

where ts1 and ts2 are time systems andx is a time co-
ordinate. Note that because Figure 3 is a commutative
diagram, this also defines the theory morphism fromα to β.
In step 4 the theory morphism is constructed from the Graph
node to the extended NAIF time-system conversions (β).
Once again, because Figure 3 is a commutative diagram, this
is simply the composition of the predefined morphism from
Graph toα and the morphism fromα to β. This composition
maps the graph sortnode to the sorttime-system, and maps
the graph sortedge to the instantiated lambda expression.
Note that while DSDRAT needs to do proofs when pushing
down the hierarchy, in following the link from Conversions
to Graph no proofs need to be done by DSDRAT—it is
simply performing syntactic manipulations that are justified
by proofs done off-line when the library of decision
procedures was constructed.

The rest of the analysis consists of the same kinds of steps
as those shown in Figures 2 and 3. Given the theory
morphism constructed in step 4, DSDRAT pushes down the
Graph taxonomy. However, to do so it needs to determine
the properties of the associated path algebra. DSDRAT
follows the link from Graph to Category, using the same
steps as described for Figure 3. DSDRAT then pushes down
the hierarchy under the Category (Path Algebra) node,
incrementally constructing theory morphisms using the
same steps as described for Figure 2. DSDRAT classifies the
path algebra forconvert-timeas a totally connected groupoid
(labelled Connected Groupoid in Figure 1). Totally
connected means there is a path between any two nodes, and
groupoid means that for any path there is an inverse path. In
addition to determining the path algebra properties, this
classification also produces an instantiation of the
Connected Groupoid decision procedure schema.

After classifying the path algebra for the graph, DSDRAT
returns to the Graph taxonomy and completes the
classification of the graph. This classification yields the
composite decision procedure schema TableGraph
[Connected Groupoid]. Table Graph is a specialization of
Graph that precomputes a table representation of paths when
the schema is instantiated. For time systems this is possible
because there are a finite number of time systems and paths
representing conversions between time systems are uniquely
determined by their endpoints. The instantiated
TableGraph[ConnectedGroupoid] decision procedure is
used to decide the satisfiability of conjunctions of equalities
between terms of the form
(abs (coordinate-to-time x) y).This instantiated decision
procedure generates witness ground terms for existentially
quantified variables of sorttime-coordinate; the terms

conversions Graph

NAIF time
 system conversions

Step 1

Step 3. Step 4.

.

α

β

Figure 3. Following a link across the hierarchy.

:

unification in a type theory.

Given a theory morphism from a node at the top of the
hierarchy, the classification is pushed down the hierarchy by
incrementally proving additional properties in the domain
theory. For example, to push down the hierarchy from
Category (an algebra with nodes and composable arrows,
where composition is partial and associative) to Groupoid
requires proving the axiom that all arrows have inverses.

As classification is pushed down the hierarchy, DSDRAT
also follows links for definitional extensions and
reformulation rules across the hierarchy. For example, there
is a definitional extension from the Graph taxonomy to
Category. To classify a graph can require determining
properties of its path algebra. Thus the path algebra is
defined and classified. The classification begins at the
Category node in the Algebra taxonomy (the paths of a
graph are the arrows of the associated category).
Furthermore, the instantiated decision procedure for a graph
takes as parameter the instantiated decision procedure for
the path algebra. Hence, for Graph there is a link to
Category both for the purpose of determining further
properties of a graph and also in order to instantiate the
decision procedure parameter for the path algebra.

6.4 Example: Design of a decision procedure for an
abstraction function

This subsection describes DSDRAT’s design of the
decision procedure for thecoordinates-to-timeabstraction
function. This function was described in section 2 and its
axioms were described in section 5. This example illustrates
the design algorithm described in the previous subsection.
It is typical of the analysis of theABS component of an
AMPHION domain theory, and similar to the analysis of the
ΣA component. Although comparatively simple, the
example is complex enough to illustrate the steps in
DSDRAT’s design algorithm as it traverses the hierarchy,
and also to illustrate the design of a composite decision
procedure.

DSDRAT’s analyses ofcoordinates-to-timebegins in the
Parameterized Abstraction Function taxonomy (Figure 1).
Parameterized abstraction functions have a signature of the
form , where thesi are the sorts
for the parameters of the abstraction function,c is a concrete
sort and a is an abstract sort. Classification of a
parameterized abstraction function results in DSDRAT
collecting the set of that abstraction function’s conversions.
The conversions for an abstraction function are functions
whose signature is where .
Conversions, given a source and target set of parameters
(sp), map between elements of the concrete sortc.
Representation conversions satisfy the additional property
of preserving the identity of abstract objects (Abstract
identity in Figure 2) with respect to the parameterized
abstraction function(absfn):

where rconvert is a representation conversion function.
Decision procedures for representation conversions are
interfaced to the theorem-prover throughabsfn, and
generate ground terms of the concrete sortc.

Step 1 of the classification of the abstraction function
coordinates-to-time, whose signature is
time-system→ time-coordinate→ time, is to collect the set
of corresponding conversions, resulting in the singleton set
whose element isconvert-time,a function with signature
time-system x time-system x time-coordinate
→ time-coordinate.

conversions

representation
conversions

NAIF time
 system conversions

Step 1.

Step 2.

Abstract identity

Figure 2. Pushing down the hierarchy.

GraphParameterized Abstraction

finite
infinite

1binary

assoc.

Semi-

Group

Conversions
Ring

Group

cond.
assoc

inverses
Monoid

Category

Algebras

Groupoid

totally
connected

Connected Groupoid

nodes
nodes End point

Table
Graph Graph

GraphRepresentation
Conversions

(Path Algebra)

Figure 1. Portions of DSDRAT’s new hierarchies.

operation 2 binary operations

Functions

det. paths

identity

abstract identity

of ΣA and ABS, program fragments are returned in the
language ofΣC. A decision procedure replaces deductive
inference on the axioms inDT. As in DRAT, the library is
organized hierarchically; a new portion of the library is
shown in Figure 1. Each node in the hierarchy is a 6-tuple
<DT,ΣA,ΣC,ABS,I,DP>where the first four elements are
the index,DP is a decision procedure schema (implemented
as a common lisp object class), andI is a procedure for
instantiating a decision procedure schema given an
instantiation of the 4-tuple index.

When the theory resolution interface gives an instantiated
decision procedure a set of literals in the language ofΣA and
ABS,the decision procedure returns terms in the language of
ΣC as bindings for existential variables in the literals
(universal variables when considered as an unsatisfiability
problem). The decision procedure can also return a set of
residual literals, if it is unable to completely resolve the
literals given as input. More formally, given a setφ of literals
in the language ofΣA and ABS, the decision procedure
returns a set of literalsφ ’ and set of termst in the language
of ΣC, such that (outsare variables,DTI is the instantiated
theory for the decision procedure):

As an example, consider the decision procedures indexed
under the Graph taxonomy in Figure 1. These decision
procedures generate terms representing paths in a graph.
The specification language (ΣA) sort ‘nodes’ consist of the
node labels of the graph, and the concrete language (ΣC) sort
‘edges’ consist of the edge labels of the graph. The
properties of the graph determine which decision procedure
in the taxonomy is used. A decision procedure is applicable
if an instantiation of its theory (i.e.,DTI) is implied by the
domain theory defining a graph; the decision procedure with
the most specific such theory is best. Instantiated decision
procedures from the Graph taxonomy take as input
conjunctions of literals and build internal graph data
structures representing those conjunctions. These decision
procedures decide satisfiability of the conjunctions (with
respect to the instantiated theory for the decision procedure)
by manipulating the graphs. They also determine when
variables in the conjunction are connected in the graph to
constants (program input variables) and construct ground
terms for those variables by traversing the graph.

Instantiated decision procedures can be composed
horizontally or vertically (where the concrete language for
one decision procedure is the same as the abstract language
for the following decision procedure). When decision
procedures are combined, they communicate by passing
variable bindings back and forth [7]. In addition, decision
procedures can be nested —one decision procedure can take
another as a parameter in order to solve subproblems.

Each decision procedure in the Graph taxonomy is
parameterized by a path algebra; this parameter is
instantiated by a decision procedure in the hierarchy below
Category (Path Algebra) in the Algebra taxonomy. Graph-
based procedures invoke their procedure parameter to check
the consistency of paths in graphs they are constructing and
to determine if there are shorter equivalent paths. If an
inconsistent path is found, the graph-based procedure
signals unsatisfiability. If the path algebra procedure
determines that there is a shorter equivalent path between
two nodes than the existing path, the existing path is
replaced by the shorter one. This ensures that the terms
constructed by traversing a graph are always the simplest
terms possible.

6.3 DSDRAT’s design algorithm

DSDRAT’s design algorithm is an extension of DRAT’s
design algorithm. The top-level control loop is similar to the
pseudo-code description in Section 4. Given a structured
AMPHION domain theory<DT,ΣA,ΣC,ABS>, DSDRAT
begins by classifying the symbols inΣA andABS. Relation
symbols and some function symbols (those whose semantics
are not given by implementation equations that can be
converted to rewrite rules) inΣA are classified. In addition,
in order to connect the decision procedures at the abstract
level to procedures at the concrete level, DSDRAT classifies
the parameterized abstraction functions inABS. The left-
most taxonomy in Figure 1 is used for this purpose.

In the hierarchy in Figure 1, there are three taxonomies
labeled Parameterized Abstraction Function, Graph, and
Algebra. Each taxonomy is an and-or tree with downward
links labeled by properties in roman, such as associativity of
an algebra with a binary relation. Links with incompatible
properties have an arc drawn between them. Nodes are
theories that accumulate their axioms (properties) along the
paths leading to them. Nodes with a bold label have an
associated decision procedure schema. The dotted lines are
definitional extensions and reformulation links.

Parts of a domain theory are classified by constructing
theory morphisms from the theories in the library hierarchy
to parts of the domain theory. Theory morphisms are the
generalization of DRAT’s instantiation of individual
function, relation, and sort symbols. A theory morphism is a
map from the language of one theory to the language of
another theory such that the axioms of the first theory are
mapped to theorems in the second theory. DSDRAT invokes
AMPHION to prove such theorems. Constructing theory
morphisms from the nodes in the top of the decision
procedure hierarchy is mainly syntactic, since there are
relatively few axioms associated with such nodes. However,
constructing these morphisms can involve simple syntactic
reformulations, such as tupling together sorts and currying
functions. These reformulations are handled through

decision procedures for several different kinds of axiom sets.
To test the effectiveness of these procedures, we developed
a test suite of forty specifications to compare total proof
steps and run-times for three different configurations of the
theorem-prover: without the strategy described in section 2,
with that strategy, and with the combination of the strategy
and decision procedures. Attempts to prove specifications
without either the strategy or decision procedures ended in
failure to find any proofs in under 100 minutes, so this
configuration was abandoned. All of the forty problems
were proved with the strategy-only configuration and the
strategy/decision procedure configuration. On average, the
strategy/decision procedure configuration found proofs in an
order of magnitude less time than the strategy-only
configuration. For example, in the proof of one specification
the strategy-only configuration took 430 steps and 289
seconds. On the same specification, the strategy/decision
procedure configuration took 58 steps in 15 seconds (Each
step is a resolution or a paramodulation).

Perhaps more important than the above results is that,
because these procedures take advantage of well-defined
mathematical structures in a domain theory, as did DRAT,
this approach is amenable to automation. The next section
describes the design of our system DSDRAT, which extends
DRAT from analytical reasoning problems to deductive
synthesis problems. We are currently implementing these
extensions of DRAT.

6.Automating domain theory operationalization

6.1 ExtendingDRAT to deductive synthesis

Scaling up from analytical reasoning problems to
deductive synthesis problems requires extensions for: 1) the
kinds of problems that are solved, 2) the outputs of the proof
process, 3) the complexity of the domain theories.
Technically, analytical reasoning problems are ground
(un)satisfiability questions (i.e., is a ground formula
(un)satisfiable in a given theory). In contrast, deductive
synthesis problems for AMPHION are specifications given as
pre- and post-conditions:

whereDT is the domain theory,ins is a vector of input
variables and outs is a vector of output variables. In order to
simplify the exposition, we will assume the precondition
(R(ins)) is always true. There is a special subset of the
concrete part of the domain theory language, called the
output language, whose symbols name components of the
target software library. Deductive synthesis proves a
theorem by constructing substitutions for the output
variables that are terms in the output language. The variables
in these terms are input variables; hence these terms
represent program fragments that compute the value of an
output variable from the values of input variables.

(Technically, deductive synthesis through resolution
theorem-proving solves the non-ground unsatisfiability
question: “is unsatisfiable?”
The decision procedures designed by DSDRAT also solve
unsatisfiability questions and work in conjunction with the
resolution proof process through theory resolution.)

In contrast to analytical reasoning problems, for
deductive synthesis problems an important consideration is
the algebraic structure of output terms, e.g., the equivalence
classes of these terms. Inferences on this structure provide
KBPS some of its advantage over the context-free, macro-
expansion code-generation process used in application
generators. Besides correctness we usually want to place
additional requirements on these output terms for deductive
synthesis, such as that they represent the best program in
their equivalence class, by some measure. So far in this
research we have made the assumption that the best
programs satisfying a post-condition are represented by the
ground terms with the smallest number of function
applications.

In addition to these differences in the problem types and
proof-process outputs, AMPHION domain theories also differ
from analytical reasoning task domain theories. The latter
are unstructured and primarily relational. In contrast,
AMPHION domain theories are structured into an abstract and
a concrete level, with abstraction maps between these levels.

DRAT for deductive synthesis (DSDRAT) extends DRAT
according to these differences. DSDRAT takes a structured
AMPHION domain theory as input and produces a specialized
theorem-prover as output, with a reduced set of axioms. The
specialized theorem-prover includes a set of decision
procedures interfaced through theory resolution. These
decision procedures construct complex terms for output
variables in specifications; these terms represent program
fragments in the output language. DSDRAT also
mechanically generates a simple abstract-to-concrete
strategy from the partitioning of the domain theory into an
abstract and concrete part. (This mechanically-generated
strategy is a simplification of the existing manually-tuned
AMPHION strategy (see [5]) and is not described in this
paper.). Formally, DSDRAT takes as input a 4-tuple
<DT,ΣA,ΣC,ABS>, where DT is an AMPHION domain
theory,ΣA is the abstract specification language,ΣC is the
concrete target language, andABS is the set of
parameterized abstraction maps.

6.2 Decision procedures for deductive synthesis

Decision procedures in DSDRAT’s library are also
indexed by a 4-tuple<DT,ΣA,ΣC,ABS>. Conceptually, each
decision procedure schema in DSDRAT’s library solves a
small, parameterized, program synthesis problem. Problems
given to the decision procedure are specified in the language

query φ∈Φ into a satisfiability questionSAT(φ). A literal
satisfiability procedure designed by DRAT is independent of
the particular set of ground literals, including the ground
axioms ofT; it actually solves all problems with the same
non-ground axioms asT.

The following pseudo-code is an abstract description of
DRAT’s design algorithm:

procedures ←{}, T I ←{}, T’ ←T
UNTIL empty(T’) DO

instance ←choose-procedure (T’)
IF null (instance) THEN EXIT
procedures ←procedures ∪ instance
TI ←TI ∪ theory(instance)
FOR EACH axiom in T’DO
 WHEN TI implies axiom DO

T’ ←T’- axiom
END FOR

END UNTIL

The set of decision procedure instances is built up
incrementally while the set of axioms inT’ is pared down
incrementally. The process stops either whenT’ is empty
or no more decision procedures are applicable. Each time
choose-procedureis invoked, it chooses a sort, relation, or
function symbol fromT’ , classifies that symbol in the
hierarchy as far down as possible, and then returns the
decision procedure (instance) and associated theory
(theory(instance)) with the deepest node reached in
the hierarchy. (For DRAT, the top nodes of the hierarchy
were defined syntactically (e.g. unary function, binary
relation), nodes lower down were semantically specialized
(e.g. one-to-one function, total order)). Both the procedure
and the theory are instantiated by the classified symbol. The
new procedure is added toprocedures and its theory is
added toTI. DRAT then determines which axioms inT’ can
be removed, i.e., those axioms that are implied byTI. DRAT
is sound and complete, see [13] for details.

Although this algorithm is not sensitive to the way axioms
are formulated, it is sensitive to the choice of language in
formulating a problem, for example, a function formulated
as a relation. DRAT’s algorithm was augmented with
isomorphic reformulation [13], implemented by placing
reformulation rules on nodes in the hierarchy. These rules
change a problem’s formulation and also often restart
classification at different nodes in the hierarchy.

DRAT has been successfully applied to analytical
reasoning problems like those on the GREs. For example,
one representative problem took over three hours to solve
with a general-purpose resolution theorem-prover. By
contrast, DRAT automatically produced a theorem-prover/
decision-procedure combination that solves the same
problem in a few seconds. DRAT was applied to twenty
analytical reasoning problems and averaged two orders of
magnitude speed-up over the theorem-prover alone.

5. Empirical results of manual domain theory
operationalization

We manually applied the DRAT methodology to the
NAIF domain theory. The objective was twofold: First, to
experimentally determine whether analogous speed-ups
could be obtained for deductive synthesis as were obtained
for analytical reasoning problems. Second, to understand the
technical issues in extending DRAT to deductive program
synthesis. This section describes the experimental results for
the first objective. The following section discusses the
second objective. Our experiment targeted parts of the NAIF
domain theory that we had previously needed to manually
tune either through reformulation or through adjusting the
theorem-proving strategy. If the DRAT methodology could
successfully replace such parts of the domain theory with
decision procedures, then automation of this methodology
could likely replace manual tuning by deductive synthesis-
experts.

 One pattern of axioms that requires deductive-synthesis
tuning is typified by those for conversions between time
systems (see section 2 for notation):

These axioms describe conversions between time
systems, and will be used as an example in section 6. The
first axiom states that a time co-ordinate in any time system
can be converted to another time system by an application of
the functionconvert-time. The second axiom describes the
identity conversion, while the third states that nested
applications ofconvert-times with matching time-system
arguments can be replaced by a single application. The
second and third equations can be oriented from left to right
and consequently are treated as simplification rewrite rules.
However, equations like the first axiom need to be used in
both directions and can not be oriented. As a result, SNARK
uses paramodulation for inferences with the first axiom.
Each paramodulation represents a multi-branched choice
point in the search space. We developed a decision
procedure to reason efficiently about representation
conversions and replaced the axioms above with an
instantiation of the procedure. We also replaced several
other sets of similar axioms (e.g., co-ordinate frame
conversion, co-ordinate system conversion) by different
instantiations of this same procedure. These instantiated
decision procedures are very similar to modules that might
be developed by a KBSE expert when hand-crafting a KBPS
system.

We performed this manual replacement of axioms by

Up to now, no tools have existed to facilitate domain
theory development and extension for AMPHION,
particularly the task of tuning a domain theory and theorem-
proving strategies for efficient program synthesis.
Definitional extension and specification of new software
components is fairly routine. However, adding axioms that
interact with existing axioms often leads to a combinatorial
explosion during deductive synthesis. To date, we have
addressed these problems as is usually done in applications
of automated theorem-proving: manually reformulating the
domain theory and tuning the theorem-proving strategy.
However, continuing this methodology will make it
impossible to transition AMPHION from a few application
domains in the research laboratory to a plethora of
application domains in the field.

3. META-AMPHION

META-AMPHION is a system, currently under
development, whose objective is to empower domain
experts (without substantial training in KBSE) to specialize
AMPHION to an application domain and maintain it
themselves. META-AMPHION includes a user interface to
guide domain experts in creating and extending a domain
theory, a subsystem to check that software components are
specified correctly in a domain theory through verification
against the component code, and a subsystem to check for
missing axioms. The research described in this paper is for a
subsystem—DSDRAT—to automatically operationalize a
domain theory for efficient deductive synthesis.

Our approach to operationalizing a declarative domain
theory is analogous to applying AMPHION at the meta-level:
given a meta-theory of program synthesis and a domain
theory for a particular application domain, META-AMPHION

constructs an efficient domain-specific KBPS system by
composing components from a library and then instantiating
the generic AMPHION architecture.

The components are decision procedures that perform
specialized inference tasks much more efficiently than
applying general-purpose theorem-proving to axioms. In the
usual approach to decision procedures, the specialized
inference tasks are specified syntactically, e.g., ‘decide the
equality relation’. In contrast, in our approach the
specialized inference tasks are smaller-grained and specified
semantically, e.g., ‘decide whether a set of ordered pairs
(represented as ground literals) defines a partial order’. In
our approach, the decision procedures decide theories
related to standard mathematical structures, such as various
algebras (e.g., groups, path algebras). The decision
procedures incorporate algorithms, such as graph-search
algorithms, that would also be found in hand-crafted KBPS
systems that did not use automated theorem-proving.

The advantage of this semantic and small-grained

approach to decision procedures is that automated analysis
of their applicability is far more tractable. The decision
procedures are simply specified through the theories they
decide. Given a theory of a decision procedure, DSDRAT
analyzes a domain theory to identify sets of axioms that are
equivalent to the theory. These sets of axioms are then
removed from the domain theory and, in their place,
instances of the decision procedure are interfaced to the
theorem-prover. This specialized theorem-prover, with the
remaining axioms, performs the same inferences as the
general-purpose theorem-prover, with all the axioms, but
much more efficiently. Conceptually, this process is repeated
for all the decision procedures in the library.

The actual operationalization process is made efficient by
arranging the theories for the decision procedures into a
hierarchy; more specialized theories are lower in the
hierarchy (e.g., ‘equivalence relation’ is below ‘symmetric
binary relation’). The nodes in the hierarchy are cross-
indexed through reformulation rules to accommodate
different ways of formulating a domain theory. The next
section describes this process as it has already been applied
to analytical reasoning problems, while subsequent sections
describe extensions for program synthesis problems.

4. DRAT

DRAT (Designing Representations for Analytical Tasks)
[14] was inspired by human problem-solving performance
on analytical reasoning problems, such as those found on
graduate-level standardized admission tests (GREs). When
these problems are encoded in FOL, they are surprisingly
difficult for a general-purpose theorem-prover, taking hours
for problems solved in minutes by college students. Students
use specialized representations and procedures to reason
about these problems; in fact, GRE guidebooks show how
diagrams can be used to assist in problem-solving. DRAT
parallels human performance in designing specialized
representations and procedures to solve analytical reasoning
problems.

A problem is a pair<T,Φ>, where T is a first-order theory.
Φ is a set of queries. Possibility queries ask whetherT∪φ is
satisfiable and necessity queries ask whetherT impliesφ or,
equivalently, whetherT∪{¬φ} is unsatisfiable. (In both
casesφ is a ground formula.) Given a problem, DRAT
automatically performs a semantic analysis of the non-
ground axioms (i.e., axioms with quantified variables) inT,
and replaces as many as possible with instances of
specialized decision procedures. These decision procedures
are interfaced to a theorem-prover through theory resolution
[10]. Technically, DRAT designs aliteral satisfiability
procedure, which decides for a theory whether a conjunction
of ground literals is satisfiable. A literal satisfiability
procedure is used to solve a problem by converting each

program transformations, ad-hoc procedures, or the intricate
workings of automated theorem-provers. We believe that the
knowledge-acquisition bottleneck for KBSE is
surmountable by domain experts only if domain
descriptions can be developed, validated, and maintained
with an underlying declarative semantics. Declarative
semantics are a necessary but not sufficient requirement.

This paper describes research to automatically
operationalize a declarative domain theory for the purpose
of efficient, domain-specific KBPS. It is an essential
component for enabling domain experts to develop and
maintain their own KBPS systems. This research builds
upon the AMPHION system, reviewed in section 2, which is
the KBPS analogue of a generic application-generator
architecture. The META-AMPHION system (section 3), which
is currently under development, is the KBPS analogue of
application-generator generator technology. The research
described in this paper is for one component of the META-
AMPHION system.

The technology for automatically operationalizing a
declarative domain theory is an extension of the DRAT
system (section 4). DRAT has previously been successfully
applied to automatically operationalizing FOL theories for
analytical reasoning problems. The techniques used in
DRAT were manually applied to one of the existing
AMPHION applications. Section 5 describes the resulting
order-of-magnitude speed-ups in deductive program
synthesis. Section 6 describes extensions to DRAT, called
DSDRAT, for automatically operationalizing domain
theories for deductive program synthesis. Section 6 also
presents a detailed example of the DSDRAT analysis
applied to an existing AMPHION domain theory. Section 7
concludes the paper.

2. AMPHION overview

AMPHION is a KBSE system that first guides a user in
developing a formal specification of a problem. A user is
guided in creating a diagram that represents the formal
specification through a structured editor and a visual-
programming interface. (The tables that drive the GUI are
compiled from a domain theory.) Then AMPHION

implements this specification, through deductive synthesis
[6] using the same domain theory, as a program consisting
of calls to components from a domain-oriented software
library. AMPHION is described in detail in [5].

AMPHION is a generic system that enjoys the advantage of
domain independence, being specialized to different
domains via different domain theories. Maintenance,
modification, and extension of a specialized AMPHION

system is done by editing the domain theory. This is far
easier than maintaining and extending ad-hoc, hand-crafted
KBSE systems.

AMPHION has been applied so far to three application
domains at NASA: AMPHION/NAIF (solar system
geometry), AMPHION/CFD (computational fluid dynamics),
and AMPHION/TOT (space shuttle navigation). Each of the
AMPHION domain theories has been developed by an expert
in deductive program synthesis, in consultation with domain
experts. The NAIF domain theory is the most mature. It now
consists of over three hundred axioms and has undergone
over a dozen major extensions and revisions. AMPHION/
NAIF has already generated programs that are in frequent
use by space scientists. For example, AMPHION/NAIF has
generated programs that perform geometry calculations, and
animations, for science planning for the upcoming Cassini
mission to Saturn. META-AMPHION will enable NASA
domain experts, such as the group at JPL which developed
and maintains the NAIF software component library, to
maintain and extend specialized AMPHION systems
themselves. The experiments and examples in this paper are
from the AMPHION/NAIF system.

An AMPHION domain theory has three parts: an abstract
theory whose language is suitable for problem
specifications, a concrete theory that includes the target
component specifications, and an implementation relation
between the abstract and concrete theory. The
implementation relation is axiomatized in the style of Hoare
[3] through abstraction maps from concrete sorts to abstract
sorts. Abstraction maps are often parameterized. To
facilitate posting constraints during deductive synthesis,
abstraction maps are reified, i.e., treated as first-order
objects. Theabs function is used to apply a reified
abstraction map to a concrete object. An example used in
this paper involves an abstraction map in the NAIF domain
theory that maps from time co-ordinates in various
representations (e.g., ephemeris time or universal time) to
abstract time (independent of representation). The term
abs(coordinates-to-time(Ts), c) denotes an abstract time,
obtained by applying the abstraction mapcoordinates-to-
time, parameterized on a time system, Ts, to a time co-
ordinate, c (time co-ordinates are translated to reals or
strings in FORTRAN).

To synthesize programs, AMPHION invokes SRI’s FOL
resolution theorem-prover SNARK [11]. Deductive synthesis
generates a term (representing a program) in the concrete
language from a specification in the abstract language.
AMPHION includes a strategy to guide SNARK from abstract,
specification-level constructs towards concrete,
implementation-level constructs. This strategy is highly
effective, reducing program synthesis times from hours
(sometimes days) to minutes (see [5]). This strategy is also
robust and does not need to be tuned for individual
problems, but often does require manual tuning when a
domain theory is modified.

Abstract

AMPHION is a real-world knowledge-based software
engineering (KBSE) system whose program synthesis sub-
system is based on deductive synthesis. AMPHION has a
domain-independent generic architecture that is specialized
to a domain through a declarative theory. Program synthesis
has been made efficient and automatic through manual
tuning of theorem-proving strategies and tactics, and careful
formulation of domain theories.

The META-AMPHION system is being developed to
empower domain experts to develop, maintain, and evolve
their own AMPHION applications. META-AMPHION is
intended to be the knowledge-based analogue of
application-generator generator technology. This paper
describes technology for automatically transforming
declarative domain theories into efficient domain-specific
program synthesis systems.

1. Introduction

Application generator technology is a successful,
mainstream, domain-oriented program synthesis
technology. For example, as early as the mid nineteen-
eighties, over half of the COBOL code generated annually
was synthesized by application generators (such as screen
generators). In comparison, knowledge-based program
synthesis (KBPS) technology has had little real-world
impact to date. One reason for this difference is
technological maturity. Application generators rely upon
well-understood and mature compiler technology. KBPS
technology is far less mature.

Although relatively mature, current compiler technology
is limited in the kinds of transformations it can effect from
source language to target language. This limits the distance
that can be spanned from source-language constructs to
target-language constructs. Consequently, source languages
for application generators are typically more programming-
oriented than specification-oriented. Furthermore, the
generated code is often inefficient since the code-generation
process usually relies upon context-free macro expansion

and template instantiation. KBPS research aims to overcome
both these limitations.

A more important reason for the success of application-
generator technology is the ease with which application
generators can be generated themselves. In other words,
application-generator generator technology [1] has greatly
lowered the expertise required to construct an application
generator. Tools such as parser generators (e.g., YACC) and
GUI-builders facilitate the development of application-
generator user interfaces. Semantic-attribute grammar
technology and macro-definition languages facilitate the
development of the code-generation subsystem of an
application generator. Application-generator generator
technology enables bachelor-level computer scientists to
develop their own application generators.

In order for KBPS to achieve comparable success,
technology is needed that greatly lowers the expertise
required to develop and maintain automatic domain-
oriented KBPS systems. The goal of the research described
in this paper is to develop the knowledge-based analogue of
application-generator generator technology. Specifically,
starting with a declarative description of an application
domain, we aim to automatically generate an efficient,
automatic, domain-specific KBPS; roughly comparable to a
system that would be hand-crafted by an expert in KBSE.

A major premise of our approach is that it is essential for
the application-domain description to be declarative, in
order to enable domain experts to generate, validate, and
maintain such domain descriptions. We have found that our
domain experts (mainly physical scientists and engineers at
NASA) are familiar, through their training, with the
declarative semantics of first-order logic (FOL). They are
able to interact with us to validate FOL domain theories and
suggest corrections and refinements. (This is not to say that
they find the current notation of our domain theories to be
congenial, but rather that they understand the idea of model-
theoretic interpretations.) In contrast, the operational
semantics of KBPS systems are exceedingly difficult for
them to understand, whether such a system is based on

META-AMPHION : Synthesis of Efficient Domain-Specific Program Synthesis Systems

Michael R. Lowry

Recom Technologies, NASA Ames
Code IC, M. S. 269-2

Moffett Field, CA 94035 USA
lowry@ptolemy.arc.nasa.gov

Jeffrey Van Baalen

Computer Science Department
University of Wyoming, P.O. Box 3682

Laramie, WY 82071 USA
jvb@uwyo.edu

