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Abstract

Software engineers building a complex system make use
of a number of informal and semi-formal notations. We
describe a framework, xlinkit, for managing the consis-
tency of development artifacts expressed in such notations.
xlinkit supports distributed software engineering by provid-
ing a distribution-transparent language for expressing con-
straints between specifications. It specifies a semantics for
those constraints that permits the generation of hyperlinks
between inconsistent elements. We give a formal semantics
for link generation, and show how we expressed the rules
of the UML Foundation/Core modules in our language. We
outline how we implemented xlinkit as a light-weight web
service using open standard technology and present the re-
sults of an evaluation against several sizeable UML models
provided by industrial partners.

1. Introduction

Mainstream software engineering makes use of informal
to semi-formal notations for systems specifications, most
prominently the UML. With systems growing in complexity
and tight constraints on resources and expertise, distributed
development often becomes a necessity.

The aim of this work is to support distributed software
engineers in managing the consistency of their specifica-
tions. Contrary to previous work on constraint checking,
we adopt a tolerant approach to inconsistency, shifting the
focus from preventing to detecting and pinpointing incon-
sistent relationships.

We present a formal basis for checking the consistency
and linking the elements of distributed, heterogeneous data
in XML. We show how this can be applied to semi-formal
software engineering content, most notably the UML. We
outline a service, xlinkit, that has been developed to support

this approach and show evaluation results which demon-
strate its practicability. xlinkit leverages open standards
such as XML, XLink and XPath in order to bridge hetero-
geneity problems and allow Internet scale distribution of de-
velopment activities.

The key contributions of this paper are the adaptation of
a simple first-order logic for expressing consistency rela-
tionships of elements in XML documents, the formal spec-
ification of a semantics that enables the generation of hy-
perlinks between inconsistent elements, and a light-weight
architecture for delivering this as a service via the Web.

We show in particular how we made use of our language
to express the constraints of the UML Foundation/Core
package and to write rules that relate UML documents to Z
specifications. We present an evaluation of the performance
of our implementation against several industrial size mod-
els. xlinkit may be used athttp://www.xlinkit.com .

2. Background

The eXtensible Markup Language (XML) [3] has gained
acceptance in the business and software development world
as an open standard and as a mechanism for bridging data
heterogeneity problems.

XML has simplified the creation of domain-specific
markup languages. Software engineering is an obvious ap-
plication area where many languages have been developed.
Most importantly for the examples in this paper, the XML
Metadata Interchange (XMI) [24] standard supports the
storage of MOF [22]-compliant models in XML format, in
particular it includes a DTD for the UML as an example
application.

XML is accompanied by a set of powerful technologies,
which we will briefly review. XPath [6] supports the selec-
tion of sets of elements from XML documents by standard-
ising a language for paths in trees. XLink [7] is the linking
language for XML. An XLink consists of a set of locators



which identify the resources connected by the link. XLink
greatly improves the linking facilities available for hyper-
text authors over those available in HTML anchors: it can
link more than two documents, links do not have to be in-
side the documents being linked (out-of-linelinks) and link
traversal behaviour can be specified. When combined with
a language like XPath, XLink can be used at a fine-grain
level to relate elements rather than simply documents.

3. Related work

In this section we give pointers to immediately related
work. It must be appreciated that the problem of managing
consistency and of expressing constraints is a fundamental
problem and hence appears in different guises in a wide va-
riety of fields, which cannot all be compared in this paper.
Instead, we identify those areas of research that have had
the most influence on us and those that bear significant sim-
ilarity.

There is a substantial body of work on programming lan-
guage environments, for example the Cornell Synthesizer
Generator [25] and Gandalf [17]. These systems typically
check the consistency of abstract syntax trees by evaluat-
ing the static semantic rules of the underlying programming
languages. What distinguishes our approach is that doc-
uments can be distributed arbitrarily and checked without
depending on a central repository. The emphasis here is
also on detecting and pinpointing inconsistency rather than
enforcing consistency. The tolerant approach to inconsis-
tency that we employ is related to that explored in the area
of knowledge based software engineering in [2].

Later work on software development environments such
as ESF [26], IPSEN [19], and GOODSTEP [10] inte-
grates tools for different languages and provides consis-
tency checks that span across different documents. Most
of the work on these environments has also assumed the
existence of a centralised repository, which limits scalabil-
ity and often requires commitment to a single vendor. We
build on open standards such as XML and web transport
protocols to obtain access to distributed resources in order
to avoid these problems.

Research on federated – or distributed – databases has
addressed the problem of managing constraints between
heterogeneous, distributed databases. One approach [5]
to this problem is to execute queries on remote databases
whenever values have changed in order to check and re-
store inter-database consistency. An immediate drawback
of this approach is that constraints are localised, relating
one database to other databases. It is thus not straight-
forward to express the global constraints that we provide.
Various protocols [16] for constraint checking in federated
databases have been explored. Most work in the area as-
sumes the existence of database access logic on each host.

In our scenario of documents on web servers, it cannot be
assumed that the server will provide more than just support
for streaming documents.

Again, most work in the area of federated databases dif-
fers from our approach in that it attempts to prevent incon-
sistency. Consequently, the focus is on preventing updates
that introduce inconsistency rather than detecting and pin-
pointing it.

More recent work on constraints in semi-structured data-
bases [1] has more immediate relevance to our work. Con-
straints on paths in semistructured databases are investi-
gated in [4]. The paper proposes a restricted first order
logic, similar to ours, for expressing constraints. While
the authors claim that the restricted formulae are powerful
enough to express a variety of constraints in a database con-
text, the constraints necessary for software engineering, in
particular the UML, exceed their power. Consequently, we
allow more complex formulae, at the cost of making the im-
plication problem for our formulae undecidable.

The Object Constraint Language [23] can be used to
specify static constraints on UML models. OCL is more
expressive than xlinkit, allowing the definition of functions
and permitting the use of infinite sets such as the integers
in constraints. On the other hand, it is much harder to find
good diagnostics beyondtrue or falsefor the evaluation of
such constraints. OCL also suffers the problem of being un-
decidable and being specific to the UML – it cannot be used
to specify constraints between heterogeneous notations.

The problem of verifying constraints on websites is dis-
cussed in [11] and applied in [12]. It is important to dis-
tinguish between the goals of these approaches and our ap-
proach: Our constraints check if a set of data is consistent,
whereas the approaches in the paper check ifany instance of
a schema graph will satisfy the constraint. Since we wish to
tolerate inconsistency to introduce flexibility and also have
no power to change the standard schemas used by software
engineering notations, we cannot adopt this approach but
instead focus on detecting inconsistencies in instance docu-
ments.

Recent work [27] on graph grammars [30] demonstrates
their use in expressing UML class and sequence diagrams
and specifying consistency relationships. In this approach
specifications have to be translated into graph grammars.
In addition, graph grammar systems typically make use of
proprietary, centralised data structures, limiting their use-
fulness in a distributed setting.

The viewpoints framework [15] allows the specification
of multiple views of the same system. Multiple viewpoints
may describe the same design fragment, leading to the pos-
sibility of inconsistency [14]. Our work complements the
body of theoretical work on viewpoints with a concrete im-
plementation on top of which such a framework could be
built.



Consistency management has become a research area of
its own [21, 13]. Several approaches have been presented
for dealing with inconsistency in formal models. Inconsis-
tency in state diagrams is explored in [8]. The approach
differs from ours in that it locks itself into a particular spec-
ification language (state diagrams) in order to allow more
powerful constraints (temporal logic). Our focus is on pro-
viding support for the vast number of developers that use
heterogeneous collections of informal or semi-formal spec-
ification languages.

Schematron [18] enables the specification of assertions
about the structure of documents and uses XSLT to evalu-
ate the assertions. Schematron is a widely used, lightweight
approach to semantic document validation. It does how-
ever not posses the expressive power of our language since,
by using pure XPath expressions, it essentially builds on a
boolean logic. It also does not provide support for checking
inter-document relationships and does not generate links.

There is a substantial amount of work in the area of hy-
pertext on automatic link generation [29]. Most approaches
in this area focus on textual data, which by its nature ex-
poses a minimal amount of semantics. Several information
retrieval techniques such as similarity measures have been
applied to link generation. Our approach makes use of the
semantics exposed by the structure of XML and the rules in
order to provide linkbases that are guaranteed to be mean-
ingful.

Finally, our language and its implementation are the suc-
cessors of previous prototype schemes [9, 20] and have been
considerably improved with respect to expressiveness, by
the introduction of first order logic, performance and the
removal of link generation annotation.

4. Motivation

The Unified Modeling Language (UML) [23] is widely
used in software development. It combines a graphical no-
tation with a semi-formal language. This language can be
used together with the notation to provide multiple views of
a system.

The UML has a syntax, and models expressed in it have
to obey certain static semantic constraints. If any of these
constraints are violated, by definition, inconsistency is in-
troduced into the model. Unfortunately, as a result of dis-
tribution of development teams and process organisation, it
is almost impossible for all constraints to be satisfied at any
one time. For example, one constraint prescribes that if a
class type is instantiated - e.g. in a sequence diagram - then
that class type must have been defined - e.g. in a class di-
agram. If a developer decides to model some interactions
first in order to get a better idea of how the final system
could work, the developer may deliberately decide to leave
the model in an inconsistent state.

Most modeling tools that implement the UML offer
some sort of consistency checking mechanism. More of-
ten than not, these tools do not enforce the complete set of
constraints in the UML standard [23]. Furthermore, UML
models can be split using XMI as an interchange format and
maintained in a distributed fashion, further complicating the
issue.

Software development is often undertaken by distribu-
ted teams who use a variety of tools and specification lan-
guages. Interchange formats like XMI can help to allevi-
ate problems of integration between tools that build on the
same language, but offer little support otherwise. As an ex-
ample, in a mission-critical system it may be necessary to
introduce Z schemas corresponding to the elements in the
UML model. If the Z specification lacks a schema for a cer-
tain UML element, the combined model is inconsistent with
respect to this regime.

5. Rule definition

We now define our rule language, which is used to assert
consistency relationships between document elements.

It may be beneficial, for paedagogic reasons, to start
with an example of the kind of relationship we are trying
to express. Constraint 1 for associations in the UML Foun-
dation/Core package,“The AssociationEnds must have a
unique name within the association”can be expressed ab-
stractly as∀a(∀x ∈ a(∀y ∈ a(name(x) = name(y) →
x = y))), wherea will be assigned to the associations and
x andy refer to the association ends inside the association.
This rule can now be evaluated against a set of documents
in order to establish their consistency status with respect to
the rule.

We use the XPath language to build up sets of elements.
In the following, we use a notation for XPath queries due
to Wadler [28]:S[[p]]x selects all nodes matching patternp
with x as the context node - the context node becomes the
relative root for the selection. For example,

S[[schemadef ]]/z

selects allschemadef elements underneath thez element,
which is also the root of the document.

Having selected the elements we are going to relate, we
can formally specify constraints between them. Figure 1
shows the abstract syntax for our language - a restricted
form of first order logic that uses XPath to select sets. In
particular, the language has been restricted to make it de-
cidable – although the implication problem for the language
is still undecidable – and, as will be seen later, efficient to
evaluate. It can be seen from the language definition that

• No functions are present

• Predicates are restricted to equality



rule ::= ∀var ∈ xpath(formula)
formula ::= ∀var ∈ xpath(formula) |

∃var ∈ xpath(formula) |
formula and formula |
formula or formula |
formula implies formula |
notformula |
xpath = xpath |
xpath 6= xpath |
same var var

Figure 1. Rule language abstract syntax

• The model used for evaluation must be finite (since
XPath sets are always finite)

Since this language is unable to handle infinite sets, its
power is restricted. It will not be possible – without user-
defined predicates – to express the constraint “for all ele-
mentsx, the children ofx are prime numbers” since the lat-
ter half of the formula would involve the integers. Neverthe-
less, the language is still powerful enough, through the use
of quantifiers, to permit the expression of powerful static
semantic constraints.

As a simplified example of a formula in the language, we
can express constraint 2 for classifiers in the UML standard,
“No Attributes may have the same name within a Classi-
fier” . Let C be the set of classifiers. As a simplification,
we assume that all classifiers only have attributes as subele-
ments. We can write∀c ∈ C(∀a ∈ c(∀b ∈ c(S[[name]]a =
S[[name]]b → same(a, b)))), i.e. if two attributes have the
same name as a subelement it follows that they are the same.
This rule represents a triangular constraint that has to hold
between a classifier and each pair of attributes contained
within the classifier.

6. Rule checking

A particularly important contribution of our work is the
generation of hyperlinks from rules as a meaningful diag-
nostic for the consistency status of a set of documents. We
will explain this link generation strategy by presenting the
formal semantics of our language, interspersed with some
examples. This semantics is completely transparent to the
user writing the rules, who only cares about the quality of
the generated links and the straightforward syntax.

A formula in our rule language expresses a desirable or
undesirable combination of elements types contained within
the document set. When such a formula is applied to actual

documents, elements will be found that either conform to it
or violate it. Our strategy for highlighting the consistency
status of a set of documents is to link together elements that
satisfy rules with aconsistent linkand elements that violate
rules with aninconsistent link.

A link consists of a set oflocators. Each locator identi-
fies the element it is pointing to. We now introduce some
simplified formal notation for link representation: LetΣ
be our alphabet andS = Σ? be the set of strings overΣ.
Since a path expression is just a string, and a locator essen-
tially consists of a path expression, the set of strings is also
the set of locators. We define the set of sets of locators as
Locators = ℘(S). The set of states a link can take is de-
fined asC = {Consistent, Inconsistent} and finally the
set of consistency links isL = C × Locators.

Before defining an evaluation strategy, we also need to
introduce some auxiliary functions, shown in Figure 2:flip
flips the consistency status of a link to its opposite.link-
cartesian takes two links,x and y, and produces a new
link with the status ofx and a set of locators consisting
of the union of the sets of locators fromx andy. To pre-
serve space, we introduce the infix operator× which takes
a link and a set of links and produces a new set by applying
linkcartesianbetween the single link and every individual
link in the set. Finally,bind deals with variable bindings:
a bindingB = S × S maps a variable name to a string
uniquely identifying a node.bind can be used to introduce
new variable bindings into a set of bindings.

first(x, y) = x

second(x, y) = y

flip : L→ L

flip((Consistent, y)) = (Inconsistent, y)

flip((Inconsistent, y)) = (Consistent, y)

linkcartesian : L→ L→ L

linkcartesian(x, y) = (first(x),

second(x) ∪ second(y))

× : L→ ℘(L)→ ℘(L)

x× Y = {linkcartesian(x, y) | y ∈ Y }

bind : B → ℘(B)→ ℘(B)

bind(b, B) = {b} ∪B

Figure 2. Auxiliary functions

We will first define our evaluation function for therule
non-terminal in Figure 1 and then progressively define the



F : formula→ boolean

F [[∀var ∈ xpath(formula)]]β = F [[formula]]bind((var,x1),β) ∧ . . . ∧ F [[formula]]bind((var,xn),β)

| xi ∈ S[[xpath]]/

F [[∃var ∈ xpath(formula)]]β = F [[formula]]bind((var,x1),β) ∨ . . . ∨ F [[formula]]bind((var,xn),β)

| xi ∈ S[[xpath]]/

F [[formula1 and formula2]]β = F [[formula1]]β ∧ F [[formula2]]β

F [[formula1 or formula2]]β = F [[formula1]]β ∨ F [[formula2]]β

F [[formula1 implies formula2]]β = F [[formula1]]β → F [[formula2]]β

F [[not formula]]β = ¬F [[formula]]β

F [[xpath1 = xpath2]]β = S[[xpath1]] = S[[xpath2]]

F [[xpath1 6= xpath2]]β = S[[xpath1]] 6= S[[xpath2]]

F [[same var1 var2]]β = S[[var1]] = S[[var2]]

Figure 3. Rule language - truth value semantics

semantics of the variousformula productions. Our seman-
tics will be supported by the standard first order logic truth
evaluation semantics shown for completeness in Figure 3.
We do not define a truth assignment for the top levelrule
non-terminal since we are not really interested in the overall
truth of the formula - we are interested in link generation.

Figure 4 shows the complete link generation semantics
for our language. The functionR : rule → ℘(L) takes a
rule and returns a set of consistency links. Since a rule con-
sists of a universal quantifier, the function will build a set of
nodes using a path expression, assign the node in the set to
the quantifier variable in turn and ask the subformula to re-
turn a set of links. Depending on the truth value of the sub-
formula for the current assignment, the function generates
a consistent or inconsistent link by prepending its current
variable assignment to all links returned by the subformula.

The quantifiers in theformula productions behave sim-
ilarly. Both the universal and existential quantifiers will first
evaluate their XPath expression - which may now include
references to variables bound to some node in a parent for-
mula - and then bind each node in the resulting node set to
their variable in turn, calling the subformula evaluation. As
far as link generation is concerned, the existential quanti-
fier generates consistent links if the subformula is true for
the current assignment, prepending its own current node to
the links returned by the subformula. The universal quanti-
fier generates an inconsistent link every time a subformula
is false, again prepending its current node to the links re-
turned by the subformula.

We can demonstrate the behaviour of the quantifiers us-
ing an example. Suppose we have a formula of the form
∀x ∈ X(∃y ∈ Y (x = y)). Suppose also that the setsX
andY consist of the elements shown in Table 1. We use the
notationXi to address theith element in setX. The rule
evaluation will bind′a′ to x and call the existential quanti-

fier’s evaluation function. Stepping through the destination
set, the equality comparison returns false for the first entry,
so the entry is ignored. On the second entry, it returns true.
The existential quantifier generates a new link of the form
(Consistent, {Y2}). For the third entry, the subformula re-
turns false so the link generated previously represents the
whole set of links returned. The universal quantifier is now
notified that the subformula has come out true for the cur-
rent assignment. It thus prepends its current nodeX1 to all
links returned by the subformula. The set of consistency
links is now{(Consistent, {X1, Y2}).

X Y
‘a’ ‘c’
‘b’ ‘a’
‘c’ ‘f’

Table 1. Sample sets for rule evaluation

For nodeX2, the existential quantifier will not find any
assignment that makes its subformula true. As a conse-
quence, its truth value will befalse and it will return an
empty set of links. The universal quantifier will obtain this
truth value and hence generate a new set of links - prepend-
ing its current assignment to the empty set of links returned
by the existential quantifier -{(Inconsistent, {X2})}.
Evaluation of the third node will proceed similarly to that
of the first node. The result is the union of all sets of links
obtained by the universal quantifier:

{(Consistent, {X1, Y2}),
(Inconsistent, {X2}),
(Consistent, {X3, Y1})}

Intuitively, these links make sense.X1 andY2 form a
desirable relationship with respect to this rule and thus have



status : bool→ C
status > = Consistent
status ⊥ = Inonsistent

R : rule→ ℘(L)
R[[∀var ∈ xpath(formula)]] = {(status(F [[formula]]bind((var,x),{})), {x})× L[[formula]]bind((var,x),{})

| x ∈ S[[xpath]]/}

L : formula→ ℘(L)
L[[∀var ∈ xpath(formula)]]β = {(Inconsistent, {x})× L[[formula]]bind((var,x),β)

| x ∈ S[[xpath]]/ ∧ F [[formula]]bind((var,x),β) = ⊥}
L[[∃var ∈ xpath(formula)]]β = {(Consistent, {x})× L[[formula]]bind((var,x),β)

| x ∈ S[[xpath]]/ ∧ F [[formula]]bind((var,x),β) = >}
L[[formula1 and formula2]]β = {x× L[[formula2]]β | x ∈ L[[formula1]]β}
L[[formula1 or formula2]]β = L[[formula1]]β ∪ L[[formula2]]β , if F [[formula1]]β = F [[formula2]]β

L[[formula1]]β , if F [[formula1]]β = >
L[[formula2]]β , if F [[formula2]]β = >

L[[formula1 implies formula2]]β = L[[formula2]]β , if F [[formula1]]β = > ∧ F [[formula2]]β = >
{x× L[[formula2]]β | x ∈ L[[formula1]]β},

if F [[formula1]]β = > ∧ F [[formula2]]β = ⊥
{flip(x) | x ∈ L[[formula1]]β}, otherwise

L[[not formula]]β = {flip(x) | x ∈ L[[formula]]β}
L[[xpath1 = xpath2]]β = {}
L[[xpath1 6= xpath2]]β = {}
L[[same xpath1 xpath2]]β = {}

Figure 4. Rule language - link generation semantics

been linked using a consistent link. ForX2, we could not
find a matching element and have thus created an inconsis-
tent link. X2 is inconsistent with the whole of the system
rather than a particular element, so it stands alone.

Productions which contain only terminals, such as the
definition ofequalsdo not introduce new variables nor con-
tain subformulae. Their linking semantics thus is to always
return an empty set. We are left with the task of defining the
behaviour of the logical connectives.

Because of space limitations we will concentrate on the
and operator. Suppose we have a formula of the form
∀x ∈ X(∃y ∈ Y (x = y) ∧ ∃z ∈ Y (x 6= z)) and are given
the two setsX andY – note that we are not referring to the
sets in Table 1 anymore. Assume thatx is currently bound
to X1 and we evaluate the existential quantifiers. Assume
furthermore that for this binding the first existential quanti-
fier returns the set of links

{(Consistent, {Y1}), (Consistent, {Y2})}

and the second existential quantifier returns

{(Consistent, {Y3}), (Consistent, {Y4})}

Intuitively, we would like our links to express that the
current assignment ofx is consistent with respect to both
subformulae of theand operator at the same time. We
achieve this by computing a ‘cartesian product’ between

the links produced by the subformulae: for each link in the
first set of links and for each link in the second set of links,
we generate a new link containing the union of locators of
both links. The result returned by theand connective in the
example is thus the set:

{(Consistent, {Y1, Y3}), (Consistent, {Y1, Y4})
(Consistent, {Y2, Y3}), (Consistent, {Y2, Y4})}

This set will be passed back to the universal quantifier,
which will generate the final set of links (for the current
assignment ofx):

{(Consistent, {X1, Y1, Y3}),
(Consistent, {X1, Y1, Y4})
(Consistent, {X1, Y2, Y3})
(Consistent, {X1, Y2, Y4})}

The semantics for the remaining connectives were
similarly derived to yield meaningful links. The whole
semantics was implemented in Haskell and tested against
simulation data structures to evaluate its usability.

We conclude the section with some observation about
the complexity of our link generation semantics. First of
all we note that the evaluation function will always termi-
nate since the quantifiers which introduce looping into the
scheme only execute their loopsn times for a node set of
sizen. Secondly, the run-time complexity of the system is
mainly influenced by the maximum nesting of quantifiers,



i.e. it isO(nk) wherek is the maximum level of quantifier
nesting. Though this exponential behaviour sounds prob-
lematic, it is not a problem in practice. Most rules from
the UML Core, which represent a complex scenario by our
standards, require at most 3 levels of nesting. In addition,
empirical results show that the evaluation is fast enough for
the theoretical complexity to be ineffectual.

7. XML deployment

Our language depends on the ability to select sets of ele-
ments for inclusion into checks and on an output format for
the resulting links. In practice, we employ XPath to achieve
the former and XLink for the latter. This makes it possi-
ble to provide a consistency checking environment which is
based entirely on open and extensible standards.

We provide an encoding of our entire rule language in
XML. Using XML for writing rules allows users to use the
same tool environment for editing that they would be using
for processing their documents in XML format. In addition,
since elements of the rules can be selected using XPath, it
will be possible to write meta-rules that check other rules
should the need arise. Figure 5 shows an example rule
which states that we have to create a Z schema somewhere
for each class in our UML model. The syntax of the XMI
paths in the figure has been abbreviated for clarity.

<globalset id="$classes"
xpath="//Foundation.Core.Class[@xmi.id]"/>

<globalset id="$stateschemas"
xpath="/z/schemadef[@purpose=’state’]"/>

<consistencyrule id="r1">
<description>

Every class in the UML model must have a
state schema in a Z specification

</description>

<forall var="c" in="$classes">
<exists var="s" in="$stateschemas">

<equal op1="$c/ModelElement.name/text()"
op2="normalize-space($s/text()[1])"/>

</exists>
</forall>

</consistencyrule>

Figure 5. Example rule in XML

The rule will be parsed and checked by our implementa-
tion. The resulting set of links will be stored in an XLink
linkbase, an example of which can be seen in Figure 6 -
the XMI paths have been abbreviated again. This file now
contains the complete consistency status of the participating
documents with respect to the set of rules that were checked.

As they stand, the linkbases are not directly usable. We
have developed several options for making the results of the
consistency more accessible. The out-of-line links in the

<xlinkit:LinkBase
xmlns:xlinkit="http://www.xlinkit.com"
docSet="file://DocumentSet.xml"
ruleSet="file://RuleSet.xml">

<xlinkit:ConsistencyLink
ruleid="zrules.xml#/id(’r1’)">

<xlinkit:State>consistent</xlinkit:State>
<xlinkit:Locator

xlink:href="meeting2.xml#//Class[1]"/>
<xlinkit:Locator

xlink:href="meetingz.xml#/z/schemadef[2]"/>

</xlinkit:ConsistencyLink>

</xlinkit:LinkBase>

Figure 6. Sample result linkbase

linkbases can befolded back into the files they are point-
ing to. The processor makes local copies of the files before
putting in the additional required elements. For example,
the link shown in Figure 6 would cause one link to be in-
serted into a copy of the UML model, pointing to the Z
schema, and one link to be created into a copy of the Z
schema, pointing to the UML model.

Figure 7. Interactive linkbase servlet

Alternatively, we can take the XML representation of the
linkbase and make the linkbase itself more user-friendly by
transforming it into HTML and making it interactive. Fig-
ure 7 shows a screenshot of a servlet we have developed
for this purpose. The servlet shows the links contained in
the linkbase in the top frame. Users can click on a pair of
locators in the link. The linked XML documents are then
rendered into HTML and the linked elements are framed
and centered in the respective bottom frame. The user can
then easily compare the inconsistent elements and decide
whether and how to take action.



8. Document Management

We provide a general framework for managing the sub-
mission of documents and rules to our check engine. It is
infeasible to check every document against every rule and
it is certainly not necessary to check every document every
time. The aim of this framework is to provide a structured
mechanism to select which rules are supposed to be applied
to which documents.

<DocumentsSet name="UMLandZ">
<Description>

A couple of UML models and Z schemas
</Description>

<Document href="catalogue.xml"/>

<Set href="Zschemas.xml"/>
</DocumentsSet>

Figure 8. Sample document set

Figure 8 shows adocument set. It includes aDocument
element which directly adds a document into the set and a
Set element which includes a further document set. The
latter can be used to form a hierarchy of document sets, per-
haps representing a hierarchy of subsystems. At run-time,
the hierarchy is flattened and all documents are loaded.

<RuleSet name="ZIFRule">

<Description>XMI vs. ZIF rules</Description>

<RuleFile href="zifrules.xml"
xpath="//consistencyrule[1]"/>

</RuleSet>

Figure 9. Sample rule set

Rules are treated similarly, they are stored in rule sets.
Figure 9 shows a sample rule set. There is aRuleFile
element for including a rule file directly and anxpath at-
tribute for specifying precisely which rules to extract from
that file. Although it is not shown in the figure, aSet el-
ement can again be used to include further rule sets. The
rule set mechanism can be used to select different rulesets
depending on the developer’s area of interest and stages in
the lifecycle.

9. Architecture

We have implemented our technology as an openly ac-
cessible web service, Figure 10 shows its basic architecture.
Users assemble their files in a document set and their rules
in a rule set. They then type the URL of their sets into a

browser form and submit it to the web server, which invokes
a servlet.

xlinkit
web 
server

servlet
engine

resources, 
document 
sets & rule 
sets

xlinkit
servlet

generated 
linkbases

browser

form

document set & 
rule set URL

linkbase
URL

Figure 10. Web service architecture

The check engine executes the consistency rules and
computes a set of links. These links are then stored locally
in a linkbase with a unique identifier and a result page is
generated which contains instructions for downloading or
viewing the linkbase.

10. Evaluation

We have evaluated our implementation in several case
studies. This section presents the results we obtained by
checking the UML Core constraints against a set of sam-
ple models: a small design model of a meeting scheduler,
a medium size model taken from Rational Rose and19 in-
dustrial size models provided by an investment bank.

We use the number of ModelElement objects contained
in each model as a measure of scale since almost everything
in the UML meta-model derives from ModelElement. Our
small model contains93 elements, the medium size model
has610 elements. The number of elements contained in the
industrial models ranges from64 to 2834 elements. In terms
of file size, the models range from around100 kilobytes to
6 megabytes.

The rules that were checked are rules from the UML
Foundation/Core package. We have expressed all but eight
rules. Of those rules, some are enforced by the XMI DTD
and do not have to be checked, some require transitive clo-
sure, which we have implemented in the past [20] but not
yet ported to our new implementation, and some cannot be
checked because the required information is not exported
by XMI.

All results listed below were obtained by executing our
check engine on a single-processor Intel machine running
at 750 Mhz and using the IBM JDK 1.2 for Linux. We will



first discuss the results obtained by checking the UML Core
constraints in each file individually. Figure 11 shows the
total time in seconds taken by each rule for all files. The
longest time taken to check all rules against any individual
file was 2.38 minutes, for the largest file in the set. The
most amount of RAM consumed was60 megabytes, again
for the largest file in the set.
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Figure 11. Rule totals for UML Core rules

We can observe several interesting properties from the
figure. There is a large variance in the time taken by the
different rules. This is due to two factors: Some rules apply
to more files than others, for example almost every model
has classes whereas few have association classes, i.e. the
association class rules do not apply in many cases. Sec-
ondly, the complexity of the XPath expressions in the rules
varies greatly. Some expressions use straightforward tree
paths whereas others require sophisticated functions like id
lookup. This is a feature of the rather complex design of
XMI. XPath selection is the single most expensive process
in rule checking and hence the complexity of the path has
the greatest impact - far greater than the complexity of the
formula in terms of nested quantifiers!

In total, over all files,8101 inconsistent links were gen-
erated. Consistent link generation was turned off since we
were only interested in finding inconsistencies. Although
the number seems large given that the models were exported
from a case tool it can be explained. Some of the mod-
els included in the check were analysis or high-level design
models, so they were incomplete with respect to definition
of fundamental data types, had operation parameter types
missing and similar problems.

11. Conclusion and Future work

We have presented the formal foundations of xlinkit, a
generic technology for consistency checking and link gen-

eration, its deployment as an open, light-weight web service
using XML, and its application to software engineering.

Our evaluation has demonstrated that we were able to ex-
press the constraints of the UML Foundation/Core package
as consistency rules and check those rules against sizeable
UML models in a reasonable amount of time. Nevertheless,
there are several problems that we could not address in this
paper.

Once inconsistencies have been detected, the problem of
resolution arises. Several questions have to be answered
when dealing with inconsistency, for example: Which rules
are more important than others? Similarly, which inconsis-
tencies are more severe than others? Our ruleset mechanism
may help to overcome these problems by allowing devel-
opers to select different rule sets depending on their pref-
erences. We are also considering process integration and
automated techniques for dealing with inconsistencies.

Our current approach is static, meaning that it checks
all documents against all rules in the rule set when a check
is invoked. We have prototyped an incremental algorithm
which performs a tree-diff operation between documents
and computes a set of rules which need to be rechecked.
We plan to integrate this algorithm into our web-based ar-
chitecture and evaluate how it improves performance.

Our memory management strategy at the moment is to
load all documents from a document set into memory as
DOM trees in order to make them available for checking.
This approach will not scale for the very large volumes of
data typical in e-commerce applications, though less com-
mon in software engineering. We will investigate options
such as ordering our rules in order to minimise the amount
of trees required in memory. Alternatively, it may be pos-
sible to exploit the caching mechanisms of XML databases,
which can provide DOM trees directly without parsing, to
circumvent the problem.

12. Availability

We encourage experimentation and use of our work,
which has already been taken up in business and financial
applications, and by several research groups. An OSI certi-
fied open source implementation1 is available, as is a free
web service with interactive examples, including those re-
ferred to in this paper.
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