
Program Execution Based Module Cohesion Measurement

Neelam Gupta

Dept. of Computer Science

The University of Arizona

Tucson, AZ 85721

ngupta@cs.arizona.edu

Praveen Rao

Dept. of Computer Science

The University of Arizona

Tucson, AZ 85721

rpraveen@cs.arizona.edu

Abstract

Module cohesion describes the degree to which di�er-
ent actions performed by a module contribute towards
a uni�ed function. High module cohesion is a desirable
property of a program. The program modi�cations dur-
ing successive maintenance interventions can have neg-
ative e�ect on the structure of the program resulting in
less cohesive modules. Therefore, metrics that measure
module cohesion are important for software restructur-
ing during maintenance. The existing static slice based
module cohesion metrics signi�cantly overestimate co-
hesion due to the limitations of static slicing.

In this paper, we present a novel program execu-
tion based approach to measure module cohesion of
legacy software. We de�ne cohesion metrics based on
de�nition-use pairs in the dynamic slices of the out-
puts. Our approach signi�cantly improves the accuracy
of cohesion measurement. We implemented our tech-
nique and measured module cohesion for several pro-
grams. Cohesion measurements using our technique
were found to be more insightful than static slice based
measurements.
Keywords - software maintenance, software re-

structuring, module cohesion, software metrics.

1 Introduction

Module cohesion measures the degree to which all its
internal processing elements (statements) contribute
towards computing a uni�ed function. The payo� of
highly cohesive modules is higher reliability and un-
derstandability of the code. In an empirical study of
148,000 source line system from a production environ-
ment, data binding and clustering analysis techniques
[26] were applied to the error data collected from sys-
tem design to system �eld test operation, in order to
characterize the error prone system structure. It was

found that routines with highest coupling to cohesion
ratios had 7 times as many errors (per 1000 source
statements) as those with the lowest coupling to cohe-
sion ratios [26] and were 20 times as costly to �x.

As changes are made to software over time, the en-
tropy of the system increases [10] and the software
becomes more diÆcult to understand and maintain.
Lehman and Belady [7, 19] have studied the history of
successive releases in a large operating system. They
�nd that the total number of modules increases linearly
with the release number, but the number of modules
a�ected by the release increases exponentially with re-
lease number. Even if the software was originally de-
signed with cohesive modules, program changes made
during its maintenance can introduce auxiliary func-
tionality to existing program units resulting in less
cohesive modules. Thus, periodic restructuring and
refactoring of existing software is important to increase
module cohesion during software maintenance [10, 24].
In order to restructure existing software to increase its
module cohesion, we need techniques and metrics that
accurately measure module cohesion.

There are two main components to functional cohe-
sion measurements. First, we must decide on a model
to identify the relatedness between the operations per-
formed by the elements of the program. Second, we
must de�ne cohesion metrics that capture the above
relatedness between the operations performed in the
function. In [21], Ott and Thuss propose a static slice
[31, 30, 14] based model to measure module cohesion.
In [6, 23], Ott and Beimann develop cohesion metrics
based on static slices for outputs computed by a func-
tion. They compute backward static slice from each
�nal use node for each output variable and compute
forward static slice of the output variable from the top
of the backward slice. They refer to the union of the
forward and backward slices of the output as its data
slice [23] and de�ne cohesion metrics by counting data
tokens in the common statements in data slices of the



outputs. Kang and Beiman [16] use these metrics in
restructuring of software through a series of decompo-
sition and composition operations.

function SUMorPROD(ag,n,A[]);
1: if (ag==0)
2: result = 0;
3: else
4: result = 1;
5: endif
6: for (i=0; i<n; i++)
7: if (ag==0)
8: result += A[i];
9: else
10: result *= A[i];
11: endif
12: endfor
13: return(result);
endfunction

output Static Slice
result f1,2,4,6,7,8,10g

output ag Dynamic Slice
result 0 f1,2,6,7,8g
result 1 f1,4,6,7,10g

Figure 1. Treatment of individual outputs.

Although the above research illustrates that mod-
ule cohesion can be measured quantitatively and used
in code restructuring during software maintenance,
there are some drawbacks of the static slice based ap-
proaches. In these approaches, procedures with a sin-
gle output variable are always considered to have max-
imum cohesion. For example, the static slice based
approaches will conclude that the program in Figure
1 has maximum cohesion since it has only one output
variable called result. In fact, this program computes
two distinct functions even though it returns a single
output. Depending upon the value of ag, it either
computes sum of n numbers or their product. Thus,
a function with a single output variable need not always
have maximum cohesion. As more and more aws are
�xed in successive releases of software, very often the
output variables of the program are reused in mutu-
ally exclusive semantic contexts to �x bugs. In these
situations, the existing static slice based approaches
will incorrectly conclude that the module has maxi-
mum cohesion. In addition, the existing approaches
[6, 23] signi�cantly overestimate module cohesion due
to limitations of static slicing. Also, there are some in-
adequacies associated with de�ning cohesion metrics by
counting data tokens in the common statements in the
data slices of outputs. Next we describe these limita-
tions and motivate our approach for overcoming them.

Limitations of static slice based model for co-

hesion measurement. The cohesion measures based
on static slices overestimate module cohesion because
of common statements in the static slices that do not

contribute to module cohesion, but are present in the
slices due to inherent imprecision of static slices. As an
example, consider the program in Figure 2. This pro-
gram computes the sum of a series and returns the real
and imaginary parts of the summation in outputs res1
and res2 respectively. The only statements common to
computation of the two outputs are while and if control
statements. However, as shown in Figure 2, the static
data slices of res1 and res2 also have statements 9 and
13 in common due to overestimation in computation of
static slices. Therefore, cohesion measurements using
these static slices also overestimate module cohesion.

Cohesion metrics. There are some inadequacies in
the cohesion measurement by the existing cohesion
metrics. As mentioned before, the existing approaches
[6, 23] construct the union of forward and backward
slice, called data slice, for each output variable and
count the data tokens in the common statements in the
data slices for all the output variables. If a statement
is in the forward slice of all the output variables but
not in backward slice of any of the output variables, it
should not contribute towards cohesion since none of
the outputs depend on it. If a statement is in the for-
ward slice of an output variable and in the backward
slice of another output variable, then counting all the
data tokens in this statement for measuring cohesion
is not correct since there can be data tokens in this
statement on which the value of only one of the output
variables depends. Therefore, counting all the tokens
in this statement gives an overestimation of cohesion.

Another inadequacy in the de�nition of existing
metrics is the assumption that data tokens in only com-
mon statements in the data slices of outputs contribute
to module cohesion. We illustrate this with the pro-
gram in Figure 2. In this program, the statement 16
is in the static slice for output res1 and statement 17
is in the static slice for output res2. They are di�er-
ent statements, so the existing approaches will assume
that data tokens in these statements do not contribute
to cohesion between outputs res1 and res2. But, these
di�erent statements use the common de�nition of ival
in statement 3. Therefore, computation of both the
outputs are related by this use of common de�nition
in statements 16 and 17. This should contribute to
increased cohesion between the two outputs (i.e., the
functional cohesion of the outputs should increase with
the use of identical de�nitions). But in the existing ap-
proach, the use of a common de�nition in statements
16 and 17 will not have any impact on the cohesion
measurement. In fact, existing metrics would obtain
same cohesion measure irrespective of whether ival was
used in statements 16 and 17 or not. Therefore, cohe-
sion measures de�ned on the data tokens in the com-



function CompSeries(oat val)
1: res1=0;
2: res2=0;
3: ival=round(val);
4: i=ival;
5 while (i 6= 0) do
6: if val > 0 then
7: temp1=sqroot(i);
8: res1=res1 + cube(temp1);
9: i=i-1;
10: else
11: temp2=sqroot(-1.0*i);
12: res2=res2 - cube(temp2);
13: i=i+1;
14: endif
15: endwhile
16: res1=ival*res1;
17: res2=ival*res2;
18: return(res1,res2);

function CompSeries(oat val)
1: res1=0;
3: ival=round(val);
4: i=ival;
5 while (i 6= 0) do
6: if val > 0 then
7: temp1=sqroot(i);
8: res1=res1 + cube(temp1);
9: i=i-1;
10: else
13: i=i+1;
14: endif
15: endwhile
16: res1=ival*res1;
18: return(res1,res2);

Data Slice of res1

function CompSeries(oat val)
2: res2=0;
3: ival=round(val);
4: i=ival;
5 while (i 6= 0) do
6: if val > 0 then
9: i=i-1;
10: else
11: temp2=sqroot(-1.0*i);
12: res2=res2 - cube(temp2);
13: i=i+1;
14: endif
15: endwhile
17: res2=ival*res2;
18: return(res1,res2);

Data Slice of res2

Figure 2. A program to compute Series Summation: x � x3=2 + x � (x� 1)3=2 + :::+ x, for x > 0, and
x � x3=2 + x � (x+ 1)3=2 + :::+ x � (�1)3=2, for x < 0.

mon statements in the data slices are not adequate in
measuring the module cohesion. The inadequacies of
the existing static slice based metrics suggest that �ner
grained metrics are required for accurate measurement
of module cohesion.

In this paper, we propose a novel approach to mea-
sure module cohesion of existing or legacy software.
Our approach addresses the drawbacks in both the key
components of cohesion measurement by considering
the program's dynamic behavior and designing metrics
based upon �ne grained activities observed during pro-
gram execution. We use dynamic slices of outputs for
measuring cohesion. This overcomes the limitations of
overestimation resulting from static slices. For exam-
ple, the dynamic slices of the output variable result in
the program in Figure 1, fall in two distinct categories,
revealing that the single output variable is actually per-
forming one of the two distinct functions in any given
execution.

Our intuition for de�ning cohesion metrics is based
on the fundamental observation that each output of a
function is computed by executing a sequence of pro-
gram statements. Each of these statements uses some
data (de�nitions), generated by earlier statements (or
constants), and performs some operations on these def-
initions to compute new de�nitions. Therefore, intu-
itively, the degree to which di�erent outputs of a func-
tion are related to each other, is determined by the
commonality between the de�nitions used and the op-
erations performed for computing these outputs. This
forms the basis for our approach to de�ne module co-
hesion metrics. We consider common de�nitions, com-
mon uses and common de�nition-use pairs, belonging
to the dynamic slices of di�erent program outputs, to

de�ne module cohesion metrics. We have implemented
our techniques and our experiments show that our met-
rics provide more precise measurement of module co-
hesion. The important contributions of this paper are:

� Our approach uses dynamic program behavior to
identify situations in which a single program out-
put variable is being used to perform multiple
functions. Therefore, the information generated
by our approach can be used in restructuring of
programs that cannot be handled by existing ap-
proaches.

� We de�ne new module cohesion metrics based
upon common de�nitions, common uses, and com-
mon de�nition-use pairs in dynamic slices which
enable more accurate cohesion measurement than
existing metrics.

� By the judicious use of dynamic slices, our ap-
proach guarantees that the cohesion measures ob-
tained by our technique are always at least as pre-
cise or more precise than the estimates obtained
using static slicing.

� Finally, our experiments demonstrate that the co-
hesion measurements obtained using de�nition-use
pairs on dynamic slices are more insightful than
those obtained by counting tokens on common
statements in static slices.

The remainder of this paper is organized as follows.
In section 2, we describe our program execution based
approach for measuring module cohesion and de�ne the
dynamic cohesion metrics. In section 3, we present
results of our experiments and briey illustrate how the



computed measures can be used to perform program
restructuring that would not have been possible using
cohesion measurements based upon static slices. We
discuss the related work in section 4 and present the
conclusions of our work in section 5.

2 Our Approach

As explained in the previous section, our program
execution based approach uses the de�nition-use pairs
on dynamic slices of outputs to measure functional co-
hesion. The use of dynamic slices overcomes the lim-
itations of overestimation in static slices. The use of
de�nition-use pairs enables us to measure functional
cohesion more accurately by including all variable ref-
erences that contribute towards functional cohesion. In
this framework, we de�ne module cohesion as follows:

De�nition: Module Cohesion is the degree of over-
lap among the de�nition-use pairs exercised by the dy-
namic slices for di�erent outputs of the module (func-
tion) .

Note that the above de�nition is general in its applica-
bility. If the outputs in the above de�nition denote dif-
ferent output variables of the module then it measures
cohesion between these output variables of the module.
On the other hand, if the outputs in the above de�ni-
tion denote output values of a single output variable,
then it measures module cohesion with respect to that
output variable.

The set of de�nition-use pairs (called def-use pairs
here onwards) exercised for each output can be
recorded during various executions of the function and
the extent of overlap among these sets can be mea-
sured quantitatively. Higher the overlap between the
sets of def-use pairs used in computation of function
outputs, more cohesive is the function. Our module
cohesion metrics are de�ned to measure this degree of
overlap between the function outputs. Now we explain
our approach for cohesion measurement in detail.

Since our approach is based on program execution,
we need a set of representative inputs for the program
module (function) that provides adequate coverage for
cohesion measurement. As our techniques are to be
used during the maintenance of existing software, it is
reasonable to assume that a test suite for some form
of def-use coverage criterion is available or can be gen-
erated. At the end of this section, we show how we
augment the available test suite of the function to ob-
tain a set of representative inputs that provides ad-
equate coverage for functional cohesion measurement
using our approach. Our algorithm consists of three

main steps.

� First we execute the function using representative
inputs and obtain a set of unique dynamic slices
for each of the function outputs. These dynamic
slices are represented as an enumeration of the def-
use pairs that are contained in each dynamic slice.

� Second we analyze the above information to iden-
tify commonality between def-use pairs in the dy-
namic slices.

� Third, using the information collected in the above
analysis, we estimate cohesion using our newly de-
veloped metrics in two ways: (i) we compare the
def-use pairs in dynamic slices of di�erent output
variables to measure module cohesion with respect
to output variables; and (ii) we compare the def-
use pairs in the dynamic slices of a given output
variable to determine if the output variable per-
forms a single function.

2.1 Construction of Unique Dynamic Slices

Since our cohesion measurements are based upon
def-use pairs on dynamic slices of outputs, we execute
the function on the representative inputs and collect
information about def-use pairs exercised during each
execution. While traditionally a dynamic slice [15, 1]
consists of a set of statements, our representation of a
dynamic slice consists of the set of def-use pairs that re-
sulted in inclusion of those statements in the traditional
dynamic slice. Note that we do not need to store the
complete execution trace in order to generate the dy-
namic slices in terms of def-use pairs that are exercised
during the execution. The programs are instrumented
during the compilation phase (see [2, 3]), to collect the
set of def-use pairs that are exercised. We represent
a def-use pair by v(dst; ust), where dst the statement
number that generates the definition of variable v and
ust is the statement number that uses this de�nition of
variable v. The def-use pairs that are exercised repeat-
edly during multiple iterations of a loop are recorded
only once, since for cohesion measurement, we are only
interested in �nding out whether a def-use pair is ex-
ercised during execution or not. Therefore, our dy-
namic slice representations consist of only unique def-
use pairs exercised during execution. If there are at
most two uses per statement and there are n statements
in the program, then the number of def-use pairs in a
dynamic slice computed by our method are bounded
by n3. Therefore, our dynamic slice representation is
compact. The cost of computing dynamic slices in our
representation is bounded by a polynomial function of
number of statements in the program.



function CompSeries(oat val)
1: res1=0;
3: ival=round(val);
4: i=ival;
5 while (i 6= 0) do
6: if val > 0 then
7: temp1=sqroot(i);
8: res1=res1 + cube(temp1);
9: i=i-1;
10: else
14: endif
15: endwhile
16: res1=ival*res1;
18: return(res1,res2);
Traditional Dynamic Slice (a)
(output=res1, input=9.5)

function CompSeries(oat val)
2: res2=0;
3: ival=round(val);
17: res2=ival*res2;
18: return(res1,res2);
Traditional Dynamic Slice (b)
(output=res2, input=9.5)

function CompSeries(oat val)
1: res1=0;
3: ival=round(val);
16: res1=ival*res1;
18: return(res1,res2);
Traditional Dynamic Slice (c)
(output=res1, input=-12.1)

function CompSeries(oat val)
2: res2=0;
3: ival=round(val);
4: i=ival;
5 while (i 6= 0) do
6: if val > 0 then
10: else
11: temp2=sqroot(-1.0*i);
12: res2=res2 - cube(temp2);
13: i=i+1;
14: endif
15: endwhile
17: res2=ival*res2;
18: return(res1,res2);
Traditional Dynamic Slice (d)
(output=res2, input=-12.1)

Figure 3. The set of traditional dynamic slices of outputs res1 and res2 of program in Figure 2.

By executing the given function for all the repre-
sentative inputs, we construct a set of dynamic slices
for each output variable. Some of these dynamic slices
for an output variable may be identical. We elimi-
nate such superuous slices from consideration. More
precisely, for each of the function's output variable
v, we construct an ordered set of Unique Dynamic
Slices, UDS(v), such that each dynamic slice added
to UDS(v) contains at least one def-use pair that is
not contained in dynamic slices already in UDS(v). In
order to compute the UDS(v) set, every time a func-
tion is executed on a di�erent input, the newly gen-
erated dynamic slice is compared with previously gen-
erated dynamic slices in the set to decide whether to
retain it or discard it. Note that the set UDS(v) is not
unique and the resulting set depends upon the order in
which the dynamic slices are generated and processed.
We illustrate the above with the example program in
Figure 2. The traditional dynamic slices for outputs
res1 and res2, obtained by executing the program in
Figure 2 on two inputs (val=9.5 and val=-12.1), are
shown in Figure 3. We construct the sets UDS(res1)
and UDS(res2) as explained above.

UDS(res1)=ffdef-use pairs of dynamic slice(a)g, fdef-
use pairs of dynamic slice(c)gg.
UDS(res2)=ffdef-use pairs of dynamic slice(b)g, fdef-
use pairs of dynamic slice(d)gg.

Note that although all the statements in traditional
dynamic slice(c) are contained in traditional dynamic
slice(a), the two slices are treated as distinct dynamic

slices by our approach because dynamic slice(c) con-
tains a def-use pair res1(1; 16) which is not contained
in dynamic slice(a). The def-use pair res1(1; 16) is con-
tained in dynamic slice(c) since de�nition of res1 in
statement 1 is used in the statement 16 when the pro-
gram is executed with input val= -12.1, which is the
input used for dynamic slice(c). However def-use pair
res1(1; 16) is not contained in dynamic slice(a) since
the de�nition of res1 in statement 1 is used in state-
ment 8 (and not in statement 16) when the program is
executed with input used for dynamic slice(c).

2.2 Analysis of Dynamic Slices to identify com-
monality among them.

As mentioned earlier, our cohesion metrics are based
upon the commonality in the def-use pairs belonging
to dynamic slices of di�erent output variables. We ob-
serve that this commonality can arise in many ways.
In particular, the cohesion between two outputs may
result from the following:

TypeI def-use pair { a common use of a common
definition: For example, let us consider the dif-
ferent types of def-use pairs on dynamic slice(a)
and slice(d) in Figure 3. The def-use pair ival(3; 4)
(i.e., the definition of ival in statement 3 and use
of ival in statement 4) forms a TypeI def-use pair
because the definition as well as the use are com-
mon to the slices of both the outputs.



TypeII def-use pair set { di�erent uses of a com-
mon definition: For dynamic slices (a) and (d)
in Figure 3, the set of def-use pairs f ival(3; 16),
ival(3; 17) g form a TypeII def-use pair set.

TypeIII def-use pair set { a common use of di�er-
ent definitions: For dynamic slices (a) and (d) in
Figure 3, the set of def-use pairs fi(9,5), i(13,5)g
form a TypeIII def-use pair set.

Two observations can be made regarding the com-
monality reected in def-use pairs as characterized
above. First, two outputs become increasingly cohe-
sive as the commonality in their def-use pairs increases.
Second the presence of TypeI def-use pairs results in a
greater degree of cohesion than TypeII or TypeIII def-
use pairs. This is because if there is a TypeI def-use
pair on the dynamic slices of two outputs, then identi-
cal de�nition is used to perform an identical computa-
tion for the two outputs. On the other hand, in case of
TypeII def-use pair set, two outputs only share a de�-
nition (i.e., use the data computed by same de�nition)
but use it in di�erent computations. Similarly, in case
of TypeIII def-use pair set, the pairs perform identical
computation but they use data from di�erent de�ni-
tions on which they perform the computation. Thus,
the contribution of TypeI def-use pair towards cohe-
sion is twice (common de�nition and common use) the
contribution of TypeII (common de�nition) or TypeIII
(common use) de�nition use pair set. Therefore, in
de�ning our functional cohesion metrics, we assign a
weight of 2 to a TypeI def-use pair and weight 1 to a
TypeII or a TypeIII def-use pair set.

The use of def-use pairs on the dynamic slices pro-
vides the �ner granularity required to accurately mea-
sure the functional cohesion as compared to cohesion
measurement by counting the data tokens in common
statements in the data slices of the outputs. In ad-
dition, the �ner granularity provided by def-use pairs
allows us to accurately measure functional cohesion by
considering only the backward dynamic slices for the
outputs. Next we de�ne our functional cohesion met-
rics based on di�erent types of def-use pairs in the back-
ward dynamic slices of the module outputs.

2.3 Cohesion Metrics

Cohesion between di�erent output variables of

a module: The �rst set of metrics measure the cohe-
sion between di�erent output variables of the function.
We de�ne Strong Functional Cohesion (SFC) as that
arising out of def-use pairs of each type common to the
dynamic slices of all the outputs variables.

SFC =
2� j TypeIall j + j TypeIIall j + j TypeIIIall j

2 � (total # of def�use pairs in the module)

where, Typeiall = set of all def-use pairs of Typei for
i=I,II,III, such that the def-use pair is present on at
least one dynamic slice of each of the output variables
of the function.

Similarly, we de�ne the weak functional cohesion to
be that arising out of def-use pairs of each type that are
found in dynamic slices of two or more output variables.
As explained above, we use the weighted summation to
take into account how strongly each def-use binds the
output variables of the module.

WFC =
2� j TypeI�2 j + j TypeII�2 j + j TypeIII�2 j

2 � (total # of def�use pairs in the module)

where, Typei�2 = set of all def-use pairs of Typei for
i=I,II,III, such that the def-use pair is present on at
least one dynamic slice of 2 or more output variables
of the function.

The measurements of functional cohesion between
the two output variables of the CompSeries program
in Figure 2 are given in Table 1. The values in column
labeled DC list the cohesion measures obtained using
our metrics, whereas the values in the column labeled
SC list the cohesion measures obtained using tokens in
common statements in data slices of outputs. All the
values are in the scale of 0-1, where 1 indicates max-
imum module cohesion and 0 indicates no cohesion.
When input val is positive, real part of summation is
computed and zero value is returned for the imaginary
part of the summation. When input val is negative,
imaginary part of summation is computed and the zero
value is returned for the real part of summation. Cohe-
sion between the two output variables results only from
the common while control statement. That is why the
dynamic cohesion is much lower than static cohesion.
The static cohesion is higher due to overestimation of
cohesion by false overlap of statements in the static
slices of outputs. The values for SFC and WFC are
same since there are only two output variables of the
function.

Program # of SFC WFC
outputs SC. DC. SC DC

CompSeries 2 0.394 0.2692 0.394 0.2692

Table 1. Cohesion between output variables
of CompSeries program in Figure 2.

Module cohesion with respect to each output

variable: Our approach also allows us to compute
functional cohesion of a module with respect to each



individual output variable. Thus using our approach,
functional cohesion of module that has only one output
variable can also be computed. The cohesion measures
similar to those described in the previous section can be
computed for a function with a single output variable
v by considering the def-use pairs of each type that be-
long to all the dynamic slices in the set UDS(v). Thus,
Strong Functional Cohesion for a function with a single
output variable v is:

SFC(v) =
2� j TypeIall j + j TypeIIall j + j TypeIIIall j

2 � (total # of def�use pairs in the module)

where, Typeiall = set of all def-use pairs of Typei for
i=I,II,III, such that the def-use pair is present on each
dynamic slice in the set UDS(v) of unique dynamic
slices of the output variable v.

Similarly, Weak Functional Cohesion can be de�ned
by considering def-use pairs of each type that are com-
mon to two or more dynamic slices in the set of unique
dynamic slices for the output variable.

The de�nitions of functional cohesion measures de-
�ned in this section can be used to measure the co-
hesion of a function with respect to each of the out-
puts variables of the function. In Table 2, we show
the comparison between the static and dynamic mod-
ule cohesion measurements with respect to each output
variable of the CompSeries program in Figure 2. As
the dynamic cohesion measures illustrate, the function
has low cohesion with respect to each of the output
variables. Hence, each of the output variable is com-
puting multiple functions, contrary to the conclusion
derived from static cohesion measures. Upon analyz-
ing this program, we note that for positive values of val,
the output variable res1 computes its respective series,
but for other values of val, the module always assigns a
constant zero value to its output variable res1. Same is
true for the other output variable. This suggests that
the program can be restructured using subroutines to
improve its readability. In contrast, static slice based
module cohesion measurement techniques cannot han-
dle restructuring of this program. Note that module
cohesion with respect to output variable res2 is slightly
lower than that of res1 because of multiplication with
additional constant (-1) in statement number 11.

Program Output SFC WFC
SC DC SC DC

CompSeries res1 1 .222 1 .222
res2 1 .212 1 .212

Table 2. Module cohesion for each output of
CompSeries in Figure 2.

2.4 Construction of a representative set of inputs

As mentioned before, we need to have a representa-
tive set of inputs that can give adequate coverage for
dynamic functional cohesion measurement. We con-
struct this set of inputs in the following manner. We
assume that a test suite for some form of def-use struc-
tural coverage criteria exists or can be generated using
existing techniques [25, 4, 18, 5, 32, 33]. We �rst ini-
tialize the set of representative inputs by this test suite
and execute the function with the inputs in this test
suite. We compute the dynamic slices for each output
in terms of def-use pairs as explained before. If there
is a def-use pair in the static slice of an output variable
that is not exercised by any of the inputs, we try to
generate an input for the def-use pair by considering a
path that exercises the def-use pair. We use our itera-
tive test data generation technique [12, 13] to generate
test data for the selected path. If we are able to gen-
erate an input for the path, we add this input to the
current set of representative inputs otherwise we pick
next path through the def-use pair. If all the paths that
exercise the def-use pair are detected infeasible, then
we ignore this def-use pair, otherwise we add this def-
use pair to the dynamic slice of the output variable.
Since detection of infeasible paths and hence infeasi-
ble def-use pairs is undecidable in general, we add the
def-use pair to the dynamic slice of the variable in the
latter case to avoid underestimation of cohesion by dy-
namic slices. This guarantees that our approach never
underestimates functional cohesion.

3 Experimental Results

Implementation. We have implemented our cohe-
sion measurement techniques. Our implementation (in
C++) supports only C programs as input with a lim-
ited set of constructs like scalars, arrays, expressions,
while, if-then-else and function calls. We modi�ed the
SUIF 2 compiler system [28] on linux platform to gen-
erate instrumented source code of the given function
[2]. This instrumented function generates the dynamic
slices in the form of the def-use pairs exercised for com-
puting each of the output variables during execution of
the function. We execute the instrumented program
for a set of representative inputs as explained in pre-
vious section and compute the set of unique dynamic
slices in terms of def-use pairs exercised for each out-
put. We then compute Type1, TypeII and TypeIII
def-use pairs using the dynamic slices and compute the
cohesion metrics developed in earlier sections. We also
implemented cohesion measurement using static slic-
ing and counting data tokens in common statements
as in [6] for comparison purposes. Both static and



dynamic slices are intraprocedural slices. We handle
function calls as variable references while computing
intraprocedural slices since we are interested in com-
puting functional cohesion of a single program module
(procedure). The following programs were used in our
experiments.

VarStd - This program computes the variance and
standard deviation of n input data values. The two
outputs share only the computation of the average
of n numbers. This program was taken from an
undergraduate class project.

StatSig - Given a set of ordered pairs (x; y), the pro-
gram establishes whether the change in y as x
changes is statistically signi�cant or not. It has
3 output variables: sigma2, t and p. sigma2 is
used in the mathematical formula used to compute
t. The absolute value of t decides whether varia-
tion in y is statistically signi�cant or not, and the
value of p is set to indicate this. This program is
from the project on Landcover analysis at Dept of
Atmospheric Physics at Univ. of Arizona.

Sin2Cos2 - This function takes theta (in radians) as
the input and computes sin2(theta)� cos2(theta)
as the output. It is written to optimize the com-
putation for certain inputs. When theta is zero
it returns value -1. For small values of theta,
sin(theta) is approximated by theta. For all other
cases, sin(theta) is computed by using the series
x�x3=3!+ ::::::. Therefore the output is computed
di�erently for di�erent classes of inputs. This pro-
gram was written for numerical computation class.

SumSq - This program computes sum or sum of
squares and product from 1 to n. It is taken from

http://web.cacs.usl.edu/�arun/Wolf/demo/classic/
module9/sum sumsquares product/LOGICAL.html

Results. We conducted experiments to measure the
SFC and WFC of above programs using our dynamic
cohesion metrics as well as existing [6] static slice based
cohesion metrics as shown in Table 3. For the �rst pro-
gram (V arStd), the dynamic cohesion using our tech-
nique is higher than static cohesion measurement be-
cause of some TypeII def-use pair sets that contribute
to cohesion but are in di�erent statements in the data
slices. Hence they are not accounted for in the static
cohesion. Thus in this case, the static cohesion metrics
do not adequately measure cohesion.

The program StatSig has an infeasible path and
therefore the def-use pairs on this path are never exe-
cuted. The static cohesion measures are overestimates

in this case because of common statements in data
slices of all three outputs corresponding to this infeasi-
ble path. The program Sin2Cos2 has only one output.
Therefore, the static cohesion measures conclude that
the function has maximum cohesion, whereas the dy-
namic cohesion measures illustrate that the function
indeed has very low cohesion with respect to its only
output variable. This indicates that grouping compu-
tations for di�erent cases into subroutines may increase
the cohesion and readability of the code.The function
SumSq has comparable static and dynamic cohesion,
although the dynamic cohesion measure is more accu-
rate than the static cohesion measure.

Program #of SFC WFC
outputs SC DC SC DC

VarStd 2 0.11 0.13 0.11 0.13
StatSig 3 0.77 0.60 0.86 0.69
Sin2Cos2 1 1 0.04 1 0.06
SumSq 3 0.11 0.092 0.30 0.31

Table 3. Functional cohesion measures with
respect to all output variables.

Program Outputs SFC WFC
SC DC SC DC

VarStd Variance 1 1 1 1
StdDev 1 1 1 1

StatSig sigma2 1 0.2 1 0.2
t 1 0.19 1 0.19
p 1 0.31 1 0.76

Sin2Cos2 result 1 0.04 1 0.06
SumSq sum 1 1 1 1

product 1 1 1 1
sumproduct 1 1 1 1

Table 4. Functional cohesion measures with
respect to individual output variables.

outputs SFC WFC
SC DC SC DC

sum 1 1 1 1
product 1 1 1 1

sumsquares 1 1 1 1
sum, sumsquares 0.13 0 0.13 0
sum, product 0.13 0 0.13 0

product, sumsquares 0.47 .47 0.47 .47
all 0.11 0.09 0.30 0.31

Table 5. Cohesion Measures for SumSq

We also measured the module cohesion with respect
to individual output variables shown in Table 4. These
dynamic cohesion measures in Table 4 provide insight
into how cohesive the function is with respect to each
output variable which cannot be obtained from static
cohesion measurements. We illustrate the use of these



cohesion measurements in code restructuring of pro-
gram SumSq by computing its cohesion measurements
for all outputs, individual outputs and also pairs of
outputs shown in Table 5. Each output variable of this
program has only one dynamic slice, so the dynamic
functional cohesion as well as static functional cohe-
sion with respect to each output is 1. But the dynamic
cohesion between sum and product is zero and the dy-
namic cohesion between sum and sumsquares is zero,
whereas the dynamic cohesion between sumsquares
and product is high. So, we conclude that computation
for sum should be separated from the computation of
sumsquares and product to make the module more co-
hesive. In contrast, the static cohesion measurements
for the same cases do not reveal the complete lack of
cohesion in this module.

4 Related Work

The idea of cohesion was introduced in [27] by
Stevens, Meyers, and Constantine. The concept of co-
hesion has evolved since then and [34] presents various
levels of module cohesion. Emerson de�ned a cohesion
metric [9] that measures module cohesion by seeing how
many independent paths of the module go through dif-
ferent statements in a module. Longworth [20] was
�rst to hypothesize that some of the static slice based
metrics suggested by Weiser in [30, 31] may be used as
indicators of cohesion. The uses of program slicing in
software maintenance has been discussed in [11, 8, 17].
In [21, 22], Ott and Thuss de�ned metric slices to im-
prove the static slice based metrics suggested in [20].
They proposed to use metric slices for module cohesion
measurement. The metric slices were further re�ned
in [6] to data slices by using data tokens rather than
statements as the basic unit. In this paper, we have
further re�ned slice based cohesion metrics by consid-
ering def-use pairs on the dynamic slices of outputs.
As illustrated in the paper, counting data tokens in
the common statements in the data slices of the out-
puts does not take into account cohesion between the
outputs resulting from multiple references of same def-
inition in di�erent statements. Using common def-use
pairs for measuring cohesion overcomes this limitation.
Also, since our approach is based on program execu-
tion, it can handle eÆciently handle arrays and point-
ers. Static slice based approaches cannot handle arrays
and pointers eÆciently. Using dynamic slices instead of
static slices overcomes the overestimation of cohesion
due to limitations of static slicing. Thus, our cohesion
metrics based on def-use pairs on dynamic slices mea-
sure cohesion more accurately than existing cohesion
measurement metrics.

Restructuring of existing software is a form of pre-
ventive maintenance that is often necessary when the
system undergoes new releases. In [16], Kang and
Beiman illustrate the use of cohesion measurement
in software restructuring. Recently, a new approach
based on concept analysis [29] has also been pro-
posed for module restructuring. Our program execu-
tion based approach and cohesion metrics developed in
this paper can make signi�cant contributions in guid-
ing restructuring of legacy software.

5 Conclusions

In this paper, we have presented a program execu-
tion based approach to de�ne metrics for measuring
module cohesion. Our metrics are based on common
def-use pairs on the dynamic slices of outputs. Our
approach also enables measurement of functional co-
hesion with respect to a single output variable. Using
def-use pairs on dynamic slices, we obtain more ac-
curate measurement of functional cohesion compared
with existing techniques. It is also helpful in guiding
code restructuring in some cases that cannot be han-
dled by existing techniques.

Acknowledgments
We would like to acknowledge Kausik Sinnaswamy,
Maqsood Mohammed and Mohammad Hossain for
their contributions in implementation of our tool. We
also thank Prof. Xubin Zeng, Department of Atmo-
spheric Physics, Univ. of Arizona, for his help in one
of the programs for our experiments.

References

[1] Agrawal H. and Joseph R. Horgan, \Dynamic Program
Slicing", in the Proceedings of ACM SIGPLAN'90 Con-
ference on Programming Language Design and Imple-
mentation, White Plains, New York, June, 1990.

[2] Ball T. and James R. Larus, \EÆcient Path Pro�ling",
MICRO-29 , December 1996.

[3] Ball T. and James R. Larus, \Using Paths to Measure,
Explain, and Enhance Program Behavior", IEEE Com-
puter, July 2000.

[4] Beiman James M. and Janet L.Schultz, \An Empirical
evaluation (and speci�cation) of the all-du-paths testing
criterion", in Software Engineering Journal 1992.

[5] Beiman James M. and Janet L.Schultz, \Estimating the
number of test cases required to satisfy the all-du-paths
testing criterion", in the Proceedings of Software Test-
ing, Analysis and Veri�cation Symposium, pages 179-
186, Key West, Florida, December 1989.



[6] Beiman James M. and Linda M. Ott, \Measuring Func-
tional Cohesion", in IEEE Transactions of Software En-
gineering, Vol. 20, No. 8, pages 644-657, August 1994.

[7] Belady L.A and M. M. Lehman, \A Model of Large
Program Development", IBM Systems Journal, Vol 15,
No. 3 1976, pp. 225-25

[8] Cimitile A, Lucia De. A and Munro M. \A Speci�cation
Driven Slicing Process for Identifying Reusable Func-
tion", Software Maintenance: Research and Practice,
Vol. 8, No. 3 pages 145-178, 1996.

[9] Emerson Thomas J. \A Discriminant Metric for Module
Cohesion", in Proceedings of the 7th International Con-
ference on Software Engineering, pages 294-303, Los
Alamitos CA, 1984.

[10] Fowler Martin, \Refactoring: Improving the Design of
Existing Code" Addison Wesley Longman, Inc., 1999.

[11] Gallagher K. B and J. R. Lyle, \Using Program Slicing
in Software Maintenance," IEEE Transactions on Soft-
ware Engineering, vol. 17, no. 8, pages 751-761, 1991.

[12] Gupta Neelam, Aditya P. Mathur, and Mary Lou
So�a, \Automated Test Data Generation Using an Iter-
ative Relaxation Method," in Proceedings of ACM SIG-
SOFT Sixth International Symposium on Foundations
of Software Engineering, Orlando, FL, Nov. 1998.

[13] Gupta Neelam, Aditya P. Mathur, and Mary Lou
So�a, \UNA Based Iterative Test Data Generation and
its Evaluation," in Proceedings of the 14th IEEE Inter-
national Conference on Automated Software Engineer-
ing, Cocoa Beech, FL, October 1999.

[14] Horwitz Susan, Thomas Reps, and David Binkley.
\Interprocedural Slicing Using Dependence Graphs",
in ACM Transactions on Programming Languages and
Systems, Vol. 12, No. 1, pages 26-60, January 1990.

[15] Korel B. and J. Laski, \Dynamic Program Slicing",
Information Processing Letters, vol. 29, no. 3, pp, 155-
163, 1988.

[16] Kang Byung-Kyoo and James M. Beiman, \A Quanti-
tative Framework for Software Restructuring," in Jour-
nal of Software Maintenance, Vol. 11, pages 245-284,
1999.

[17] Kim, H. S, Y. R. Kwon and I. S. Chung, \Restructur-
ing Programs through Program Slicing", International
Journal of Software Engineering and Knowledge Engi-
neering, Vol. 4, No. 3, pages 349-368, 1994.

[18] Laski, J. and B. Korel, \A data ow oriented program
testing strategy", IEEE Transactions of Software Engi-
neering, Vol. 9, No. 3, pages 347-354, 1983.

[19] Lehman M. M. and L. A. Belady, \Program Evolution-
Processes of Software Change", Academic Press, New
York, 1985.

[20] Longworth, H. \Slice based program metrics", Mas-
ter's Thesis, Michigan Technological University, 1985.

[21] Ott Linda M. and Je�rey J. Thuss, \The Relationship
between Slices and Module Cohesion", in Proceedings of
11th International Conference on Software Engineering,
IEEE Computer Society Press, Washington DC, pages
198-204, May 1989.

[22] Ott Linda M. and Je�rey J. Thuss. \Slice based met-
rics for measuring cohesion", in Proceedings of IEEE-CS
International Symposium on Software Metrics, 1993.

[23] Ott Linda M. and James M. Beiman. \Program Slices
as an Abstraction for Cohesion Measurement" in In-
formation and Software Technology, 40, pages 691-699,
1998.

[24] Parnas David L. \Software Aging", Proceedings of 16th
IEEE International Conference on Software Engineer-
ing,pages 279-287, Sorrento, Italy, May, 1994

[25] Rapps, S. and Weyuker E.J., \Selecting software test
data using data ow information", IEEE Transactions
of Software Engineering, Vol. 11, No. 4, pages 367-375.,
1985

[26] Selby, Richard W., and Victor R. Basili, \Analyzing
Error-Prone System Structure", IEEE Transactions of
Software Engineering, Vol. 17, No. 2, pages 141-152,
February 1991.

[27] Stevens Wayne, Glenford Myers, and Larry L. Con-
stantine. \Structured Design," IBM Systems Journal,
Vol. 13, No. 2, pages 115-39, May 1974.

[28] http://suif.stanford.edu/suif/suif2 The SUIF 2 Com-
piler System, Also Tutorial at ACM SIGPLAN'99 Con-
ference on Programming Language Design and Imple-
mentation, May 4, 1999, Atlanta, GA.

[29] Tonella Paolo. \Concept Analysis for Module Restruc-
turing", IEEE Transactions of Software Engineering,
Vol. 27, No. 4, pages 351-363, 2001.

[30] Weiser, M. \Programmers Use Slices When Debug-
ging", Communications of the ACM, Vol. 25, No. 7,
pages 446-452, July 1982.

[31] Weiser, M. \Program Slicing", IEEE Transactions of
Software Engineering, Vol. 10, No. 4, pages 352-357,
1984.

[32] Weyuker, E.J. \An Empirical study of the complex-
ity of data ow testing", in the Proceedings of Second
Workshop on Software Testing, Veri�cation and Anal-
ysis, pages 188-195, Ban�, Canada, 1988.

[33] Weyuker, E.J., \The cost of data ow testing: an
empirical study", IEEE Transactions of Software En-
gineering, Vol. 16, No. 2, pages 121-128, 1990.

[34] Yourdon E. and Larry L. Constantine. Structured De-
sign, Englewood Cli�s, N.J.: Prentice-Hall, 1979.


