
Synchronous Programming :
Strengths and Challenges

Gérard Berry

Ecole des Mines and INRIA
Sophia-Antipolis, France

Gerard.Berry@inria.fr
http://www.esterel.org

• More recently
Argos (Grenoble), SyncCharts (Nice)
Reactive C, SugarCubes (Ecole des Mines)
Ptolemy (Berkeley)
sE (GMD)
ECL (Cadence), Jester (Parades)
Lustre + ML (Paris VI)
Synchronous Verilog (Cadence, Intel)
Mode Automata (Grenoble)

• Technology born in 1983-1985

Esterel (Sophia)
Lustre (Grenoble)
Signal (Rennes)
Statecharts (Weizman)

 control theory
+ computer science

Industrial products

• Scade (Telelogic)

Airbus, Saab, Schneider, Volvo, ...

• Sildex (TNI)

SNECMA, EDF, PSA, Nortel

• Esterel Studio (Esterel Technologies)

Dassault, Thomson, Texas Instruments, VPI, ...

• CoCentric Studio (Synopsys)

• ECL (Cadence)

Reactive Systems

 control

 data

signals

sensors

signals

values

Esterel
Statecharts
Argos
SyncCharts

Lustre
Signal

Software / Hardware Synchrony

Cycle based
 read inputs
 compute reaction
 produce outputs

Synchronous = within the same cycle
 control propagation
 signal propagation

Zero Delay : abstract model, nice mathematics

Emit O as soon has A and B have arrived.
Reset behavior each R

A? B?

A? O!B? O!

A? B? O!

R?

R?

R?
R?

Automata

Block Diagrams

A

-k

B
v u x x

.

x = (A-Bk)x + Bv

-

.

TRY PASS

REQ OK

GET_TOKEN PASS_TOKEN

Sequential Circuits

OK = REQ and GO
PASS = not REQ and GO
GO = TRY or GET_TOKEN
PASS_TOKEN = reg(GET_TOKEN)

GO

The strengths of synchrony

• Simple conceptual model
clean languages, clean semantics

• Behavioral determinism
easier to program and to debug
concurrent threads are always well coordinated

• Compositionality
a chain of communication is like a communication

• Tractable mathematics => optimization + verification
the Boolean Calculus

• Controllable approximation of "reality"

Exactly as for good old Newtonian Mechanics!

Constraints for Languages

1. Clean design
programs should mean what they say
full construct orthogonality
no hack, no subset

2. Mathematical semantics
not just formal !
used as the golden spec for everything

3. Good toolset
simulation

 synthesis
 verification

Lustre, Signal : Data-Flow

node Control (U : float) returns (X : float);
var S : float;
let
 X = 0. -> (U sin(pre(X) + S - pre(S)));
 S = 1. -> cos (pre(S) + U);
tel

X = 0
X = U sin(X + S - S)

t+1 t +1 t t+1 t*
0

*

S = 1
S = cos(S + U)

t+1 t t+1

0

*-
+

X
pre sin

0.U

+

pre

cos

1.

S

pre

X = X , X , ... , X , ...0 1 n

pre(X) = nil, X , X , ... , X , ...
0 1 n

(X + Y) = X + Yn n n

X -> Y = X , Y , Y , ... , Y , ...
0 1 2 n

 X = 1, 2 , 3, 4, 5, 6, 7, 8, ...
 C = 0, 1, 1, 0, 1, 0, 1, 1, ...
X when C = 2, 3, 5, 7, 8,

Lustre Operators

The Definition Principle

X = e

means X is equal to
 i.e. X = e for all n
 i.e. X can be replaced by e anywhere

n n

Clock calculus :
 program executable in finite memory
 (compatible when undersamplings)

A? B?

A? O!B? O!

A? B? O!

R?

R?

R?
R?

Esterel : Write Things Once

loop
 [await A || await B] ;
 emit O
each R

• concurrency
• sequencing
• preemption
• full orthogonality

A? B?

A? O!B? O!

A? B? O!

R?

R?

R?
R?

loop
 [await A || await B] ;
 emit O
each R

A? B?

A? O!B? O!

A? B? O!

[await A || await B] ;
emit O

A? B?

A?B?

A? B?[await A || await B]

SyncCharts : WTO, graphical

module SPEED : % computes exact speed

input Centimeter, Second;
relation Centimeter # Second;
output Speed : integer;

loop
 var Distance := 0 : integer in
 abort
 every Centimeter do
 Distance := Distance + 1
 end every
 when Second;
 emit Speed(Distance)
 end var
end loop
end module

Programs mean what they say

nothing
pause
emit S
present S then p else q end
suspend p when S
p; q
loop p end
p || q
trap T in p end
exit T
signal S in p end

The Pure Esterel Kernel

0
1
! s
s ? p, q
s p
p; q
p
p | q
{p} p
k, k > 1
p \ s

U

*

Mathematical Semantics

• Behavioral Semantics: logical consistency
 A signal is present if and only if it is emitted
 Reactivity and determinism required

• Constructive Semantics: logical constructiveness
 Explain why signals are present or absent
 Reactivity and determinism implied

• Operational Semantics: microsteps

 Non-deterministic but confluent execution

Thm : Constructive = Operational < Behavioral

I / A A / B A and B / C

Statecharts
microsteps

I = 1
A = 1
B = 1
that’s all !

Esterel
microsteps

 I = 1
=> A = 1
=> B = 1
=> C = 1

Lustre
equations

A = I
B = A
C = A and B

A = B = C = I

<=> <=>

The Design Flow

Program

Mathematical
model

semantics

FSM
compilation optimization

verification

Netlist

synthesis

Circuit

print

C

Optimization

• Static analysis techniques
compute when to execute basic statements
Lustre, Signal : clock calculus
Esterel, SyncCharts : serial / parallel structure

• Circuit CAD techniques (Esterel, SyncCharts)
translate program into Boolean circuit

instantaneous <=> combinational
clever state assignment techniques
optimize speed for hardware
optimize area for software !

Env Prog Obs

E

BUG

Reachability analysis (BDD)
Specific algorithms for controllers (TiGeR)

Verification by Observers

Landing gear (Dassault)

loosely coordinated moves
gear / traps interaction

• gear never out without request

• gear never out unless traps locked open

• medium synchronization points OK

• if nothing gets wrong, gear fully locked in 14 seconds

Weaknesses of Synchronous Languages

Challenges of Synchronous Languages

• Base notions limited to relatively compact systems
what about distributed systems ?
what about systems on a chip ?

• Very strong formal framework, but several languages
gateways exist (dc), but can they be unified ?

• Good optimization verification tools, but still scaling problems
can we gain an order of magnitude ?

• Synchronous causality issues are difficult (Esterel)
can we make them easier for the user ?

Challenge 1 : unify the languages

• Lustre, Signal : good for data-flow
• Esterel, SyncCharts : good for control flow
• standard application : a few large control or data blocks
• modern application : a fine-grain mix

• UMTS, military radio
 sophisticated signal processing
+ many mode changes

• Modern circuits
 fancy pipelined operator
+ complex memory access control

• + integration with other methods, e.g. UML

Mode automata

X = pre(Y) or Z

X = pre(Z) or U

I J
A

B

F. Maraninchi, Y. Rémond (Grenoble)

 Hardware Esterel
G. Berry, M. Kishinevsky (Intel)

loop
 abort
 def X = Y and Z
 def ?U = ?V + 1 when W
 when I;
 abort
 def X = pre(Y) when U
 when J
end loop

non-trivial

Challenge 2 : very fast code generation

• goal : beat the human programmer

• use : simulation, golden models, embedded code

• S. Edward’s (Synopsys), D. Pulou - D. Weil (France Télécom)
fancy static scheduling of concurrency graphs

• goal : beat the human designer (oops...)

• use : FPGAs, glue logic, microprocessor control

Challenge 2’ : very fast hardware generation

 state encoding
+ information encoding
= good register / logic balance
+ fancy optimization games

Challenge 2’’ : very good codesign

Challenge 3 : abstraction in verification

• BDDs : reduce the number of variables
early quantification
multivalued logics
optimize / verify bottom-up

• Use other Boolean techniques
Stalmark algorithm (Prover)
other SAT techniques
linear programming techniques

• Data abstraction
Systems of integer inequations (Polka)

• Compositional abstraction
assume-guarantee reasoning

M1 M2

• each of M1, M2 constrains the other

• prove properties of M1 using an abstraction of M2

+ symmetrical

• use this to prove global properties

easier said than done!

Challenge 4 : multirate systems

• Single synchronous program, but each computing action
 is called at some rate : use this for code distribution

• How to minimize bandwidth?
• How to synchronize?

Caspi / Girault, Signal
• Is there a need to synchronize?

endochrony / isochrony (Benveniste, Le Guernic, Talpin)

fifo

Challenge 4’ : multiclock systems

• Distributed Shannon / Nyquist theorem
 Caspi

• Multiclock Esterel : samplers and reclockers
 Berry, Sentovich (Cadence)

independent
clock zones
no fifos

s

 r

s (sample)

r (reclock)

module M :
input sample S;
abort
 run N [clock C2]
when S

main :
run M [clock C1]

M : - samples S on C1
 - starts N on C1
 - aborts N on C1

C2 can be arbitrary, even faster than C1

Challenge 5 : improving causality analysis

• Classical approach : reject instantaneous feedback

X = X
X = not X

• Esterel approach : accept good instantaneous feedback

X = I and Y
Y = not I and X

- Symmetric protocols
- operator sharing (exponential saving in size!)

The Cyclic Bus Arbiter

REQ

PASS
PASS_TOKEN

TRY
GET_TOKEN

OK

TRY PASS

REQ OK

GET_TOKEN PASS_TOKEN

Bus Arbiter Station

OK = REQ and GO
PASS = not REQ and GO
GO = TRY or GET_TOKEN
PASS_TOKEN = reg(GET_TOKEN)

GO

The Cyclic Bus Arbiter

• Esterel v5 : BDD - based algorithms

- scaling problem

- uneasy error messages

• Main theorem : logical characterization of good cycles

 Can we design nice syntactic restrictions which make
 it possible to write only good cycles?

Can we design better cycle analysis algorithms ?

Conclusion

• Synchronous languages are parallel + understandable

• They are based on strong mathematics

• They are used in large (critical) industrial projects

• They need to be unified

• Outstanding efficiency should be attainable

• Verification is good, but one more order of magnitude needed

• Causality diagnostics need to be improved

