
The Applicability of Common Generative Techniques for Textual
Non-Code Artifact Generation

Johannes Müller Ulrich W. Eisenecker
University of Leipzig

Information Systems Institute
Marschnerstraße 31, 04109 Leipzig, Germany

http://www.iwi.uni-leipzig.de

{eisenecker, jmueller}@wifa.uni-leipzig.de

Abstract
Configuration or generation of software artifacts is a widely
adopted approach to implement software system families e.g. by
applying the generative software development paradigm. The gen-
eration of artifacts not directly related to software but rather related
to a delivered software product is not widely examined. This paper
discusses the applicability of three well-known software artifact
generation techniques to natural language textual non-code arti-
facts. Therefore an overview of these techniques and adequate tools
is given. The frame technology with the adaption and the abstrac-
tion concept and and the template approach of the model driven
software development are examined. The tools XFramer, XVCL
and openArchitectureWare are used to evaluate these techniques by
implementing an exemplary toy use case. The experience gained
by implementing the use case is presented. The three selected tools
are compared with respect to the task to generate natural language
texts as non-code artifacts.

Categories and Subject Descriptors D [2]: m

General Terms GSE, Non-code artifact

Keywords frame, MDSD, XVCL, XFramer, oAW

1. Introduction
Generative software development (GSD) [6] is one widely ac-
cepted approach to develop software intensive systems within a
software system family amongst others such as model driven soft-
ware development (MDSD) and aspect oriented software develop-
ment (AOSD). There are mainly two development processes for
software system families, namely domain engineering (develop-
ment for reuse), and application engineering (development with
reuse).

A software intensive system comprises more artifacts than only
source files or executable program files, e.g. user-manual or man-
pages but also graphics, sounds, animations, test data and so on.
Such artifacts are subsumed under the term non-code artifacts. A
special kind of such non-code artifacts are natural language textual

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
GPCE ’08 October 19-23, Nashville, Tennessee.
Copyright c© 2008 ACM [to be supplied]. . . $5.00

non-code artifacts. These kinds of non-code artifacts will be subject
of this paper.

When the generative paradigm is applied to develop a system
family, the elementary reusable components of the solution space
should be maximally reusable and minimally redundant, as the
authors point out in [6]. The features of a system family member
can be described by a domain specific language (DSL) which
belongs to the problem space. The configuration knowledge is
required for mapping the specification of a system family member
to the solution space by means of a (configuration) generator. These
components form the generative domain model (GDM).

The term generator covers not only facilities to generate code
artifacts, but also to configure and parameterize available compo-
nents which have well defined, asserted and possibly tested qual-
ities. An exemplary realization of such a configuration generator
in C++ could apply template meta-programming. Obviously this
technique is not really suitable for generating non-code artifacts.
There are other techniques which are more appropriate to generate
non-code artifacts. One approach which explicitly aims to synthe-
size, beside code-artifacts, non-code-artifacts is the AHEAD tool
suite [4]. The ancestor of it is the GenVoca approach [5], which is
a methodology for creating system families.

Other approaches, which also use GenVoca as architectural
style, are described as technology projections of the GSD. A tech-
nology projection is a mapping of the GDM to a specific technique,
platform or programming language (see [6] for details). Some of
them are also able to generate non-code artifacts, namely the pro-
jection to the adaption and the abstraction concept of the frame
technology as described in [10] and the projection to the generator-
framework openArchitectureWare [14]. The benefit of using one of
these approaches to generate non-code artifacts is, that, if the stated
approaches are used to realize a system family, one can use the ex-
isting environment to also generate non-code artifacts: No further
tools are required. The paper will examine the ability of these three
projections to generate non-code artifacts by using the theoretical
background given by the specification of the projections.

A member of a system family may require a considerable num-
ber of related documents, e.g. program-documentation, instructions
for manual system tests, customized licensing agreement or a con-
tract between software supplier and customer to account a created
software product. The listed documents raise distinct demands for
a text generation system. Documentation, for example, could be
created by simply assembling the specific documentation of the
miscellaneous components, the system is built from. A contract on
the other hand requires the creation of parts of a sentence, which
are differently composed depending on the distribution model for
the software system and the assembled components, to get a well-

defined content. An example of a contract generation system can
be found on [19].

The preceding example, the contract generation, could be
achieved by natural language generation (NLG), a field of research
in the area of artificial intelligence and computer linguistics [20, p.
1]. Its aim is to create natural language texts out of non-linguistical
representations—e.g. out of a database. Another approach is to cre-
ate texts by assembling text components. In [20, p. 4] the thesis is
stated that every functionality which is realized by a NLG-system
can also be realized by assembling text components. For this rea-
son this paper focuses exclusively on the text-assembly approach,
while NLG-techniques will be not pursued.

A human readable document must be well presented to make
the contained information easily accessible to human readers. To
format the output of a generation run, amongst others, there are the
following techniques available:

• Tag the document by LATEX commands. A TEX processor trans-
lates the tagged document into a human readable form in natural
language.

• Tag the document by XHTML1 commands and format it with
CSS2.

• Create a XML3-document and format it with XSL-FO4.

If the approach with the LATEX tags is used, the document creation
process is a multi level generation process. At a first stage, the doc-
ument with LATEX tags is created. At a second stage, a TEX processor
transforms the representation created before into a document ready
for press. Because of that, LATEX sometimes is referred to as a DSL
for the domain of document creation [16].

2. Techniques for Text Generation
Not all technology projections to the generative software develop-
ment paradigm which are useful to generate software artifacts are
useful for generating non-code artifacts. Applying template meta
programming in C++ for example is an effective way to create con-
figuration generators to configure software components in C++. In
fact this technique uses the features of the C++ language and re-
quires adequate components for assembly. Therefore it can not be
reasonably used to generate natural language texts. Furthermore a
technique for non-code artifact generation must provide a possibil-
ity to modularize text blocks to handle potentially complex non-
code artifacts within a system family. These prerequisites are pro-
vided by the adaption and the abstraction concept of the frame tech-
nology [2] and the template approach of model driven software de-
velopment used to transform a model to code [8, 14].

2.1 Frames
The idea of frames was developed in the research area of artificial
intelligence. In the seminal work “A Framework for Knowledge
Representation” [13] Marvin Minsky explains a system to describe
the mental processing of concepts appearing in the real world.

A frame defines constant values for a concept. These constant
values are part of all instances of a frame. Beside this a frame
contains also variable parts which are organized in so called slots.
A slot of a frame can be either an instance of an other frame or
finally a terminal value. Because of this relationship between frame
instances a complex frame hierarchy can be composed which is
useful to represent or analyse concepts of the real world [9, p. 120].

1 XML Hypertext Markup Language
2 Cascading Style Sheets
3 Extensible Markup Language
4 Extensible Stylesheet Language-Formating Objects

In 1987 Bassett describes in his seminal work [2] at the first
time the usage of frames to foster reuse of software components.
Independently of this work the company Delta Software Technol-
ogy developed a technology to generate software components based
on the idea of Minsky.

In [11, p. 55] the approach of Bassett is called the adaption
concept and the solution of Delta Software Technology is called
abstraction concept.

2.1.1 Adaption Concept
In the adaption concept frames are stepwise specialized. From
general frames more special frames will be assembled. Higher
level frames adapt lower level frames. The more general frames
are customized to the circumstances and requirements of the more
special frames [3, p. 88]. A frame will be changed on its slots,
which are the variation points of the frame hierachy. A frame has
default values for variation points, so an adapting frame must only
change the slots if there are special requirements which differ from
the defaults [3, p. 89]. Furthermore a frame at the adaption concept
did not have any mutable state. So its processing compares to the
processing of variables at the functional programming paradigm.

2.1.2 Abstraction Concept
Within the abstraction concept frames are not part of an other
frame, rather they are instantiated. The created instances will be
referenced from other frame instances. In this way a hierarchy of
frame instances is constructed. It is possible to instantiate a frame
more than once. Every instance gets its own set of slot-values and
references to other frames. This feature of the abstraction concept
resembles the class/instance-scheme of object-oriented program-
ming. Thereby the abstraction concept is similar to object-oriented
programming.

2.2 Templates
The MDSD aims at automatic generation of executable software
out of a formal model [24, p. 11]. A formal model represents rules
which make a statement about the models meaning. In this context a
model could be a class diagram in the Unified Modeling Language
(UML). Moreover also other types of models e.g. textual models
can be used. Automatic generation means that the source code is
generated without manual intervention. No modifications may be
applied to the generated source code because the model adopts the
role of code.

Underlying every concrete model is a meta-model. A meta-
model is a formal description of a domain in which a system is
generated. It defines the abstract syntax of the models. The ab-
stract syntax consists of the meta-model elements and their rela-
tion amongst each other [24, p. 29]. A transformation is described
by means of a template language. A template consists of static text
which contains tags on specific spots. During the generation pro-
cess these spots will be assigned text according to a input model
[24, p. 146]. The tags can contain additional instructions which
are executed while the model is processed, e.g. to modify an input
string. While templates are defined on the basis of a meta-model,
the generated text will be created according to a concrete model.
In this approach the templates are the reusable components of the
solution space.

MDSD aims at generating code artifacts. Because code is gen-
erated mainly as text, it is also possible to apply MDSD for gener-
ating textual non-code artifacts.

2.3 Techniques not Examined
The techniques mentioned before are not the only options to gen-
erate text. Subsequently some other techniques are listed. Every
technique has its own weakness which renders it not suitable for the

specific purpose of text generation. In [24, p. 149ff] it is remarked
that common programming languages, such as Java or C# can be
used to create generators. However this idea is rejected, because of
language related problems such as processing of strings which re-
quires to use escaped sequences for special characters. Moreover,
language structures which are not designed for text generation have
to be used for the generator. Thereby it is hardly recognizable, how
the result will be structured. In [24, 147ff] another alternative is dis-
cussed, namely the application of XSLT5 to build a generator. The
availability of XPath as a powerful navigation language is pointed
out as a special advantage. XPath supports the navigation of ba-
sically every object structure. But an obvious disadvantage is the
hardly readable syntax of XML 6, which has to be used to describe
the transformation in XSL files. Preprocessors like those used in
C/C++, can be used independently from the compiler as well [24,
p. 143f]. Therefore it is basically possible to realize a text gener-
ator. A preprocessor is often used for small replacements of texts,
for instance the value of a constant. A frequent consequence is that
preprocessors are mostly not Turing-complete, they lack especially
control structures for iterations. These are required in order to im-
plement more complex generators. For this reason it is not practical
to realize the generation of textual non-code artifacts with a prepro-
cessor.

3. A Use Case for Text Generation
As use case to gain experience with the tools a family of documents
is implemented. A document of these family accompanies a pizza
and contains the following elements:

• The address and the title of the customer
• The price of the ordered pizza
• A list describing the ingredients. The list also contains a warn-

ing if an ingredient could be allergenic.
• A complimentary close customized to the order. Friends of chili

get the spanish wish ¡buen provecho!, garlic fans get the italian
wish Buon appetito and if no or both extras are chosen, the close
will be the english phrase enjoy your meal.

The document is generated to be suitable to the corresponding
pizza. The example covers a wide range of imaginable non-code
artifact generation scenarios. So one can gain experience with the
utilized tools. First the price contains no static contents: the gen-
erator is able to compute all values. Second the list of ingredients
consists of distinct text blocks which will be assembled with re-
spect to a certain order. The third part, the complementary close,
is a mixture of the both preceding variants. The closings will not
be changed but a generator must choose the right text block with
respect to the chosen extras.

4. Tools for Text Generation
In the last section, techniques for textual non-code artifact genera-
tion were examined. This section focuses on tools for implementing
these techniques. There is more than on implementation for each of
the preceding introduced techniques. Tools to realize one of the
two frame concepts are presented in [11, p. 56]. The template ap-
proach is realized by MDSD tools. An overview of available tools
is provided in [7, p. 622]. The evaluation of these techniques will be
based on open source or freely available tools so that the following
descriptions can be easily reproduced7. However it is important that

5 Extensible Stylesheet Language Transformations
6 Extensible Markup Language
7 The complete source-files of all three implementations can be downloaded
as a zip archive from [15]

the used tools adequately support the examined technique. This re-
quirements are fulfilled by the following tools: For the abstraction
concept XFramer is chosen and for the adaption concept XVCL is
selected. To examine the template approach openArchitectureWare
will be applied.

In addition to the aforementioned requirements, there are also
the following properties of the tools expected, to realize a family of
non-code artifacts:

• It must be possible to define a domain specific language.
• It must be possible to preserve a certain locality of the parts of

the GDM to achieve a sufficient maintainability
• Control structures for processing text modules must be avail-

able.
• Debugging facilities must be available.
• It should be possible to externalize huge text blocks in order to

improve the readability of the generator modules.
• It must be possible to exactly control the output of white spaces

to get the expected output by the TEX-processor.
• Tools, i.e. editor, must be available for creating the text mod-

ules.

4.1 XFramer
XFramer is available from [23] as freeware for Linux and Windows
for non-commercial purpose. It is used to extend the programming
languages C++, C# and Java with the capability to process frames
[11, p. 55] Nevertheless the compiler is still required to use it as
a full frame processor. XFramer works as a preprocessor, which
translates the frame definitions to valid source code of the lan-
guage of the used compiler. Even if one of the languages C++, C#
or Java is used to process the frames, it does not imply that only
one of this languages can be used exclusively. In fact all textual
representation—any programming language, HTML, XML or nat-
ural language are imaginable—of information can be processed by
the tool [11]. The tool extends the supported languages with new
elements.

Figure 1. Workflow when applying XFramer [11, p. 57]

Figure 1 depicts the flow of a XFramer run. The XFramer
preprocessor reads frame specifications and transforms them into
source code modules—classes in the case of the chosen host pro-
gramming language. The output of the preprocessor is processed by
the compiler of the used host language. In this step the real genera-
tor is created. This generator is executed in the runtime system and
creates the result in the target language. XFramer creates the gener-
ator in the selected programming language, so it is fully amenable
to the debugger of this language [10, p. 80]. In addition all libraries
available in the host language can be used to build the generator. So
it is e.g. imaginable to make the generator configurable by XML
using a XML processing library like Xerces [10, p 80].

4.2 XVCL
XVCL is an acronym for XML-based Variant Configuration Lan-
guage and names a language to define frames according to Bassetts
adaption concept. Frame definitions in XVCL are processed by the
tool XVCL processor [12, p. 1]. Language, tool as well as a method-
ology for domain analysis are developed by the National University
of Singapore. XVCL processor can be freely downloaded from [1]
under the permission of the GNU Lesser General Public License
(LGPL) version 2.1.

XVCL is a XML-based language and is shipped with a Doc-
ument Type Definition (DTD). It is written in Java so it executes
on many host systems. The tool is invoked with the specification
frame and starts the generation process in which all frames directly
or indirectly referenced by the specification frame are stepwise pro-
cessed and assembled to one or more output documents. There lies
one key difference to XFramer, which instantiates the frames, so
the content can be changed during the generation process.

If the parameter -B is passed to the execution of XVCL super-
fluous white spaces are removed. Otherwise all blank lines of the
frames are written into the output documents. Lines with XVCL
commands become blank lines. An exemplary invocation of the
tool is java -jar xvcl.jar -B pizza-document.xvcl. A detailed
description of the XVCL-tool can be found in [18].

4.3 OpenArchitectureWare
OpenArchitectureWare (oAW) is a generator framework from the
area of model driven software development. It covers a language
family to check and transform models. The language Xpand is used
to describe model to text transformations. The framework offers
editors and plug-ins for the eclipse platform but it is also possible
to use it independently [17]. It is available under the terms of the
Eclipse Public License (EPL).

Within the subproject Xtext a tool is developed which allows
to define the syntax of a DSL with a sort of Extended Backus
Naur Form (EBNF). With this definition a model is generated
which represents the abstract syntax tree (AST) of the language.
In addition an editor for the eclipse platform is generated which
assists the user with error checking, syntax highlighting and so on.

It is not possible to describe all features of the oAW project here.
For details the reader is referred to the manual of oAW [8].

4.4 Comparison of the Tools
Essential properties of techniques and of tools for generating non-
code artifacts in natural language are enumerated in section 2 and
4 respectively. These properties will be studied more closely with
respect to the selected tools now.

Definition of the DSL XFramer uses a host language. Hence the
only restriction implementing a DSL is given by the selected host
language. As it is the case in the described example the DSL is
embedded into the host language. If this approach is not powerful
enough, it is imaginable to externalize the DSL and include a
parser which reads the specification. XVCL on the other hand only
allows to define a rudimentary DSL in the specification frame.
In the implementation of the use case with XVCL multi-valued
and single-valued variables are used to realize the DSL. Another
approach could be to define a DSL as an XML lanugage and use
XSLT8 to transform a specification into a valid XVCL specification
frame. The oAW solution in this paper is showing the realization
of a textual DSL with the Xtext tool. It has the ability to create
expressive DSLs. A specification in the DSL can be written in its
own editor which has the capability to check the specification and
highlight keywords.

8 Extensible Stylesheet Language Transformations

Locality of the parts of the GDM With XFramer it is possible
to define one configuration frame which contains all the knowl-
edge to configure the elements of the solution space given a spec-
ification from the problem space. Another possible approach with
XFramer is to define intelligent frames with each containing some
specific part of the configuration knowledge and elements of the so-
lution space. Thus some elements of the configuration knowledge
can be reused but the locality of the components of the configura-
tion knowledge degrades. Because of the stepwise adoption of the
frames in XVCL only the second approach is feasible. The frame-
work oAW is able to use model to model transformations. So the
configuration knowledge is localized in the transformation rules. If
the direct model to text generation approach is used the maintain-
ability degrades.

Available control structures XFramer can use all the facilities
of the host language, so very expressive solutions are possible. In
contrast XVCL provides only a few basic commands which permit
the definition of the logic, but they are much harder to use—also
because of the XML syntax—than the control structures of a gen-
eral purpose language. The Xpand template language provides also
just rudimentary support for control structures. But it is possible to
define the logic in a functional sub-language of the oAW project
called Xtend which has the ability to call statically defined Java-
methods. Thereby all the power of the Java language is available.

Debugging facilities If errors are detected during the generation
process it would be helpful to use a debugger to understand the
generation process. In fact XFramer uses a host language, hence
the debugging facilities of this language are available. If there is
any error at the generation process with the XVCL tool it produces
error messages. Another approach to support debugging is to pro-
duce messages which the generator displays during the generation
process. At present, other debugging facilities do not seem to be
available. The oAW project contains debugging facilities to debug
templates, workflows and transformations.

Externalize and modularize text blocks If huge text blocks are
used, it would be useful to define them externally and reference
them by a generator module. This is directly supported only by
XFramer. Using XVCL there is no possibility to do so. Basically
the same restriction applies to oAW but this functionality can be
realized with the capability to use Java-methods. Related to this
problem is the ability to modularize text blocks. All tools allow to
distribute the modules over several files.

Control white spaces Even if the final document is typeset by
LATEX it is nevertheless important that the resulting document does
not contain superfluous white spaces because they could have a
meaning. At LATEX e.g. an empty line results in a new paragraph
in the target document. So the techniques must provide a facility to
control the output of white spaces. Using XFramer all blanks are
outputted as defined in the frame. So the output of the blanks can
not be well controlled. The XVCL tool has the ability to remove su-
perfluous white spaces but if there are intended blank lines they are
also removed. The lines in the templates of Xpand which contains
escaped commands will be removed if a minus is noted at the end
of the escaped sequence.

Tool support The creation of text modules for one of the tool
could be made more convenient by having any tool support, e.g.
a text editor with syntax highlighting. At present, it seems that
there is no editor available which assists the creation of frames
for XFramer. But perhaps it is more adequate to use a common
text editor which supports the selected host language. XVCL is a
XML dialect so any XML editor can be used. Because a DTD is
given, some editors can even perform syntax highlighting and code
completion. oAW is well integrated into the eclipse platform. There

are editors, wizards and other plug-ins available, which make the
usage of the different languages convenient.

Table 1. summary of the comparison of the tools
Criteria XFramer XVCL oAW
Defining DSLs − −− ++
Locality of parts of the
GDM

++ −− ++/−a

Available Control
structures

++ −− ++/−−b

Debugging facilities ++ + +
Externalize text blocks ++ −− +c

Modularize text blocks ++ ++ ++
Control white spaces −− + +
Tool support −− ++ ++
Overall effort to imple-
ment the use case

− ++ +

(−−) bad to (++) good

a Good, if model to model transformation are used, otherwise bad.
b By using Xtend all possibilities of Java are available.
c By using Xtend and Java.

5. Conclusions
This work has analyzed three technology projections for their appli-
cability to generate textual non-code artifacts in natural language.
The techniques and tools which realize them were presented. The
three tools are used to implement a use case. The three tools were
compared with respect to the aforementioned criteria. As table 1
suggests, the toolset of oAW is well suited to realize the text gen-
erator. But it needs some effort to set up the environment to get
the generator run (define a grammar, install the plugin and so on).
The fastest way to implement the text generator of the use case pro-
vides XVCL. If a simple DSL suffices or there is an other way to
configure the specification frame XVCL is a lightweight alternative
to oAW. XFramer was somewhat harder to use then the other two
approaches. But if complex decision logic is to be implemented, it
can be an alternative because of the integration in a host language.
To decide which tool is best suited for a given environment one
must check the ease of integration in a present tool chain to gen-
erate system family members. Therewith it is possible to use one
and the same DSL to specify the software system and the adequate
textual non-code artifacts in natural language.

This paper only examines textual non-code artifacts in natural
language. Another survey should reveal other relevant types of non-
code artifacts. The result of this survey could be organized in a
taxonomy of non-code artifacts. With such a taxonomy it would be
possible to examine generation tools for all other types of non-code
artifacts.

Real life use cases probably contain much harder requirements
to textual non-code artifacts in natural language than the presented
toy use case. To implement such requirements some ideas can be
found in work related to NLG ([20], [21] and [22]).

As the implementation of the use case demonstrates, the con-
ceptual framework of the generative software development [6] is
also well-suited to generate textual non-code artifacts in natural
language. With this aspect in mind, further technology projections
specialized for generating non-code artifacts could be developed.
As the usage of a multistage generation process in the use case
demonstrates (e.g. XVCL and TEX processor), the usage of more
than one tool to realize the generation is a promising approach. A

further example would be to generate graphics by producing svg-
files (which are text-based) and then use one of the svg-tools to
convert it to a required file type.

This paper has shown that existing techniques and tools are
applicable to generate (textual) non-code artifacts. To get a deeper
insight the aforementioned next steps should be pursued.

References
[1] Xvcl download: http://fxvcl.sourceforge.net.
[2] P. G. Bassett. Frame-based software engineering. IEEE Software,

4(4):9–16, 1987.
[3] P. G. Bassett. Framing Software Reuse: Lessons from the Real

World, volume 1 of Yourdon Press Computing Series. Yourdon Press,
Prentice Hall, 1997.

[4] D. Batory. The road to utopia: A future for generative programming.
[5] D. Batory and S. O’Malley. The design and implementation of

hierarchical software systems with reusable components. ACM
Transactions on Software Engineering and Methodology, 1(4):355–
398, 1992.

[6] K. Czarnecki and U. W. Eisenecker. Generative Programming
Methods, Tools, and Applications. Addison-Wesley, Boston, 2000.

[7] K. Czarnecki and S. Helsen. Feature-Based Survey of Model
Transformation Approaches. IBM Syst. J., 45(3):621–645, 2006.

[8] S. Efftinge, P. Friese, A. Haase, C. Kadura, B. Kolb, D. Moroff,
K. Thoms, and M. Völter. openArchitectureWare User Guide. n.p., 1
edition, September 2007.

[9] U. W. Eisenecker and R. Schilling. Zum Entwickeln entwickelt. iX,
10:114 – 121, 2002.

[10] M. Emrich. Generative Programming Using Frame Technology.
Diploma thesis, University of Applied Sciences Kaiserslautern, 2003.

[11] M. Emrich and M. Schlee. Codegenerierung mit XFramer und
Programmiertechniken für Frames. Objektspektrum, 5:55 – 61, 2003.

[12] S. Jarzabek, P. Bassett, H. Zhang, and W. Zhang. Xvcl: Xml-based
Variant Configuration Language.

[13] M. Minsky. A Framework for Representing Knowledge. Technical
report, MIT, Juni 1974.

[14] J. Müller. Technikprojektion zur generativen Programmierung mit
openArchitectureWare. Diploma thesis, University of Leipzig,
Marschner Straße 31, 04109 Leipzig, Germany, May 2008.

[15] J. Müller and U. W. Eisenecker. Zip-archive with the sample code.
http://w3l.wifa.uni-leipzig.de/sw/public/ncag.zip.

[16] N.A. Domain Specific Language. online, Oktober 2007. http:
//c2.com/cgi/wiki?DomainSpecificLanguage.

[17] N.A. openArchitectureWare. homepage, nov 2007. http:
//www.openarchitectureware.org/.

[18] N.A. Xml-based Variant Configuration Language (xvcl), 2007.
http://sourceforge.net/project/showfiles.php?group_
id=58966&package_id=54953&release_id=305328.

[19] N.A. Creative Commons. online, 2008. http://creativecommons.
org/license/.

[20] E. Reiter and R. Dale. Building Applied Natural Language Generation
Systems. Journal of Natural Language Engineering, 3(1):57–87,
1997.

[21] E. Reiter and R. Dale. Building Natural Language Generation
Systems. Cambridge University Press, 2000.

[22] E. Reiter, S. Sripada, and R. Robertson. Acquiring correct knowledge
for natural language generation, 2003.

[23] M. Schlee. Xframer 1.45 download: http://www.geocities.
com/mslerm/downloads.html.

[24] T. Stahl, M. Völter, S. Efftinge, and A. Haase. Modellgetriebene
Softwareentwicklung. Techniken, Engineering, Management. Dpunkt
Verlag, Heidelberg, 2 edition, 2007.

