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Abstract
Similar to refactoring, feature-oriented programming canbe
seen as a metaprogramming paradigm, in which programs
are values and composition operators transform programs to
programs. In this position paper we discuss open issues of
applying refactoring in the context of feature-oriented pro-
gramming. First, we elaborate on the role of refactoring in
maintaining features and their implementations as well as
the impact of refactoring on the relation between theprob-
lem and solution spaces. Second, we discuss issues of re-
lating well-known refactoring formalisms to existing formal
approaches used in feature-oriented programming. Third, we
suggest to use refactoring semantics to upgrade and test final
products of a product line.

1. Introduction
Research in the area of Software Product Lines (SPL) fo-
cuses on the design and automatic synthesis of product fam-
ilies (11). An important concept in this area is that of a
feature–a refinement in the product functionality (33). Each
product within a product family can be identified by a unique
combination of features, from which it is created. By model-
ing theproblem spaceof a domain, afeature modeldefines
all legal feature configurations. A particular configuration
chosen by the user is used to generate a final product out
of feature modules that comprise thesolution space(12).

Feature-oriented programming (FOP) is concerned with
designing and implementing features and can be seen as a
metaprogramming paradigm (6): feature composition modi-
fies (by addition and extension) base programs using fea-
tures. Another well-known metaprogramming paradigm
is refactoring—program-to-program transformations that
“does not alter the external behavior of the code yet im-
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proves its internal structure.” (18, p.9) Several recent publi-
cations (e.g., (6), (9), (28), (40)) point out various contexts
where refactorings and FOP overlap. Inspired by their obser-
vations, in this position paper we elaborate on open issues
relating FOP and refactorings. In particular, we overview
related work and discuss:

• Refactoring software artifacts in FOP (Section 2). In FOP
refactoring means restructuring software artifacts of the
solution space, the problem space, or both. When refac-
toring the solution space, how to keep multiple repre-
sentations of a feature consistent? When refactoring the
problem space, what is a meaningful library of refactor-
ing operators to restructure a feature model? Moreover, in
some cases refactoring one space requires refactoring the
another space. How could one synchronize both spaces
to preserve their consistency?

• Refactoring definition in a formal FOP calculus (Sec-
tion 3). Existing work on refactoring formalization varies
in the way refactorings are defined. Which formalism
is more appropriate to be integrated into existing FOP
formal definitions? And which FOP formalism, if any,
would be appropriate for such integration?

• Refactoring-based product maintenance (Section 4). As
refactorings are formally defined, the refactoring history
of a component can be treated as a formal specification of
its change representing a kind ofmaintenance delta(10)
to be used for automatic software construction and main-
tenance. In the context of FOP, how to use formal spec-
ification to alleviate maintenance tasks, such as upgrade
and testing, of final feature-based software products?

Our main goal is to foster discussions on the role of
refactoring in developing and maintaining software artifacts
in the context of FOP.

2. Refactoring Software Artifacts in FOP
Extensively used software artifacts have to evolve consider-
ably, because, according to the Lehman’s first law, “a large
program that is used undergoes continuing change or be-
comes progressively less useful.” (30, p. 250) The second



Lehman’s law says, that “as a large program is continuously
changed, its complexity, which reflects deteriorating struc-
ture, increases unless work is done to maintain or reduce it.”
(30, p. 253). This work is performed by program restructur-
ing, called refactoring in object-oriented systems (32).

Since both the problem and the solution spaces are rep-
resented by software artifacts, evolving the latter will in-
evitably imply their refactoring.1

2.1 Refactoring Solution Space

An example of refactoring the solution space is refactoring
the source code of a feature module to address changed secu-
rity requirements. Developers may need to move some func-
tionality previously accessible in more general features to
more specialized features restricting the visibility of func-
tionality to more specific features. This operation will in-
volve moving members among feature modules and is an
example of a reactive refactoring. An example of a proactive
refactoring is renaming certain members of feature modules
to follow established naming conventions improving thus fu-
ture maintainability of modules.

In general, besides source modules, features can be im-
plemented by modules containing, for instance, binary code,
grammars and makefiles (8), XML documents (2) or UML
diagrams (13). Therefore, in addition to code refactoring
(e.g., (15; 18; 32; 34)), in the context of FOP one should also
consider existing work on refactoring of other software com-
ponents, such as sequence and protocol state machines (36)
or UML class diagrams (37). A practical problem is how to
correlate refactorings in multiple representations of thesame
feature.

A possible solution is to use functions that map refactor-
ings of one representation to refactorings of other represen-
tations (similar tomapdeltasas proposed by Batory (7)). It
is, however, not clear whether it is possible to find a refactor-
ing counterpart in any possible representation, that is, tomap
refactorings in all representations used in the solution space.
This problem stems from the lack of rigor in formal specifi-
cations of refactorings for certain representations (e.g., what
is a grammar refactoring?). Moreover, as Batory mentions
(7), creating and maintaining functions that relate transfor-
mations may burden programmers considerably.

2.2 Refactoring Problem Space

Facing new and changing requirements, besides evolving the
solution space, the variability of a product line has to evolve,
too. If not refactored, features of a feature model will not re-
flect changing domain requirements. Moreover, the number
of features may explode making the model unmanageable.

In a large industrial case study, Loesch and Ploedereder
(31) show how formal concept analysis (19) of existing prod-

1 Terminology note: in this section by refactoring of problem and solution
spaces we mean refactoring of feature models and their corresponding
feature modules as opposed tofeature-based refactoringof legacy software
into a set of feature modules (e.g., (3; 27; 28; 40)).

ucts can be used to find obsolete (unused) features as well
as to derive missing feature constraints. Their restructuring
proposals, such as merge/remove variable features and mark
mutually exclusive features as alternatives, can be consid-
ered feature model refactorings.

Alves et al. (1) define a feature model refactoring as
a transformation that improves the model’s configurability
(i.e., the number of valid variants defined by the model).
Based on their definition, the authors suggest a number of
refactorings that either increase configurability of the model
(while addressing new model requirements or merging fea-
ture models) or does not affect the number of model’s vari-
ants (while maintaining the model).

As opposed to enlarging the number of model’s variants,
Kim and Czarnecki (29) discuss the impact changes made
to a feature model may have on model’s specializations
(i.e., models derived successively by specializing the initial
model). For several changes applied to the initial model (e.g.,
cardinality change or feature addition), the authors define
synchronizing changes in specializations, including the final
specialization (i.e., configuration). Changes mentioned by
Kim and Czarnecki (29) can also be seen as refactorings
operating on feature models.

A future research direction is reusing the work of (1;
31; 29) to define a set of feature model refactorings, such
asMakeMandatory, MakeAlternative, DeleteFeature,
CopyFeature or ReduceGroupCardinality. For that, an
important requirement is to define precisely preconditions
and, perhaps, synchronization actions of such refactorings
for relating changes of the problem space to the solution
space (as discussed in the next section).

2.3 Synchronizing Refactored Spaces

The key issue in refactoring of the two spaces is that their
refactoring should not be considered in isolation; otherwise
seemingly safe changes may lead to wrongly composed fi-
nal products. For example, consider refactoring the solution
space that makes one feature module dependent on another
module.2 If applied only to the solution space, this valid
(with regard to the module implementation) refactoring is
not reflected in the feature model as an additional constraint
between the features involved. As a consequence, the model
will permit a configuration that includes the depending fea-
ture without the feature it depends on. As another example,
if a feature in the feature model is made optional, whereas
other features depend on its functionality in their implemen-
tation, the feature may be missing in a configuration leading
to invalid final product implementation. As an extreme case,
for a wrongly defined feature model the set of its configura-
tions may be empty.

In general, changes made to one space should propagate
to another space. More precisely, in case refactorings change

2 Our examples are inspired by Czarnecki and Pietroszek (13) and Thaker
et al. (38)



constraints on the valid combination of features or feature
modules, constraints of another space must be updated cor-
respondingly. It is important that the overall “strictness‘ of
the implementation constraints of the solution space and the
domain constraints of the problem space are not equivalent.
The implementation constraints are defined by the language
(metamodel), in which feature modules are defined, and by
the modules’ implementation itself. Domain constraints are
defined by the feature model. In general, as argued by Czar-
necki and Pietroszek (13) and Thaker et al. (38), the do-
main constraints must imply the implementation constraints.
Representing constraints in propositional formulas and using
SAT solvers, it is possible to automatically detect when such
implication does not hold, and then manually solve inconsis-
tencies between the two spaces (13; 38).

The elegant solution of using SAT solvers is, however, not
perfect in the context of agile refactoring of problem and/or
solution spaces. Drawing analogies with conventional code
refactoring, it would mean manually changing the program,
recompiling it to detect possible problems and then solving
the latter manually. Instead, when applying small changes to
features or their implementation, it would be preferable to
immediately know whether changes are safe and do not lead
to space inconsistencies. Moreover, similar to a refactoring
engine updating calls to a renamed method or prompting for
a default value of a new parameter, some space inconsisten-
cies could be interactively fixed, at least, semi-automatically.

Generalizing this discussion, an important issue with re-
gard to refactoring in FOP is how to synchronize the spaces
being refactored to ensure no invalid product may be gener-
ated afterwards. With this regard, two important issues to be
considered are:

1. How the relation between the two spaces is defined.
Space relation may be defined as feature template an-
notations (13), code annotations relating features to AST
nodes (28)3, a separate metamodel-based specification
(20), or a systematically organized directory and file
structure (8).

2. Which safeness constraints (in other words, invariants
that these constraints preserve) a refactoring must re-
spect. Safeness constraints may be defined by separate
specifications (e.g., OCL expressions (13), propositional
formulas (38) or type rules (28)) or may be embedded
into the language type system (4; 27).

The space relation complemented with safeness con-
straints can be treated as a model to reason about and detect
space inconsistencies. Janota and Botterweck (26) explic-
itly define such a model, which they call feature-component
model, by formally specifying the feature model, compo-
nent model and constraints on their relations. They derive

3 On the contrary to feature composition, in CIDE (28) annotations are used
for featuredecompositionto support feature-oriented refactoring of existing
programs into features.

the feature model induced by a feature-component model,
compare it with the provided feature model and detect pos-
sible weaknesses of the latter.

Motivated by the aforementioned work, an important
question is how to define and realize an interactive refac-
toring environment permitting for safe refactoring of the
problem and solution spaces and semi-automatic space syn-
chronization.

3. Refactoring Definition in a Formal FOP
Calculus

Recent work on formalization of feature-based software de-
velopment (5; 9) aim for an algebra to represent and rea-
son about features and their composition.4 The key idea is
of both approaches is the same: find an atomic unit of fea-
ture representation, use it to uniformly define feature struc-
ture and then define precisely how those structures are com-
posed. Moreover, feature composition is always feature ad-
dition and/or feature modification. Feature modification is
performed by modifiers—(selector,rewrite) pairs ap-
plied to atomic units, whereselector finds program units
(using pattern matching) and thenrewrite applies to the
units found. However, the two aforementioned approaches
differ in the way they model features and divide composi-
tion power between addition and modification.

Batory and Smith (9) use as the atomic unit of feature
representation a (primitive) term, that is, a key-value pair.
A features is either a vector of terms or a delta vector. The
latter is a unary function that transforms vectors to vectors
by addition and modification. Feature addition uses set union
(using term names) of vector terms and raises an error when
conflicting term names occur. Feature modification is term
selection and term rewriting.

In the feature algebra of Apel et al. (5), the atomic rep-
resentation unit is a tree node (a so-calledatomic introduc-
tion). As a consequence, a feature is modeled as a tree, called
a feature structure tree(FST) of various abstraction levels.
Feature addition is tree superimposition (i.e., node conflicts
are resolved by language-specific overriding of leaf nodes).5

Feature modification is tree traversal and tree rewrite. The
key difference to the work of Batory and Smith (9) is the
shift of composition power from modification to addition:
due to overriding, such concepts as mixins can be unified
with introduction (performed by union set) and need not be
modeled by modifiers, as in (9).

The vision of Apel et al. (5) and Batory and Smith (9) is
that by implementing an uniform calculus one will develop

4 The algebra of Ḧofner et al. (23) focuses on the analysis phase of feature-
oriented development and considers neither the structure offeatures nor
their implementation. Since the latter two are our main concerns regarding
refactoring, we do not discuss the aforementioned work in this paper.
5 More exactly, FST can be seen as a set of superimposed (added) atomic
introductions and superimposition is modeled by the operatorintroduction
sumcomposing introductions, hence FSTs.



an object-oriented framework for feature composition that
is independent of a concrete implementation language. In
such framework, all kinds of manipulated programs are rep-
resented uniformly under a common superclass. This super-
class provides standard operations (implemented specifically
for each supported kind of programs) to query and trans-
form programs. For us it is interesting to investigate how
existing work on program refactoring can be transferred to
such uniform frameworks of program transformations. With
this regard, the dual research questions is 1) which existing
refactoring formalism could be adopted easier into a FOP
calculus, and 2) which FOP calculus, if any, is appropriate
for such adoption.

While classical refactoring definitions (32; 34) use predi-
cate logic to define preconditions, in the context of tree ma-
nipulation more recent work using graphs to define precon-
ditions, either by testing of presence conditions (42) or by
defining a graph pattern to be matched (22; 41), may be more
appropriate for defining pattern matching used by modifiers.
Moreover, while the actual transformation of a refactoringis
usually described informally (18; 32; 34; 39; 42), for uni-
form transformations of program graphs one should also
consider formal definition of refactoring transformationsus-
ing graph rewriting (22; 41) to definerewrite of modifiers.

Batory and Smith define two types of modifiers (9). While
a universal modifierfinds all program terms that have the
name or valueselector (and rewrite these terms), anex-
istential modifierattempts to findselector by name. If
the term is undefined, it assigns the term an existence error;
otherwise, the modifier does nothing (9). Whereas probably
all refactorings require universal modifiers (for example,to
rewrite multiple method calls or push down methods to sev-
eral subclasses at once), the question is whether some refac-
torings may also require existential modifiers. For instance,
it may make sense to test for the method usage before delet-
ing it and signal an error in case it is in use. In a sense, it
would be similar to the code analysis implemented in the
conventional refactoring engines, but at the general and uni-
form level of the finite map space.

Finally, and most important, the key difference of a refac-
toring from a feature is that refactoring may also require term
(node) deletion. For example, moving a method can be seen
as deleting it from one class and adding to another class.
Future work mentioned by Batory and Smith (9) is defin-
ing delta vectors that support vector subtraction. However,
allowing such modification to parts of features may lead
to a situation that the target of a subsequent feature com-
position is eliminated by a previously executed refactoring.
An appealing research direction is to investigate and define
a proper interaction (composition) of features and refactor-
ings.

4. Refactoring-based Product Maintenance
Since refactorings are program transformations with for-
mally defined semantics (32; 34), a history of refactorings
applied to a component can be treated as a formal specifica-
tion of the component’s structural change (16). Such spec-
ification could be used to alleviate tasks of maintaining a
product line, for example, upgrading and testing.

4.1 Module Upgrade

After a feature module is refactored, one may want to also
update existing products to propagate improvements of the
new module version. In some cases, simple recompilation of
all modules would take too much time and their complete
redeployment. Instead, it may be preferred to update only
the refactored modules.

Several software engineering approaches (17; 21; 35) use
refactoring history to automatically upgrade a software li-
brary (or a framework). They base on the fact that more than
80% of library changes that break library-dependent applica-
tions are API refactorings (16). Using refactoring informa-
tion, it is possible to adapt existing applications to the new
library version (21), the new library to existing applications
(17) or create adapters that translate between the library and
its applications (35).

In the line of these approaches, refactoring semantics
can be used to upgrade existing products of a product line.
For example, similarly to the approach of Henkel and Di-
wan (21) refactorings could be effectively re-executed on the
product implementation, synchronizing it with the refactored
implementation. As another example, using refactoring his-
tory it would be possible to partially decompose an existing
product extracting obsolete feature implementation and then
compose back the final product using refactored feature im-
plementation.

4.2 Product Line Testing

To ensure that generated feature-based programs are correct,
Batory (7) suggests to use specification-based product line
testing using Alloy (25). An Alloy specification describes
properties of the program to be verified. Out of this speci-
fication, a set of input tests represented by a propositional
formula is generated, solved by a SAT solver and converted
into a test (7).

Although we do not have any practical results, we envis-
age using refactoring semantics to automatically derive such
specifications (and, hence, product line tests). Several for-
malisms of refactoring definition use the notion of postcon-
ditions for refactoring definitions, either as logic predicates
(34) or as modified graphs (41; 42). Although actual def-
initions differ, the intuition is the same: a postconditionre-
flects the semantics of the refactoring transformation and de-
scribes important structural particularities of the refactored
program. An approach would be to convert the postcondi-
tions into a propositional formula and generate tests in the



similar manner as Batory suggests (7). This would detect
program errors introduced, for example, by bugs in refac-
toring engines (14). Furthermore, depending on how the in-
variants are reflected by postconditions, it could also detect
“bad smells” specific for FOP, like inadvertently overriding
a method in a base class by a renamed method in a feature
refining that base class. Moreover, because refactorings can
be composed (34), given a refactoring history as a sequence
of refactorings its composed postcondition can be derived.
In such cases, there is no need to create tests for each sin-
gle refactoring—a set of tests can be created at once for the
whole refactoring history.

To guarantee type-checking software produce lines for
the price of reduced language power, Kästner and Apel (27)
adopt the Featherweight Java (FJ)–a formally specified min-
imal functional subset of Java (24)–as a implementation lan-
guage of product lines. They propose Color Featherweight
Java (CFJ) as a FJ-based calculus to describe the entire
(valid) software product line in combination with annota-
tions and prove that, if the product line is well-typed (with
regard to the CFJ language grammar), then all generated
FJ variants will be well-typed (i.e., the generation will pre-
serve typing). When using such a language subset as FJ with
proved type-soundness, a question is which transformations
considered refactorings for its original superset (i.e., Java)
can be considered as such for FJ, that is, do not lead to typ-
ing errors (and invalid program variants) according to the
grammar of FJ.

5. Summary
In our position paper we discuss open issues of applying
refactoring in the context of FOP. We believe that by ad-
dressing the research and practical questions formulated in
the paper, it is possible to integrate existing work on program
refactoring into the context of FOP building a framework
for uniform program transformation and tools that combine
feature-oriented programming and refactoring. With regard
to the inherent complexity of developing software product
lines, it is important that these tools will foster agile devel-
opment and maintenance of feature-related software artifacts
and will give a uniform view on a feature-oriented develop-
ment environment.
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[28] C. Kästner, S. Apel, S. Trujillo, M. Kuhlemann, and D. Ba-
tory. Language-independent safe decomposition of legacy ap-
plications into features. Technical Report 02/2008, School of
Computer Sience, University of Magdeburg, 2008.

[29] C. H. P. Kim and K. Czarnecki. Synchronizing cardinality-
based feature models and their specializations. InECMDA-

FA’05: Proceedings of the First European Conference on
Model Driven Architecture - Foundations and Applications,
volume 3748 ofLecture Notes in Computer Science. Springer,
2005.

[30] M. M. Lehman and L. A. Belady.Program evolution: pro-
cesses of software change. Academic Press Professional, San
Diego, CA, USA, 1985.

[31] F. Loesch and E. Ploedereder. Restructuring variability in soft-
ware product lines using concept analysis of product configu-
rations. InCSMR’07: Proceedings of the 11th European Con-
ference on Software Maintenance and Reengineering, pages
159–170, Los Alamitos, CA, USA, 2007. IEEE Computer So-
ciety.

[32] W. F. Opdyke. Refactoring Object-Oriented Frameworks.
PhD thesis, University of Illinois at Urbana-Champaign, Ur-
bana, IL, USA, 1992.

[33] C. Prehofer. Feature-oriented programming: A fresh look at
objects. In M. Aksit and S. Matsuoka, editors,ECOOP’97:
Proceedings of the 11th European Conference on Object-
Oriented Programming, volume 1241 ofLecture Notes in
Computer Science. Springer, 1997.

[34] D. B. Roberts.Practical analysis for refactoring. PhD the-
sis, University of Illinois at Urbana-Champaign, Urbana, IL,
USA, 1999.
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