
Features as First-class Entities – Toward a Better
Representation of Features

Sagar Sunkle, Marko Rosenmüller,
Norbert Siegmund,

Syed Saif ur Rahman, Gunter Saake
School of Computer Science

University of Magdeburg, Germany
{sagar.sunkle,rosenmue,norbert.siegmund,

srahman,saake}@iti.cs.uni-
magdeburg.de

Sven Apel
Dept. of Informatics and Mathematics

University of Passau, Germany
apel@uni-passau.de

ABSTRACT
Features are distinguishable characteristics of a system rele-
vant to some stakeholder. A product line is a set of products
that differ in terms of features. Features do not have first-
class status in contemporary programming languages (PLs).
We argue that various problems related to features are a re-
sult of this abstraction and representation mismatch and that
features should be elevated to a first-class status. We propose
an extension to Java that implements features as first-class
entities. We give examples of the syntax and semantics of
this extension and explain how the new representation can
handle features better.

General Terms
Languages, Design

Keywords
Feature-Oriented Programming, JastAdd, Separation
of Concerns

1. INTRODUCTION
Separation of concerns is one of the most important

principles in software engineering [16]. Abstractions like
features and classes are viewed as dimensions in concern
space [36]. Separation of concerns means decomposing
software into manageable pieces along a dimension in
concern space. It consists of identification, encapsula-
tion, and integration. Identification means a software is
decomposed into entities that represent the abstraction,
e.g., classes and features, encapsulation means some
mechanism is provided so that these entities can be
manipulated as a first-class entities [32], and integra-
tion means that some composition mechanism is pro-
vided that integrates concerns represented as first-class
entities[36]. The first-class status of an entity in a pro-
gramming language (PL) indicates the degree to which
one can address or manipulate concepts in a given do-
main arranged along the dimensions of a concern space

and the ease with which this is made possible in a given
PL [32].

A feature is defined as an end-user-visible character-
istic of a system, or a distinguishable characteristic of
a concept (system, component, and so on) that is rel-
evant to some stakeholder [14]. A product line con-
tains different products that vary in features. Conse-
quently, features are used to understand the common-
alities (shared features) and variabilities (optional or
unshared features) between the products of a product
line.

Many technologies have been used to implement fea-
tures [3, 4, 9, 28, 31, 38]. The main kind of concern
supported by them is one of functions, classes, aspects,
hyperslices, mixins, and frames, etc. Features, which
are themselves a kind of concern, are essentially im-
plemented in terms of entities that basically represent
some other kind of concern. Instead of thinking only
about features, the developer has to organize them in
terms of the modular structure of the approach he is
using and see to it that the intent of features is pre-
cisely represented by the entities in this approach. We
take the position that this abstraction and representa-
tion mismatch causes problems [26, 29] such as, e.g.,
hierarchical misalignments, limitations in feature com-
position and order, and inexpressive program deltas,
etc. Our claim is that such problems can be addressed
and various possibilities for features can be achieved
more easily if features were represented not in terms of
other entities, but as first-class entities themselves.

In this position paper, we propose to represent fea-
tures as first-class entities. We discuss what it means
when certain programmatic entities have first-class sta-
tus in a given PL. We review various feature implemen-
tation approaches and enumerate related problems. We
argue that these problems arise due to an inadequate
representation of features. We put forward an agenda
that establishes features as first-class entities. Finally,

we propose an implementation of the extension and dis-
cuss how features implemented as first-class entities can
be used to address the problems.

2. BACKGROUND

2.1 First-class Entities in PLs
There is no specific definition for first-class status of

entities in a given PL. Certain properties have been ob-
served that indicate a first-class status of a given pro-
grammatic entity [13, 35]. We deem the following five
properties as the defining properties that must be ex-
hibited by entities in a given PL to be called first-class
entities.

1. First-class entities can be instantiated at compile-
time or run-time and possibly other stages of pro-
gram execution.

2. First-class entities can be stored in variables and
data structures.

3. First-class entities can be statically or dynami-
cally typed, thus allowing compile-time or run-
time structural manipulation.

4. First-class entities can be passed as parameters to
other program elements such as methods and re-
turned from methods.

5. First-class entities can be part of various expres-
sions and statements in this PL, giving a program
developer ample options to represent his intent in
representing the problem domain.

Various PLs that claim first-class status for a kind
of concern, support different subsets of these properties
differing in their semantic treatment. The degree of
manipulation of first-class entities may depend on the
kind of typing and the kind of composition supported
by given PLs. Runtime manipulation of such entities
creates new possibilities. In this case, such entities can
have identity and be aware of other entities of the same
kind. This makes it possible to represent and manip-
ulate interactions among these entities more naturally.
Also, such entities can store context and be aware of
the state of a program, thus making possible changes at
wider range of stages in the program. These two prop-
erties are indicative of reflective and meta programming
support for the first-class entities. They depend on the
reflection and meta programming support of a given PL
and may increase the degree of manipulation substan-
tially for the first-class entities.

2.2 Features
In feature-oriented domain analysis (FODA) [22], fea-

tures are organized in feature diagrams. A feature di-
agram is a tree with the root representing a concept

and its descendant nodes being features. These features
can be mandatory, optional, or alternative. Feature-
oriented decomposition is a feature modeling activity
used to capture commonalities and variabilities in terms
of features, of systems in a domain [14]. It is used to
model a domain in terms of features from the ground
up. Feature-oriented refactoring is the process of de-
composing an already existing system to a system ex-
posing features [25].

2.3 Feature Implementations
Features as a programming model was first conceived

by Prehofer [33], citing the rationale behind using fea-
tures to be the flexible composition of objects possible
from a set of features. The implementation technique
for FODA is broadly referred to as feature-oriented pro-
gramming [9, 10], but as asserted earlier, there are many
ways in which features can be implemented. Kästner et
al. [24] distinguish between compositional and anno-
tative approaches. The same distinction can also be
applied to various feature implementation approaches.
Compositional approaches for implementing features
represent features as distinct modules, which are com-
posed at compile time or deployment time or similar.
Examples of compositional approaches are mixin layers
[5], HyperJ hyperslices [32], and Scala traits [31]. The
ifdef statements in C, frames in XVCL [38] and color
annotations in CIDE [38] are, on the other hand, exam-
ples of annotative approaches. Annotative approaches
implement features by identifying code belonging to a
feature in the source and annotating it, so that vari-
ants may be created by including or removing annotated
code from the source [24].

The compositional approaches generally allow
coarse-grained refinements to programs due to the fact
that naming schemes of container entities such as classes
and methods are required to be kept invariant as they
are used in identifying parts of the program to which
refinement must be applied. They are not suitable for
fine-grained refinements in which order of statements
or expressions added by features needs to be controlled
[24]. Fine-grained refinements are possible with the
annotative approaches. Annotative approaches allow
refinements of arbitrary granularity since the impor-
tant concerns of compositional approaches like naming
schemes and order of composed code do not matter as
all code fragments belonging to features are at their fi-
nal position and only need to be annotated [24].

We propose that, by using a combination of composi-
tional and annotative approaches, we can create a bet-
ter representation of features. In the following section,
we address the problems faced by feature-oriented ap-
proaches in general and then state the proposed solution
which uses elements from compositional and annotative
approaches to tackle these problems.

3. THE PROBLEM
Mezini and Ostermann [29] identified weaknesses of

various current feature-oriented approaches in manag-
ing the variability in product lines. Similarly, Lopez-
Herrejon et al. [26] evaluated support for features in
advanced modularization technologies and concluded
that despite the crucial importance of features, fea-
tures are rarely completely modularized. The shortcom-
ings described below are not necessarily present in all
the approaches considered, but none of the approaches
provides a uniform treatment of the various shortcom-
ings either. The weaknesses of various current feature-
oriented approaches identified in [5, 26, 29] follow:

• Hierarchical refinements – Features are imple-
mented as refinements to base classes. Mezini and
Ostermann [29] claim that this is a shortcoming,
because the hierarchical modularity of the refine-
ments to the base classes imposes a structure on
features which are not in hierarchical relationship
to each other. The problem with this is that for a
given feature, there may not be a class in one-to-
one relation to which this feature may be mapped.
For further details refer to [3], [5], and [29]. Sim-
ilarly, because features are refinements, a feature
that is in fact reusable, would need to be encoded
separately as a refinement to each class that needs
it. This makes reuse of common features hard [29].

• Feature composition and feature order – Fea-
ture modules should be composable in different
orders and should follow the commutativity or
pseudo-commutativity of features [1]. Feature
composition should be closed under composition,
which means that features may be grouped to
larger features and such a composite feature is
valid wherever the constituents features are used
[26] as this increases the reuse of features. Dif-
ferent approaches support either or both of these
properties. Even in those approaches that support
both closed composition and feature order, actu-
ally implementing it can be a nontrivial task [26].

• Program deltas – Various program refinements
are deltas with respect to the base program [26].
New classes, interfaces, fields, method statements,
and method arguments, etc., are examples of pro-
gram deltas. Considering features as semantic
blocks of code, preferably any statement or expres-
sion, or group of statements and expressions in a
given programming language can be part of the
refinements a feature makes. The order of blocks
of code to be inserted into a method for example,
cannot be controlled in simple method refinement
approaches.

• Type support for features – Feature modules

and composite modules should be well defined via
type support. Types for features can be extremely
beneficial not only in safe composition of features,
but also in controlling interactions among features
and also between features and the regular types in
a given programming language [23, 37]. But types
for features have been treated in isolation, e.g., it
is not known how features represented as types will
fare in dynamic composition. Other treatments of
types for features consider only an extension to a
subset of Java [2]. Type checking or similar con-
cepts are difficult to apply to features because it
requires some way of identifying and localizing fea-
ture code and representing features as types that
interact with programming language types. By ex-
pressing a type checking mechanism for features as
a calculus language that interfaces with a feature
description language, type checking may be more
clearly applied to an entire programming language
[2, 23].

• Dynamic composition and separate compi-
lation – It should be possible to alter the con-
figuration of features which have already been in-
stantiated [29]. Similarly, it should be possible
to bind features dynamically based on conditions
related to specific expressions [21] and this must
happen considering the performance of application
that uses such dynamic reconfiguration of features.
Some approaches have been suggested for dynamic
composition of features [29, 34], but dynamic com-
position remains a largely unexplored issue in
other feature-oriented approaches. Separate com-
pilation of features is also desirable for better de-
bugging of feature implementation and distribu-
tion of byte code [26].

Feature implementations also lack a common
ground with feature modeling concepts. In order to
use features for creating program variants, some sort of
structure has to be imposed on them. Such structure in-
dicates the relationship between features, their grouping
into different collections and imposes certain constraints
about which choices of features are valid. Though, in
current feature-oriented approaches, no programmatic
or language level mechanisms are provided for it. Be-
low we summarize the problem and then describe the
proposed solution in the next section.

Problem Summary
Feature implementations either weave refinement code
based on a naming scheme or employ some sort of redi-
rection or delegation mechanism for executing feature
related code. Features cannot be stored in variables or
data structures, neither can they be used in pure Java
code. Features are not aware of their or other features’

contents via some sort of interface, consequently their
interactions cannot be easily modeled. The general
shortcomings of various feature-oriented approaches in-
dicate in a way also the desirable properties of a feature
implementation which should be considered in concert
instead of providing support for only some of them. We
propose to rectify this situation by providing a better
representation of features as well as combining the fea-
ture modeling concepts of product lines, for a complete
feature based software solution.

4. SOLUTION PROPOSED
We propose a feature extension to a programming

language under consideration. This extension will have
two parts, one as a feature and feature models descrip-
tion language and the other as the feature development
and refactoring language used to manipulate code and
program fragments. In case of Java, the first part can
be expressed as an embedded domain specific language
[18]. The second part, i.e, the feature development and
refactoring language can be implemented as an exten-
sion of the Java syntax and semantics in accordance
with the first part. In the following, we establish an
agenda for features as first-class entities.

1. The kind of features (such as mandatory and op-
tional), parent-child relations (such as AND,OR,
and alternative) about features and constraints be-
tween features should be expressible in the exten-
sion.

2. Features should be represented as types and inter-
action between features and regular types should
be controlled. The mechanisms of feature normal-
ization and conversion to disjunctive normal form
for finding valid feature instances [15] could be
coupled with the meta information about features
in the programs to compose safe variants. We pro-
pose to implement the composition core based on
feature algebra [6].

3. It should be possible for features to contain classes
and various class members. It should also be pos-
sible for classes to contain feature annotations.
Such a representation would gain from both com-
positional and annotative syntax. Coarse-grained
program deltas can be represented in a compo-
sitional manner while fine-grained deltas can be
represented by annotative syntax.

4. Feature models should be expressed adequately in
the extension. A feature model should be mod-
ifiable at runtime, reflecting in a changed pro-
gram variant. Reification, i.e., storing informa-
tion about a feature such as the container entity
of a code fragment, can be used to create altered
feature variants at runtime. Changing a feature

model may entail removing a child feature from a
parent feature, relocating it elsewhere or remove
it entirely. All such changes need to be supported
with the above mechanism.

5. A program delta that is refined by some feature
may be required by other features. This informa-
tion should be expressible at language level so that
the choice of creating a variant with altered code
or creating variants in which one variant contains
the original code and the other variant contains
altered code remains with the user.

The above indicates that a mechanism for encapsulat-
ing various code fragments that constitute a feature in a
programmatic entity should be available. If operations
were available on such an entity for code composition as
well as product line customization, then a direct corre-
spondence can be established from features at the mod-
eling level and implemented features and both could be
manipulated with precise control.

5. IMPLEMENTATION DETAILS
In the following we show how a feature extension can

be implemented in Java.

5.1 JastAdd
We propose to use JastAdd1 which is a Java based

compiler construction system [19]. We choose JastAdd
because it implements Java 1.4 and 1.5 in terms of
modular compiler analyses [17]. JastAdd considers an
object-oriented abstract syntax tree (AST) as the basis
for language design. It uses AspectJ introductions to
add behavior to various classes representing language
constructs [17, 19]. Behavior can be added to AST
nodes both in a declarative and imperative manner us-
ing the extended versions of synthesized and inherited
attributes. The declarative specification ensures inter-
nally that attributes and analyses need not be ordered
by the programmer. Different transformations can be
applied to an AST in terms of attributes and an AST
can be prepared as required [30].

5.2 Syntax and Semantics of the Proposed Ex-
tension

In the following, we give some examples of syntax
and semantics of the proposed extension. Consider the
feature diagram for a Graph Product Line (GPL)[27],
shown in Figure 1.

A feature model representing a product line is de-
clared using the keyword productLine (Figure 2). Figure
2 shows the feature description for the feature model
shown in Figure 1. The one, more and all operators
in Figure 2 indicate the alternative, the OR and the
1http://jastadd.org/the-jastadd-extensible-java-compiler

GPL

SearchAlgorithms

Number

GraphType

Directed

Weighted

Undirected

Unweighted

Cycle
DFS

BFS

Connected

Strongly

Connected

MST

Shortest

Figure 1: Graph Product Line�
1 productLine GPL {
2 GraphType : a l l (one (Directed , Undirected) ,
3 one (Weighted , Unweighted))
4 Search : one (DFS, BFS)
5 Algorithms : more (Number , Connected ,
6 StronglyConnected , Cycle , MST,
7 Shor t e s t)
8 }
9 a l l (GraphType , Algorithms , Search ?)
� �

Figure 2: Feature Description of Graph Product
Line

AND features respectively. Optionality is denoted by
?. This feature description is sufficient to create feature
types, so that it is semantically expressible that, e.g.,
the feature Number is of feature type Algorithms and
feature Weighted is of the type GraphType. This feature
description provides the language level specification of
what to do with features in the software system, i.e.,
how to group them, how to compose them with respect
to any constraints if present. The type representation
for features consists of representation for feature spe-
cific properties such as whether they are mandatory or
optional. Various advanced feature modeling concepts
such as feature attributes, groups, and cardinalities can
be implemented in the type representation for features
in the extension compiler. Once the features are defined
in the program, different feature models may be associ-
ated with these features. This allows creating not only
different products per product line but also different
product lines per set of features.

A specific variant graphProduct of the product line

�
1 va r i an t GPL. graphProduct {
2 GraphType = Directed and Unweighted ,
3 Algorithms= StronglyConnected ,
4 Search = DFS
5 }
� �

Figure 3: Creating a program variant for GPL

�
1 pub l i c v a r i an t alterGraphProduct (
2 va r i an t graphProduct) {
3 removeFeature graphProduct DFS,
4 addFeature graphProduct BFS,
5 modi fyVar iant graphProduct
6 Algorithms=MST;
7 re turn graphProduct ;
8 }
� �

Figure 4: Typed modification, addition and re-
moval of features

GPL is created using the keyword variant (Figure 3). A
program variant can be modified by altering the choice
of features that constitute it. In Figure 4, feature
modification, addition and removal are shown. Spe-
cific type for a feature need not be given as in Algo-
rithms=MST, the type of feature is inferred from the
feature description. The keywords addFeature, remove-
Feature and modifyVariant are used in the Java method
alterGraphProduct() as operators, to alter the configu-
ration of previously instantiated variant graphProduct.

The feature modeling constraints can be expressed
explicitly in the embedded DSL. A feature model can
be converted to a constraint satisfaction problem and
various Java CSP solvers can be used to obtain valid
configurations of features [8, 11, 15]. This can be im-
plemented as a part of the type checking the AST nodes
representing productline and variant types. Both mu-
tual inclusion and mutual exclusion constraints between
features can be represented as attributes of AST nodes
representing the feature type. The implicit implementa-
tion constraints between the features are similarly taken
care of in type checking the features, e.g., calls between
methods of two features making these features depen-
dent on each other. This type of constraints can be
handled as a specialized checking of relations between
related program elements [23], e.g., a feature that adds
a call to a method must ensure that the method itself
already exists.

Features can contain not only the class definitions
and the class bodies, but also be part of classes and
various statements and expressions. In Figure 5, fea-
ture Weighted contains definitions of feature specific in-
troductions to separate classes in one place. JastAdd
operates with the AST as the only repository of pro-
gram information. The AST in JastAdd can be copied,
extended, and rewritten based on conditions as well as
compiled to byte code [17, 19, 30]. This provides a
unique opportunity to modify the AST noninvasively
both at compile time and run time. Therefore, we can
implement features in such a way that the feature defi-
nitions need not be complete and additional code frag-
ments can be added to features at runtime as well. A
program element like a method can be part of many fea-

�
1 f e a t u r e Weighted {
2 c l a s s Graph {
3 pub l i c void addEdge (Vertex begin , Vertex
4 end , i n t weight) {
5 addEdge (new Edge (begin , end , weight)) ;
6 }
7 }
8
9 c l a s s Edge {

10 pub l i c i n t weight ;
11 pub l i c Edge (i n t the we ight){
12 weight = the we ight ;
13 }
14 // cons t ruc to r with three arguments .
15 . . .
16 }
17 }
� �

Figure 5: feature containing various classes

tures, thus restricting duplication of code. Assume that
addEdge() is part of features Weighted and Shortest.
This can be achieved as shown in Figure 6. Currently,
we intend to provide support for modularizing classes
on the basis of features, but in future, we can include
aspects in our extension. This is possible in JastAdd
because aspects related extensions to their base Java
compiler have already been added [7]. In the following,�

1 pub l i c c l a s s Graph {
2 f e a t u r e Weighted , Shor t e s t {
3 pub l i c void addEdge (Vertex begin ,
4 Vertex end , i n t weight) {
5 addEdge (new Edge (begin , end , weight)) ;
6 }
7 }
8 . . .
9 f e a t u r e Directed {

10 pub l i c s t a t i c f i n a l boo lean

11 i sD i r e c t ed = true ;
12 . . .
13 }
14 . . .
15 }
16 pub l i c c l a s s Edge {
17 f e a t u r e Weighted {
18 pub l i c i n t weight ;
19 pub l i c Edge (i n t the we ight) {
20 weight = the we ight ;
21 }
22 // cons t ruc to r with three arguments .
23 . . .
24 }
25 }
� �

Figure 6: Classes containing features

we briefly explain how we propose tackle the problems
of features mentioned before.

5.3 Solving Problems Related to Features
The combination of feature descriptions and first-

class status for features in the extension compiler pro-
vides a clearcut way to approach feature-based software
development.

• Hierarchical refinements – Features are no
longer related to the class hierarchy as seen in Fig-
ures 5 and 6. The feature definitions, whether oc-
curring inside classes/methods or themselves con-
taining definitions of specific elements, are recon-
ciled in one coherent collection when instantiating
a product. Once features are reified internally, dif-
ferent transformations can be applied easily to the
AST so that version of classes without feature an-
notations or feature definitions can be generated.

• Program deltas – Features in this extension
use both compositional and annotative syntax as
shown in Figures 5 and 6. Not only classes, meth-
ods and fields, but method parameters, various
statements and expressions in Java can be assigned
to features. Because parsing and semantic speci-
fications in JastAdd are modular, our feature ex-
tension to Java can be modified easily to support
deltas of only the required granularity.

• Feature composition and feature order – Fea-
tures can be composed based on feature types. For
example, Weighted and Directed features from Fig-
ure 1 may be composed to obtain a feature Weight-
Directed, based on the fact that both of them are
of the type GraphType. Order may be specified
between features and feature groups whenever re-
quired.

• Type support for features – We represent fea-
tures as a reference type in the compiler. Vari-
ous consistency checks for safe compositions can
be straightforwardly implemented as lookups and
Java typechecks which are implemented as inher-
ited and synthesized attributes respectively in Jas-
tAdd.

• Dynamic composition and separate compi-
lation – For implementing dynamic composition,
we intend to use the capability of obtaining trans-
formed copies of the AST as well as the possibility
to reify feature code to byte code which can be
used via variety of byte code manipulation pack-
ages. We intend to explore the use of contextual
information for separate compilation of individual
features.

6. RELATED WORK
Deursen and Klint [15] propose a language for de-

scribing feature models, but they implement features

using UML and Java code generation. In Caesar [29],
classes can act as crosscutting layer modules containing
many classes or types contributing to features. But it
does not provide any interface for feature descriptions,
or programmatic means of changing feature configura-
tions. In Object Teams [20], a team is a container for
classes and also at the same language level as class. Al-
though it can be used to implement features, it is non-
trivial to do so, as teams have a complex inheritance
model in which features must be accommodated. Class-
box/J [12] provides support for localized refinements,
such that original and refined classes co-exist and can
be referred to separately. But classboxes have the same
problems as other compositional approaches that use
redirection mechanisms in implementing features [12].
Like these approaches, we propose to use a more flexi-
ble containment for features with respect to classes. At
the same time, we combine both feature descriptions
and feature-oriented programming concepts together in
features represented as first-class entities. Unlike the
above mentioned approaches, a developer need not con-
cern himself of how to represent features in terms of
underlying technologies, e.g., how to represent features
in terms of layers and bidirectional interfaces [29], teams
with bindings [20], or classboxes [12]. Features have a
structure set by a feature model expressed as feature
descriptions and no extra representation is required to
relate different code fragments to specific features.

7. CONCLUSION
We have proposed to raise the implementation level

of features to first-class status by representing them
as types with crosscutting containment in the exten-
sion. We have identified various properties that such
an implementation should have in order to tackle vari-
ous problems related to features. In future, we intend
to work on extending the Java implementation of the
JastAdd extensible compiler framework to include fea-
tures.

ACKNOWLEDGEMENT
We thank Christian Kästner and Mario Pukall for com-
ments on an earlier draft of this paper.

8. REFERENCES
[1] S. Apel, C. Kästner, and D. Batory. Program

refactoring using functional aspects. In
Proceedings of the 7th International Conference
on Generative Programming and Component
Engineering. ACM Press, Oct. 2008.

[2] S. Apel, C. Kästner, and C. Lengauer. Feature
Featherweight Java: A calculus for
feature-oriented programming and stepwise
refinement. In Proceedings of the 7th International

Conference on Generative Programming and
Component Engineering. ACM Press, Oct. 2008.

[3] S. Apel, T. Leich, M. Rosenmüller, and G. Saake.
FeatureC++: On the Symbiosis of
Feature-Oriented and Aspect-Oriented
Programming. In Proceedings of the International
Conference on Generative Programming and
Component Engineering, pages 125–140. Springer,
2005.

[4] S. Apel, T. Leich, and G. Saake. Aspectual Mixin
Layers: Aspects and Features in Concert. In
Proceedings of the International Conference on
Software Engineering, pages 122–131. ACM Press,
2006.

[5] S. Apel, T. Leich, and G. Saake. Aspectual
feature modules. IEEE Transactions on Software
Engineering, 34(2):162–180, 2008.

[6] S. Apel, C. Lengauer, B. Möller, and C. Kästner.
An algebra for features and feature composition.
In Proceedings of the 12th International
Conference on Algebraic Methodology and
Software Technology, volume 5140 of Lecture
Notes in Computer Science, pages 36–50.
Springer-Verlag, 2008.

[7] P. Avgustinov, T. Ekman, and J. Tibble.
Modularity first: a case for mixing aop and
attribute grammars. In Proceedings of the 7th
international conference on Aspect-oriented
software development, pages 25–35. ACM, 2008.

[8] D. Batory. Feature Models, Grammars, and
Propositional Formulas. In Proceedings of the
International Software Product Line Conference,
volume 3714 of Lecture Notes in Computer
Science, pages 7–20. Springer, 2005.

[9] D. Batory, B. Lofaso, and Y. Smaragdakis. JTS:
Tools for Implementing Domain-Specific
Languages. In Proceedings of the International
Conference on Software Reuse, pages 143–153.
IEEE Computer Society, 1998.

[10] D. Batory, J. N. Sarvela, and A. Rauschmayer.
Scaling Step-Wise Refinement. IEEE Transactions
on Software Engineering, 30(6):355–371, 2004.

[11] D. Benavides, S. Segura, P. Trinidad, and
A. Ruiz-Cortes. Using Java CSP Solvers in the
Automated Analyses of Feature Models.
LECTURE NOTES IN COMPUTER SCIENCE,
4143:399, 2006.

[12] A. Bergel, S. Ducasse, and O. Nierstrasz.
Classbox/J: controlling the scope of change in
Java. ACM SIGPLAN Notices, 40(10):177–189,
2005.

[13] R. Burstall. Christopher Strachey - Understanding
Programming Languages. Higher-Order and
Symbolic Computation, 13(1):51–55, 2000.

[14] K. Czarnecki and U. Eisenecker. Generative

Programming: Methods, Tools, and Applications.
Addison-Wesley, 2000.

[15] A. v. Deursen and P. Klint. Domain-specific
language design requires feature descriptions.
Journal of Computing and Information
Technology, 10(1):1–17, 2002.

[16] E. W. Dijkstra. On the Role of Scientific
Thought. In Selected Writings on Computing: A
Personal Perspective, pages 60–66. Springer, 1982.

[17] T. Ekman and G. Hedin. The JastAdd system -
modular extensible compiler construction. Science
of Computer Programming, 69(1-3):14–26, 2007.

[18] S. Freeman and N. Pryce. Evolving an embedded
domain-specific language in Java. Conference on
Object Oriented Programming Systems Languages
and Applications, pages 855–865, 2006.

[19] G. Hedin and E. Magnusson. Jastadd: an
aspect-oriented compiler construction system. Sci.
Comput. Program., 47(1):37–58, 2003.

[20] S. Herrmann. Object Confinement in Object
TeamsReconciling Encapsulation and Flexible
Integration. Aspect-Oriented Software
Development, 2003.

[21] R. Hirschfeld, P. Costanza, and O. Nierstrasz.
Context-oriented Programming. Journal of Object
Technology, 2007.

[22] K. Kang, S. Cohen, J. Hess, W. Novak, and
A. Peterson. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-21, Software Engineering
Institute, Carnegie Mellon University, 1990.

[23] C. Kästner and S. Apel. Type-checking software
product lines - a formal approach. In Proceedings
of the International Conference on Automated
Software Engineering. IEEE Computer Society,
2008.

[24] C. Kästner, S. Apel, and M. Kuhlemann.
Granularity in software product lines. In In
Proceedings of the International Conference on
Software Engineering, May 2008.

[25] J. Liu, D. Batory, and C. Lengauer.
Feature-Oriented Refactoring of Legacy
Applications. In Proceedings of the International
Conference on Software Engineering, pages
112–121. ACM Press, 2006.

[26] R. Lopez-Herrejon, D. Batory, and W. R. Cook.
Evaluating Support for Features in Advanced
Modularization Technologies. In Proceedings of
the European Conference on Object-Oriented
Programming, volume 3586 of Lecture Notes in
Computer Science, pages 169–194. Springer, 2005.

[27] R. E. Lopez-Herrejon and D. S. Batory. A
standard problem for evaluating product-line
methodologies. In Proceedings of the Conference
on Generative and Component-Based Software

Engineering, pages 10–24, 2001.
[28] S. McDirmid, M. Flatt, and W. C. Hsieh. Jiazzi:

New-Age Components for Old-Fashioned Java. In
Proceedings of the International Conference on
Object-Oriented Programming, Systems,
Languages, and Applications, pages 211–222.
ACM Press, 2001.

[29] M. Mezini and K. Ostermann. Variability
Management with Feature-Oriented Programming
and Aspects. In Proceedings of the International
Symposium on Foundations of Software
Engineering, pages 127–136. ACM Press, 2004.

[30] A. Nilsson, A. Ive, T. Ekman, and G. Hedin.
Implementing java compilers using rerags. Nordic
Journal of Computing, 11(3):213–234, 2004.

[31] M. Odersky, P. Altherr, V. Cremet, B. Emir,
S. Maneth, S. Micheloud, N. Mihaylov, M. Schinz,
E. Stenman, and M. Zenger. An overview of the
Scala programming language. LAMP-EPFL, 2004.

[32] H. Ossher and P. Tarr. Multi-Dimensional
Separation of Concerns and the Hyperspace
Approach. In Proceedings of the Symposium on
Software Architectures and Component
Technology: The State of the Art InSoftware
Development. Kluwer, 2000.

[33] C. Prehofer. Feature-Oriented Programming: A
Fresh Look at Objects. In Proceedings of the
European Conference on Object-Oriented
Programming, volume 1241 of Lecture Notes in
Computer Science, pages 419–443. Springer, 1997.

[34] M. Rosenmüller, N. Siegmund, G. Saake, and
S. Apel. Code Generation to Support Static and
Dynamic Composition of Software Product Lines.
In Proceedings of the 7th International Conference
on Generative Programming and Component
Engineering. ACM Press, Oct. 2008. to appear.

[35] C. Strachey. Fundamental Concepts in
Programming Languages. Higher-Order and
Symbolic Computation, 13(1):11–49, 2000.

[36] P. Tarr, H. Ossher, W. Harrison, and
J. S. M. Sutton. N Degrees of Separation:
Multi-Dimensional Separation of Concerns. In
Proceedings of the International Conference on
Software Engineering, pages 107–119. IEEE
Computer Society, 1999.

[37] S. Thaker, D. Batory, D. Kitchin, and W. Cook.
Safe composition of product lines. In Proceedings
of the 6th international conference on Generative
programming and component engineering, pages
95–104. ACM, 2007.

[38] H. Zhang and S. Jarzabek. XVCL: a mechanism
for handling variants in software product lines.
Science of Computer Programming,
53(3):381–407, 2004.

	Introduction
	Background
	First-class Entities in PLs
	Features
	Feature Implementations

	The Problem
	Solution Proposed
	Implementation Details
	JastAdd
	Syntax and Semantics of the Proposed Extension
	Solving Problems Related to Features

	Related work
	Conclusion
	References

