M odeling Dependent Software Product Lines

Marko Rosenriiller, Norbert Siegmund, Christiandstner, Syed Saif ur Rahman

School of Computer Science,
University of Magdeburg, Germany

{rosenmue, nsiegmun, kaestner, srahman}Q@ovgu.de

Abstract
, . . SortedList SynchronizedList
Techniques to model software product lines (SPLs), using feature ‘ Ore‘ s ‘ ‘ yne ro?'ze s
i I
models, usually focus on a single SPL. Larger SPLs can also be wses wses» |

built from smaller SPLs which results in a dependency between the

involved SPLs, i.e., one SPL uses functionality provided by another b

SPL. Currently, this can be described using constraints between the —«uses» -

involved feature models. However, if multiple differently config- J"

ured instances are used in a composition of SPLs, dependencies

between the concrete instances have to be considered. In this paper,

we present an extension to current SPL modeling based on class di'Figure 1. A MailClient SPL using a MailFramework SPL and
agrams that allows us to describe SPL instances and dependenci€§iterent instances of a List SPL.

among them. We use SPL specialization to provide reuse of SPL

configurations between different SPL compositions.

time. Such constraints (e.giequires constraints between Mail-

. Client SPL and MailFramework) can be described as constraints
1. Introduction between the feature models of these SPLs [4]. However, if multiple
Reuse insoftware product lines (SPLs$$ achieved by combin- similar variants of one SPL are used, constraints between concrete
ing assets, e.g., components, to produce a number of similar pro-SPL instancesirfstance constrainjsare needed. For example, the
grams [4]. The resulting concrete products of an SBPL(in- MailClient uses two different instances of a list SPL (cf. Fig. 1).
stance} are variants tailored to a specific use-case or environ- These instances have to be be configured differently, i.e., one as a
ment. Large SPLs can be built by reusing functionality provided sorted list and one as a synchronized list. A domain level constraint
by smaller SPLs and sometimes functionality of multiple SPLs between mail client SPL and list SPL as used in current domain
is integrated into one SPL [18]. This results in a composition of modeling cannot describe this dependency.
SPLs where compatibility between interacting SPLs has to be en- In this paper, we extend existing product line modeling with an
sured. As an example, consider a mail application developed as anapproach that aims at modeling compositions of dependent SPLs.
SPL (MailClient in Figure 1). The client uses mail communica- Our goal is to connect domain modeling and domain implemen-
tion functionality provided by a MailFramework SPL (e.g., differ- tation: while feature models describe the features of an SPL we
ent mail protocols) and two differently configured instances of list use SPL instance models to describe the composition of SPLs. Fur-
SPLs (SortedList and SynchronizedList). To ensure correct com- thermore, we want to separate dependencies needed for SPL con-
position the MailFramework has to be configured according to the figuration, i.e., the uses-relationship between SPL instances, from
requirements of the MailClient. For example, using the IMAP mail concrete SPL implementation. Furthermore, we integrate domain
protocol in the MailClient requires the MailFramework to provide modeling and SPL instances by mapping a feature of an SPL to in-
this protocol. This is getting more complex if multiple product lines ~ stances of SPLs that are referenced by this feature. This is in line
are involved, e.g., the mail client in Figure 1 uses two additional in- with feature-oriented software developmevitere all software ar-
stances of a product line of list data structures that also have to betifacts are decomposed with respect to the features of a domain [2].
configured appropriately. Such systems can be seen as large SPLBY including SPL specializatiof5] we are able to reuse SPL con-
composed from smaller SPLs, i.prpduct lines of product linesr figurations in different SPL compositions. A combination of do-
nested product linefl3]. Proper configuration of suafiependent main modeling and the presented instance modeling can be used
SPLsnot only ensures compatibility but also reduces consumed re- to derive configuration generators that create instances of all de-
sources by removing unneeded functionality, avoids unneeded de-pendent SPLs of a composition and thus provide the basis for an
pendencies to other programs, and can reduce the user interface. automated configuration process.

A user who configures an SPL that depends on other SPLs is

usually only interested in configuration decisions of her problem 2. Software Product Line Engineering
domain and not in the configuration of underlying SPLs. For ex-
ample, configuring the MailClient should not involve configuration
of the underlying MailFramework SPL. Hence, SPLs used within
other SPLs should be automatically configured to match the re-
quirements of the enclosing SPL and only functionality a user is in- Domain Modeling. An SPL is used to create similar programs
terested in has to be configured manually. This is possible by defin-that share some commdeatures The features of an SPL are
ing constraints between dependent SPLs that enforce only valid distinguishable characteristics of software that are of interest to
combinations and can be automatically resolved at configuration some stakeholder [4]. As part tdature-oriented domain analysis

In the following, we shortly present foundationssafftware prod-
uct line engineering (SPLENd the current state of techniques used
to model and implement SPLs.

MailClient SensorNetwork SensorNetworkNode
@ Q

Q Q Q
|Crypt ” Protocol “ Debug | | Logging || Sort || Sync | l DataStorage H Access ‘ l DataStorage H Communication H Sensor‘
<< ~
<5’§qﬁﬁ§s>> ./?\‘
PDA || Laptop l Bluetooth H Radio H Wi-Fi ‘
OR
Q Q Q)
""'Af | SMTP | S":TP Il ”:AP Il P:pS | /O\ alternative Figure 3. Feature diagrams of an SPL for a sensor network (left
N ‘\\\;;r;auﬁ,g;» L J, optional part) and an SPL for software used on sensor network nodes (right
\\\\\\\ " aequitesss ’/// part).
- <Srequiress> B l mandatory

that existing models have to be extended to completely describe
Figure 2. Feature diagram of a mail client SPL that uses a mail arbitrary compositions of product lines and present requirements
framework SPL with requires-constraints between SPLs (shown asneeded for an extension of current product line modeling.

dashed arrows).

Large Scale Product Lines. Complex and distributed systems,

e.g., sensor networks, can be developed as product lines built from

a number of heterogeneous SPL instances. For example, a Sensor-
Network SPL as shown in Figure 3 may consist of different sensor
nodes, data storage nodes, and access nodes each of them being an

other SPLs: a MailFramework SPL that provides different mail instance of a SensorNetworkNode SPL. Additionally, a client ap-

protocols and another small SPL of list data structures. The root of glg:ftt'on accests(;nf? thets?_nsct)rhnedtwork might fe :jevelopdetljjgz an
a feature diagram (e.g., node MailClient) represents the SPL itself =", 0 support difierent client haraware (e.g., Lap ops an s)

and remaining nodes represent features of that SPL (e.g., featurd® interface with sensor netyvork nodes. Dependenues benNgen net-
IMAP represents the IMAP mail protocol). Features can be optional work nodes and client applications may exist to ensure a valid sen-

(depicted with an empty dot) or mandatory (depicted with a filled sor network asa whole. Communlcat!on petween sensor nodes, for
dot). Variability introduced by features provides means to create instance, requires the same communication protocol and the access

tailor-made applications. For example, mail clients using different node of a sensor network might additionally require Bluetooth to

; . : communicate with clients (Laptop or PDA).
Eg);gcgﬁdaéf#;reated by including the according featurese| In contrast to the MailClient SPL, the SensorNetwork SPL is

not an SPL from which a program is created but a number of
Domain Constraints. Feature models often contaitomain con- interacting programs (i.e., the software running on nodes of the
straintsthat ensure only valid feature combinations on the domain network and the client software to access the network). Hence,
level. For examplerequires (shown as dashed arrows in Fig. 2) there might not be any source code needed for the SensorNetwork
and mutual-exclusiomelations are used to describe dependencies and only the smaller SPLs contain program code. This also affects
between features [4]. Domain constraints can also be used to de-the instantiation process: there is no particular composition process
scribe dependencies between different product lines [6, 16]. For needed (e.g., using code transformation and compilation of code)
example, if feature MAP is used in the MailClient, also feature but only instantiation of used product lines.

IMAP of the MailFramework SPL is required (cf. Fig. 2). A user The SensorNetworkNode SPL again might use other SPLs that
of the MailClient SPL usually only wants to configure the Mail- provide lower level functionality, e.g., an SPL for database manage-
Client itself and not all accompanied SPLs which she might not ment systems (DBMS) to store data. Hence, there can be chains of
have any domain knowledge of. This can be achieved by automati- SPLs using instances of smaller SPLs. This composition might lead
cally resolving constraints between SPLs, e.g., between MailClient to large systems and also systems of systems. Each SPL in such a
and MailFramework. chain of SPLs requires an own model to describe dependencies to
lower-level SPLs that it uses. By providing a separate composition

Product Line Implementation. SPLs are implemented using a model for each of these SPLs we can reuse these models in other
variety of technologies. Examples are components that are com-prodyct lines.

bined to build large systems [3] or C/C++ preprocessor definitions N) N
used to build SPLs in the embedded domain. New paradigms like Compositions of Product Line Instances.Compositions of mul-
aspect_oriented programming (AOE_)]_] andfeature-oriented pro- tlple SPLs Imp|y that we have to handle these SPLS and ConStl’alhtS
gramming (FOP)14, 2] can also be used to implement SPLs. The between them on the model level. Domain constraints can describe
approach that we present in this paper is independent of the useddependencies between different SPLs but do not take concrete in-
implementation technique. stances into account. These instances, however, have to be consid-
Based on the SPL implementation a user derives a concrete€red if one SPL uses multiple differently configured instances of
product by selecting the needed features from an SPL. The resultinggnother SPL or if different instances of the same SPL depend on
SPL configuratior(i.e., feature selection) is used to compose the €ach other.) o _)
corresponding software assets that implement an SPL resultingina As an example consider our MailClient that uses multiple dif-
tailoredSPL instanceThe created SPL instance might be a library, ferently configured list data structures as shown in Figure 1. One
a component, a program, or a collection of programs. The concreteinstance of the List SPL is a synchronized List, i.e., using feature

composition mechanism depends on the implementation technique SYNC, and one is a sorted List, i.e., using featur$ (cf. Fig. 2).
In such a composition, we describe the requires relationship be-

. tween feature BBUG of the MailClient and feature @GGING of

3. Dependent Software Product Lines the List using a domain constraint. This is not possible for features
By using domain constraints, dependencies within an SPL and SORT and SYNC because the MailClient requires two different in-
between different SPLs can be modeled. In the following, we show stances, one using feature®r and one using featurey8ic. That

(FODA), SPLs can be described usifegiture modelgl0, 4]. These
are usually visualized usinfipature diagramg10] as shown for
a MailClient product line in Figure 2. The MailClient SPL uses

OO-concept SPL representation <SPL» «SPL»

class SPL List MailClient
object SPL instance

class specialization staged configuration 5 &
aggregation uses-relationship of SPLs «SPL» «SPL» = (%
type of member variable type of SPL instance SyncList SortList g |e
name of member variable name of SPL instance -Sync : bool = true| |-Sort : bool = true “

Table 1. OO-concepts and the corresponding representation of
concepts in product lines.

Figure 4. A MailClient SPL that uses different specializations of
an SPL of list data structures (represented by aggregation). SPL
specialization is represented by inheritance.

is, we cannot describe constraints that affect only a concrete in-
stance of an SPL.

We can find another example in the sensor network scenario. In
this case, differently configured instances of nodes (e.g., data stor-
age nodes and sensor nodes) are communicating with each other
and one instance (e.g., a sensor node) depends on the functionalityliagrams also complex compositions of SPLs can be created using
of another instance (e.g., a data storage node). Again, we cannoexisting tools and a familiar concept. Furthermore, existing support
describe the dependencies in the feature model, which is the samdor generation of object-oriented code from class diagrams can
for all nodes, because we would refer to the same feature model andbe used to derive configuration generators from SPL composition
not a concrete instance of it. To solve this problem we propose to models.
extend feature modeling with explicit modeling of SPL instances. Using a class diagram, the MailClient example that uses a

Instance Identification. Using multiple instances of one SPL re- List SPL (cf. Fig 2) can now be modeled as shown in Figure 4.

i - . . : - .. SPLs are represented by clasfies1Client andList. Classes
quires assigning a unique name to each instance to identify the dif-g .1 5+ and syncList represent specialized variants of the
Lerently cor;ﬁgureorl]lnsta;nces atnd define cfonsttrr]amts btra]twe_en (tjhemdList SPL that provide sorting and synchronization. The special-

or eéxampl€, we have 10 create a name 1or theé Synchronized antization je., a pre-configured feature model, can be represented
sorted list that are used by the MailClient. Furthermore, we can

th the imol tation level of an SPL in order t using special attributes of the classes (e.g., attriBgite: in class
use these hames on the Implementation 1evel ot an IN Order0gncList). Instances of SPLs used by other SPLs are described
create class instances (e.g., list nodes) that are part of the differen

using aggregation, e.g., membersilList anderrMsgList of

|nst3ntce§dof ?n SIE L'SFIS[gxz;1tmple, nam?hspaces or pa:jckeltgesl C_?_E BfassMailClient represent instances of different specialized List
used to identify the Instances on he source code level. 1hegp) 5 gy ysing specialized variants we can avoid constraints be-

concrete technique used to identify instances (e.9., Java packagesyeenyaiiclient andList that would be needed to define the
depends on the SPL implementation and is outside of the scope Ofdifferent variantSortList andSyncList. Thus, we only have to

this paper. refer to the specialized variants and can reuse the configuration of
i i . the specialized SPLs in other SPL compositions. Names of class
4. An Extension of Product Line M odeling members (e.gmaillist anderrMsgList) are used to identify

We have seen that constraints between SPL instances are needefistances of an SPL. o)

to ensure correct configuration for a number of dependent SPLs. _Pomain constraints are defined in the domain model and are
To avoid manual implementation of these constraints at the sourceStill used to define constraints that apply for all instances of an SPL.
code level of an SPL we present an extension to current product FOF €xample, constraifailClient.Debug => List.Logging

line modeling that allows a domain engineer to describe SPLs and (¢f: Fig. 2) means that featureeBUG of the MailClient SPL re-

SPL instances and specify constraints between them. quires feature bGGING of the List SPL. We can now provide
additional constraints for specialized SPLs. For example, we can
Modeling SPL Instances. The terminstantiationis used in prod- useMailClient.Debug => SyncList.Logging to enable fea-

uct line engineering as well as in OOP. In product line engineering, ture LOGGINGonly in instances of synchronized lists because Syn-
creating an SPL instance means to derive a concrete product fromcList is a specialized variant of the List SPL. These constraints are
an SPL. In OOP, classes are instantiated resulting in concrete ob-part of the MailClient SPL and are separated from reusable special-
jects. Czarnecki et al. compared SPLs to classes of OOP and SPLized variants defined in the List SPL.

configurations to class instances [5]. We adopt this correspondence

and model SPLs and SPL instances using classes and objects ofnstance Constraints. We useinstance constraint$o describe
OOP. This also means that class instantiation corresponds to SPLdependencies between SPLs and concrete instances. As an exam-
instantiation. Using the concept of aggregation furthermore allows ple, consider the model for a sensor network in Figure 5. The
us to have members within classes where the type of a memberSensorNetwork SPL uses specialized instances of SRLsent
corresponds to an SPL and the object assigned to such a membeandNetworkNode. The specialized variamtataNode again uses
corresponds to an SPL instan&aged configurationf SPLs, i.e., an instance of SPDBVS to store data. In the lower part, we de-
specialization of the feature model [5], can be represented by spe-pict constraints of the model. Domain constraint (1) is part of
cialization as known from OOP. This means, a specialized ¢lass the domain model and shown for completeness. Additionally, we

of classC'4 corresponds to a specialized SPE of SPLS 4. Also specify constraints between SPLs and specialized variants (2): fea-
subtyping of SPLs and polymorphism can be appligg:is a sub- ture PA implies feature BUETOOTH only in specialized variant
type of S4 and variables of typ& 4 can refer to instances 6f4 or AccessNode. We also used an instance constraint (3): if feature
Sp. We summarized all corresponding constructs in Table 1. DATASTORAGE is used, we enable featureuURIES in instance

Based on the correspondence of OOP classes and SPLs we capda of theSensorNetwork SPL. Thus, only a concrete instance is
use class diagrams to model SPL compositions. By using classaffected and not the whole SPL.

-sensorNode by a configuration tool and the underlying models need not to be
Iy t“SPI'(—': g -accessNade ¢ l shown to the user. When creating a configuration, the user starts
<SPL» e workvocel | <SPL» <SPL» with an empty feature selection of the top-level SPL (e.g., SPL
DBMS s «SPL» Client SensorNetwork SensorNetwork in Fig. 5) and selects functional features. This se-
Sensortlode 9 lection is based on the domain model of an SPL but is additionally
-Radio = true 2 ‘é g checked against constraints in the instance model. Dependent SPLs
«SPL» 5Py 3 z are only added when they are needed. This avoids conflicts of SPLs
AccessNode Laptop 2 that are not used and simplifies the verification of a feature selec-
Recio - o «SPL» tion. After finishing the configuration of one SPL the configuration
—<PL. PDA of dependent SPLs follows. Ideally, there is no further selection of
DataNode functionality of dependent SPLs needed because it is implicitly pro-
-db g | DataStorage = true vided via constraints; however, manual configuration of underlying
[Radio = rue SPLs might be needed or wanted.
domai . In the following, we describe how a configuration for the Sen-
omain constraints: N .
(1) Sensor Net work. Loggi ng => O i ent . Loggi ng sorNetwork_ SPL can _be derlve_d. We start with an empty fea-
(2) Sensor Network. PDA => AccessNode. Bl uet oot h ture selection which includes instances of SFlemsorNode
et aint AccessNode that are always needed in a network. The user selects
Instance constraints: H H
(3) Sensor Networ k. Dat aSt or age => Sensor Net wor k. pda. Quer i es feature D\TA STORAGE which adds an instance of SPataNode
(conditional dependency 6) and SPBUMS. Selection of feature
conditional dependencies: PDA adds an instance of SPDA. The configuration of functional
g
Eg; ggzzg:mﬂt ;gzt op ;nfifig MNS:‘IQD:)E; aptop features is finished with this selection and constraints have to be
(6) Sensor Net wor k. Dat aSt or age => Sensor Net wor k. dat aNode checked. Constraint (1) is ignored because featL[DG.CEING. is
not selected. Constraint (2) enables featur®@BrooTH in all in-

stances of th®ataNode SPL and constraint (3) enables feature
Figure 5. A sensor network SPL using network nodes and client QUERIESIn instancepda of SPL PDA. After that, all dependent
applications. The specialized DataNode SPL itself uses a DBMS SPLs have to be configured. This is done per SPL instance, e.g., if
SPL. we would have selected clienggla andlaptop, both have to be
configured separately. In our case, there are no other features to be
configured within dependent SPLs and the configuration is already

In contrast to gpeuahzaﬂon, it might be simpler to define in- gisheq This should be the usual scenario, but there might also be
stance constraints; however, specialization provides better reuse beé detailed configuration process of lower-level SPLs likent
cause the specialized variants can also be used in other SPLs. TheSPL

constraints presented here, are amlgiuiresor impliesconstraints
but arbitrary propositional formulas might be supported [1]. Object . .
Constraint Language (OCL) might be a good candidate for speci- 5. Discussion and Further Work

fying the constraints [4]. The presented model can be used to describe SPLs that are com-
Conditional Dependencies. A description of a composition of ~ posed from other SPLs. However, there are some issues that have

multiple SPLs using the model presented above includes all SPLst0 be further analyzed and can be subject to extensions of the pre-
and SPL instances that might be needed in arbitrary configura- sented model. In the following, we discuss some of these issues.
tions. Some of these SPLs and SPL instances, however, are only,

needed if features that use those SPLs are actually present in a Conl_ntegratlon with Domain Models. To provide an integrated soft-

crete configuration. For example, if feature STORAGE of the ware product line engineering process SPL instance modeling has
SensorNetwork SPL is not used, we also do not need special net- to be integrated with domain modeling. Based on a domain model

work nodes that store data. This means that such SPLs do not hav%%ﬁsgrzisﬁgbﬁ)s (;?lgftg_,nl_tz \?V(eetvzzﬁnefae:;utrﬁ: t?far?sr}teioﬁit gr;)dl_ "’ilrlf_o
to be considered at configuration time if we know that they are not

used. We achieve this by defining constraints for attributes of SPLs. Etan_ce_ modeling u5|r|19ha model tran?folrmatlon. The result is a
In the example shown in Figure 5. we used constraints 4-6 to de. P2SIC instance model that consists of classes representing SPLs

fine that attribute aptop, pda, anddataNode are only needed if and constraints between these SPLs which represent domain con-

a partculr feature s slected. Hence, f featumSTonsce SUarl: S1a0ed confuation of SPLS car o be sutonatealy
is not selected, there will be no instance of SRItaNode. Other y P

SPLs thamataliode depends on are also not added to the con- different stages of configuration. There are only a few steps to sup-

figuration. In our example, this applies to SBRMS which, as a p?rf:f;;tgZt(r:?;sssf?grn:ggﬂ:feature model of a composition of SPLs
result, does not have to be configured. This is similar for SPLs that p

have specialized variants. These are only added to a configuration | gpedate a hierarchy of subclasses to represent staged confiqura-
if there is an instance of the SPL itself or one of its specializations tion y P 9 9

needed. For example, if there is neither an instandapf.op nor Resulting classes that represent SPLs or specialized versions of an

of PDA, the wholeClient SPL is not needed. Conditional depen- SPL can be linked to their feature model to support visualization
dencies are mappings of features to elements of the instance model; PP !

To implement such mappings we propose o use existing tools, e_g_’e.g., using a feature diagram. Since there are a number of special

FeatureMapper [9]. This allows us to visualize such dependenciesgxrtnegs'?ﬁsé? tfr?:;:r?nrcr)]c?glglﬁéi.?d’bC:;SIr?r?élrngﬁglsiigeallrtwutrk?igoadeelj'
and use views on a composition model to show only elements that pping yzed. paper,

belong to a particular feature or a number of features. we have not clearly defined which types of constrain_ts should pe

supported. There are a number of approaches to define constraints
The Configuration Process. The configuration of a composition in domain models (e.g., [4, 7, 15, 1]) which should also be ap-
of SPLs is based on an instance model and the domain models ofplicable to the presented instance model. Which approach is used,
all involved SPLs. The configuration process should be supported however, is not important for the presented solution in general.

Tool Support. Mapping domain models and instance models is integration of multiple SPLs does not consider SPL instances or
the basis for tools that support development of such models andinstance constraints which were not needed in their context.
automates the configuration process. Further visualization support In contrast to these modeling approaches, we found that feature
is possible by mapping features to elements in the instance modelmodels and dependencies between them are not sufficient to de-
(conditional dependencies) using tools like FeatureMapper [9]. In scribe compositions of dependent SPLs where multiple instances of
further work, we aim at developing an integration of existing tools the same SPL are used. As a solution, we propose a model that de-
and an automated configuration process as part of FeaturéIDE. scribes SPL instantiation and dependencies between SPL instances.
FeaturelDE is a plug-in for the Eclipse IDE, used to support the We see our approach as an extension of other product line model-
complete SPL development process. It is based on feature-orientedng techniques and we think that their combination is needed to

programming and supports domain models ingbelsIformat [1]. completely describe complex product lines that are composed with
. . . .) other product lines.
Configuration Generators. As an extension to this basic tool sup- Product populations built from Koala components were de-

port we want to use the presented model to derive Configuration scribed by van Ommering [18] Koala Components can be recur-
generators. These generators can be created by generating OO codgyely buiit from smaller components leading to a set of complex
from the instance model as supported by current UML tools. The products which is similar to dependent product lines described
model can be extended using an object-oriented language (€.9.here. The focus of van Ommerings work was on interactions be-
JaVa) to include user-defined code. This code can include code SPetween Components via interfaces using different connectors to
cific to a COmpOSitiOn technique and also code to interact with a Support flexible Component Composition_ Interfaces between com-
user in the configuration process. By using an OO language for ponents and their description, e.g., as defined in Koala, are also
configuration we can directly access SPLs that are represented byheeded for safe composition when using our approach. Hence, in
classes and make use of polymorphism and method overriding tothijs respect the Koala approach is complementary to our work.
simplify SPL configuration. Execution of the resulting configura- - Fyrthermore, the goal of our work is to describe compositions of
tion generator results in an interactive configuration process for the gp| g independent of the implementation technique by focusing on
composition of dependent SPLs. features and dependencies between SPLs. Koala components are

. . defined by composing smaller components at configuration time
Adaptatlon to the Environment. The presented approach can be which is in contrast to our work. We aim at defining compositions
applied to systems developed as SPLs where the developer has ac

X : “*of whole SPLs and not concrete components. That is, the compo-
cess to all subsystems (i.e., used SPLs) to configure them accordln%ition of a concrete product (e.g., a component), built from other

to the needs of the top-level SPL. However, an SPL also interacts . ! .
with its environment ILi)e the operating system, hardware, other pro_duc_ts, automatlc_ally changes depending ona feature _se_lect_lon,
T ' i which is a modification of the composed architecture. This is dif-

oar. . ACh sl cannlbe charged Ay SF ioo NSttt om manalcompostion o componens ere & e
9 P Y- g component or a concrete product.

presented model we can also repressdernal SPLge.g., an op- Fries et al. presented an approach to model SPL compositions
erating system SPL [16]) and create constraints between the SPLfor embedded gystems [8]. Th%?/ Usature configurationsvhri)ch

of the problem domain and SPLs of the environment. These con- :) . .
straints have to ensure that the domain SPL configuration changesalre a selection of configured features to describe a group of in

according to the environment. Providing a confiquration for exter- stances that share this feature selection. Hence, feature configura-
9 Lo g Mg L tions are similar to specialized SPLs in staged configuration; how-
nal SPLs as they appear in a concrete scenario (e.g., describing th

actually used hardware) results in an SPL configuration that auto-%ver’ they do not allow a user to describe multiple configuration
1ally . ; 9 steps or sub-typing between specialized variants. A composition
matically adapts to this environment.

model described by Fries et al. is defined for a complete composi-
tion of product line instances. Our approach uses an instance model
6. Related Work that is part of a product line and defines a composition of related
d SPLs. Each referenced SPL itself has its own instance model defin-
ing other SPLs it is composed from. Hence, we define the compo-
sition for each SPL separately which eases reuse of instance mod-
els. Furthermore, we map features to referenced SPLs and SPL in-
stances and combine instance and feature models of multiple SPLs
only when this is needed, i.e., when a feature that references an-
other SPL is selected. This avoids any evaluation of composition
rules of product lines that are not used.

Tools like pure::variantg andGears allow a domain engineer

build feature models and also to describe dependencies among
hem. Both tools support modeling of dependencies between prod-
uct lines and Gears explicitly supports nested product lines that can
be reused between different product lingsidslis a tool to specify
composition constraints for feature models using a grammar [1]. It
provides means to check models and interactively derive a config-
uration for a feature model.

Batory et al. have shown that SPL development using layered
designs scales tproduct lines of program familiesThe focus of
their work was on generating families of programs from a single
code base and reasoning about program families. The work does

There is a large amount of work addressing domain modeling an
dependencies between multiple SPLs. Cardinality-based feature
models with constraints were proposed by Czarnecki et al. [6, 12].
They allow a domain engineer to specify specializations and con-
straints in feature models where multiple selections of one feature
are possible. The use@ature model referencg$] and feature
cloning might be applicable for modeling product line instances;
however, it mixes (1) domain modeling with domain implementa-
tion of a product line (handling instances of other product lines,
etc.) and (2) does not provide means to create nhamed instances o
used product lines which is needed for implementation. Application
product lines consuming different service-oriented product lines in
a SOA environment where described by Trujillo et al. [17]. Their
focus was on modeling the interfacing between SPLs in a service-
oriented environment. This includes service registration and ser-
vice consumption. Hence, their work is complementary to the pre-
sented approach and both might be combined in service-oriented
environments. An approach that integrates feature models of differ-
ent product lines was presented by Streitferdt et al. [16]. Their goal
is to derive the configuration of a hardware product line based on
the requirements of an SPL for embedded systems. The presented
2 http://www.pure-systems.com

L http://wwwiti.cs.uni-magdeburg.defitib/research/featureide/ 3 http:/iwww.biglever.com

not address relations between different product lines developed [10] K. Kang, S. Cohen, J. Hess, W. Novak, and A. PetersontuFea

independently or between instances of such product lines. Oriented Domain Analysis (FODA) Feasibility Study. TeclaiiRe-
port CMU/SEI-90-TR-21, Software Engineering Institutar@egie
Mellon University, 1990.

7. Conclusion [11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. ésp
Compositions of SPLs are used to structure and decompose large ~ J--M. Loingtier, and J. Irwin. Aspect-Oriented Programming.
SPLs and also to reuse SPLs within other SPLs. Current feature [N Proceedings of the European Conference on Object-Oriented

Programming (ECOOR)volume 1241 ot ecture Notes in Computer

models can be used to describe such compositions only if an SPL Sciencepages 220-242. Springer Verlag, 1997.

uses one instance of other SPLs. This is not sufficient if multiple

instances of the same SPL are used in a larger SPL. [12] C. H. P. Kim and K. Czarnecki. Synchronizing Cardinalased
We presented an approach based on class diagrams and OOp Feature Models and Their Specializations. Haropean Confer-

that extends domain modeling. We provide means to model SPLs, egéiﬂglMOdel Dég’le"é:‘g:hz'fgé“re Foundations and Appima

SPL instances, their relationships, and constraints between them. In () pages e '

our modelnestecbr hierarchical SPLs, where only one instance of ~ [13] C. W. Krueger. New Methods in Software Product Line Depenent.

each involved SPL is used, are included as a special case. The pre- n Proceedings of the International Software Product Line Beence

sented model describes the high-level architecture of compositions ~ (SPLC) pages 95-102. IEEE Computer Society Press, 2006.

of SPLs and their dependencies. We propose to use it to comple-[14] C. Prehofer. Feature-Oriented Programming: A Fresh Labk

ment domain modeling and integrate it into the SPL development Objects. InProceedings of the European Conference on Object-

process if multiple SPLs are involved. We showed how conditional Oriented Programming (ECOOPyolume 1241 of ecture Notes in

dependencies can be handled by using constraints that map fea- ~ COMPUter Sciencpages 419-443. Springer Verlag, 1997.

tures of an SPL to referenced instances of other SPLs. This serves[15] D. Streitferdt, M. Riebisch, and I. Philippow. Detadé Formalized

a better understanding of compositions of dependent SPLs (e.g., Relations in Feature Models Using OCL. pages 297-304. IEEE

supported by advanced visualization techniques) and can be used ~ Computer Society Press, 2003.

to automate the configuration process of a whole SPL composition [16] D. Streitferdt, P. Sochos, C. Heller, and 1. Philippo@onfiguring

scenario. Embedded System Families Using Feature Model®rateedings of

Net.ObjectDayspages 339-350. Gesellschaft fnformatik, 2005.

[17] S. Trujillo, C. Kastner, and S. Apel. Product Lines that Supply Other
Acknowledgments Product Lines: A Service-Oriented Approach. S®LC Workshop:

Marko Rosenriiller and Norbert Siegmund are funded by German Service-Oriented Architectures and Product Lines - Whahées

Research Foundation (DFG), project number SA 465/32-1 and Ger- Connection?2007.

man Ministry of Education and Research (BMBF), project number [18] R. van Ommering. Building Product Populations with Saiftes

011IM08003C. Components. IProceedings of the International Conference on
Software Engineering (ICSE)ages 255-265. ACM Press, 2002.

References

[1] D. Batory. Feature Models, Grammars, and Propositionainktas.
In Proceedings of the International Software Product Line feeence
(SPLC) volume 3714 ol ecture Notes in Computer Scienpages
7-20. Springer Verlag, 2005.

[2] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling-Stes®
Refinement. IEEE Transactions on Software Engineering (TSE)
30(6):355-371, 2004.

[3] P. Clements and L. NorthrogSoftware Product Lines: Practices and
Patterns Addison-Wesley, 2002.

[4] K. Czarnecki and U. EiseneckeBenerative Programming: Methods,
Tools, and ApplicationsAddison-Wesley, 2000.

[5] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged Car#itpn
Through Specialization and Multi-level Configuration ofaffigre
Models. InSoftware Process Improvement and Practice dfges
143-169, 2005.

[6] K. Czarnecki, S. Helsen, and U. W. Eisenecker. Stagedi@amation
Using Feature Models. IRroceedings of the International Software
Product Line Conference (SPLG)olume 3154 oLecture Notes in
Computer Sciencgages 266—283. Springer Verlag, 2004.

[7] A. Deursen and P. Klint. Domain-specific Language Desigqiires
Feature Descriptions.Journal of Computing and Information
Technology10(1):1-17, 2002.

[8] W. Friess, J. Sincero, and W. Schroeder-Preikschat. eVliod
Compositions of Modular Embedded Software Product Lines. In
Proceedings of the 25th Conference on IASTED Internativhati-
Conferencepages 224-228. ACTA Press, 2007.

[9] F. Heidenreich, J. Kopcsek, and C. Wende. FeatureMappepping
Features to Models. IICSE Companion '08: Companion of the 30th
International Conference on Software Engineeripgges 943-944.
ACM Press, 2008.

