
Modeling Dependent Software Product Lines

Marko Rosenm̈uller, Norbert Siegmund, Christian Kästner, Syed Saif ur Rahman
School of Computer Science,

University of Magdeburg, Germany
{rosenmue, nsiegmun, kaestner, srahman}@ovgu.de

Abstract
Techniques to model software product lines (SPLs), using feature
models, usually focus on a single SPL. Larger SPLs can also be
built from smaller SPLs which results in a dependency between the
involved SPLs, i.e., one SPL uses functionality provided by another
SPL. Currently, this can be described using constraints between the
involved feature models. However, if multiple differently config-
ured instances are used in a composition of SPLs, dependencies
between the concrete instances have to be considered. In this paper,
we present an extension to current SPL modeling based on class di-
agrams that allows us to describe SPL instances and dependencies
among them. We use SPL specialization to provide reuse of SPL
configurations between different SPL compositions.

1. Introduction
Reuse insoftware product lines (SPLs)is achieved by combin-
ing assets, e.g., components, to produce a number of similar pro-
grams [4]. The resulting concrete products of an SPL (SPL in-
stances) are variants tailored to a specific use-case or environ-
ment. Large SPLs can be built by reusing functionality provided
by smaller SPLs and sometimes functionality of multiple SPLs
is integrated into one SPL [18]. This results in a composition of
SPLs where compatibility between interacting SPLs has to be en-
sured. As an example, consider a mail application developed as an
SPL (MailClient in Figure 1). The client uses mail communica-
tion functionality provided by a MailFramework SPL (e.g., differ-
ent mail protocols) and two differently configured instances of list
SPLs (SortedList and SynchronizedList). To ensure correct com-
position the MailFramework has to be configured according to the
requirements of the MailClient. For example, using the IMAP mail
protocol in the MailClient requires the MailFramework to provide
this protocol. This is getting more complex if multiple product lines
are involved, e.g., the mail client in Figure 1 uses two additional in-
stances of a product line of list data structures that also have to be
configured appropriately. Such systems can be seen as large SPLs
composed from smaller SPLs, i.e.,product lines of product linesor
nested product lines[13]. Proper configuration of suchdependent
SPLsnot only ensures compatibility but also reduces consumed re-
sources by removing unneeded functionality, avoids unneeded de-
pendencies to other programs, and can reduce the user interface.

A user who configures an SPL that depends on other SPLs is
usually only interested in configuration decisions of her problem
domain and not in the configuration of underlying SPLs. For ex-
ample, configuring the MailClient should not involve configuration
of the underlying MailFramework SPL. Hence, SPLs used within
other SPLs should be automatically configured to match the re-
quirements of the enclosing SPL and only functionality a user is in-
terested in has to be configured manually. This is possible by defin-
ing constraints between dependent SPLs that enforce only valid
combinations and can be automatically resolved at configuration

MailClient MailFramework

SynchronizedListSortedList

«uses»«uses»

«uses»

Figure 1. A MailClient SPL using a MailFramework SPL and
different instances of a List SPL.

time. Such constraints (e.g.,requires constraints between Mail-
Client SPL and MailFramework) can be described as constraints
between the feature models of these SPLs [4]. However, if multiple
similar variants of one SPL are used, constraints between concrete
SPL instances (instance constraints) are needed. For example, the
MailClient uses two different instances of a list SPL (cf. Fig. 1).
These instances have to be be configured differently, i.e., one as a
sorted list and one as a synchronized list. A domain level constraint
between mail client SPL and list SPL as used in current domain
modeling cannot describe this dependency.

In this paper, we extend existing product line modeling with an
approach that aims at modeling compositions of dependent SPLs.
Our goal is to connect domain modeling and domain implemen-
tation: while feature models describe the features of an SPL we
use SPL instance models to describe the composition of SPLs. Fur-
thermore, we want to separate dependencies needed for SPL con-
figuration, i.e., the uses-relationship between SPL instances, from
concrete SPL implementation. Furthermore, we integrate domain
modeling and SPL instances by mapping a feature of an SPL to in-
stances of SPLs that are referenced by this feature. This is in line
with feature-oriented software developmentwhere all software ar-
tifacts are decomposed with respect to the features of a domain [2].
By includingSPL specialization[5] we are able to reuse SPL con-
figurations in different SPL compositions. A combination of do-
main modeling and the presented instance modeling can be used
to derive configuration generators that create instances of all de-
pendent SPLs of a composition and thus provide the basis for an
automated configuration process.

2. Software Product Line Engineering
In the following, we shortly present foundations ofsoftware prod-
uct line engineering (SPLE)and the current state of techniques used
to model and implement SPLs.

Domain Modeling. An SPL is used to create similar programs
that share some commonfeatures. The features of an SPL are
distinguishable characteristics of software that are of interest to
some stakeholder [4]. As part offeature-oriented domain analysis



MailClient

Protocol

Pop3 IMAP SMTP

Recv Send

Debug

MailFramework

Pop3IMAPSMTP

Logging

List

SyncSortCrypt

<<requires>>

<<requires>>

<<requires>>

<<requires>>

OR

alternative

optional

mandatory

Figure 2. Feature diagram of a mail client SPL that uses a mail
framework SPL with requires-constraints between SPLs (shown as
dashed arrows).

(FODA), SPLs can be described usingfeature models[10, 4]. These
are usually visualized usingfeature diagrams[10] as shown for
a MailClient product line in Figure 2. The MailClient SPL uses
other SPLs: a MailFramework SPL that provides different mail
protocols and another small SPL of list data structures. The root of
a feature diagram (e.g., node MailClient) represents the SPL itself
and remaining nodes represent features of that SPL (e.g., feature
IMAP represents the IMAP mail protocol). Features can be optional
(depicted with an empty dot) or mandatory (depicted with a filled
dot). Variability introduced by features provides means to create
tailor-made applications. For example, mail clients using different
protocols are created by including the according features IMAP,
POP3, and SMTP.

Domain Constraints. Feature models often containdomain con-
straintsthat ensure only valid feature combinations on the domain
level. For example,requires (shown as dashed arrows in Fig. 2)
andmutual-exclusionrelations are used to describe dependencies
between features [4]. Domain constraints can also be used to de-
scribe dependencies between different product lines [6, 16]. For
example, if feature IMAP is used in the MailClient, also feature
IMAP of the MailFramework SPL is required (cf. Fig. 2). A user
of the MailClient SPL usually only wants to configure the Mail-
Client itself and not all accompanied SPLs which she might not
have any domain knowledge of. This can be achieved by automati-
cally resolving constraints between SPLs, e.g., between MailClient
and MailFramework.

Product Line Implementation. SPLs are implemented using a
variety of technologies. Examples are components that are com-
bined to build large systems [3] or C/C++ preprocessor definitions
used to build SPLs in the embedded domain. New paradigms like
aspect-oriented programming (AOP)[11] andfeature-oriented pro-
gramming (FOP)[14, 2] can also be used to implement SPLs. The
approach that we present in this paper is independent of the used
implementation technique.

Based on the SPL implementation a user derives a concrete
product by selecting the needed features from an SPL. The resulting
SPL configuration(i.e., feature selection) is used to compose the
corresponding software assets that implement an SPL resulting in a
tailoredSPL instance. The created SPL instance might be a library,
a component, a program, or a collection of programs. The concrete
composition mechanism depends on the implementation technique.

3. Dependent Software Product Lines
By using domain constraints, dependencies within an SPL and
between different SPLs can be modeled. In the following, we show

PDA

SensorNetwork

Bluetooth

DataStorage Access

Laptop

SensorNetworkNode

DataStorage Communication

Radio Wi-Fi

Sensor

Figure 3. Feature diagrams of an SPL for a sensor network (left
part) and an SPL for software used on sensor network nodes (right
part).

that existing models have to be extended to completely describe
arbitrary compositions of product lines and present requirements
needed for an extension of current product line modeling.

Large Scale Product Lines. Complex and distributed systems,
e.g., sensor networks, can be developed as product lines built from
a number of heterogeneous SPL instances. For example, a Sensor-
Network SPL as shown in Figure 3 may consist of different sensor
nodes, data storage nodes, and access nodes each of them being an
instance of a SensorNetworkNode SPL. Additionally, a client ap-
plication accessing the sensor network might be developed as an
SPL to support different client hardware (e.g., Laptops and PDAs)
to interface with sensor network nodes. Dependencies between net-
work nodes and client applications may exist to ensure a valid sen-
sor network as a whole. Communication between sensor nodes, for
instance, requires the same communication protocol and the access
node of a sensor network might additionally require Bluetooth to
communicate with clients (Laptop or PDA).

In contrast to the MailClient SPL, the SensorNetwork SPL is
not an SPL from which a program is created but a number of
interacting programs (i.e., the software running on nodes of the
network and the client software to access the network). Hence,
there might not be any source code needed for the SensorNetwork
and only the smaller SPLs contain program code. This also affects
the instantiation process: there is no particular composition process
needed (e.g., using code transformation and compilation of code)
but only instantiation of used product lines.

The SensorNetworkNode SPL again might use other SPLs that
provide lower level functionality, e.g., an SPL for database manage-
ment systems (DBMS) to store data. Hence, there can be chains of
SPLs using instances of smaller SPLs. This composition might lead
to large systems and also systems of systems. Each SPL in such a
chain of SPLs requires an own model to describe dependencies to
lower-level SPLs that it uses. By providing a separate composition
model for each of these SPLs we can reuse these models in other
product lines.

Compositions of Product Line Instances.Compositions of mul-
tiple SPLs imply that we have to handle these SPLs and constraints
between them on the model level. Domain constraints can describe
dependencies between different SPLs but do not take concrete in-
stances into account. These instances, however, have to be consid-
ered if one SPL uses multiple differently configured instances of
another SPL or if different instances of the same SPL depend on
each other.

As an example consider our MailClient that uses multiple dif-
ferently configured list data structures as shown in Figure 1. One
instance of the List SPL is a synchronized List, i.e., using feature
SYNC, and one is a sorted List, i.e., using feature SORT (cf. Fig. 2).
In such a composition, we describe the requires relationship be-
tween feature DEBUG of the MailClient and feature LOGGING of
the List using a domain constraint. This is not possible for features
SORT and SYNC because the MailClient requires two different in-
stances, one using feature SORT and one using feature SYNC. That



OO-concept SPL representation

class SPL
object SPL instance
class specialization staged configuration
aggregation uses-relationship of SPLs
type of member variable type of SPL instance
name of member variable name of SPL instance

Table 1. OO-concepts and the corresponding representation of
concepts in product lines.

is, we cannot describe constraints that affect only a concrete in-
stance of an SPL.

We can find another example in the sensor network scenario. In
this case, differently configured instances of nodes (e.g., data stor-
age nodes and sensor nodes) are communicating with each other
and one instance (e.g., a sensor node) depends on the functionality
of another instance (e.g., a data storage node). Again, we cannot
describe the dependencies in the feature model, which is the same
for all nodes, because we would refer to the same feature model and
not a concrete instance of it. To solve this problem we propose to
extend feature modeling with explicit modeling of SPL instances.

Instance Identification. Using multiple instances of one SPL re-
quires assigning a unique name to each instance to identify the dif-
ferently configured instances and define constraints between them.
For example, we have to create a name for the synchronized and
sorted list that are used by the MailClient. Furthermore, we can
use these names on the implementation level of an SPL in order to
create class instances (e.g., list nodes) that are part of the different
instances of an SPL. For example, name spaces or packages can be
used to identify the SPL instances on the source code level. The
concrete technique used to identify instances (e.g., Java packages)
depends on the SPL implementation and is outside of the scope of
this paper.

4. An Extension of Product Line Modeling
We have seen that constraints between SPL instances are needed
to ensure correct configuration for a number of dependent SPLs.
To avoid manual implementation of these constraints at the source
code level of an SPL we present an extension to current product
line modeling that allows a domain engineer to describe SPLs and
SPL instances and specify constraints between them.

Modeling SPL Instances. The terminstantiationis used in prod-
uct line engineering as well as in OOP. In product line engineering,
creating an SPL instance means to derive a concrete product from
an SPL. In OOP, classes are instantiated resulting in concrete ob-
jects. Czarnecki et al. compared SPLs to classes of OOP and SPL
configurations to class instances [5]. We adopt this correspondence
and model SPLs and SPL instances using classes and objects of
OOP. This also means that class instantiation corresponds to SPL
instantiation. Using the concept of aggregation furthermore allows
us to have members within classes where the type of a member
corresponds to an SPL and the object assigned to such a member
corresponds to an SPL instance.Staged configurationof SPLs, i.e.,
specialization of the feature model [5], can be represented by spe-
cialization as known from OOP. This means, a specialized classCB

of classCA corresponds to a specialized SPLSB of SPLSA. Also
subtyping of SPLs and polymorphism can be applied:SB is a sub-
type ofSA and variables of typeSA can refer to instances ofSA or
SB . We summarized all corresponding constructs in Table 1.

Based on the correspondence of OOP classes and SPLs we can
use class diagrams to model SPL compositions. By using class

«SPL»
MailClient

«SPL»
List

-Sync : bool = true

«SPL»
SyncList

-Sort : bool = true

«SPL»
SortList

-m
ailList

-errM
sgList

Figure 4. A MailClient SPL that uses different specializations of
an SPL of list data structures (represented by aggregation). SPL
specialization is represented by inheritance.

diagrams also complex compositions of SPLs can be created using
existing tools and a familiar concept. Furthermore, existing support
for generation of object-oriented code from class diagrams can
be used to derive configuration generators from SPL composition
models.

Using a class diagram, the MailClient example that uses a
List SPL (cf. Fig 2) can now be modeled as shown in Figure 4.
SPLs are represented by classesMailClient andList. Classes
SortList and SyncList represent specialized variants of the
List SPL that provide sorting and synchronization. The special-
ization, i.e., a pre-configured feature model, can be represented
using special attributes of the classes (e.g., attributeSync in class
SyncList). Instances of SPLs used by other SPLs are described
using aggregation, e.g., membersmailList anderrMsgList of
classMailClient represent instances of different specialized List
SPLs. By using specialized variants we can avoid constraints be-
tweenMailClient andList that would be needed to define the
different variantsSortList andSyncList. Thus, we only have to
refer to the specialized variants and can reuse the configuration of
the specialized SPLs in other SPL compositions. Names of class
members (e.g.,mailList anderrMsgList) are used to identify
instances of an SPL.

Domain constraints are defined in the domain model and are
still used to define constraints that apply for all instances of an SPL.
For example, constraintMailClient.Debug => List.Logging

(cf. Fig. 2) means that feature DEBUG of the MailClient SPL re-
quires feature LOGGING of the List SPL. We can now provide
additional constraints for specialized SPLs. For example, we can
useMailClient.Debug => SyncList.Logging to enable fea-
ture LOGGINGonly in instances of synchronized lists because Syn-
cList is a specialized variant of the List SPL. These constraints are
part of the MailClient SPL and are separated from reusable special-
ized variants defined in the List SPL.

Instance Constraints. We useinstance constraintsto describe
dependencies between SPLs and concrete instances. As an exam-
ple, consider the model for a sensor network in Figure 5. The
SensorNetwork SPL uses specialized instances of SPLsClient

andNetworkNode. The specialized variantDataNode again uses
an instance of SPLDBMS to store data. In the lower part, we de-
pict constraints of the model. Domain constraint (1) is part of
the domain model and shown for completeness. Additionally, we
specify constraints between SPLs and specialized variants (2): fea-
ture PDA implies feature BLUETOOTH only in specialized variant
AccessNode. We also used an instance constraint (3): if feature
DATA STORAGE is used, we enable feature QUERIES in instance
pda of theSensorNetwork SPL. Thus, only a concrete instance is
affected and not the whole SPL.



«SPL»

SensorNetwork

«SPL»

PDA

«SPL»

Laptop

«SPL»

Client

«SPL»

NetworkNode

-Sensor = true
-Radio = true

«SPL»

SensorNode

-WiFi = true
-Radio = true

«SPL»

AccessNode

-DataStorage = true
-Radio = true

«SPL»

DataNode

domain constraints:

(1) SensorNetwork.Logging => Client.Logging
(2) SensorNetwork.PDA => AccessNode.Bluetooth

instance constraints:

(3) SensorNetwork.DataStorage => SensorNetwork.pda.Queries

conditional dependencies:

(4) SensorNetwork.Laptop => SensorNetwork.laptop
(5) SensorNetwork.PDA => SensorNetwork.pda
(6) SensorNetwork.DataStorage => SensorNetwork.dataNode

«SPL»

DBMS

-p
d
a

-la
p
to

p

-d
a
ta

N
o
d
e

-db

-accessNode

-sensorNode

Figure 5. A sensor network SPL using network nodes and client
applications. The specialized DataNode SPL itself uses a DBMS
SPL.

In contrast to specialization, it might be simpler to define in-
stance constraints; however, specialization provides better reuse be-
cause the specialized variants can also be used in other SPLs. The
constraints presented here, are onlyrequiresor impliesconstraints
but arbitrary propositional formulas might be supported [1]. Object
Constraint Language (OCL) might be a good candidate for speci-
fying the constraints [4].

Conditional Dependencies. A description of a composition of
multiple SPLs using the model presented above includes all SPLs
and SPL instances that might be needed in arbitrary configura-
tions. Some of these SPLs and SPL instances, however, are only
needed if features that use those SPLs are actually present in a con-
crete configuration. For example, if feature DATA STORAGE of the
SensorNetwork SPL is not used, we also do not need special net-
work nodes that store data. This means that such SPLs do not have
to be considered at configuration time if we know that they are not
used. We achieve this by defining constraints for attributes of SPLs.
In the example shown in Figure 5, we used constraints 4–6 to de-
fine that attributeslaptop, pda, anddataNode are only needed if
a particular feature is selected. Hence, if feature DATA STORAGE
is not selected, there will be no instance of SPLDataNode. Other
SPLs thatDataNode depends on are also not added to the con-
figuration. In our example, this applies to SPLDBMS which, as a
result, does not have to be configured. This is similar for SPLs that
have specialized variants. These are only added to a configuration
if there is an instance of the SPL itself or one of its specializations
needed. For example, if there is neither an instance ofLaptop nor
of PDA, the wholeClient SPL is not needed. Conditional depen-
dencies are mappings of features to elements of the instance model.
To implement such mappings we propose to use existing tools, e.g.,
FeatureMapper [9]. This allows us to visualize such dependencies
and use views on a composition model to show only elements that
belong to a particular feature or a number of features.

The Configuration Process. The configuration of a composition
of SPLs is based on an instance model and the domain models of
all involved SPLs. The configuration process should be supported

by a configuration tool and the underlying models need not to be
shown to the user. When creating a configuration, the user starts
with an empty feature selection of the top-level SPL (e.g., SPL
SensorNetwork in Fig. 5) and selects functional features. This se-
lection is based on the domain model of an SPL but is additionally
checked against constraints in the instance model. Dependent SPLs
are only added when they are needed. This avoids conflicts of SPLs
that are not used and simplifies the verification of a feature selec-
tion. After finishing the configuration of one SPL the configuration
of dependent SPLs follows. Ideally, there is no further selection of
functionality of dependent SPLs needed because it is implicitly pro-
vided via constraints; however, manual configuration of underlying
SPLs might be needed or wanted.

In the following, we describe how a configuration for the Sen-
sorNetwork SPL can be derived. We start with an empty fea-
ture selection which includes instances of SPLsSensorNode

AccessNode that are always needed in a network. The user selects
feature DATA STORAGE which adds an instance of SPLDataNode
(conditional dependency 6) and SPLDBMS. Selection of feature
PDA adds an instance of SPLPDA. The configuration of functional
features is finished with this selection and constraints have to be
checked. Constraint (1) is ignored because feature LOGGING is
not selected. Constraint (2) enables feature BLUETOOTH in all in-
stances of theDataNode SPL and constraint (3) enables feature
QUERIES in instancepda of SPL PDA. After that, all dependent
SPLs have to be configured. This is done per SPL instance, e.g., if
we would have selected clientspda andlaptop, both have to be
configured separately. In our case, there are no other features to be
configured within dependent SPLs and the configuration is already
finished. This should be the usual scenario, but there might also be
a detailed configuration process of lower-level SPLs like theDBMS

SPL.

5. Discussion and Further Work
The presented model can be used to describe SPLs that are com-
posed from other SPLs. However, there are some issues that have
to be further analyzed and can be subject to extensions of the pre-
sented model. In the following, we discuss some of these issues.

Integration with Domain Models. To provide an integrated soft-
ware product line engineering process SPL instance modeling has
to be integrated with domain modeling. Based on a domain model
that describes constraints between features of one SPL and also
constraints to other SPLs we can ease the transition to SPL in-
stance modeling using a model transformation. The result is a
basic instance model that consists of classes representing SPLs
and constraints between these SPLs which represent domain con-
straints. Staged configuration of SPLs can also be automatically
transformed into an inheritance hierarchy of classes that represent
different stages of configuration. There are only a few steps to sup-
port such a transformation:
• create a class for each feature model of a composition of SPLs

and
• create a hierarchy of subclasses to represent staged configura-

tion.
Resulting classes that represent SPLs or specialized versions of an
SPL can be linked to their feature model to support visualization,
e.g., using a feature diagram. Since there are a number of special
extensions to feature models, e.g., cardinality based feature models,
a mapping of these models has to be further analyzed. In this paper,
we have not clearly defined which types of constraints should be
supported. There are a number of approaches to define constraints
in domain models (e.g., [4, 7, 15, 1]) which should also be ap-
plicable to the presented instance model. Which approach is used,
however, is not important for the presented solution in general.



Tool Support. Mapping domain models and instance models is
the basis for tools that support development of such models and
automates the configuration process. Further visualization support
is possible by mapping features to elements in the instance model
(conditional dependencies) using tools like FeatureMapper [9]. In
further work, we aim at developing an integration of existing tools
and an automated configuration process as part of FeatureIDE.1

FeatureIDE is a plug-in for the Eclipse IDE, used to support the
complete SPL development process. It is based on feature-oriented
programming and supports domain models in theguidslformat [1].

Configuration Generators. As an extension to this basic tool sup-
port we want to use the presented model to derive configuration
generators. These generators can be created by generating OO code
from the instance model as supported by current UML tools. The
model can be extended using an object-oriented language (e.g.,
Java) to include user-defined code. This code can include code spe-
cific to a composition technique and also code to interact with a
user in the configuration process. By using an OO language for
configuration we can directly access SPLs that are represented by
classes and make use of polymorphism and method overriding to
simplify SPL configuration. Execution of the resulting configura-
tion generator results in an interactive configuration process for the
composition of dependent SPLs.

Adaptation to the Environment. The presented approach can be
applied to systems developed as SPLs where the developer has ac-
cess to all subsystems (i.e., used SPLs) to configure them according
to the needs of the top-level SPL. However, an SPL also interacts
with its environment, i.e., the operating system, hardware, other
software, etc., which usually cannot be changed. An SPL also has
to be configured with respect to this external variability. Using the
presented model we can also representexternal SPLs(e.g., an op-
erating system SPL [16]) and create constraints between the SPL
of the problem domain and SPLs of the environment. These con-
straints have to ensure that the domain SPL configuration changes
according to the environment. Providing a configuration for exter-
nal SPLs as they appear in a concrete scenario (e.g., describing the
actually used hardware) results in an SPL configuration that auto-
matically adapts to this environment.

6. Related Work
There is a large amount of work addressing domain modeling and
dependencies between multiple SPLs. Cardinality-based feature
models with constraints were proposed by Czarnecki et al. [6, 12].
They allow a domain engineer to specify specializations and con-
straints in feature models where multiple selections of one feature
are possible. The usedfeature model references[6] and feature
cloning might be applicable for modeling product line instances;
however, it mixes (1) domain modeling with domain implementa-
tion of a product line (handling instances of other product lines,
etc.) and (2) does not provide means to create named instances of
used product lines which is needed for implementation. Application
product lines consuming different service-oriented product lines in
a SOA environment where described by Trujillo et al. [17]. Their
focus was on modeling the interfacing between SPLs in a service-
oriented environment. This includes service registration and ser-
vice consumption. Hence, their work is complementary to the pre-
sented approach and both might be combined in service-oriented
environments. An approach that integrates feature models of differ-
ent product lines was presented by Streitferdt et al. [16]. Their goal
is to derive the configuration of a hardware product line based on
the requirements of an SPL for embedded systems. The presented

1 http://wwwiti.cs.uni-magdeburg.de/itidb/research/featureide/

integration of multiple SPLs does not consider SPL instances or
instance constraints which were not needed in their context.

In contrast to these modeling approaches, we found that feature
models and dependencies between them are not sufficient to de-
scribe compositions of dependent SPLs where multiple instances of
the same SPL are used. As a solution, we propose a model that de-
scribes SPL instantiation and dependencies between SPL instances.
We see our approach as an extension of other product line model-
ing techniques and we think that their combination is needed to
completely describe complex product lines that are composed with
other product lines.

Product populations built from Koala components were de-
scribed by van Ommering [18]. Koala components can be recur-
sively built from smaller components leading to a set of complex
products which is similar to dependent product lines described
here. The focus of van Ommerings work was on interactions be-
tween components via interfaces using different connectors to
support flexible component composition. Interfaces between com-
ponents and their description, e.g., as defined in Koala, are also
needed for safe composition when using our approach. Hence, in
this respect the Koala approach is complementary to our work.
Furthermore, the goal of our work is to describe compositions of
SPLs independent of the implementation technique by focusing on
features and dependencies between SPLs. Koala components are
defined by composing smaller components at configuration time
which is in contrast to our work. We aim at defining compositions
of whole SPLs and not concrete components. That is, the compo-
sition of a concrete product (e.g., a component), built from other
products, automatically changes depending on a feature selection,
which is a modification of the composed architecture. This is dif-
ferent from manual composition of components to derive a larger
component or a concrete product.

Fries et al. presented an approach to model SPL compositions
for embedded systems [8]. They usefeature configurationswhich
are a selection of configured features to describe a group of in-
stances that share this feature selection. Hence, feature configura-
tions are similar to specialized SPLs in staged configuration; how-
ever, they do not allow a user to describe multiple configuration
steps or sub-typing between specialized variants. A composition
model described by Fries et al. is defined for a complete composi-
tion of product line instances. Our approach uses an instance model
that is part of a product line and defines a composition of related
SPLs. Each referenced SPL itself has its own instance model defin-
ing other SPLs it is composed from. Hence, we define the compo-
sition for each SPL separately which eases reuse of instance mod-
els. Furthermore, we map features to referenced SPLs and SPL in-
stances and combine instance and feature models of multiple SPLs
only when this is needed, i.e., when a feature that references an-
other SPL is selected. This avoids any evaluation of composition
rules of product lines that are not used.

Tools likepure::variants2 andGears3 allow a domain engineer
to build feature models and also to describe dependencies among
them. Both tools support modeling of dependencies between prod-
uct lines and Gears explicitly supports nested product lines that can
be reused between different product lines.guidslis a tool to specify
composition constraints for feature models using a grammar [1]. It
provides means to check models and interactively derive a config-
uration for a feature model.

Batory et al. have shown that SPL development using layered
designs scales toproduct lines of program families. The focus of
their work was on generating families of programs from a single
code base and reasoning about program families. The work does

2 http://www.pure-systems.com
3 http://www.biglever.com



not address relations between different product lines developed
independently or between instances of such product lines.

7. Conclusion
Compositions of SPLs are used to structure and decompose large
SPLs and also to reuse SPLs within other SPLs. Current feature
models can be used to describe such compositions only if an SPL
uses one instance of other SPLs. This is not sufficient if multiple
instances of the same SPL are used in a larger SPL.

We presented an approach based on class diagrams and OOP
that extends domain modeling. We provide means to model SPLs,
SPL instances, their relationships, and constraints between them. In
our model,nestedor hierarchicalSPLs, where only one instance of
each involved SPL is used, are included as a special case. The pre-
sented model describes the high-level architecture of compositions
of SPLs and their dependencies. We propose to use it to comple-
ment domain modeling and integrate it into the SPL development
process if multiple SPLs are involved. We showed how conditional
dependencies can be handled by using constraints that map fea-
tures of an SPL to referenced instances of other SPLs. This serves
a better understanding of compositions of dependent SPLs (e.g.,
supported by advanced visualization techniques) and can be used
to automate the configuration process of a whole SPL composition
scenario.

Acknowledgments
Marko Rosenm̈uller and Norbert Siegmund are funded by German
Research Foundation (DFG), project number SA 465/32-1 and Ger-
man Ministry of Education and Research (BMBF), project number
01IM08003C.

References
[1] D. Batory. Feature Models, Grammars, and Propositional Formulas.

In Proceedings of the International Software Product Line Conference
(SPLC), volume 3714 ofLecture Notes in Computer Science, pages
7–20. Springer Verlag, 2005.

[2] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling Step-Wise
Refinement. IEEE Transactions on Software Engineering (TSE),
30(6):355–371, 2004.

[3] P. Clements and L. Northrop.Software Product Lines: Practices and
Patterns. Addison-Wesley, 2002.

[4] K. Czarnecki and U. Eisenecker.Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, 2000.

[5] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged Configuration
Through Specialization and Multi-level Configuration of Feature
Models. InSoftware Process Improvement and Practice 10, pages
143–169, 2005.

[6] K. Czarnecki, S. Helsen, and U. W. Eisenecker. Staged Configuration
Using Feature Models. InProceedings of the International Software
Product Line Conference (SPLC), volume 3154 ofLecture Notes in
Computer Science, pages 266–283. Springer Verlag, 2004.

[7] A. Deursen and P. Klint. Domain-specific Language Design Requires
Feature Descriptions.Journal of Computing and Information
Technology, 10(1):1–17, 2002.

[8] W. Friess, J. Sincero, and W. Schroeder-Preikschat. Modelling
Compositions of Modular Embedded Software Product Lines. In
Proceedings of the 25th Conference on IASTED InternationalMulti-
Conference, pages 224–228. ACTA Press, 2007.

[9] F. Heidenreich, J. Kopcsek, and C. Wende. FeatureMapper: Mapping
Features to Models. InICSE Companion ’08: Companion of the 30th
International Conference on Software Engineering, pages 943–944.
ACM Press, 2008.

[10] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Technical Re-
port CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie
Mellon University, 1990.

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes,
J.-M. Loingtier, and J. Irwin. Aspect-Oriented Programming.
In Proceedings of the European Conference on Object-Oriented
Programming (ECOOP), volume 1241 ofLecture Notes in Computer
Science, pages 220–242. Springer Verlag, 1997.

[12] C. H. P. Kim and K. Czarnecki. Synchronizing Cardinality-Based
Feature Models and Their Specializations. InEuropean Confer-
ence on Model Driven Architecture Foundations and Applications
(ECMDA), pages 331–348, 2005.

[13] C. W. Krueger. New Methods in Software Product Line Development.
In Proceedings of the International Software Product Line Conference
(SPLC), pages 95–102. IEEE Computer Society Press, 2006.

[14] C. Prehofer. Feature-Oriented Programming: A Fresh Lookat
Objects. InProceedings of the European Conference on Object-
Oriented Programming (ECOOP), volume 1241 ofLecture Notes in
Computer Science, pages 419–443. Springer Verlag, 1997.

[15] D. Streitferdt, M. Riebisch, and I. Philippow. Detailsof Formalized
Relations in Feature Models Using OCL. pages 297–304. IEEE
Computer Society Press, 2003.

[16] D. Streitferdt, P. Sochos, C. Heller, and I. Philippow.Configuring
Embedded System Families Using Feature Models. InProceedings of
Net.ObjectDays, pages 339–350. Gesellschaft für Informatik, 2005.

[17] S. Trujillo, C. Kästner, and S. Apel. Product Lines that Supply Other
Product Lines: A Service-Oriented Approach. InSPLC Workshop:
Service-Oriented Architectures and Product Lines - What isthe
Connection?, 2007.

[18] R. van Ommering. Building Product Populations with Software
Components. InProceedings of the International Conference on
Software Engineering (ICSE), pages 255–265. ACM Press, 2002.


