
Towards Reuse with “Feature-Oriented Event-B”

Michael Poppleton, Bernd Fischer, Chris Franklin, Ali Gondal, Colin Snook, Jennifer Sorge
Dependable Systems and Software Engineering

University of Southampton
Southampton, SO17 1BJ, UK

{mrp, b.fischer, aag07r, cf105, cfs, jhs06r}@ecs.soton.ac.uk

Abstract

Event-B [19] is a language for the formal specification
and verification of reactive systems. The language and its
RODIN toolkit represent a leading model-based technol-
ogy for formal software construction. However, scalabil-
ity is a major current concern, especially the dimension of
reusability. We outline a proposed infrastructure for scal-
able development with reuse for Event-B. We focus specif-
ically on our agenda for reuse in Software Product Lines,
and explain how a form of feature modelling will be central
to this programme.

1 Introduction

Event-B [19] is a formal modelling language that
evolved naturally from the classical B language [1] of J.-
R. Abrial. The recent project RODIN1 saw the definition
of Event-B and the creation of the rich Eclipse-based [14]
RODIN toolkit [2] for formal modelling, animation, veri-
fication, and proof with Event-B. This includes a project
repository, syntax- and type-checkers, proof obligation gen-
erator, animators, theorem provers, and various front-end
plug-ins.

In software development with Event-B, refinement is the
central method by which initially small, abstract models of
requirements are elaborated through architectural and de-
tailed design to code. Refinement2 M1 of a model M0 will
usually remove some nondeterminism (implementation-
freedom) and add data and algorithmic structure. M1 is
mathematically proved to be a “black-box” simulation of
M0, i.e. to offer only behaviour specified by M0. Event-B
allows us to formally state and prove both consistency prop-
erties for models and refinement properties between them;

1RODIN - Rigorous Open Development Environment for Open Sys-
tems: EU IST Project IST-511599

2The term refinement is overloaded, meaning (i) the process of trans-
forming one model into another, and (ii) the concrete model which refines
the abstract one.

we call these properties proof obligations (POs) in Event-B.
These capabilities are part of the extra “bang for the buck”
that Formal Methods offer to critical systems developers.

While there is now growing evidence of successful in-
dustrial critical systems development using B technology,
e.g. [13, 18], only limited (and commercially protected)
tool support exists to scale up to large applications. Project
DEPLOY3 aims to address this by scaling methodology in
requirements validation, requirements evolution, reuse, and
resilience, and scaling tooling in simulation, analysis and
verification of formal models. This paper adds “feature-
oriented Event-B” to that agenda.

Modularization and structuring are key issues in scaling
Event-B models: a number of model decomposition mech-
anisms [3, 16, 21] have been proposed, and tool support
for them is under development. The event fusion of [21] is
designed specifically for feature-oriented structuring with
Event-B.

The authors are working towards defining a method for
feature-based modelling with Event-B, specifically aimed at
reuse in software product lines (SPLs). Feature modelling
[12] is a well understood approach for variability modelling
for SPLs. To date it has mostly been applied to code or
detailed design documents; we apply it to an abstract, non-
deterministic language with formal semantics and verifica-
tion conditions (POs). This paper outlines definitions of
features as generic Event-B model elements, and defines
feature composition and specialization. Using a simple ex-
ample we present a scheme for precise definition of prod-
uct line instances as particular feature compositions. This
suggests a graphical feature modelling notation in the usual
style, but with rigorous semantic foundations.

We present an agenda for methodological and tool devel-
opment to support feature-oriented software development
with Event-B. While the detailed feature structuring ideas

3DEPLOY - Industrial deployment of system engineering methods pro-
viding high dependability and productivity (2008 - 2011): FP VII Project
214158 under Strategic Objective IST-2007.1.2. Further information and
downloadable tools are available at http://www.deploy-project.eu/



of this paper are syntactic, we emphasise that this is scaf-
folding for the real, semantic value that we anticipate from
this work: the scaling of verification through a product line.
The starting point is designing an identified feature and its
chain of refinements, and then proving each of these refine-
ments consistent, and a correct refinement transformation
of its predecessor. This is part of the legwork of feature
construction for the application domain.

The theoretical job is then as far as possible to prove
compositionality, i.e. that consistency and refinement are
preserved when we compose features. For any consistent
features f and g we must prove f ⊕ g consistent (for a de-
fined composition operator “⊕”). Given their refinements
f1 and g1, we must further prove f1⊕g1 both consistent and
a correct refinement of f ⊕ g. While such compositionality
has been proved for the operators of [3, 16, 21], much work
remains for the intricate needs of feature composition.

2 The Event-B language

Event-B is designed for long-running reactive hard-
ware/software systems that respond to stimuli from user
and/or environment. The set-theoretic language in first-
order logic (FOL) takes as its semantic model a transition
system with guarded transitions between states. The cor-
rectness of a model is defined by an invariant property, i.e.
a predicate, or constraint, which every reachable state in
the system must satisfy. More practically, every event in
the system must be shown to preserve this invariant; this
verification requirement is expressed in a number of proof
obligations (POs). In practice this verification is performed
either by model checking or theorem proving (or both).

In Event-B the top level unit of modularization is the
model consisting of a machine and zero or more contexts.
The dynamic machine contains state variables, the state in-
variant, and the events that update the state. The static con-
text contains sets, constants and their axioms.

The unit of behaviour is the event. An event E acting on
(a list of) state variables v, subject to enabling condition, or
guard predicate G(v) and action, or assignment R(v), has
syntax

E =̂ WHEN G(v) THEN R(v) END (1)

That is, the action defined by R(v) may occur only when
the state enables the guard. An event E works in a model
with constants c and sets s subject to axioms (properties)
P(s, c) and an invariant I(s, c, v). Thus the event guard G
and assignment with before-after predicate4 R̂ take s, c as
parameters. Two of the consistency proof obligations (POs)
for event E defined as (1) are FIS (feasibility) and INV (in-

4Here R(v) is a syntax of actions, corresponding to a before-after pred-
icate R̂(v, v′).

variant preservation):

P(s, c) ∧ I(s, c, v) ∧ G(s, c, v) ⇒ ∃ v′ • R̂(s, c, v, v′) (2)

P ∧ I ∧ G(s, c, v) ∧ R̂(s, c, v, v′) ⇒ I(s, c, v′) (3)

Intuitively speaking, the static typing and axioms P and
state consistency property I give the known properties of the
system at any time. For event E (1), FIS states that when its
guard G is true (enabled) at state v, then E - via its before-
after predicate R̂ - is able to make the state transition from
v to v′. INV states that E will maintain the invariant, i.e.
consistency: when G is enabled, any after-state v′ reachable
by E will satisfy invariant I.

In order to progress towards implementation, the process
of refinement is used. A refinement is a (usually) more elab-
orate model than its predecessor, in an eventual chain of
refinements to code.

The refinement of a context is simply its elaboration, by
the addition of new sets, constants and axioms. When re-
fining a machine, new variables may be added, and some
or all abstract (refined) variables v may be replaced by
new concrete (refining) ones w. New invariant clauses and
events will usually be added, elaborating data and algorith-
mic structure. There are proof obligations for refinement,
both for correctness of the simulation of an abstract model
by its more concrete refinement, and for preservation of cer-
tain liveness properties. We do not discuss these further.

3 Feature-oriented Event-B ?

A small case study from project DEPLOY will be used
to demonstrate the prototype scheme for product-line devel-
opment with Event-B, based on formal feature modelling.
The example consists of specifications and Event-B devel-
opments for two simple, related products: a switch and a
pushbutton.5 Switch and pushbutton each have a single two-
valued output, off (false) or on (true). Each has one continu-
ous input in the interval [0, 1]. Rising and falling thresholds
are used on the sampled input to determine switching con-
ditions.

Neither specifications nor models have been developed
through any product-line process: commonalities in the
Event-B models were cut-and-pasted, and variabilities were
modelled in situ for each model instance. Again, require-
ments features have simply been identified by intuition,
rather than by any defined process.

A precise syntactic definition of an Event-B feature re-
mains to be established after case study experience; for the
present we regard the feature as a well-formed machine,
context or model, and a subfeature as a well-formed ele-
ment of such, e.g. a variable + typing invariant, a constant
+ typing axiom, an event. Expressiveness is required in the

5A 3-way and an n-way switch are also part of the product line, but
have not been included for the sake of brevity.



Event-B feature definition to allow easy correspondence be-
tween requirements and model features.

The switch is specified as follows, paraphrasing [22],
and adding named features. Note that all features here
map to Event-B machine (i.e. behavioural) features, ex-
cept for bounce, threshr, threshf, which are context features.
The switch has four parameters (Debounce time BT, Rising
threshold RTH, Falling threshold FTH, Cycle time CT). The
input will be read cyclically with Cycle time CT.

1-1 Initially, the output is “off” (initop).

1-2i If the output is “off” and the switch on condition is
true, the output is set to “on” (switchopi).

1-2ii If the output is “on” and the switch off condition is
true, the output is set to “off” (switchopii).

1-3 A rising edge is detected if at time t the input is higher
than RTH and at time t-CT it was lower than RTH
(edge).

1-4 A falling edge is detected if at time t the input is lower
than FTH and at time t-CT it was higher than FTH
(edge).

1-5i The switch on condition is true if a rising edge was
detected and the input exceeds RTH for BT after the
rising edge (swcond).

1-5ii The switch off condition is true if a falling edge was
detected and the input is lower than FTH for BT after
the falling edge (swcond).

1-6 BT > CT (bounce)

1-7i 0 < RTH <= 1 (threshr)

1-7ii 0 <= FTH < 1 (threshf)

The requirements are now expressed in terms of the com-
position of features, e.g. including two variants of swcond.
Such variation is achieved by making features specializable
by parameter. The pushbutton differs from the switch in that
it uses a single switch condition based on a rising threshold.

The specification suggests a graphical notation for the
Event-B feature model - shown in Fig. 1 - comprising a ma-
chine graph and a context graph. This notation will build on
some version of standard feature modelling notation [12].
We add two kinds of edge: “c” for “consists of”, as per stan-
dard notation, and “r” for “refines” (we make the distinc-
tion because of the verification POs denoted by a “refines”
edge). As usual, black or white dots denote mandatory or
optional features.

Thus a switch device comprises machine features ini-
top, switchopi, switchopii and context features bounce,
threshr, threshf, in an abstract (level 0) model. The sym-
bol ⊕ denotes various feature compositions outlined below.
switchopi, the switch-on feature, is enabled when the switch
is off. It is a machine feature comprising variable output, its
typing invariant, initialisation, and event

initop switchopi switchopii

r r r

⊕ ⊕swcond swcond

⊕ ⊕edge edge

0

1

r

switchMc

initop switchopi switchopii

c cc

rr

switchCtx

ccc

⊕

⊕⊕

⊕

threshr bouncethreshf ⊕⊕

⊕

Figure 1. Switch feature diagram

out F T =
WHEN grd1: output = false
THEN act1: output := true
END

switchopii is the reverse, switch off feature. Since at
level 0 the switch condition is abstracted away, the switch
and pushbutton models are identical at level 0.

At refinement level 1 abstractions of the switch condition
swcond and the rising/falling edge test edge are introduced.
A counter variable c is introduced and initialised to zero.
When a rising edge is detected on the input by edge, c is
set to n = BT/CT . c is decremented (by swcond) in each
cycle that the input remains high, and the switch condition
is satisfied when n reaches 1.

For each product line instance, its composition from con-
stituent features, and these features’ specialization (param-
eterization) must be explicitly defined at each refinement
level. We show refinement level 1 for the switch:

Switch =̂ SwitchCtx⊕scmc SwitchMc

SwitchCtx =̂ (threshr ⊕sccc threshf )⊕scac

Axiom(“fth<rth”)
SwitchMc =̂ initop⊕smmc

(switchopi⊕smmc

swcond(lbl = “re”, grd = “output = false”)⊕smmc

edge(lbl = “re”, grd = “output = false”)
⊕smmc

(switchopii⊕smmc

swcond(lbl = “fe”, grd = “output = true”)⊕smmc

edge(lbl = “fe”, grd = “output = true”))

Next we elaborate the various composition operators ⊕slrp

by describing these four modifiers:

• s: Strength of composition: s(default) denotes
“strong”, i.e. the two composing elements must be
syntax- and type-consistent and must not require any
user specialization. “w” denotes “weak”, i.e. allowing



user specialization and resolution of inconsistencies at
composition/instantiation time.

• lr: Syntactic kind of left l and right r elements be-
ing composed: these may be feature elements, i.e.
m(default) for machine, c for context, and b for model,
in any combination. Further, a feature may be com-
posed with a subfeature of appropriate kind, i.e. ma-
chine m with variable(s) v, invariant i, event(s) e, or
context c with constant(s) o, carrier set(s) r, axiom(s)
a. A model b may compose with a consistent subfea-
ture of any kind.

• p: Composition of predicates: whether to conjoin
c(default) or disjoin d predicates, i.e. when combining
invariant clauses, or adding guard clauses to an event,
or fusing events.

For the switch instance Switch, context feature SwitchCtx
is composed from context features for each of the rising
(threshr) and falling (threshf) thresholds, as well as an extra
axiom relating the two. All machine compositions are sim-
ply ⊕smmc. For an example of specialization consider the
single event in edge denoting threshold detection:

%lbl% F T =
WHEN %grd%:

grd1: c = 0
THEN act1: c := n
END

This skeleton feature requires a label and a guard to
be completed. In the above definition of Switch, edge
is instantiated twice, once for the rising edge (lbl=“re”,
grd=“output = false”), resulting in event re F T and once
for the falling edge, resulting in event fe F T. Thus, a ris-
ing edge can only be detected when output is off, and con-
versely for the falling edge instantiation.

Considering the second instance in our little SPL, the
pushbutton differs from the switch precisely in that it uses
a single switch condition swcond based on a rising thresh-
old. Thus refinement 1 for Pushbutton differs from Switch
in that (i) in swcond, edge for switchopii, the label param-
eters become “re”, (ii) the outer composition between the
switchopi and switchopii is ⊕smmd, and (iii) PushbuttonCtx
is simply threshr. In this case the two instantiations of edge
in the same instance produce two versions of the same event
re F T. Hence the two versions of event re F T must be
fused [21]. That is, duplicated guards and actions are ig-
nored, and the d-modifier on ⊕smmd specifies that the extra
guard clause be disjoined. This gives a guard of output =
false ∨ output = true, which should be preprocessed to
true during instantiation, giving an always-enabled switch
condition.

4 Tooling for feature modelling

Our tool development takes place in support of some fu-
ture feature modelling process for Event-B. A feature mod-
elling phase, during domain analysis, will develop a feature

model based on any existing feature database, at the same
time developing new features. This will include feature con-
sistency proof, refinement and verification, as far as possi-
ble: the question of exactly how much verification can be
done on an unspecialized feature remains open. Athough
an event like %lbl% F T can be interpreted as well-formed
Event-B, and be consistency-verified, in general this will
not be true. Further, [20] described how in general a feature,
not containing all behaviour affecting its variables, will fail
to verify liveness POs.

An instance modelling phase will follow where system
instance specifications will be developed in the style of the
Switch. Most probably there will be iterative feedback to
the feature modelling phase. Finally, an instance production
phase will follow.

The starting point in tooling was the construction of an
Eclipse Modeling Framework [11] (EMF) editor for Event-
B, based on a language metamodel produced in DEPLOY.
EMF, based on metamodelling in the UML sense, enables
quick construction of a simple editor with a tree-structured
user interface reflecting the metamodel structure. A com-
position metamodel was developed by inheritance from the
Event-B metamodel, to define a small number of proto-
type feature compositions. A prototype EMF feature com-
position editor (comp-editor) was then produced based on
the composition metamodel. This enables recording of the
composition and specialization parameters in a particular
composition instance.

The comp-editor shown in Fig. 2 allows the user to spec-
ify all composition and specialization parameters interac-
tively. Its interactive style will be useful during the early
feature and instance modelling activities. In the figure, on

Figure 2. Composition tool

the left is a RODIN project explorer panel showing various
project elements. When a project is clicked on, the comp-
editor panel on the right is opened and blank. A drop-down
menu allows selection of elements from the selected project,
which produce corresponding tickboxes in the the comp-
editor panel; in the figure we see identified context, machine
and variable features. The user then instantiates the compo-
sition by ticking required features. On clicking “Compose”,
a third panel opens, allowing user specialization of selected



features and resolution of any conflicts. Dependency anal-
ysis is provided; e.g. given a variable the tool will identify
all (sub-)features requiring that variable.

The next step for comp-editor is support for the auto-
mated composition variants “⊕slrp”, which is a matter of
suitably packaging existing functionality. Such automated
compositions will be required for recording, managing, and
generating predefined instance models. Next, an EMF fea-
ture metamodel must be constructed, against which the
comp-editor should easily be adaptable for feature instance
modelling. This will require full definition of the feature
modelling language indicated by Fig. 1 and elaborated by
the Switch definition. A further, more costly development,
would be a graphical version of the EMF feature instance
modeller.

Methodological work - beyond that in this paper - has
started with an approach based on the “refinement by re-
striction” of [27]. A “maximal” Event-B model is con-
structed, containing all features. The feature model is an-
notated with mapping information to the Event-B model, so
that instance modelling is done by slicing required features
into the output instance model according to these mappings.

5 Related work

Recent proposals [8, 6] identifying generic algebraic
models for feature-oriented software construction schemes
are relevant to our work. These models can support instance
construction; e.g. (i) associative composition operators give
freedom in how they can be ordered, (ii) the occurrence of
non-commuting compositions can indicate feature interac-
tions. These ideas will inform the development of an alge-
bra of Event-B features.

Turning to verification, another recent development [7]
presents a product-line development where verification -
theorem statements and their proofs - is modularized and as-
sembled by features. For certain Event-B composition oper-
ators, certain properties (POs) are guaranteed by construc-
tion, as indicated in section 1. For most operators this will
not be true, and patterns of construction will be sought that
propagate POs, either partially or completely. [7] is encour-
aging, but we note that its case study exploits the fact that
the feature increments are logical conservative extensions,
i.e. each increment to the feature model does not interfere
with prior features in the construction order. While Event-
B superposition refinements, which simply add structure,
should work similarly, in general refinements will not be
modularizable in this way.

The notion of a feature as a reusable requirement [12]
or an increment in functionality [10] emerged in the con-
text of domain modeling and software product line engi-
neering. However, features are often considered as con-
cepts only, i.e., as names without any predefined semantics
[12]. Feature diagrams can be given an (internal) seman-

tics by translating them into propositional logic [10, 26],
which can be used for checking the consistency of entire
diagrams as well as individual configurations. Feature di-
agrams can also be “lifted” from a pure domain modeling
method to a programming method by defining mappings
into class diagrams [12], or by defining features as program-
ming language constructs, e.g., in the language FeatureC++
[5]. Such feature-oriented programming languages [9] are
usually implemented using generative techniques, e.g., mix-
ins [23]. We anticipate that our approach will lift in the
same way to UML-B [25], a grahical UML-like front-end
for Event-B.

In formal methods, a variety of formally well-founded
structuring methods have been developed, such as the lad-
der construction [24]. However, these typically focus on
module composition and parameterization [15] and do not
allow the combination of incomplete specification elements
that could represent features.

6 Conclusion and future work

We have outlined a usable (if intricate) syntactic scheme
and graphical notation for the automatable composition of
each product line instance from a set of specializable fea-
tures. The fact that this could be done based on a set of sim-
ple models with no prior generic structuring through some
domain analysis process, gives us some confidence in this
enterprise. It is of course a very modest start which must
now be built on.

The future work required is extensive but clearly con-
tributes to an existing agenda in both Generative Program-
ming and Formal Methods communities, as identified at
GPCE’06 [17]. This work consists of methodological (see
section 4), theoretical, and tooling strands.

Theory:

1. From case study work, full definition of the feature
composition operators outlined in section 4.

2. Establish the extent to which unspecialized features
can be proved consistent, and can be proved refine-
ments. Can this extend to the liveness POs ?

3. For all possible feature composition operators of sec-
tion 4, proof of compositionality. For noncomposi-
tional operators, an investigation of what properties
can be established.

Technology:

1. From case study work, definition of a feature mod-
elling language for Event-B. To include graphical as
well as composition/instantiation syntax as per section
3.

2. Implementation of a prototype working subset of such
operators in RODIN, based on our current interactive
composition editor prototype.



3. Development of a full feature and instance modelling
toolset inspired by e.g. FeaturePlugin [4]. GUI design
will be appropriate both to RODIN and to the visual-
isation demands of the user building or instantiating
feature models.

4. Validation by case study application.
5. The RODIN provers build and manage proof trees for

every proved PO, and take a reuse-oriented approach
to the management of these trees, when models, then
POs, then finally proof trees change. We need to
investigate, for the many cases where full composi-
tionality does not apply, whether unspecialized fea-
ture proof trees can be transformed for reuse in prov-
ing POs about their compositions. For example, if we
have proof trees for features f , g and their refinements
{fi}, {gj}, to what extent can we transform any of these
proof trees to be be applicable for reuse in proof about
f ⊕slrp g and its refinements ?

References

[1] J.-R. Abrial. The B-Book: Assigning Programs to Meanings.
Cambridge University Press, 1996.

[2] J. R. Abrial, M. Butler, S. Hallerstede, and L. Voisin. An
open extensible tool environment for Event-B. In Z. Liu and
J. He, editors, Proc. ICFEM 2006, volume 4260 of LNCS,
Macau, 2006.

[3] J.-R. Abrial and S. Hallerstede. Refinement, decomposition
and instantiation of discrete models: Application to Event-
B. Fundamenta Informaticae, 77(1-2):1–28, 2007.

[4] M. Antkiewicz and K. Czarnecki. FeaturePlugin: Feature
modeling plug-in for Eclipse. In Eclipse ’04: Proceedings
of the 2004 OOPSLA workshop on Eclipse technology eX-
change, pages 67–72, New York, NY, USA, 2004. ACM
Press.

[5] S. Apel, T. Leich, M. Rosenmüller, and G. Saake. Fea-
tureC++: On the symbiosis of feature-oriented and aspect-
oriented programming. In R. Glück and M. R. Lowry, ed-
itors, GPCE, volume 3676 of Lecture Notes in Computer
Science, pages 125–140. Springer, 2005.

[6] S. Apel, C. Lengauer, B. Möller, and C. Kästner. An algebra
for features and feature composition. In J. Meseguer and
G. Rosu, editors, AMAST, volume 5140 of Lecture Notes in
Computer Science, pages 36–50. Springer, 2008.

[7] D. Batory and E. Börger. Modularizing theorems for soft-
ware product lines: The jbook case study. JUCS, to appear.

[8] D. Batory and D. Smith. Finite map spaces and quarks: Al-
gebras of program structure. Technical Report TR-07-66,
Department of Computer Sciences, University of Texas at
Austin, December 2007.

[9] D. S. Batory. Feature-oriented programming and the ahead
tool suite. In ICSE, pages 702–703. IEEE Computer Society,
2004.

[10] D. S. Batory. Feature models, grammars, and propositional
formulas. In J. H. Obbink and K. Pohl, editors, SPLC, vol-
ume 3714 of Lecture Notes in Computer Science, pages 7–
20. Springer, 2005.

[11] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T. J.
Grose. Eclipse Modeling Framework. Addison-Wesley,
2003.

[12] K. Czarnecki and U. Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, 2000.

[13] B. Dehbonei and F. Mejia. Formal development of
safety-critical software systems in railway signalling. In
M. Hinchey and J. Bowen, editors, Applications of Formal
Methods, chapter 10, pages 227–252. Prentice-Hall, 1995.

[14] E. Gamma and K. Beck. Contributing to Eclipse. Addison-
Wesley, 2003.

[15] J. A. Goguen. Parameterized programming. IEEE Trans.
Software Eng., 10(5):528–544, 1984.

[16] C. Jones. Intermediate report on methodology. Technical
Report Deliverable 19, EU Project IST-511599 - RODIN,
August 2006. http://rodin.cs.ncl.ac.uk.

[17] G. T. Leavens, J. R. Abrial, D. Batory, M. Butler, A. Coglio,
K. Fisler, E. Hehner, C. B. Jones, D. Miller, S. Peyton-Jones,
M. Sitaraman, D. R. Smith, and A. Stump. Roadmap for en-
hanced languages and methods to aid verification. In Proc.
5th Int. Conf. Generative Programming and Component En-
gineering, Portland, Oregon, 2006.

[18] T. Lecomte, T. Servat, and G. Pouzance. Formal methods
in safety-critical railway systems. In Proc. 10th Brasilian
Symposium on Formal Methods, 2007.

[19] C. Métayer, J.-R. Abrial, and L. Voisin. Event-B Language.
Technical Report Deliverable 3.2, EU Project IST-511599 -
RODIN, May 2005. http://rodin.cs.ncl.ac.uk.

[20] M. Poppleton. Towards feature-oriented specification and
development with Event-B. In P. Sawyer, B. Paech, and
P. Heymans, editors, Proc. REFSQ 2007: Requirements En-
gineering: Foundation for Software Quality, volume 4542
of LNCS, pages 367–381, Trondheim, Norway, June 2007.
Springer.

[21] M. Poppleton. The composition of Event-B models. In
E. Boerger, editor, Proc. ABZ 2008, volume 5238 of LNCS,
page 209222, London, September 2008. Springer.

[22] Robert Bosch GMBH. Specification on/off switch. 2008.
[23] Y. Smaragdakis and D. S. Batory. Mixin layers: an

object-oriented implementation technique for refinements
and collaboration-based designs. ACM Trans. Softw. Eng.
Methodol., 11(2):215–255, 2002.

[24] D. R. Smith. Toward a classification approach to design. In
M. Wirsing and M. Nivat, editors, AMAST, volume 1101 of
Lecture Notes in Computer Science, pages 62–84. Springer,
1996.

[25] C. Snook and M. Butler. U2B - a tool for translating UML-
B models into B. In J. Mermet, editor, UML-B Specification
for Proven Embedded Systems Design, chapter 5. Springer,
2004.

[26] J. Sun, H. Zhang, Y.-F. Li, and H. H. Wang. Formal seman-
tics and verification for feature modeling. In ICECCS, pages
303–312. IEEE Computer Society, 2005.

[27] A. Wasowski. Automatic generation of program families by
model restrictions. In SPLC 2004, volume 3154 of LNCS,
pages 73–89. Springer, 2004.


