
Slide 1

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

FEATURE ORIENTED-PROGRAMMING:
BACK TO THE FUTURE

Christian Prehofer
Fraunhofer ESK, Munich, Germany,
christian.prehofer@esk.fraunhofer.de

Ludwig-Maximilians-Universität München
Programming and Software Engineering

Source: Universal Studios

mailto:christian.prehofer@esk.fraunhofer.de

Slide 2

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Overview

• FOP history and origins

• Feature interactions and feature composition

• Feature-oriented modeling and refinement

• Outlook

Slide 3

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

How it started …

• “Feature or SW composition” is not a new idea …
old dream of software

• Lots of new composition concepts in 90ties

• Mixins, composition filters, aspects, …

• Feature Interaction WS series - started 92

• Motivated by specific problems in Telecom

• Highly-entangled features

• Feature-oriented Domain Analysis – what the user wants

• And-or tree to structure requirements

• Monads and monad transformers …. more later

• Powerful theory to express composition & properties as types

•

Slide 4

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Feature Interaction Example

• Classic Example: Call forwarding and call waiting

• Call Forwarding: forward calls when busy

• Call waiting: interrupt existing call

• FI Problem: Incoming call while other is active:
forward or notify with call waiting

• Notice: Feature interactions are about system behavior

• Reminder: in real systems, we have dozens or hundreds of features

• Problem: Modularity in specification, design, implementation and composition

Slide 5

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Multi-Feature Interactions

Example:

1. Basic call

2. Call waiting: Take incoming call and put first call on hold

3. Lock phone (by lock key) – disable keys

• Interaction between (1) and (3) – solved by “exception”

• Calls can be taken when phone is locked – one button is unlocked

• 3-feature interaction happens now

• Call waiting active while phone is locked

• Second call is announced, but cannot be taken as only one button unlocked

Slide 6

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Feature Interactions – not just a Telecom Problem

“Feature interaction is a major cause of system failures, and its avoidance is a
major cost for system administrators deploying new features”
Dobson, Simon, Sterritt, Roy, Nixon, Paddy and Hinchey, Mike (2010)
Fulfilling the Vision of Autonomic Computing. IEEE Computer, 43 (1). pp. 35-41.

Feature Interactions in Automotive Infotainment.
Source: S. Benz, Generating Tests for Feature Interaction

http://mediatum2.ub.tum.de/node?id=805656

http://mediatum2.ub.tum.de/node?id=805656

Slide 7

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

FOP vs AOP

Aspect-oriented Programming

• Focus on Syntax, Modularity defined as code modularity
“Typically, an aspect is scattered or tangled as code, making it harder to
understand and maintain.” (Source: Wikipedia)

• AOP appeared round 1997, Semantics published 2001-2004

• Aspect interference/interactions difficult to define

• Interaction is about semantics

• Use only one aspect at a time

Slide 8

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Overview

• FOP history and origins

• Feature interactions and feature composition

• Feature-oriented modeling and refinement

• Outlook

Slide 9

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Feature-oriented Programming

Components are built by composing features

 Features have a base class, e.g. Stack, Counter, Lock

Adaptors are used to glue components together

 Adapt functionality

 Resolve feature interactions

Lock

Refine Stack

to Counter Stack
Refine Stack

to Lock

Counter
Refine Counter

to Lock adapt

Slide 10

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Feature Composition Architecture

Features (State + Methods)

 Adaptors/lifters

 Adapt one feature to

the context of another one

 Composition architecture

 Origin: Monad compositon

with „lifters“

F 2

F 1

F 2

F 4

F 3

F 1

F 1

F 2
.....

F 2

F 3

F 3

Slide 11

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

My first “monadic” FOP Program - 1996 in Gofer

Note: Lifters transform the type

„From Inheritance to Feature Interaction

or Composing Monads“, 1997.

Slide 12

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Semantic Feature Composition or Semantic Refinement

If we add a feature B to a feature A, will feature A still behave in the same way?

 Ok for “harmless” features which only adds extra functionality

 Original behavior on state of feature A (instance) is maintained

Examples

 Stack + Counter =Stack Stack

 Stack + Counter + Lock =Stack Stack

if Lock is unlocked

exp1 =F exp2 semantic equality of two expressions on state of feature F
I.e. state of F is identical after executing exp1 and exp2

Lock

Refine Stack

to Counter Stack
Refine Stack

to Lock

Counter
Refine Counter

to Lock adapt

Slide 13

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Harmless Features

Goal is a calculus to reason about combination of features and composition

A feature D is called conservative wrt a feature F if
D * F =F F

Also called „harmless“ feature.

Notion of semantic refinement first noted as “semantic inheritance” or
“behavioral subtyping”, G. Leavens, 1996

void push(char a) {

inc() ;

s=String.valueOf(a).concat(s);
=Stack

void push(char a) {

s=String.valueOf(a).concat(s);

Slide 14

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

The problem of (Multiple) Feature-Compositions

Multi-feature Composition: A + B + X

Modularity Problem:
If we know the effect of feature A on X and of feature B on X,
what can we conclude about adding both A and B to X?

 E.g. what do we know about Stack + Counter + Lock

 Typical problem if you compose multiple features (from different sources)

Question: Are “harmless features” compositional?

Same for AOP and “harmless advice”

Slide 15

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Feature Composition Problem: Stack + Counter

Base Method

void push(char a) {

inc() ;

s=String.valueOf(a).concat(s);

}

Slide 16

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Feature Composition Problem: Stack + Counter + Lock

Base Method

void push(char a) {

if (is_unlocked()) {

inc() ;

s=String.valueOf(a).concat(s); }

}

Counter

Lock

Slide 17

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Composing „harmless“ Features is not harmless

class X { int a = 0;

void m() { a ++; } }

class G { int g = 0; }

class F { int back; …. }

refines X to G {

void m() { g ++;

super.m() ; } }

refines X to F uses G {

void m() {

back = g ;

super.m() ;

if (g != back)

{a++ ; } } }

void m() {

back = g ;

g ++;

a ++;

if (g != back) {a++ ; }

}

Feature F

Feature G

Feature X

Feature F

Features F and G are harmeless wrt X, but F * G is not!

F has „hidden“ dependency on G

Slide 18

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

How to write „really harmless features“

void m() {

my adaptor

SOME CODE

a ++;

my adaptor

}

My Feature

Feature X

Base Feature

To write a really harmless adaptors/advice, assume

that the code is already modified by other adaptors!

D is independent of D’ over a
feature X, if D is conservative over
the random V-extension of x() for
all methods x() of X, where V is the
set of variables which are modified
by D’.

Theorem: A composition D + D’ of
is a conservative extension of a
feature X if the following holds:

- D and D’ are conservative over X
- D is independent of D’ over X

Slide 19

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

In search of a good formalization for features & composition

•Monads as a foundation for Features & Composition

• Monads are state-transformers – type describes stateful effect

• Motivated by Liang 95

• Feature Composition as
Monad compositions

• Establish semantic properties
on composition by types

• Prehofer 99, Oliviera 2010

References

• Prehofer 1997, 1999

• Oliveira, B. C., Schrijvers, T., and Cook, W. R.
EffectiveAdvice: disciplined advice with explicit effects. AOSD '10.

• Liang, S., Hudak, P., and Jones, M. Monad transformers and modular interpreters. POPL 95

Slide 20

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Formalization of features & composition: Differential Calculus

„Differential Calculus“ to describe (syntactic) combination of features

 Adaptor of h to a feature G is denoted as differential δh / δ G

 Nice to express multiple feature interactions

 But does not provide semantics to features

Reference

J. Liu, D. Batory, and S. Nedunuri. 2005
Modeling Interactions in Feature Oriented Designs,

j +

(δ2b/δJδH)*δb/δJ * δb/δH * b

δh/δJ * h +

ftp://ftp.cs.utexas.edu/pub/predator/ICFI2005.pdf

Slide 21

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Overview

• FOP history and origins

• Feature interactions and Feature Composition

• Feature-oriented modeling and refinement

• Outlook

Slide 22

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Feature-oriented modeling and refinement

 Goal is modularity for statechart diagrams

 Cross-cutting state diagrams into features and interactions

 Semantic refinement concepts for adding of features

Main benefits of graphical combination of features

 Reduce size & complexity of grahical specifications

 Compose only models of desired features

 Features as consistent design concepts in requirements, design and
implementation

Slide 23

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Example: Email Features

Features of an Email System

 Encryption of Emails

 Forwarding Emails

 Auto-reply

 Filtering of Emails

 Virus scanner

 ...

Feature Interactions

 Encryption and Forwarding

 forward only encrypted

 Encryption and Auto-reply

 Titel of email sent in plain as reply

Slide 24

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Component-Design with Statecharts

Statechart describes behavior of an object

Transitions triggered by external function call or internal action

called_function() [condition] / action

Composition of statecharts from features
Object specification: statechart
Feature: partial statechart
Interaction handler (adaptor) partial statechart
Feature composition: statechart refinement

Modular development of statecharts from features

 Feature-interactions as statecharts-refinement

Slide 25

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Feature model with partial statecharts

Example: 3 features which add states

Email
arrived

Waiting

deliver()

incoming()

Email
Error

error()

resume()

Mainten
ance

enterMaintenance()

doMaintenance()

leaveMaintenance()

Slide 26

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Classes of Features/Statecharts

1. Base features with a complete statechart

 includes an initial state.

2. State-oriented features with a partial statechart

 some states and transitions, but initial/final states not required

 E.g. feature “MaintenanceMode” with one new state

 Only reachable by new transitions from other features.

3. Transition-oriented features which define transitions

 No (persistent) state

 Interaction specification („adaptors“) according to these classes

 Combination rules according to these classes

Slide 27

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Combination of 2 Features

Email
arrived

Waiting

deliver()

incoming()

Email
Error

error()
resume()

Composition fixes lose ends of transitions

Slide 28

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Composition as Semantic Refinement

 „Loose“-Semantics based on external view of traces

 Specifies input/output behavior („black box view“)

 Semantics of a statechart are all possible or non-conflicting traces

 If unspecified action occurs, anything is possible („chaos“)

 Refinement adds specific details

 Reduces the number of possible traces

 Behavior is compatible with original statechart (subset or original trace set)

 Refinement steps for statechart diagrams

 Extend the number of states

 Add new states and „new“ transitions

 Refinement of transitions

 Refine transition by statechart with internal transitions only

Slide 29

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Combination of 3 Features

[noErrors] /

Email
arrived

Waiting

deliver()

incoming()

Email
Error

error()
resume() enterMaintenance()

Mainten
ance

doMaintenance()

leaveMaintenance()

enterMaintenance()

Add and refine transitions

Slide 30

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Combination Rules for Features

Combination by refinement of transitions

 Rules for adapting one feature to the other („interaction handling“)
BasicEmail Decryption/Forwarding

 Refinement describes the internal behavior of a transition by a statechart

Plain Mail
/decrypt() /deliver()

BasicEmail  Decryption: deliver()

Fwd Mail
/deliver()

BasicEmail  Forwarding: deliver()

 /forward()

Slide 31

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Transition Refinement: Basic Email and Forwarding

Email
arrived

Waiting

incoming()

deliver()

deliver()

[forward

active]

Forward
/do_forward()

[forward

inactive]

Fwd Mail

/BasicEmail.deliver()

Slide 32

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Combination of 3 Features (1)
Basic Email, Forwarding and Decryption

Email
arrived

Waiting

/BasicEmail.deliver()

incoming()

Plain Mail

/decrypt()

Fwd Mail

deliver()

[forward_active]

Forward
/do_forward()

[forward_inactive]

Slide 33

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Combination Rules for Base Features

Combination by parallel composition

 Example: Lock-Feature with conditional refinement

[is_unlocked()]

[is_unlocked()]

unlock()

reset() /

Email arrived waiting

incoming()

locked unlocked

unlock()

lock()

deliver()

Slide 34

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Combination of 3 Features (2):
Basic Email, Auto Reply und Decryption

{else} /reply()
{mail_wasEncrypted()}

/ replyCrypto()

Email
arrived

Waiting

/ BasicEmail.deliver()

incoming()

Reply Done

Reply

 deliver()

 {reply_active}

 Plain Mail

{reply_inactive}

/decrypt()

Slide 35

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Summary Feature Modeling

 Refinement on graphical models is possible (Prehofer, Sosym 2004)

 But: only handled simple state charts with specific semantics

 Full UML much more complex

 Above semantics different than FOP

 Need good graphical representation of interactions and features

 Need more tools here

 Compare to recent work on Aspect-oriented modeling

 E.g. Robert France, Gefei Zhang/LMU Munich, …

 Challenges are complexity of UML and AOP semantics

Slide 36

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Summary and Outlook

 FOP has been focusing on behavior and semantic composition

 Modular design and composition as property-preserving refinement

 Features as a consistent model for requirements, design model, implementation
and run time adaptation

 Future challenges

 Features at run time – self-adaptation and control needed

 Distributed features

Slide 37

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Outlook:
Adaptive, distributed systems and distributed features

Example: Automotive System with
70 ECUs and distributed features

Research challenges

-Suitable architecture models

- Here: Multi-layer

-Control & management

- Here: MAPE-K from
Autonomic Computing

-Distributed reconfiguration

38C. Prehofer

Questions ?

