
Slide  1

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

FEATURE ORIENTED-PROGRAMMING:
BACK TO THE FUTURE

Christian Prehofer
Fraunhofer ESK, Munich, Germany,
christian.prehofer@esk.fraunhofer.de

Ludwig-Maximilians-Universität München
Programming and Software Engineering 

Source: Universal Studios

mailto:christian.prehofer@esk.fraunhofer.de


Slide  2

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Overview

• FOP history and origins

• Feature interactions and feature composition

• Feature-oriented modeling and refinement

• Outlook



Slide  3

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

How it started …

• “Feature or SW composition” is not a new idea … 
old dream of software

• Lots of new composition concepts in 90ties

• Mixins, composition filters, aspects, …

• Feature Interaction WS series - started 92 

• Motivated by specific problems in Telecom

• Highly-entangled features 

• Feature-oriented Domain Analysis – what the user wants

• And-or tree to structure requirements 

• Monads and monad transformers …. more later

• Powerful theory to express composition & properties as types

•



Slide  4

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Feature Interaction Example

• Classic Example: Call forwarding and call waiting

• Call Forwarding: forward calls when busy

• Call waiting: interrupt existing call

• FI Problem: Incoming call while other is active: 
forward or notify with call waiting

• Notice: Feature interactions are about system behavior

• Reminder: in real systems, we have dozens or hundreds of features

• Problem: Modularity in specification, design, implementation and composition



Slide  5

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Multi-Feature Interactions 

Example:

1. Basic call

2. Call waiting: Take incoming call and put first call on hold  

3. Lock phone (by lock key) – disable keys

• Interaction between (1) and (3) – solved by “exception”

• Calls can be taken when phone is locked – one button is unlocked

• 3-feature interaction happens now 

• Call waiting active while phone is locked 

• Second call is announced, but cannot be taken as only one button unlocked  



Slide  6

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Feature Interactions – not just a Telecom Problem

“Feature interaction is a major cause of system failures, and its avoidance is a 
major cost for system administrators deploying new features”
Dobson, Simon, Sterritt, Roy, Nixon, Paddy and Hinchey, Mike (2010) 
Fulfilling the Vision of Autonomic Computing. IEEE Computer, 43 (1). pp. 35-41.

Feature Interactions in Automotive Infotainment. 
Source: S. Benz, Generating Tests for Feature Interaction

http://mediatum2.ub.tum.de/node?id=805656

http://mediatum2.ub.tum.de/node?id=805656


Slide  7

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

FOP vs AOP

Aspect-oriented Programming

• Focus on Syntax, Modularity defined as code modularity
“Typically, an aspect is scattered or tangled as code, making it harder to 
understand and maintain.” (Source: Wikipedia)

• AOP appeared round 1997, Semantics published 2001-2004

• Aspect interference/interactions difficult to define 

• Interaction is about semantics

• Use only one aspect at a time



Slide  8

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Overview

• FOP history and origins

• Feature interactions and feature composition

• Feature-oriented modeling and refinement

• Outlook



Slide  9

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Feature-oriented Programming

Components are built by composing features

 Features have a base class, e.g. Stack, Counter, Lock

Adaptors are used to glue components together

 Adapt functionality

 Resolve feature interactions

Lock

Refine Stack

to Counter Stack
Refine Stack

to Lock

Counter
Refine Counter

to Lock adapt



Slide  10

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Feature Composition Architecture

Features (State + Methods)

 Adaptors/lifters

 Adapt one feature to

the context of another one

 Composition architecture

 Origin: Monad compositon

with „lifters“

F 2

F 1

F 2

F 4

F 3

F 1 .....

F 1

F 2
.....

F 2

F 3

F 3



Slide  11

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

My first “monadic” FOP Program - 1996 in Gofer

Note: Lifters transform the type 

„From Inheritance to Feature Interaction 

or Composing Monads“, 1997.



Slide  12

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Semantic Feature Composition or Semantic Refinement

If we add a feature B to a feature A, will feature A still behave in the same way?

 Ok for “harmless” features which only adds extra functionality

 Original behavior on state of feature A (instance) is maintained

Examples

 Stack + Counter =Stack Stack

 Stack + Counter + Lock =Stack Stack

if Lock is unlocked

exp1 =F   exp2    semantic equality of two expressions on state of feature F
I.e. state of F is identical after executing exp1 and exp2

Lock

Refine Stack

to Counter Stack
Refine Stack

to Lock

Counter
Refine Counter

to Lock adapt



Slide  13

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Harmless Features

Goal is a calculus to reason about combination of features and composition

A feature D is called conservative wrt a feature F if  
D  * F    =F F

Also called „harmless“ feature. 

Notion of semantic refinement first noted as “semantic inheritance” or
“behavioral subtyping”, G. Leavens, 1996

void push(char a) {

inc() ;

s=String.valueOf(a).concat(s);
=Stack

void push(char a) {

s=String.valueOf(a).concat(s);



Slide  14

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

The problem of (Multiple) Feature-Compositions

Multi-feature Composition: A + B + X

Modularity Problem:
If we know the effect of feature A on X and of feature B on X, 
what can we conclude about adding both A and B to X?

 E.g. what do we know about Stack + Counter + Lock

 Typical problem if you compose multiple features (from different sources)

Question: Are “harmless features” compositional?  

Same for AOP and “harmless advice”



Slide  15

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Feature Composition Problem: Stack + Counter

Base Method

void push(char a) {

inc() ;

s=String.valueOf(a).concat(s);  

}



Slide  16

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Feature Composition Problem: Stack + Counter + Lock

Base Method

void push(char a) {

if (is_unlocked()) {

inc() ;

s=String.valueOf(a).concat(s);   }

}

Counter

Lock



Slide  17

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Composing „harmless“ Features is not harmless

class X {    int a = 0;  

void m()  { a ++; }  }

class G  { int g = 0;  }

class F  { int back;  ….  }

refines X to G { 

void m() { g ++;

super.m() ; } }

refines X to F uses G {

void m()  { 

back = g ;

super.m() ;

if (g != back ) 

{a++ ; } } }

void m()  {

back = g ;

g ++;

a ++;  

if (g != back )   {a++ ; } 

}

Feature F

Feature G

Feature X

Feature F

Features F and G are harmeless wrt X, but F * G is not!

F has „hidden“ dependency on G



Slide  18

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

How to write „really harmless features“

void m()  {

my adaptor

SOME CODE 

a ++;  

my adaptor

}

My Feature 

Feature X

Base Feature

To write a really harmless adaptors/advice, assume

that the code is already modified by other adaptors!

D is independent of D’ over a 
feature X, if D is conservative over 
the random V-extension of x() for 
all methods x() of X, where V is the 
set of variables which are modified 
by D’.

Theorem: A composition D + D’ of
is a conservative extension of a 
feature X if the following holds:

- D and D’ are conservative over X
- D  is independent of D’ over X



Slide  19

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

In search of a good formalization for features & composition

•Monads as a foundation for Features & Composition

• Monads are state-transformers – type describes stateful effect

• Motivated by Liang 95

• Feature Composition as
Monad compositions

• Establish semantic properties
on composition by types

• Prehofer 99, Oliviera 2010

References

• Prehofer 1997, 1999

• Oliveira, B. C., Schrijvers, T., and Cook, W. R. 
EffectiveAdvice: disciplined advice with explicit effects. AOSD '10.

• Liang, S., Hudak, P., and Jones, M. Monad transformers and modular interpreters. POPL 95



Slide  20

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Formalization of features & composition: Differential Calculus

„Differential Calculus“ to describe (syntactic) combination of features

 Adaptor of h to a feature G is denoted as differential δh / δ G 

 Nice to express multiple feature interactions

 But does not provide semantics to features

Reference

J. Liu, D. Batory, and S. Nedunuri. 2005
Modeling Interactions in Feature Oriented Designs, 

j  +

(δ2b/δJδH)*δb/δJ      * δb/δH          * b

δh/δJ * h  +

ftp://ftp.cs.utexas.edu/pub/predator/ICFI2005.pdf


Slide  21

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Overview

• FOP history and origins

• Feature interactions and Feature Composition

• Feature-oriented modeling and refinement

• Outlook



Slide  22

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Feature-oriented modeling and refinement

 Goal is modularity for statechart diagrams

 Cross-cutting state diagrams into features and interactions

 Semantic refinement concepts for adding of features

Main benefits of graphical combination of features 

 Reduce size & complexity of grahical specifications

 Compose only models of desired features 

 Features as consistent design concepts in requirements, design and
implementation



Slide  23

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Example: Email Features

Features  of an Email System

 Encryption of Emails

 Forwarding Emails 

 Auto-reply

 Filtering of Emails

 Virus scanner

 ...

Feature Interactions

 Encryption and Forwarding

 forward only encrypted

 Encryption and Auto-reply

 Titel of email sent in plain as reply



Slide  24

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Component-Design with Statecharts

Statechart describes behavior of an object

Transitions triggered by external function call or internal action

called_function() [condition]  / action

Composition of statecharts from features
Object specification: statechart
Feature: partial statechart
Interaction handler (adaptor) partial statechart
Feature composition: statechart refinement

Modular development of statecharts from features

 Feature-interactions as statecharts-refinement



Slide  25

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Feature model with partial statecharts

Example: 3 features which add states

Email 
arrived

Waiting

deliver()

incoming()

Email 
Error

error()

resume()

Mainten
ance

enterMaintenance()

doMaintenance()

leaveMaintenance() 



Slide  26

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Classes of Features/Statecharts

1. Base features with a complete statechart

 includes an initial state.

2. State-oriented features with a partial statechart

 some states and transitions, but initial/final states not required

 E.g. feature “MaintenanceMode” with one new state

 Only reachable by new transitions from other features. 

3. Transition-oriented features which define transitions 

 No (persistent) state

 Interaction specification („adaptors“) according to these classes

 Combination rules according to these classes



Slide  27

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Combination of 2 Features 

Email 
arrived

Waiting

deliver()

incoming()

Email 
Error

error()
resume()

Composition fixes lose ends of transitions



Slide  28

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Composition as Semantic Refinement

 „Loose“-Semantics based on external view of traces

 Specifies input/output behavior („black box view“)

 Semantics of a statechart are all possible or non-conflicting traces

 If unspecified action occurs, anything is possible („chaos“)

 Refinement adds specific details

 Reduces the number of possible traces

 Behavior is compatible with original statechart (subset or original trace set)

 Refinement steps for statechart diagrams

 Extend the number of states

 Add new states and „new“ transitions 

 Refinement of transitions

 Refine transition by statechart with internal transitions only



Slide  29

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Combination of 3 Features 

[ noErrors] /

Email 
arrived

Waiting

deliver()

incoming()

Email 
Error

error()
resume() enterMaintenance()

Mainten
ance

doMaintenance()

leaveMaintenance() 

enterMaintenance()

Add and refine transitions



Slide  30

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Combination Rules for Features  

Combination by refinement of transitions

 Rules for adapting one feature to the other („interaction handling“)
BasicEmail Decryption/Forwarding

 Refinement describes the internal behavior of a transition by a statechart

Plain Mail 
/decrypt() /deliver() 

BasicEmail    Decryption: deliver() 

Fwd Mail 
/deliver() 

 
BasicEmail    Forwarding: deliver() 

   /forward() 
 



Slide  31

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Transition Refinement: Basic Email and Forwarding

Email 
arrived

Waiting

incoming()

deliver()

deliver()

[forward

active]

Forward
/do_forward()

[forward

inactive]

Fwd Mail

/BasicEmail.deliver()



Slide  32

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Combination of 3 Features (1)
Basic Email, Forwarding and Decryption

Email 
arrived

Waiting

/BasicEmail.deliver()

incoming()

Plain Mail

/decrypt()

Fwd Mail

deliver()

[forward_active]

Forward
/do_forward()

[forward_inactive]



Slide  33

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Combination Rules for Base Features

Combination by parallel composition

 Example: Lock-Feature with conditional refinement

[is_unlocked()]

[is_unlocked()]

unlock()

reset() /    

Email arrived waiting

incoming()

locked unlocked

unlock()

lock()

deliver() 



Slide  34

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Combination of 3 Features (2):
Basic Email, Auto Reply und Decryption

{else}   /reply() 
{mail_wasEncrypted()} 

/ replyCrypto() 

Email 
arrived 
 

Waiting 
 

/ BasicEmail.deliver() 
 

incoming() 
 

Reply Done 
 
 

Reply 
 
 

 deliver() 
 
 {reply_active} 

 
 
 

   Plain Mail 

{reply_inactive} 
 
 
 

/decrypt() 
 



Slide  35

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Summary Feature Modeling

 Refinement on graphical models is possible (Prehofer, Sosym 2004)

 But: only handled simple state charts with specific semantics

 Full UML much more complex

 Above semantics different than FOP

 Need good graphical representation of interactions and features

 Need more tools here

 Compare to recent work on Aspect-oriented modeling

 E.g. Robert France, Gefei Zhang/LMU Munich, …

 Challenges are complexity of UML and AOP semantics



Slide  36

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Summary and Outlook

 FOP has been focusing on behavior and semantic composition

 Modular design and composition as property-preserving refinement

 Features as a consistent model for requirements, design model, implementation 
and run time adaptation

 Future challenges

 Features at run time – self-adaptation and control needed

 Distributed features 



Slide  37

© Fraunhofer ESK

www.esk.fraunhofer.de/EN

Outlook: 
Adaptive, distributed systems  and distributed features

Example: Automotive System with
70 ECUs and distributed features

Research challenges

-Suitable architecture models

- Here: Multi-layer

-Control & management

- Here: MAPE-K from 
Autonomic Computing

-Distributed reconfiguration



38C. Prehofer

Questions ?


