FEATURE ORIENTED-PROGRAMMING:
BACK TO THE FUTURE

Christian Prehofer
Fraunhofer ESK, Munich, Germany,

Ludwig-Maximilians-Universitat Munchen
Programming and Software Engineering

Source: Universal Studios

\

~ Fraunhofer
ESK

mailto:christian.prehofer@esk.fraunhofer.de

Overview

* FOP history and origins
* Feature interactions and feature composition
* Feature-oriented modeling and refinement

» Qutlook

\

~ Fraunhofer
ESK

How it started ...

* "“Feature or SW composition” is not a new idea ...
old dream of software

Lots of new composition concepts in 90ties
Mixins, composition filters, aspects, ...

« Feature Interaction WS series - started 92

Motivated by specific problems in Telecom
Highly-entangled features

* Feature-oriented Domain Analysis — what the user wants

And-or tree to structure requirements

- Monads and monad transformers more later

Powerful theory to express composition & properties as types

\

~ Fraunhofer
ESK

Feature Interaction Example

Classic Example: Call forwarding and call waiting

Call Forwarding: forward calls when busy
Call waiting: interrupt existing call

FI Problem: Incoming call while other is active:
forward or notify with call waiting

Notice: Feature interactions are about system behavior

Reminder: in real systems, we have dozens or hundreds of features

Problem: Modularity in specification, design, implementation and composition

\

~ Fraunhofer
ESK

Multi-Feature Interactions

Example:
1. Basic call
2. Call waiting: Take incoming call and put first call on hold

3. Lock phone (by lock key) — disable keys

* Interaction between (1) and (3) — solved by “exception”

« Calls can be taken when phone is locked — one button is unlocked

- 3-feature interaction happens now
- Call waiting active while phone is locked

« Second call is announced, but cannot be taken as only one button unlocked

\

~ Fraunhofer
ESK

Feature Interactions — not just a Telecom Problem

Intentional Feature
Interactions
41%

Feature Interaction
40,9%

Feature Specific
59,1%

Feature Interactions in Automotive Infotainment.
Source: S. Benz, Generating Tests for Feature Interaction

Unintentional Feature
Interactions
59%

“Feature interaction is a major cause of system failures, and its avoidance is a

major cost for system administrators deploying new features”

Dobson, Simon, Sterritt, Roy, Nixon, Paddy and Hinchey, Mike (2010)
Fulfilling the Vision of Autonomic Computing. IEEE Computer, 43 (1). pp. 35-41.

\

~ Fraunhofer

ESK

http://mediatum2.ub.tum.de/node?id=805656

FOP vs AOP

Aspect-oriented Programming

« Focus on Syntax, Modularity defined as code modularity
“Typically, an aspect is scattered or tangled as code, making it harder to
understand and maintain.” (Source: Wikipedia)

« AOP appeared round 1997, Semantics published 2001-2004

« Aspect interference/interactions difficult to define

Interaction is about semantics
Use only one aspect at a time

\

~ Fraunhofer

ESK

Overview

* FOP history and origins

* Feature interactions and feature composition]

* Feature-oriented modeling and refinement

» Qutlook

\

~ Fraunhofer
ESK

Feature-oriented Programming

Components are built by composing features

M Features have a base class, e.g. Stack, Counter, Lock

Adaptors are used to glue components together

M Adapt functionality

B Resolve feature interactions

-

~

Lock /K\L
Retgnfogﬁunte Counter jdapt
“Refine Stack/é\ tac . }
_ tolock | tp Counter ¢
=

~ Fraunhofer
ESK

Feature Composition Architecture

Features (State + Methods)

Fl | [LF2 | S -

- Adaptors/lifters

- Adapt one feature to
the context of another one

- Composition architecture

- Origin: Monad compositon
with ,lifters”

~ Fraunhofer
ESK

My first “monadic” FOP Program - 1996 in Gofer

instance StackMonad (StackT [Int] m) instance (StackMonad m

where _ o CountMonad (CountT Int m)) =>
push a = do{ s <- get;
put (a:s) } StackMonad (CountT Int m)
pop = do{ s <- get; where
put (tail s); push a = do{ inc ;
result (head s)} 1ift (push a)}
is_empty = do{ s <- geti 0) pop = do{ dec ;
result (s== 1ift pOp}
instance CountMonad (CountT Int m)
where _
size = get Note: Lifters transform the type
inc = do{ i <- ggt; ,From Inheritance to Feature Interaction
put (i+1) } or Composing Monads*, 1997.
dec = do{ i <- get;
put (i-1) }

\

~ Fraunhofer
ESK

Semantic Feature Composition or Semantic Refinement

If we add a feature B to a feature A, will feature A still behave in the same way?
W Ok for “harmless” features which only adds extra functionality

B Original behavior on state of feature A (instance) is maintained

4 N

Examples L ock
OoC
B Stack + Counter =stack Stack / \L
Refine Counter
W Stack + Counter + Lock =gy, Stack Counter 1
to Lock P agapt
if Lock is unlocked " N\
Refine Stack
L to Lock

expl = exp2 semantic equality of two expressions on state of feature F
l.e. state of F is identical after executing exp1 and exp2

\

~ Fraunhofer
ESK

Harmless Features

Goal is a calculus to reason about combination of features and composition

A feature D is called conservative wrt a feature F if
D*F = F

Also called ,harmless” feature.

void push(char a) { void push(char a) {

inc() ; =
. Stack
[s=String.valueOf(a).concat(S)J {

s=String.valueOf(a).concat(S)i]

Notion of semantic refinement first noted as “semantic inheritance” or
“behavioral subtyping”, G. Leavens, 1996

\

~ Fraunhofer
ESK

The problem of (Multiple) Feature-Compositions

Multi-feature Composition: A + B + X

Modularity Problem:
If we know the effect of feature A on X and of feature B on X,
what can we conclude about adding both A and B to X?

E.g. what do we know about Stack + Counter + Lock
Typical problem if you compose multiple features (from different sources)

Question: Are “harmless features” compositional?

Same for AOP and “harmless advice”

\

~ Fraunhofer
ESK

Feature Composition Problem: Stack + Counter

void push(char a) {

/

.

~

inc() ;

& s=String. valueOf(a).concat(s);ﬂ

[

|

/

Base Method

\

~ Fraunhofer
ESK

Feature Composition Problem: Stack + Counter + Lock

void push(char a) {

~

(" if (is_unlocked())

{

~

" inc() ;

NG\

{ s=String. valueOf(a).concat(s);ﬂ }/

|

/

L ock
Counter
Base Method

\

~ Fraunhofer
ESK

Composing ,harmless” Features is not harmless

~

void m() {
4)
Back =q;
g+t
++:
(=)

\

[(g !=back) {a++:)

|

\J

/

Feature F
Feature G
Feature X

Feature F

class X{ inta=0;
voidm() {a++;} }
class G {intg=0; }
class F {int back; }
refines Xto G {
void m() { g ++;
super.m() ; } }
refines X to F uses G {
void m() {

back =g ;
super.m() ;
if (g I= back)
{at+;}}}

Features F and G are harmeless wrt X, but F * G is not!

F has ,hidden” dependency on G

\

~ Fraunhofer
ESK

How to write ,really harmless features”

\ D isindependent of D’ over a

void m() { feature X, if D is conservative over
the random V-extension of x() for
a N\ all methods x() of X, where Vis the
my adaptor My Feature set of variables which are modified
4 by D’.
SOME CODE Feature X ’
{ ar] Base Feature Yheorem: A composition D + D’ of
QN ') is a conservative extension of a
(J feature X if the following holds:
[;ny adaptor J - D and D’ are conservative over X

\ - D is independent of D’ over X
} %

To write a really harmless adaptors/advice, assume

that the code is already modified by other adaptors!

\

~ Fraunhofer
ESK

In search of a good formalization for features & composition

*Monads as a foundation for Features & Composition

Monads are state-transformers — type describes stateful effect
Motivated by Liang 95

Theorem 1 (Harmless Advice) Consider any base pro-

* Feature Composition as gram bse and any advice adv with the types:
Monad compositions bse :: Vt.(MonadTrans t, Monad (t k)) = Open (o — t K [3)

adv :: Vm.(Monad m, Monad (T m)) = Augment o 3y (T m)

Establish semantic properties where k 15 a monad and T a monad transformer. If a func-
on composition by types tion proj :: Ym,a.Monad m = 7 m a — m a exists that

satisfies the property:
Prehofer 99, Oliviera 2010 o
proj o lift = id

References , then advice adv is harmless with respect to bse:

. Prehofer 1997 1999 proj o (weave (adv ® bse)) = runldT o (weave bse)

« Oliveira, B. C., Schrijvers, T., and Cook, W. R.
EffectiveAdvice: disciplined advice with explicit effects. AOSD '10.

« Liang, S., Hudak, P., and Jones, M. Monad transformers and modular interpreters. POPL 95

\

~ Fraunhofer
ESK

Formalization of features & composition: Differential Calculus

LDifferential Calculus” to describe (syntactic) combination of features

W Adaptor of h to a feature G is denoted as differential 6h /1 6 G

Nice to express multiple feature interactions

But does not provide semantics to features

-~

~

j +
Reference e / \
J. Liu, D. Batory, and S. Nedunuri. 2005 oh/oJ *h o+
N y
0°b/0JoH) *ob/oJ) * ob/OH *b }
\“ TOBIN by
=

~ Fraunhofer

ESK

ftp://ftp.cs.utexas.edu/pub/predator/ICFI2005.pdf

Overview

* FOP history and origins

* Feature interactions and Feature Composition

* Feature-oriented modeling and refinement]

» Qutlook

\

~ Fraunhofer
ESK

Feature-oriented modeling and refinement

B Goal is modularity for statechart diagrams

Cross-cutting state diagrams into features and interactions
Semantic refinement concepts for adding of features

Main benefits of graphical combination of features
W Reduce size & complexity of grahical specifications
B Compose only models of desired features

M Features as consistent design concepts in requirements, design and
implementation

\

~ Fraunhofer
ESK

Example: Email Features

Features of an Email System
B Encryption of Emails
B Forwarding Emails
M Auto-reply

M Filtering of Emails

B Virus scanner

O

Feature Interactions
B Encryption and Forwarding

forward only encrypted
B Encryption and Auto-reply

Titel of email sent in plain as reply

\

~ Fraunhofer
ESK

Component-Design with Statecharts

Statechart describes behavior of an object

Transitions triggered by external function call or internal action

v

called_function() [condition] / action

Composition of statecharts from features

Object specification: statechart

Feature: partial statechart
Interaction handler (adaptor) partial statechart
Feature composition: statechart refinement

Modular development of statecharts from features

B Feature-interactions as statecharts-refinement

\

~ Fraunhofer
ESK

Feature model with partial statecharts

Example: 3 features which add states

doMaintenance()
Email : enterMaintenance() > Mai@
Error ance
resume() f :
leaveMaintenance()
error()
Email J| Waiting
.. arived T aeiver)
incoming()

\

~ Fraunhofer
ESK

Classes of Features/Statecharts

1.

Base features with a complete statechart
includes an initial state.
State-oriented features with a partial statechart

some states and transitions, but initial/final states not required

E.g. feature “MaintenanceMode” with one new state
Only reachable by new transitions from other features.

Transition-oriented features which define transitions

No (persistent) state

Interaction specification (,,adaptors”) according to these classes

Combination rules according to these classes

\

~ Fraunhofer
ESK

Combination of 2 Features

_ Composition fixes lose ends of transitions

Email

Error

1 0
resume
error()
Email > Waiting ¢
arrived deliver()

incoming()

\

~ Fraunhofer
ESK

Composition as Semantic Refinement

B Loose”-Semantics based on external view of traces

Specifies input/output behavior (,,black box view")

Semantics of a statechart are all possible or non-conflicting traces
If unspecified action occurs, anything is possible (,chaos”)

B Refinement adds specific details

Reduces the number of possible traces
Behavior is compatible with original statechart (subset or original trace set)

B Refinement steps for statechart diagrams

Extend the number of states
Add new states and ,,new"” transitions
Refinement of transitions
Refine transition by statechart with internal transitions only

\

~ Fraunhofer
ESK

Combination of 3 Features

doMaintenance()
Email Mainten
Error ance
A A
error() resume() \ enterMaintenance() _
v leaveMaintenance()
4
Err_1a|l > Waiting ¢
arrived deliver()

incoming()

\

~ Fraunhofer
ESK

Combination Rules for Features

Combination by refinement of transitions

W Rules for adapting one feature to the other (,,interaction handling”)
BasicEmail - Decryption/Forwarding

B Refinement describes the internal behavior of a transition by a statechart

BasicEmail - Decryption: deliver()

Y
Q
=
<
Q
v

/forward ()

——————

> Fwd Mail > |

~ Fraunhofer
ESK

Transition Refinement: Basic Email and Forwarding

_______ deliver()
/do_forward()
Forward » Fwd Mail
[forward [forward
active] inactive]
/BasicEmail.deliver()
deliver() 3 <+
Email > Waiting
arrived [€—; :
incoming()

~ Fraunhofer
ESK

Combination of 3 Features (1)
Basic Email, Forwarding and Decryption

____Geliver(Q)____________ . i

.’/ /do_forward() \\‘.
: Forward » Fwd Mail |
| A :
E [forward_inactive] i
i [forward_|active] /decrypt()
i v s
; Plain Mail i
/BasicEmail.deliver() i

Email incoming() > Waiting

arrived [«

\

~ Fraunhofer
ESK

Combination Rules for Base Features

Combination by parallel composition

B Example: Lock-Feature with conditional refinement

/ [is_unlocked()] deliver() \
\4

> waiting

Email arrived

[is_unlocked()]
Incoming()

reset() /
unlock()

unlock()

— T T

locked unlocked

\‘\Iock() i J

~ Fraunhofer
ESK

\

Combination of 3 Features (2):
Basic Email, Auto Reply und Decryption

deliver()

,// {reply_active} \\\\
/ Plain Mail » Reply)
e x ,
i {mail_wasEncrypted()} i
i / replyCrypto() {else} | /reply() i
. /decrypt() §
i o v i
! reply inactive l
i treply_ } Reply Done % ,'
/ BasicEmail.deliver()

Email — ! Waiting

arrived

\ incominM

\

~ Fraunhofer
ESK

Summary Feature Modeling

M Refinement on graphical models is possible (Prehofer, Sosym 2004)
®m But: only handled simple state charts with specific semantics

Full UML much more complex
Above semantics different than FOP

® Need good graphical representation of interactions and features

Need more tools here

B Compare to recent work on Aspect-oriented modeling

E.g. Robert France, Gefei Zhang/LMU Munich, ...
Challenges are complexity of UML and AOP semantics

\

~ Fraunhofer
ESK

Summary and Outlook

B FOP has been focusing on behavior and semantic composition

Modular design and composition as property-preserving refinement

M Features as a consistent model for requirements, design model, implementation
and run time adaptation

M Future challenges

Features at run time — self-adaptation and control needed
Distributed features

\

~ Fraunhofer
ESK

Outlook:
Adaptive, distributed systems and distributed features

oy

s
[Cluster & 1
, #

Example: Automotive System with
70 ECUs and distributed features _______________

Research challenges

——————— gy -

5 @) ______
-Suitable architecture models () - liClUSTEF ; N
—-— I : :
Here: Multi-layer A eeees |
-Control & management %,1
)
Here: MAPE-K from -
Autonomic Computing —g-—
23
-Distributed reconfiguration 5

\

~ Fraunhofer
ESK

C. Prehofer

Questions ?

38

