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ABSTRACT
Software product lines (SPL) is a paradigm to structure soft-
ware development assets in a common and reusable form.
Out of this common asset base – which includes the ap-
plication’s source code, documentation, and configuration
– concrete product variants can be created. The variants
are differing in terms of the features, which are basically
an increment in functionality important for a stakeholder.
Feature-oriented programming (FOP) provides the capabil-
ity to compose those different variants. In earlier work we
presented rbFeatures, a FOP implementation in Ruby. With
rbFeatures, features become are first-class entities of the lan-
guage that facilitate runtime changes of the program. This
paper presents an extension to rbFeatures that implements
product lines and their variants as first-class entities too.
The entities allow powerful runtime-adaptation and configu-
ration, like to add new features or constraints to the product
line and the instantiation of several variants with different
feature configurations. The particular contributions are to
show how Ruby’s metaprogramming capabilities are used to
design first-class entities and an explanation of the usage of
our approach with a common case study.

Categories and Subject Descriptors: D.2.2 [Software]:
Software Engineering - Design Tools and Techniques; D.3.3
[Software]: Programming Languages - Language Constructs
and Features

General Terms: Languages

Keywords
Feature-Oriented Programming, Software Product Lines, Me-
taprogramming, Domain-Specific Languages, Runtime Adap-
tation
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1. INTRODUCTION
In software engineering, features provide additional mod-

ularization to applications. Features are special character-
istics of software which distinguish members of a program
family [2]. Program families evolved to today’s understand-
ing of software product lines that share a“common, managed
set of features” [26]. In order to provide a more structured
approach to software design and implementation, features
and other valuable production assets are grouped together
to form software product lines [3]. Recently, software prod-
uct lines with dynamic adaptation facilities are gaining a
widespread interest [27, 21, 18]. The adaptability need in-
cludes the reconfiguration of variants at runtime and the in-
stantiation of new variants. On motivation for such runtime
adaptation is the seamless migration of a 24/7 application
when the codebase was updated with new feature code [21].

We see features from a conceptual and an implementation
viewpoint. Conceptually, model features help to structure
the production assets in the form of a product line. At the
implementation level, a concrete feature is the sum of all
code inside a program that belongs to a particular model
feature. An important consideration in our research is the
idea to provide first-class entities. When features become
entities of the program itself, they help to bridge the gap
between the conceptual and the implementation level.

In earlier work [8], we presented a FOP implementation
in Ruby called rbFeatures. With rbFeatures, developers add
feature containments around selected blocks of code. The
feature containment condition specify under which feature
configuration these parts are active. Only if the condition is
satisfied, the contained code will be contained in the appli-
cation. The functionality provided by rbFeatures includes
runtime re-configuration of the application by activating or
deactivating features and runtime extension of the program
and its features.

Since then we extended rbFeatures. The current version
extends rbFeatures with a language for product line model-
ing. The language’s intent is to represent the known tree-
like feature models that express an application’s model fea-
tures and their relationships [3], as well as their constraints
like mandatory and optional features. By combining rbFea-
tures with this language, we implemented abstractions for
features, product lines, and variants as first-class entities.
This particular solution provides rich runtime adaptation
and configuration of software product lines, including the
provision of multiple variants and variant modification.

This paper provides a complete coverage of feature model-
ing, feature implementation, and dynamic runtime composi-



tion and modification of a software product line and its vari-
ants. The particular contributions are to show how Ruby’s
metaprogramming capabilities are used to design first-class
entities and an explanation of the usage of our approach
with a common case study. By describing how we utilized
the host language Ruby to build the extension, we wish to
show other FOP researchers how to build first-class entities
and how this approach supports the goal of features and
runtime adaptation.

In Section 2, further background about regarding feature-
oriented programming, software product lines, and dynami-
cally adaptable SPL’s is explained. Section 3 elaborates the
basics of the extended version of rbFeatures, and in Section
4 we explain how first-class variants are implemented as ob-
jects and how they can be used for runtime adaptation and
customization. Section 5 gives related work and Section 6
summarizes this paper. We apply following formatting: key-
words, features, and source code.

2. BACKGROUND

2.1 Feature-Oriented Programming
Features can be seen from two perspectives. The fist per-

spective regards features as all parts of a software that reflect
the concerns of a stakeholder [3]. Features are “common as-
pects [...] as well as differences between related systems”[10].
Features are important in domain engineering to scope the
software and they also provide the stakeholder-important re-
quirement of an application. These features are called model
features.

The second perspective expresses features at the code base
– we call them concrete features. In this perspective, FOP is
a paradigm that was introduced as a “new conceptual model
for object and object composition” [20]. It allows grouping
and composing sets of classes to obtain different variants of
a program. How to implement features or compose variants
out of features is an open research field. Since its inception,
many FOP implementations have been proposed: Mixin-
layers [23], AHEAD-refinements [2], and aspectual feature
modules [1] to name a few. In general, the approaches can
be divided into two different forms [12]. In the compositional
approach, features are added as refinements to a base pro-
gram. The explicit representation of all code belonging to a
feature is an expression of the separation of concerns princi-
ple [4]. In the annotative approach, features are represented
as annotations inside the source code. The representation
can be implicit on top of the source code like in CIDE [11],
which uses a representation on top of the programs abstract-
syntax tree, or it can be explicit by using language constructs
as in our rbFeatures approach [8].

While both perspectives are certainly providing benefits,
the still existing gap between the two representations is to
be questioned. We argue that a complete representation
of model and concrete features provides the benefits of both
worlds: A clean structuring of stakeholder concerns and tool-
ing to prioritize development decisions, as well as the tech-
nical capability to build and deliver custom variants with
respect to the available configurations as expressed with the
software product line model. Section 3 explains how to im-
plement this vision.

2.2 Software Product Lines
When developing software, one fundamental decision is to

design either one-off systems or a program family. One-off
systems are scoped, configured, and executed for one ex-
act purpose. After its development, the system goes into a
stable usage and maintaining period, and eventually is re-
placed by an successor. On the contrary, program families
[4] are applications that are used in different configurations
for similar, but not the same purposes. Members of a pro-
gram family have several commonalities with their members
while the variable part exhibits the different configurations.

Software product lines is the modern name for software
families with a special focus on the providing automatic
means to derive individual variants from a common code-
base. The need for product lines stems from today’s strong
individualization requirements that drive customization and
software flexibility to its height. As [26] explains, “managers
must invest strategically in software assets to gain compet-
itive advantage in the battlefield or the marketplace”. Fol-
lowing this need, SPL identify, structure, and provide a set
of production assets that are systematically reused [3]. The
connection between software product lines and features is
a compositional one: “product line is a group of products
sharing a common, managed set of features” [26]. A feature-
diagram can be used to represent the relationships and con-
straints between the features in a tree-like structure. A par-
ticular configuration of features is a valid variant if all the
constraints specified in the feature model are satisfied.

Feature-oriented programming is one option to provide
the product-line feature structure for the assets, especially
for assets related to implementation. Dependent on the par-
ticular FOP implementation, this allows different represen-
tations of the product line, constraints, features, variants
and composition approaches.

2.3 Dynamically Adaptable Software Product
Lines

Software product lines with dynamic adaptation facilities
are gaining a widespread interest in recent publications [27,
21, 18]. The primary motivation for having runtime adap-
tation is to provide different variants that support specific
application needs. In one case study, complex Enterprise Re-
source Planning Systems are configured on-site in customer
sales acquisition [27]. In the sales dialog, customers express
their requirements. The presenter customizes the applica-
tion accordingly, and the customers can test the application
and refine their requirements until they are satisfied. An-
other use case of dynamic adaptation is to support 24/7
applications [21]. In order to continually evolve the applica-
tion without providing any downtimes, one approach is to
enable the live-update of the running application. Once a
new feature has been implemented, the running application
is carefully migrated to the new version. In this process,
the product line model helps to maintain the structural re-
lationships between the assets and can be used for testing
prior to deployment.

3. rbFeatures
rbFeatures [8, 7] enables Feature-Oriented Programming

with the Ruby programming language. Features become
first-class entities of a program. They are constants that
can be used in any expression and are thus open to runtime
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Figure 1: Feature model of the GPL.

modification too.
This section details the basic implementation and appli-

cation of rbFeatures. Thereby, we use the Graph Product
Line (GPL) as the ongoing example. The GPL is a product
line that provides different variants for graphs and graph al-
gorithms [15]. We see the tree-like structure of the GPL in
�Figure 1. As can be seen, the product line differentiates
the type and weight of a graph, provides search algorithms,
and implements numerous other algorithms like determining
whether the graph is a connected graph.

3.1 Central Entities
The initial version of rbFeatures consisted of two cen-

tral entities. The Feature module contains all methods that
form the public API of features and internal functional-
ity. This module is mixed into normal classes that repre-
sent an application’s features. The second central entity is
the FeatureResolver. It defines the required background func-
tionality so that the code associated with a feature or a
combination of features is active with regard to the feature
configuration.

The extension of a domain-specific language [16] for prod-
uct line modeling that we developed in an earlier paper [5]
adds additional entities. A FeatureModel is a configuration
unit that represents model features. It contains a name, a
list of subfeatures, the position it has in the feature tree,
and constraints. The ProductLine entity is defined by adding
all configured model features. Finally, the ProductVariant en-
tities represent a concrete feature-configuration and can be
instantiated at runtime.

The relationships between all entities is shown in �Figure
2. Using the extended version of rbFeatures encompasses
the following steps:

1. Product Line Modeling – Define the model features,
their relationships, and their constraints. Add all
model feature to a ProductLine object.

2. Application Implementation – Implement or feature-
refactor an application.

• Create Feature objects that represent the identified
the model feature.

• Form feature containments by enclosing all code
parts in a block and provide a containment condi-
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Figure 2: Entity structure of rbFeatures.

tion expressing under which feature configuration
the containment is executed.

3. Program Initialization – Initially execute the program
to obtain the first-class representations for the product
line, model features, and the concrete features.

4. Variant Creation and Instantiation – Create Product-
Variant objects by configuring a set of activated fea-
tures that are valid to the feature model, and then
instantiate the variant in a defined scope.

The next subsections explain each step in detail.

3.2 Product Line Modeling
The first step is to provide the model features and the

productline. Each model feature needs to be declared with
the following properties: name, position in the tree (root, node,
leaf), the subfeatures, and a set of constraints (using the key-
words is, one, more, all, any). For example, the declaration of
the root node GPL takes the following form in �Figure 3.

This declaration is easy to read for itself. Beginning in
Line 2, the name of the feature is defined, its relative posi-
tion in the feature tree declared, its subfeatures listed, and
finally a constraint defined. The constraint expresses that
the selection of the GPL feature requires selecting one ore
more of it’s subfeatures (Type, Weight, Search, and Algorithms).

After all features are declared in this way, we can de-
clare the product line object. It uses the syntax shown in
�Figure 4. After a short description in Line 2, the next

�
1 gpl_feature = FeatureModel.configure do
2 name :GPL
3 root
4 subfeatures :Type , :Weight , :Search , :Algorithms
5 requires :GPL => "more :Type , :Weight , :Search ,

:Algorithms"
6 end� �

Figure 3: Configuring the root feature of the GPL.�
1 GPL = ProductLine.configure do
2 description "The complete GPL"
3 add_feature gpl_feature
4 add_feature type_feature
5 add_feature weight_feature
6 #...
7 end� �

Figure 4: Creating a product line by adding all fea-
tures.



�
1 class Weighted
2 is Feature
3 end
4
5 class Unweighted
6 is Feature
7 end
8
9 class Undirected

10 is Feature
11 end� �

Figure 5: Implementing basic features.

lines just add the model features to this product line. Once
the product line declaration is complete, the valid? method
checks whether all named subfeatures and features contained
in the conditions are included – this helps to detect incorrect
product line objects.

After these first steps we have a complete set of model
features and the product line available. The next step is
to provide the implementation of the product line, and later
combine the model and the implementation for creating vari-
ants.

3.3 Application Implementation
The next step is to declare the concrete features. Either

a complete application including features is developed from
scratch, or an existing application is feature-refactored. In
both cases, the task is to first define the features entities and
then to form feature containments.

As we explained before, concrete features are normal clas-
ses. If they do not contain functionality on their own, their
declaration is as simple as shown in �Figure 5. If they con-
tain functionality on their own, then the class declaration
body includes additional fields and methods as it is com-
monly defined in Ruby.

Once the features are defined, we use them to form fea-
ture containments. Containments consist of two parts. The
first part is called containment condition. It is an expres-
sion that specifies which activation status one or several fea-
tures require. Conditions like “If feature A, B and C, but
not D are activated”, translate to the natural syntax (A +

B + C - D). The second part of the feature containment is
the containment body. It contains code that belongs to the
particular feature or the intersection of features specified in
the condition. rbFeatures supports three granularity levels
of feature code: (i) complete class or module declarations,
(ii) method declarations, and (iii) individual lines or even
individual characters in lines. The granularity of the con-
tainment condition and the containment body enacts high
flexibility of declaring code for a single feature or interacting
features.

The GPL requires to put both lines containments and
complete method bodies in feature containments. As shown
in �Figure 6, the Weight feature interacts with Edge by defin-
ing the local weight variable and an accessor for it (Line 2
and 4). The features Directed and Undirected interact with
Graph by defining the directed? method with a custom body
(Line 11–16 and 17–21).

Once the application is completed with all features and
feature containments are created, we can initialize the pro-
gram.

�
1 class Edge
2 Weighted.code { attr accessor :weight }
3 def initialize(params)
4 Weighted.code { @weight = params.delete :weight }
5 params.delete :weight if params.include? :weight
6 #...
7 end
8 end
9

10 class Graph
11 def initialize(gtype)
12 Directed.code do
13 def directed
14 return gtype == 1
15 end
16 end
17 Undirected.code do
18 def directed
19 return false
20 end
21 end
22 #...
23 end� �

Figure 6: Implementing the GPL application with
feature containments.

3.4 Program Initialization
For providing runtime changes to the application, rbFea-

tures requires a complete representation of the application.
Because of the mechanisms used to instantiate a variant
in a specific namespace, we use string representation. A
ProcductLine object stores this string representation and can
invoke it several times to define new variants.

Once the code’s representation has been provided, the
next step is to initially execute it and to define the appli-
cations modules, classes, objects, and the features. In this
process, we use several hooks and metaprogramming mech-
anisms that help to change specific parts of Ruby’s normal
behavior. The most important ones are listed here:

• Initial execution of feature containments – Initially all
features are deactivated, so that the normal initializa-
tion of the program would not execute feature contain-
ments. However, whole modules and classes would not
be available, and several methods not defined. This
could lead to an in-executable program. Because of
this, all containment bodies are executed nevertheless,
and thus the program is initialized with all entities
and methods defined. However, the methods are actu-
ally not executable: The method-added hook modifies
them.

• Method-added hook – Ruby provides several hooks that
are called at specific runtime conditions (a complete
list is explained in [25]). rbFeatures uses a hook that
is triggered whenever a new method is added to an
object. The hook checks if there was a feature viola-
tion stemming from the last containment condition. If
yes, it replaces the method’s body with a custom error
message specifying the conflicting feature (for example
“FeatureNotActivatedError: Feature DFS is not acti-
vated”).

• Instantiation prohibition – Deactivated features are
not allowed to create instances. In the initialization
phase, we overwrite the initialize method to throw an
error too, using the explained method-added hook.



3.5 Feature Activation and Deactivation
After initialization, the program consisting of all classes,

modules, and methods exist. Yet the provided function-
ality is limited because all features are deactivated by de-
fault. Activating or deactivating features changes the pro-
gram1. Each time a feature changes its activation status,
the FeatureResolver is triggered to re-evaluate2 the string rep-
resentation of the application code. This means to execute
all module, class, and method declarations again. Eventu-
ally, the containment conditions are now valid, and methods
previously not available can now be executed normally.

This modification uses two important metaprogramming
capabilities of Ruby: open classes and code evaluation.

• Open classes – Ruby allows modifying all existing en-
tities, even the built-in ones. For example if a method
declaration is executed in the same scope and with the
same name as an existing method, then the old method
is overwritten.

• Code evaluation – At runtime, code in the form of
String or Proc objects can be evaluated. Strings are an
external format and are slower to evaluate, but using
Ruby’s string processing capabilities they can also be
changed arbitrarily. Procs instead are transformed to
an internal representation. Like strings, they can con-
tain any expressions, but are not modifiable after their
creation3 The difference is that procs are similar to
closures stemming from functional-oriented program-
ming. Their declaration encloses the state of surround-
ing variables even if the original context is no longer
available.

Both concepts explain the dynamic adaptation capabili-
ties of rbFeatures. At first, the whole application is stored
inside a string object, giving full manipulation capabilities of
the code with built-in string processing capabilities. Second,
containment bodies are actually proc objects, defined with
the do ... end notation shown in previous examples. And
third, every time a feature changes its activation status, the
complete application is re-evaluated again. Parts of the ap-
plication that were not available before may get active, and
this changes the internal program representation.

3.6 Variant Creation and Instantiation
We consider the case to create a ProductVariant object that

provides the features Directed, Weighted, DFS, and
Strongly Connected. The expression to create this ob-
ject are shown in �Figure 7. The variant receives a name, a
parameter pointing to the ProductLine model, and in its body
various features are activated. When the variant is created,
it is automatically added to the product line and can be
retrieved from there.

1In the current version of rbFeatures, manual configuration
using the first-class feature objects is still possible. But this
should be used with care because no product line model
is available and therefore the feature configuration is not
checked. This could lead to buggy programs. Therefore,
the use of ProductVariant objects as explained in the next
subsection 3.6 is recommend.
2The method eval is used to execute String or Proc represen-
tations of Code, hence we speak of evaluation.
3At least with the standard library. In [7] we showed how an
external library can be used to obtain a string representation
of a a proc, to modify it, and to writ it back to the proc.

�
1 ProductVariant.configure
2 :name => "SimpleVariant",
3 :pl => GPL do
4 activate_features :Directed ,
5 :Weighted ,
6 :DFS ,
7 :Strongly_Connected
8 end
9 end� �

Figure 7: Configuration of a product variant.

Once the variant is available, a call to it’s instantiate!

method actually creates an instance of this variant. This
triggers the following steps:

1. Check whether the configured features are valid to the
product line model by checking that all specified con-
straints are satisfied.

2. Compose a string template consisting of a module and
the product line code. The module uses the configured
name of the variant and serves as a namespace.

3. Add the string template to the core entity
FeatureResolver (see Section 3.1).

4. Initialize the application by evaluating the template
once.

From this moment on, the code contained in the vari-
ant is available at its separate scope, and all feature acti-
vation changes are governed by the FeatureResolver and the
ProductLine model. Whenever a feature’s activation status
is changed and possibly a variant’s instance modified, the
new configuration is checked with the product line model.
Only valid feature configurations are allowed. When vari-
ants are used, rbFeatures synchronizes the various methods
that change a feature’s activation status with each other.
For example, changing the feature status in the variant or
adding a new feature is immediately reflected in the instance.
Also, changes of features directly in the variant instance also
synchronize with the variant object.

Now we will see the application of these changes in an
example.

4. RUNTIME ADAPTATION EXAMPLE
In this section we give an example on how to use the

facilities of rbFeatures for providing multiple variants and
runtime adaptation.

We assume the GPL example is completely implemented
in terms of the product line model, the application code,
and concrete features. Then two variants are created us-
ing the ProductVariant entity in �Figure 8, Line 1–15. The
ShortestPathVariant includes the features Weighted, Directed,
and Shortest Path, and the DFSVariant Includes the fea-
tures Weighted, Directed, and DFS.

The next step is to instantiate the variants and to create
graphs inside them. To create the instance and a graph ob-
ject for the ShortestPathVariant, the expressions in �Figure 8
(Line 17–29) are used. First, the variant needs to be instan-
tiated with the instantiate! method. Second, we select the
variant by using the variant method of the product line ob-
ject. Third, a code block is executed in Line 10–28 to create
the graph. The DFSVariant is created similarly in �Figure 8
(Line 33–42), but it receives a simpler graph. The resulting



�
1 ProductVariant.configure
2 :name => "ShortestPathVariant",
3 :pl => GPL do
4 activate_features :Weighted ,
5 :Directed ,
6 :ShortestPath
7 end
8 end
9

10 ProductVariant.configure
11 :name => "DFSVariant",
12 :pl => GPL do
13 activate_features :Weighted ,
14 :Directed ,
15 :DFS
16 end
17
18 GPL.variant (" ShortestPathVariant ").instantiate!
19
20 ShortestPathVariant.class_eval do
21 graph = Graph.new
22 1.upto (6) { |n| graph + node(n) }
23 graph + edge(1 => 2, :weight => 1)
24 graph + edge(1 => 3, :weight => 2)
25 graph + edge(2 => 5, :weight => 4)
26 graph + edge(2 => 4, :weight => 2)
27 graph + edge(4 => 6, :weight => 12)
28 graph + edge(3 => 6, :weight => 22)
29 SPgraph = graph
30 end
31
32 GPL.variant (" DFSVariant ").instantiate!
33
34 DFSVariant.class_eval do
35 graph=Graph.new
36 1.upto (6) { |n| graph + node(n) }
37 graph + edge(1 => 2, :weight => 1)
38 graph + edge(2 => 3, :weight => 2)
39 graph + edge(2 => 4, :weight => 3)
40 graph + edge(3 => 5, :weight => 4)
41 graph + edge(4 => 5, :weight => 4)
42 DFSgraph = graph
43 end� �

Figure 8: Creating two distinct variant objects and
instantiating them.

graphs are shown �Figure 9 – ShotestPathVariants to the left,
and DFSVariant to the right.

Now that both variants are created and instantiated, we
can use and modify them at will. In �Figure 10, following
modifications are applied.

• Test whether each variant has an independent graph
object (Line 1 and 2).

• In the ShortestPathVariant, calculate the shortest path
between the node 1 and 6 and show the result (Line
5).

• Also, try to calculate the shortest path between node
1 and 5 in the DFSVariant (Line 9). But this raises an er-
ror, demanding that the ShortestPath feature needs
to be activated in this variant first.

• Activate the ShortestPath feature (Line 12).
• Now the shortest path can be calculated and the result

shown (Line 15).

There is no limit to the number of product lines, variants,
and variant instances that can be created (except physical
borders like available memory). Also, the first-class objects
can be changed at will, including runtime updates of the
product line model, which are reflected back down to the
instances. Here are some more examples how to use the
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Figure 9: Resulting graph structures.�
1 ShortestPathVariant.eval { SPgraph.length } # => 6
2 DFSVariant.eval { DFSgraph.length } # => 5
3
4 ShortestPathVariant.class_eval do
5 shortest_path(SPgraph , 6) # => [1,2,4,6]
6 end
7
8 DFSVariant.class_eval do
9 shortest_path(DFSgraph , 5) # =>

FeatureNotActivated Error: Feature
ShortestPath is not activated

10 end
11
12 GPL.variant (" DFSVariant ").activate_features

:ShortestPath
13
14 DFSVariant.class_eval do
15 shortest_path(DFSgraph , 5) # => [1,2,3,5]
16 end� �

Figure 10: Runtime adaptation of ProductVariant ob-
jects.

flexibility given by the first-class entities:

• Define new model features and add them to a product
line.

• Inside a variant, add a new block of code that contains
a new concrete feature.

• Offer different variants to the user and record which
feature combinations are heavily used. Use this in-
formation to prioritize development of additional fea-
tures.

• Analyze how a particular variant is used, change its
implementation at runtime by activating a new feature
and changing the instance.

5. RELATED WORK
In the research field of dynamic runtime adaptation, sev-

eral examples and approaches have been presented. The fol-
lowing subsections explain general frameworks, implemen-
tation mechanism, and applications.

General Frameworks
One general framework for runtime adaptation expresses
three important concerns: (1 ) explicit architectural model,
(2 ) provision of structural and behavior constraints, and (3 )
the availability of software connectors for runtime changes



[18]. In rbFeatures, concerns 2 and 3 are expressed with
the help of the software product line constraints and the
explained concepts of open classes and runtime code evalu-
ation. Furthermore, concern 1 is of no importance in rbFea-
tures because the feature containments are applicable to any
source code independent of its place in the software archi-
tecture.

Another work suggests an application-independent and
generic meta-model for runtime adaptation [17]. The model
considers systems operations, services, and ports of an ap-
plication as possible entry points for changes, and explains
that a concrete binding and implementation for each one
can support the adaptation. This generic model can explain
how several concrete adaptation approaches work. Recently,
rbFeatures was applied to web applications where different
feature configuration determine the available functions and
web-pages [6]. Altering the behavior of HTTP request han-
dlers and the offered ports is similar to providing a service,
and thus rbFeatures can be seen as lightweight instance of
this approach too.

Finally one model actively suggests to use features as
the dominant entities that drive runtime adaptation [14].
The paper introduces a feature model, binding units, and
a feature binding graph which is used to backup the step-
wise change of the current features configuration. This is
supported by rbFeatures too, albeit the changes in terms
of checking the feature configuration with the product line
model are comparatively simple.

Implementation Mechanisms
Looking at concrete implementation mechanisms, [22] ex-
plains an approach how to enable features for static and
dynamic binding. Static binding is a a-priori deployment
decision that confines some parts of the application to one
specific configuration. Dynamic binding flexibilizes the de-
velopment of features on the one hand, but it introduces
additional overhead like memory consumption or runtime
performance degradation. The paper shows how to use the
delegator pattern and refinements using binding units can
combine both approaches. This is an interesting idea to
provide other mechanisms in Ruby as well. Although there
is not compile time in Ruby, C extensions to the interpreter
could be written that allow the pre-configuration of an ap-
plication.

Another approach uses Java in order to adapt a software
product line and its variants at runtime [21]. Two mecha-
nisms to add new code based on a changed feature model.
At first, existing classes are replaced with a similar, slightly
evolved class but with another name through the classloader.
Second, Java HotSwap is applied to change all method calls
that have a callee which is the modified class. How this spe-
cific technique can be used for Feature-Oriented Program-
ming in Java is shown in [24]. Ruby supports such runtime
modification and metaprogramming mechanisms out of the
box, so rbFeatures just needs to use the existing mechanisms.

Applications
Finally considering concrete applications, we see that [27]
explains a plug-in based adaptation mechanism on top of
the .NET platform. In this paper, some scenarios where
runtime adaptation is required or beneficial are explained.
One example is a live sales presentation of an enterprise re-
source planning system. At the presentation, the system is

dynamically configured according to obtain the best feature
combination which satisfied most or all requirements of the
customer. Another example explains a product line which
is customized in accordance with the physical and execution
environment [19]. The paper presents a case study in which
an application displays information about movies. The ap-
plication features a cache which is activated once the band-
width of an internet-connection reaches a certain threshold.
From thereon, the application serves the data out of the
cache instead of live from the server.

6. SUMMARY
This paper explained how feature-oriented programming

and runtime adaptation of variants can be achieved by us-
ing first-class entities. The approach uses Ruby as the im-
plementation language. By using existing objects (classes
and modules), metaprogramming capabilities (open classes,
runtime code evaluation, hooks) and functional program-
ming (support of closures as anonymous code blocks), power-
ful first-class representations of product lines, features, and
variants can be created. This approach is generalizable to
bring runtime adaptation support for product line variants
to other applications as well. Provided the chosen host lan-
guages supports similar mechanisms, first-class entities can
be created in other languages as well.

A future research direction is to climb the ladder of avail-
able abstractions even higher. Once features, product lines,
and variants become first-class entities of a host language,
they build a reflexive layer about applications. The applica-
tions are becoming an abstraction which enables fine-grained
modifications and runtime adaptation. By extending the re-
flexive layer with additional concerns and paradigms, such as
aspect-oriented programming [13] or context-oriented pro-
gramming [9], whole systems comprising several applications
can be expressed with powerful meta-expressions. This idea
can be easily visualized as building a product line that con-
sists of other product lines. A system as a whole is adaptable
by modifying its components which are variants of individ-
ual product lines. This architecture can be used to react to
complex environmental changes.
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[11] C. Kästner and S. Apel. Virtual Separation of
Concerns – A Second Chance for Preprocessors.
Journal of Object Technology (JOT), 8(6):59–78, Sept.
2009.
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