
Raising family is a good practice
Vinay Kulkarni

Tata Consultancy Services
54B, Industrial Estate, Hadapsar

Pune, 411013 INDIA
+91 20 66086301

vinay.vkulkarni@tcs.com

ABSTRACT
The need for adaptiveness of business applications is on the rise
with continued increase in business dynamics. Code-centric
techniques show unacceptable responsiveness in this dynamic
context as business applications are subjected to changes along
multiple dimensions that continue to evolve simultaneously.
Recent literature suggests the use of product line architectures to
increase adaptiveness by capturing commonality and variability to
suitably configure the application. Use of model driven techniques
for developing business applications is argued as a preferable
option because platform independent specification can be
retargeted to technology platform of choice through a code
generation process. Business applications can be visualized to
vary along five dimensions, namely, Functionality (F), Business
process (P), Design decisions (D), Architecture (A) and
Technology platform (T). Use of models is largely limited to F
and P dimensions in commonly used model-driven development
techniques thus limiting the benefits of product line concept to
these two dimensions. We argue this is not sufficient to achieve
the desired adaptiveness, and it is critical to extend the product
line concept to D, A and T dimensions also. To address adaptation
needs of business applications, this paper presents a model-driven
generative approach that further builds on the ideas of separation
of concerns, variability management and feature modeling. Early
experience and lessons learnt are discussed, and future work
outlined.

Categories and Subject Descriptors
D.2.m [Software Engineering]: Miscellaneous – reusable
software.

General Terms
Management, Economics, Human Factors, Standardization,
Languages

Keywords

Commonality, Variability, Adaptiveness, Model-driven
development, Business applications, Product lines, Product
families

1. INTRODUCTION
Rapid evolutions of technology platforms and business demands
have contributed to significant increase in business dynamics in
recent years. The increased dynamics put new requirement on
businesses while opening up new opportunities that need to be
addressed in an ever-shrinking time window. Stability and
robustness seem to be giving way to agility and adaptiveness. This
calls for a whole new perspective for designing (and
implementing) software-intensive systems so as to impart these
critical properties. Traditional business applications typically end
up hard-coding the operating context in their implementation. As
a result, adaptation to a change in its operating environment leads
to opening up of application implementation resulting in
unacceptable responsiveness.
Typical database-intensive enterprise applications are realized
conforming to distributed architecture paradigm that requires
diverse set of technology platforms to implement. Such
applications can be visualized along five dimensions, namely,
Functionality (F), Business process (P), Design decisions (D),
Architecture (A) and Technology platform (T). A purpose-specific
implementation makes a set of choices along these dimensions,
and encodes these choices within application implementation in a
scattered and tangled manner. This is an expensive and error
prone process demanding large teams with broad-ranging
expertise in business domain, architecture and technology
platforms. Large size of an enterprise application further
exacerbates this problem. Model-driven development alleviates
this problem to an extent by automatically deriving an
implementation from its high-level specification using set of code
generators [20]. However, the scattering and tangling is the
principal obstacle in agile adaptation of existing implementation
for the desired change. Product line architectures aim to increase
adaptiveness by capturing commonality and variability to enable
application configurability. As the use of models is limited to F
and P dimensions in commonly seen model-driven development
techniques, the benefits of product line concept are also limited to
these two dimensions. Therefore, it is critical to extend the
product line concept to D, A and T dimensions also.
We present a model-driven approach that addresses adaptations
needs along all the five dimensions using a specification-driven
generative approach [8]. F and P dimension meta models are
extended to support modeling of variability that is specified using
feature model techniques. A meta model connecting these models

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FOSD'10, October 10, 2010 Eindhoven, The Netherlands Copyright ©
2010 ACM 978-1-4503-0208-1/10/10... $10.00"

to the features in the feature model is presented. Building block
abstraction as a means to implement a D or A or T feature is
presented. A MDD code generator can be modeled as a
hierarchical composition of building blocks, and maps easily to a
consistent well-formed configuration of a feature model along D,
A and T dimensions.
Section 2 describes model-based techniques we developed to
automate development of business applications, and discusses our
experience in using this approach to develop several large
business applications on a variety of technology platforms and
architectures. Section 3 presents an abstraction for organizing
model-based code generators as a hierarchical composition of
reusable building blocks, and discusses our experience and
lessons learnt. Section 4 describes extensions to application
specifications so as to model an application family. Section 5
discusses some of the related work. Section 6 concludes with a
brief summary of early use of the proposed approach, and outlines
future work.

2. GENERATING BUSINESS
APPLICATIONS FROM MODELS
A typical database-intensive business application can be seen as a
set of services with each service delivering specific business
intent. These applications are best implemented using a layered
architecture paradigm wherein each layer encapsulates a specific
kind of data manipulations e.g. database access layer implements
functionality such as primary-key based create/modify/get/delete
and complex data accesses like joins, user interface layer
implements how the data should be displayed on a screen and how
the user will interact, etc. Thus, a set of code patterns recur in the
implementation of an architectural layer. An architectural layer
interfaces with its adjoining layer through a priori well-defined
protocol. Thus, execution of a business application can be seen as
an assembly-line of architectural layer specific processors that
manipulate the work item, i.e. data corresponding to input and
output parameters of a service, in a pre-defined manner before
passing it over to the next processor in the assembly-line. As the
processing is data-centric and a priori known, it can be easily
generated for a given data definition.

 Model-driven development approach starts with definition of an
abstract specification that is to be transformed into a concrete
implementation on a given target architecture [18]. The target
architecture is usually layered with each layer representing one
view of the system e.g. Graphical User Interface (GUI) layer,
application logic layer and database layer. The modeling approach
constructs the application specification using different abstract
views- each defining a set of properties corresponding to the layer
it models. We decompose an application specification into three
such models- GUI layer model, Application layer model and Db
layer model as shown in Fig. 1. We consider three meta models,
namely GUI layer meta model, Application layer meta model and
Db layer meta model, for the three view specifications. Each
models views of a single Unified meta model as depicted in Fig.
1. Having a single meta model allows to specify integrity
constraints to be satisfied by the instances of related model
elements within and across different layers. This enables
independent transformation of GUI layer model, Application layer
model, and DB layer model into their corresponding
implementations namely GUI layer code, Application layer code
and Db layer code with assurance of integration of these code
fragments into a consistent whole. These transformations are
performed using code generators. The transformations are
specified at meta model level and hence are applicable for all its
model instances. If each individual transformation implements the
corresponding specification and its relationships with other
specifications correctly then the resulting implementations will
glue together giving a consistent implementation of the
specification.

2.1 Experience and lessons learnt
UML [16] modeling helped in early detection of errors in
application development cycle. We associated with every model a
set of rules and constraints that defined validity of its instances.
These rules and constraints included rules for type checking and
for consistency between specifications of different layers. We kept
the models independent of implementation technology so as to be
able to retarget them to multiple technology platforms i.e. gui
platform, middleware, programming language, rdbms and
operating system. We defined a higher level domain-specific
language to specify business logic [10]. Non-primary key based

Q++
code

Design strategies

Extended UML
models

Query
code

Model to PB translator

Q++ to C++ translator

Model to C++
translator

Query to ProC
translator

Model to JSP
translator

Q++ to Java translator

Model to Java
translator

Query to JDBC
translator

GUI layer in PB

App logic layer in
C++

DM layer in ProC

GUI layer in JSP

App logic layer in
Java

DM layer in
JDBC

Fig. 2 Scattering and tangling in code generation
Fig. 1 Unified meta model for business application

0 1

Class

Metho

Association

has

source

DataTy

ofType

destinat

Attribu

has

Task

Proces

has

li

precedes

1 * 1 *

1 *

*

1 * 1 *

*

*

1 *

* *

**

* *

Entity

Colum Key

has has
1 * 1..*

* *

UIAttri
*

Windo

UIClas Button

has has

has

opens

1..*

*

*

*

*

1..*

* mapsTo * *

maps

0 10 1

compose

1 * *

*c

0 1

Attribu

mapsTo
0..1

0..1

implement
0

0

GUI layer meta
model

App layer meta
model Db layer meta

model

complex data accesses were specified using a SQL-variant.
Application specified in terms of models, Q++ and SQL-variant
language was transformed into the target technology platforms
encoding the chosen design strategies and architectural choices
through a set of code generators. We preserved the divide and
conquer strategy by having a code generator each for architectural
layers.
Automated code generation resulted in significantly higher
productivity in terms of lines of code [22]. Moreover, encoding of
design strategies, guidelines and best practices into the code
generators resulted in uniformly high code quality. Generation of
interface code between the various architectural layers ensured
smooth integration of independently generated code artifacts. We
discovered that design strategies and architectural choices for no
two applications were exactly alike necessitating development of
application-specific code generators. Moreover, many
architectural and design strategies cut across the layers. This
required each tool to be aware of these cross cutting aspects. As a
result, customizing for such cross cutting aspects required
consistent modifications to several tools leading to maintenance
problems. Increased acceptance of the approach led to the ironical
situation wherein productivity toolset team became bottleneck for
application delivery [21].

3. ORGANIZING MULTIPLE TOOLSETS
INTO A FAMILY
As can be seen from figure 2, different code generators are needed
to deliver the same business functionality on different technology
platforms. This is despite these platform-specific code generators
sharing a great deal of common functionality and mostly differing
only in the use of primitives offered by the target technology
platform e.g. syntax differences of programming languages, data
type differences of databases, etc. Even while delivering identical
business functionality on identical technology platforms, need to
deliver onto different architectures e.g. synchronous, queue-based
messaging etc demands different code generators. Similarly, use
of different design strategies demands different code generators.
Thus, domain of model-based code generators can be described as
a feature diagram [9] where intermediate nodes denote the
variation points along D, A and T dimensions; the leaf nodes
denote choices available for each variation point i.e. variations;
and dependency between variation points expressed in terms of
conditional expressions over their respective variations. The

desired model-based code generator is a valid configuration over
the feature diagram. However, feature diagram is just a declarative
specification in terms of labels, and needs support for tracing a
feature (i.e. the label) to its implementation. Recommended way
for implementing the desired feature configuration is an ordered
composition of the implementations of the set of constituent
features. But, strict order is not always possible for inter-
dependent features.
The tangling of model-based code generators, as shown in figure
2, is due to lack of separation of the various concerns, namely,
technology platform, architecture and design strategies, and the
cross-cutting nature of design strategies. An improved architecture
for model-based code generation is where the models are
successively refined through application of the various design
strategies to a stage from where a platform specific
implementation can be realized through a simple task of model-to-
text transformation. As the platform specific code generators are
independent of design strategy related issues, the same model-to-
text transformation specifications can be reused with different
design strategies and vice versa. This separation of concerns
enables a tool variant to be viewed as a composition of design
strategy and technology platform aspects of choice.

3.1 Building block
Building block is an abstraction that provides a traceable path to
implementation for a feature as per the generic model-driven code
generation architecture as shown in fig. 3. A building block is
localized specification of a concern in terms of concern-specific
meta model, model to model transformation, and model to text
transformation. Building blocks are composable, enabling a
model-driven code generator to be organized as a composition of
a set of reusable building blocks, each encapsulating a specific
concern. Figure 4 shows the building block meta model. A
building block is essentially a means for expressing how a
concern specification is transformed into models and code.
A model-driven code generator is specified as a hierarchical
composition of building blocks of interest. Building blocks are of
two kinds: leaf building block and composite building block. The
instantiation specification of a leaf building block specifies how to
stamp out the model elements of the unified model from the
concern-specific model and the transformation specification
captures how the model is transformed to code. We use QVT
language [13] to specify the former and Mof2Text language [12]
to specify the latter. A composite building block specifies how to
compose its child building blocks. Weaving specification of a
composite building block specifies how the code generated by its
member building blocks is woven together. The process of model-
driven code generation is realized through a post-order traversal

Fig. 3. Model-driven code generation architecture

Model-to-model transformation

view of

Meta Meta Model

Instance of

Meta Model1 Meta Model2 Unified Meta Model

Instance of

Model1 Model2 Unified Model

Text1 Text2

Model-to-text transformation

Desired Text

Text composition

Fig. 4. Building block meta model

Building block
parameter

1

2..*

member
*

*

Composite building block Leaf building block

consistency
1

*

Instantiation
specification

Transformation
specification

Weaving
specification

transformationSpec
1 weavingSpec 1 1 1

0..1

1

0..1 0..1 0..1 0..1

instantiationSpec

Model element Constraint Metamodel

1
1 metamodel

of the building block hierarchy in three sequential steps, namely,
Instantiation, Transformation and Weaving. The instantiation step
stamps out models and merges them. The transformation step
transforms models into code snippets and generates weaving
specifications for composing them. The weaving step composes
the generated code snippets by processing the weaving
specifications.
We translate a model (Mu) that is an instance of a unified meta
model (MMu) to various software artifacts like Java code, JDBC
code, JSP code and a variety of configuration specifications in
XML. Limiting aspect weaving only to code level artifacts would
necessitate specialized weavers for Java, JDBC, JSP, XML etc.
each having separate join point models. Also, this approach would
necessitate some commonality over these join point models so as
to have an integrated Java application. With increased number of
software artifacts to be produced the approach becomes
increasingly complex as essentially it amounts to building aspect
infrastructure for each such artifact. We address this problem by
specifying aspect weaving at the unified meta model level and
performing it at the model level whenever possible. Unified meta
model enables specification of relationships between the various
(sub) modeling languages. A reflexive meta modeling framework
provides the necessary infrastructure to define and integrate the
various modeling languages of interest and a meta model aware
model transformation framework provides the necessary
technology to address model weaving requirements [10].
Performing aspect weaving at the model level also, whenever
possible, results in reuse of model based code generators such as
model-to-Java, model-to-JDBC, model-to-JSP and model-to-
XML as these code generators are specified at the unified meta
model level.
Multiple variants of a code generator realized as different
compositions of building blocks can be easily organized into a
family as follows,
- Commonality across variants can be specified using a set of

common building blocks
- Functionality specific to each variant can be specified using

a set of variant building blocks

- Composable nature of building blocks enables realization of
the desired family member as a composition of suitable
common and variant building blocks

Thus, building block abstraction provides a traceable path for a
feature towards its implementation.

3.2 Experience and lessons learnt
Use of building block abstraction has enabled our toolset to be
organized as a family or a product line wherein a tool variant can
be easily composed from design strategy and technology platform
aspects of choice. Containment of change impact due to
localization and increased reuse due to composability have led to
quick turnaround time for delivering a tool variant [17]. Use of a
higher-level model-aware transformation language has made
maintenance and evolution of the product line easy [14]. Also,
building block abstraction has enabled us to organize the
development team along two independent streams, namely,
technology platform experts and design experts.

4. MODELING APPLICATION FAMILIES
Our organization discovered that solutions being delivered to
different players in the same business domain were not exactly
alike even for identical business intent. With toolset providing no
means to capture commonality and variability, application
development teams had to resort to copy-paste. As a result, what
should have been a variant of an application ended up being a
separate application thus leading to maintenance and evolution
problems. These problems compounded with every new solution
being delivered.
The approach described in section 2 generated a layered
application implementation from a similarly layered specification.
Each layer of application specification is an instance of its specific
meta model. Now we describe how each of these meta models is
enhanced to support the family concept [3]. Figure 5 depicts a
meta model for capturing variability in a generic way. An
application is viewed as a set of a priori defined variation points
that could possibly be inter-dependent. Possible variants for each
variation point are identified. Inter-dependence of variation
points translates to similar relationship between their variants.
Since our interest is database-intensive business applications that
are typically implemented using a layered architecture, we identify
variation points for each architectural layer. For instance, DLvp
denotes variation points in database access layer, ALvp denotes
variation points in application layer, and ULvp denotes variation
points in user interface layer. Similarly, DLv, ALv and ULv denote
variants in database access, application, and graphical user
interface layers respectively. A set of DLv that honour dependency
constraints between DLvp, a set of ALv that honour dependency
constraints between ALvp, and a set of ULv that honour
dependency constraints between ULvp constitute a complete,
well-formed and consistent application variant Appv.

4.1 Approach
4.1.1 Application layer
Application layer specifies the business logic in terms of Class,
Attribute and Operations. Being an encapsulation of both
structural and behavioral aspects, Class is the natural choice for
supporting the family concept in the application layer. Figure 6

Fig. 5. A generic variability meta model

Variant

DLv ALv ULv

VariationPoint

DLvp ALvp ULvp

depends

depends

App

Appv

0..*

0..*

0..*
0..*

0..*

1

1

1
1 1

1

1

variationOf
variationOf

depicts extensions to the application layer meta model highlighted
in Fig 2 as follows:
- Svp denotes a structural variation point wherein multiple

variations can be plugged.
- Sv denotes a structural variation for a structural variation

point.
- A structural variation is in fact an Attribute.
- Csv denotes a structural variant for a Class. It is a complete

and consistent configuration of structural variations of the
class i.e. no structural variation point is left unplugged and
selected structural variations honour structural variation
point dependencies. Structural variants for a class differ in
terms of the number of Attributes or their Types or both.

- Bvp denotes a behavioural variation point for an Operation
wherein multiple variations can be plugged.

- Bv denotes a behavioural variation for a behavioural
variation point.

- A behavioural variation is in fact an Operation.
- Ov denotes an Operation variant. It is a complete and

consistent configuration of behavioural variants i.e. no
behavioural variation point is left unplugged, and selected
behavioural variants honour behaviour variation point
dependencies if any.

- Cbv denotes a behavioural variant for a Class. It is a
consistent configuration of Operation variants i.e., the
selected operation variants serve meaningful intent.

- Cv denotes a variant for a Class. It is a type-compatible
configuration of structural and behavioural variants of the
class.

Thus, the above extensions enable modeling of a family of classes
wherein each member (of the class family) serves the same intent
in a specific situation. By making the above information available
as metadata, implementation can switch from one consistent
configuration of variants to another at application run-time. Not
all such situational adaptations can be handled at application-
runtime though, for instance, addition of a new behavior
extension (Bv or Ov) would need recompilation (followed by
redeployment). Similarly, definition of a new class altogether, as
an extension to existing functionality, cannot be handled at
application run-time. But, the meta model enables a new situation

to be addressed such that it adds to the existing set of
configuration alternatives.

4.1.2 Database layer
Database layer provides persistency to the desired application
objects. We use object-relational database layer that provides an
object façade to relational database tables implementing
persistence. As an application object can vary structurally, the
database table onto which it maps also needs to cater to this
variance. And the same holds for structural extension as well.
Configurability in database layer means quick switching from one
known situation (i.e. db schema) to another, and extensibility
means easy handling of as yet unseen situation. Figure 7 shows
extension of database layer metamodel highlighted in fig. 2 as
follows:
- Lvp denotes a structural variation point wherein multiple

variations can be plugged.
- Lv denotes a structural variation for a structural variation

point.
- A structural variation is in fact a Column.
- Ev denotes a structural variant for an Entity. It is a complete

and consistent configuration of structural variations of the
Entity i.e. no structural variation point is left unplugged and
selected structural variations honour structural variation
point dependencies. Structural variants for an Entity differ in
terms of the number of Columns or their Types or both.

Thus, the above meta model enables modeling of a family of
entities wherein each member (of the entity family) serves the
same intent in a specific situation. In essence, the above
information constitutes a generic db schema that can be
specialized for a variety of situations. Database access methods
such as primary-key based Create, Update, Get and Delete,
complex data accesses like joins can encode interpretation of this
information in their implementation. By making the above
information available at application runtime, as metadata,
implementation can switch from one known configuration to
another at application run-time. Addition of a new row in the
metadata tables corresponds to the ability of handling as yet
unseen situation. Not all situational adaptations can be handled at
application-runtime though, for instance, deletion of a column
would need redefinition of the db schema leading to
recompilation of database access layer code followed by
redeployment. But, the meta model enables a new situation to be
addressed such that it adds to the existing set of configuration
alternatives.

4.1.3 User Interface layer
A GUI screen family represents a set of GUI screens that have a
lot in common but differ from each other in a well-defined

manner. Therefore, understanding of commonality and variability
is critical in order to support modeling of a GUI screen family. A
GUI screen is one of the channels for users to interact with an
application. In essence, a GUI screen enables user to provide
input data for carrying out a logical unit of work and display the
response. While serving the same business intent, a GUI screen
can vary in terms of what (i.e. data to enter and/or view) and how
(i.e. layout information and GUI controls to use) leading to
multiple situations. Configurability means quick switching from
one known situation to another, and extensibility means easy
handling of as yet unseen situation. Figure 8 shows an extension
of user interface meta model highlighted in fig. 2 as follows:
- Fvp denotes a structural variation point wherein multiple

variations can be plugged.
- Fv denotes a structural variation for a structural variation

point.
- A structural variation is in fact a Field.
- Gsv denotes a structural variant for a Screen. It is a complete

and consistent configuration of structural variations of the
screen i.e. no structural variation point is left unplugged, and
selected structural variations honour structural variation
point dependencies. Structural variants for a screen differ in
terms of the number of Fields or their lay-out or both.

- Bvp denotes a behavioural variation point for an event
handler wherein multiple variations can be plugged.

- Bv denotes a behavioural variation for a behavioural
variation point.

- A behavioural variation is in fact an Event handler.
- eHv denotes an event handler variant. It is a complete and

consistent configuration of behavioural variants i.e. no
behavioural variation point is left unplugged, and selected
behavioural variants honour behaviour variation point
dependencies if any.

- Gbv denotes a behavioural variant for a Screen. It is a
consistent configuration of event handler variants i.e. the
selected event handler variants serve meaningful intent.

- Gv denotes a variant for a Screen. It is a type-compatible
configuration of structural and behavioural variants of the
screen.

Thus, the above meta model enables modeling of a family of
screens wherein each member (of the screen family) serves the
same intent in a specific situation. By making the above
information available as metadata a GUI implementation can
switch from one known situation to another at application run-
time. Addition of a new row in the metadata tables corresponds to
the ability of handling as yet unseen situation. Not all situational
adaptations can be handled at application-runtime though, for
instance, change in event handler code would need recompilation
(followed by redeployment). Similarly, definition of a new screen
altogether, as an extension to existing functionality, cannot be
handled at application run-time. But, the meta model enables a
new situation to be addressed such that it adds to the existing set
of configuration alternatives.

4.1.4 Putting the layers together
Meta models described so far, in essence, help model a family at
each architectural layer such that all members of a family share a
common part and are distinguishable in terms of member-specific
part. As described in section 2, the unified meta model enables
specification of well-formedness constraints spanning across the
architectural layers. Once a set of desired members, one from each
architectural layer, is identified, it is possible to compose them
into a well-formed specification that can be automatically
transformed into a consistent and complete solution. We use
feature modeling technique to enable selection of a family
member pertaining to the desired criterion. Figure 9 shows the
variability resolution meta model that captures traceability of a
feature to its implementation artefacts. Augmented with
constraints, this meta model enables selection of a configuration
as a set of variants that is complete, consistent and well-formed. A
configuration is:

� complete if there is no variation point remaining unplugged

� well-formed if structural constraints between variation point
and variants being plugged therein such as Xor, And, n-of-m
are satisfied

� consistent if variants honour dependency constraints between
their variation points

In our experience this simplistic variability resolution meta model
has sufficed so far. We are aware it will need to be richer going
forward.

4.2 Experience and lessons learnt
We are in the early roll-out stage of this solution. In the interest of
time-to-market, product owners decided to use the latest product
release as baseline for introducing the family concept as opposed
to refactoring the set of solutions delivered so far into a
productline. Since new meta models are essentially an extension
of old meta models, it was possible to migrate the older
application models fully automatically. Given the simple nature of
meta model extensions, full power of QVT [13] was not called for
and a simpler imperative model transformation alternative [14]
sufficed. In early experience, modeling of commonality and
variability rooted at meta objects being used for code generation,
namely, Class, Entity, Operation and Screen seem to suffice.
Proposed meta models specify pre-defined variation points,
possible variations, and constraints over variation points.
Configuration is a process of selecting appropriate variations so
that all variation points are consistently plugged-in for an
application. We supported this configuration process at three
different stages of application development: design time,
installation time and run time. Design time configuration is
supported through model transformation and model merge
techniques. The installation time and run time configuration is
supported by generating appropriate metadata for all possible
variations. Having separated business process concern from
application functionality, we had to support the family concept for
business process models as well [19]. We think the true test of the
proposed meta models as regards configurability and extensibility
will come in supporting inherently dynamic domain of financial
instruments, insurance products etc.

5. RELATED WORK
The idea of addressing a set of related situations in an integrated
manner is not new. Parnas was the first to argue for the need to
design software for ease of extension and contraction thus leading
for software families [3]. Usual practice is to parameterize the
solution so as to address known situations. Several approaches for
supporting parameterization through variability management have
been proposed. Extending UML for modeling variability using
standardized extension mechanisms of UML is presented in [11].
A variation point model that allows extension of components at
pre-specified variation points is proposed in [6]. A conceptual
model for capturing variability in a software product line is
presented in [4]. All the three only support the notion of variation
point and that too only at modeling level whereas we provide
support for structural and behavioural levels. Aspect-orientation
[5] is a technique for addressing separation of concerns with
greater modularization and locality. However, implicit
communication link between aspects and classes complicates the
readability and comprehension of an aspect-based realization of
variability architecture [1]. We circumvent this problem by
generating pure OO implementation with aspects suitably woven
in. Feature modeling is a popular mechanism to specify product
lines [9]. Although a feature model can represent commonality
and variability in a concise taxonomic form, features in a feature
model are merely symbols. Mapping features to other models,
such as behavioral or data specifications, provides a path towards
implementation. A general template-based approach for mapping
feature models to concise representations of variability in different
kinds of other models is presented in [7]. We build upon this idea
to connect a feature to its implementation artefacts i.e. structural

and behavioural specification through a meta model. Despite
years of progress, contemporary tools often provide limited
support for feature constraints and offer little or no support for
debugging feature models. An integration of prior results to
connect feature models, grammars, and propositional formulas so
as to allow arbitrary propositional constraints to be defined among
features and enable off-the-shelf satisfiability solvers to debug
feature models is presented in [2]. We build upon these ideas to
ensure consistency of the selected feature configuration. The meta
model connecting features with their implementation artefacts
guarantees consistency, correctness and completeness of the
implementation.

6. SUMMARY
We presented a model-driven generative approach to address
adaptation needs of business applications. The approach builds
further on the ideas of separation of concerns, variability
management, feature modeling and generative development. We
visualize business applications to vary along five dimensions,
namely, Functionality (F), Business process (P), Design decisions
(D), Architecture (A) and Technology platform (T). We address
adaptation needs along all the five dimensions using a
specification-driven generative approach. We extend meta models
to support specification of variability along F and P dimensions.
We presented a meta model that connects these specifications to
features in a feature model. This bridge meta model enables
traceability of a consistent well-formed feature configuration to its
specification artefacts thus realizing a family of application
specifications corresponding to the feature model. We presented
building block abstraction as a mean to implement a D or A or T
feature. MDD code generator is a hierarchical composition of
building blocks, and maps easily to a consistent well-formed
configuration of a feature model along D, A and T dimensions.
We discussed our experience in using model-driven techniques to
build large business applications on a variety of architectures and
technology platforms. Separating business functionality from
technological concerns, and model-based code generation resulted
in significant productivity and quality gains. Encouraged by these
benefits, many large development projects also readily adopted
the model-driven approach despite initial investment in learning
how to model. This enthusiastic, and somewhat unexpected,
acceptance of the approach led to an ironical situation of the
productivity toolset team becoming a bottleneck. We overcame
this problem through use of product line techniques in order to
model the code generators as a family, and deriving a purpose-
specific implementation therefrom. Thus, we could achieve scale
through addressing customizability at family level instead of
individual member level.
We discovered the same issue with business functionality i.e.
solutions delivered to different players in the same business
domain were not exactly alike even while addressing the same
business intent. We shared early stage experience of modeling
commonality and variability along F and P dimensions which
seems encouraging.
Though the idea of bringing together separation of concerns,
variability management, and feature modeling seems promising,
there are several open issues:

� The meta model providing traceability from F and P features
to their implementation specifications is rather simplistic.

� There should be support, preferably tool-aided, for unit
testing a feature - it should be possible to specify test cases
for a feature independently and compose the test cases to
arrive at the system level test cases for the desired feature
configuration.

� There should be tool support for intelligent debugging at
feature level. A bug detected at code level should be
traceable back to the feature specification.

� Hierarchical organization of features enforces an ordered
traversal. Complex interdependence of features may impede
strict order.

� It is not clear which facets of a system deserve to be modeled
as building blocks. There is a need to investigate how the
engineering aspects can be modeled and what the right kind
of abstractions for modeling them are to satisfy the various
‘ities’ like maintainability, reusability etc. For instance, how
does one model a design for better maintainability?

� Building blocks may overlap each other thus introducing an
order of weaving. How does one ensure that properties of all
building blocks hold after their weaving?

� Supporting separation of concerns using building blocks
raises several tooling issues. The modeling tool should be
extensible to support new modeling languages so as to define
new aspect models and relate them to existing models. The
model transformation tool should have adequate support for
pattern matching and composition. The tool should support
incremental reconciliation of models and scale up to cater to
the demands of enterprise class applications.

In comparison to the existing literature, the proposed approach
centered around meta models capturing commonality and
variability in all dimensions of a typical database intensive
business application seems more pragmatic for industry use. We
are working on development of a component abstraction and
algebra to support configuration and extension operators for these
dimensions. Also, going forward we hope to ride piggy-back the
technology advance in OSGi [15].

7. REFERENCES
[1] Alexander Nyßen, Shmuel Tyszberowicz, Thomas Weiler.

Are Aspects useful for Managing Variability in Software
Product Lines? A Case Study. Early aspects workshop at
SPLC 2005.

[2] Don Batory. Feature Models, Grammars, and Propositional
Formulas. Software Productlines, Volume 3714 of LNCS,
pages 7-20, Springer, 2005.

[3] D L Parnas. Designing Software for Ease of Extension and
Contraction. Proceedings of the 3rd ICSE, pages 264 –
277,1978.

[4] Felix Bachmann, Michael Goedicke, Julio Leite, Robert
Nord, Klaus Pohl, Balasubramaniam Ramesh and Alexander
Vilbig. A Meta-model for Representing Variability in
Product Family Development. Software Product Family
Engineering, volume 3014 of LNCS, pages 66-80, Springer,
2004.

[5] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Videira Lopes, Jean-Marc Longtier and John

Irwin. Aspect oriented programming. ECOOP’97 LNCS
1241, pp 220-242. Springer-Verlag. June 1997.

[6] Hasan Gomaa, Diana L Webber. Modeling Adaptive and
Evolvable Software Product Lines Using the Variation Point
Model. Proceedings of the 37th Annual Hawaii International
Conference on System Sciences (HICSS'04) - Track 9 -
Volume 9.Page: 90268.3

[7] K. Czarnecki and M. Antkiewicz. Mapping features to
models: A template approach based on superimposed
variants. Generative Programming and Component
Engineering, Volume 3676 of LNCS, pages 422–437.
Springer, 2005.

[8] K Czarnecki and U Eisenecker, Generative programming
methods, tools and applications, Addison-Wesley, 2000.

[9] K Kang, S Kohen, J Hess, W Novak and A Peterson,
Feature-orientation domain analysis feasibility study,
Technical Report, CMU/SEI-90TR-21, November 1990.

[10] MasterCraft – Component-based Development Environment.
Technical Documents. Tata Research Development and
Design Centre. http://www.tata-mastercraft.com

[11] M Clauß, I Jena. Modeling variability with UML. GCSE
2001Young Researchers Workshop, 2001.

[12] MOF Models to Text Transformation Language
http://www.omg.org/spec/MOFM2T/1.0/

[13] MOF Query / Views / Transformations
http://www.omg.org/spec/QVT/1.0

[14] OMGen Reference manual, version 1.5, Technical
Document, Tata Consultancy Services, May, 2008

[15] OSGi - The Dynamic Module System for Java,
http://www.osgi.org/

[16] UML Infrastructure 2.0 Draft Adopted Specification, 2003,
http://www.omg.org/spec/UML/2.0/

[17] Souvik Barat and Vinay Kulkarni: Developing configurable
extensible code generators for model-driven approach. 22nd
International Conference on Software Engineering and
Knowledge Engineering, July, 2010.

[18] Vinay Kulkarni, R. Venkatesh and Sreedhar Reddy.
Generating enterprise applications from models. OOIS’02,
LNCS 2426, pp 270-279. 2002.

[19] Vinay Kulkarni and Souvik Barat: Business Process Families
using Model-driven Techniques. 1st International workshop
on Reuse in Business Process Management, Sep, 2010.
http://each.uspnet.usp.br/rbpm2010/program.htm

[20] Vinay Kulkarni, Sreedhar Reddy, An abstraction for reusable
MDD components: model-based generation of model-based
code generators. GPCE 2008: 181-1843.

[21] Vinay Kulkarni, Sreedhar Reddy: Introducing MDA in a
large IT consultancy organization. APSEC 2006: 419-426.

[22] Vinay Kulkarni, Sreedhar Reddy: Model-Driven
Development of Enterprise Applications. UML Satellite
Activities 2004: 118-128

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

