
Improving Reuse of Component Families
by Generating Component Hierarchies

Marko Rosenmüller
School of Computer Science,

University of Magdeburg,
Germany

rosenmue@ovgu.de

Norbert Siegmund
School of Computer Science,

University of Magdeburg,
Germany

nsiegmun@ovgu.de

Martin Kuhlemann
School of Computer Science,

University of Magdeburg,
Germany

mkuhlema@ovgu.de

ABSTRACT
Feature-oriented software development (FOSD) enables de-
velopers to generate families of similar components. How-
ever, current FOSD approaches degrade component reuse
because they do not allow a developer to combine multiple
components of the same family in a larger program. This is
because individual family members cannot be distinguished
from each other. We present an approach to model and
generate component hierarchies that allow a programmer to
combine multiple component variants. A component hierar-
chy structures the components of a family according to their
functionality. Due to subtyping between the components of
a hierarchy, client developers can write generic code that
works with different component variants.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Tech-
niques; D.2.13 [Software Engineering]: Reusable Soft-
ware—Domain engineering, Reusable libraries

General Terms
Design, Languages

1. INTRODUCTION
Scalable software reuse can be achieved by develop-

ing components, libraries, and frameworks (in the follow-
ing referred to as components) as software product lines
(SPLs) [4]. From a component SPL, programmers can de-
rive a family of similar components that can be distinguished
in terms of features [6]. Features represent characteristics of
a component that are of interest to some stakeholder. A de-
veloper can build more complex SPLs by combining multi-
ple component SPLs. This results in a set of interdependent
SPLs which we call a multi product line (MPL) [21].

In previous work, we presented an approach to model
MPLs and to automate their configuration [21]. In this
paper, we extend the modeling approach and address the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOSD’10 October 10, 2010, Eindhoven, The Netherlands
Copyright 2010 ACM 978-1-4503-0208-1/10/10 ...$10.00.

implementation of MPLs with feature-oriented programming
(FOP) [19, 3]. FOP and other approaches for SPL develop-
ment do not allow a programmer to use different variants of
a component in the same program. The reason is that we
cannot distinguish two variants of a component from each
other since they are derived from the same code base and
use the same names (e.g., for classes). For example, in the
customizable DBMS BerkeleyDB1, programmers use the C
preprocessor to implement variability. Since a function has
the same name in all Berkeley DB variants, we cannot use
different variants of the DBMS in the same program (e.g.,
one for stream processing and one for persistent storage).
As another example consider an SPL for container data

structures. We can implement it with FOP to derive differ-
ent kinds of data structures (e.g., a sorted list and a synchro-
nized list). A client developer should be able to use different
variants of the SPL in the same program. Ideally, the data
structures should span a type hierarchy to simplify develop-
ment of generic client code. For example, a sorted list and
a synchronized list should be subtypes of a basic list to use
them polymorphically. OOP concepts, such as inheritance
(e.g., creating a subclass for each kind of list), cannot solve
the problem because a programmer has to create subclasses
for every class of each component variant [4]. Finally, most
FOP approaches completely replicate the code when gener-
ating different variants of a component. We summarize the
observed problems as follows:

Naming Conflicts. When deriving different variants of a
component from an SPL, the names of classes in differ-
ent variants are the same. Hence, a programmer (and
a compiler) cannot distinguish the different variants
(e.g., to create objects).

Missing Subtyping. Even though different SPL in-
stances provide a similar interface there is no subtyp-
ing relationship between them. This hampers develop-
ment of generic code in client applications.

Code Replication. Different variants of the same SPL
share functionality but there is no code reuse: features
that are used in two variants are completely replicated.

We observe these problems when components are embed-
ded in a program (e.g., as statically linked libraries) and
used via an API. Hence, we focus on components that are
represented in the programming language (e.g., as a set of
classes). We define three requirements to enable reuse of
different variants of a component within the same program:

1http://www.oracle.com/database/berkeley-db/

OR

XOR

optional

mandatory

STATISTICS

LISTPL QUICKSORT

MERGESORT
BUBBLESORTSORT

SYNC

Figure 1: Feature diagram of an SPL for list data
structures.

1. Instance identification: programmers must be able to
distinguish two instances of the same SPL.

2. Subtyping: SPL instances should span a type hierar-
chy to be used polymorphically.

3. Code Reuse: code should be reused between instances
of the same SPL.

Requirement (1) is mandatory for using different compo-
nent variants in the same program. Requirements (2) and
(3) are optional: Requirement (2) simplifies client develop-
ment because it allows a programmer to write generic code;
Requirement (3) is an optimization.

To address the problems already at a conceptual,
implementation-independent level, we extend our approach
for modeling MPLs. We use SPL specialization [7] to define
component hierarchies and define a subtype relationship be-
tween component variants. We then demonstrate how com-
ponent hierarchies can be generated from FOP code.

2. COMPONENT SPLS
A component SPL allows a programmer to derive a com-

ponent tailored to her needs. As a running example, con-
sider an SPL for list data structures (ListPL). We can use
it to derive different kinds of linked lists such as sorted and
synchronized lists. In Figure 1, we show the ListPL feature
diagram [11, 6], a hierarchical representation of the features.
A feature diagram includes relations between features (such
as an XOR relation between alternative features) to avoid
invalid feature combinations in a concrete SPL instance. For
example, feature Sort in Figure 1 represents the function-
ality for sorting list elements. It has three alternative sub-
features that implement different sort algorithms.

A programmer can use the ListPL to implement a mail
client SPL (MailPL). The mail client may also use other
SPLs such as a DBMS for mail storage. We call the whole
set of interdependent SPLs a multi product line (MPL) [21].
The product of an MPL is a set of interacting products of
the underlying SPLs. With an MPL composition model we
describe which SPL instances are used within an MPL. An
example for the mail client is shown in Figure 2: MailPL
uses an instance of DbmsPL and two different instances of
ListPL, which we describe with a composition relationship.
SPL instance names (e.g., sortList) are used to identify
different instances of the same SPL on the model level.

2.1 SPL Specialization Hierarchies
In order to specify which functionality an SPL instance

(e.g., sortList in Fig. 2) must provide, we use SPL special-
izations. A specialization of an SPL is a configuration step
that eliminates configuration choices [7]. Usually, a special-
ization does not specify an SPL instance completely; it is

-mailStorage -syncList-sortList

MailPL
«SPL»

DbmsPL
«SPL»

ListPL
«SPL»

Figure 2: Modeling product lines with UML: A mail
client SPL (MailPL) using a DBMS and List SPL.

SortListPL
-SORTED

QuickSortListPL
-QUICKSORT

MergeSortListPL
-MERGESORT

-sortList
-syncList

«SPL» «SPL»

«SPL»

-SYNC
-STATISTICS

SyncListPL
«SPL»

ListPL
«SPL»

MailPL
«SPL»

QSSyncListPL
«SPL»

Figure 3: Specialization hierarchy of SPL ListPL.
MailPL uses two specializations of ListPL.

only a partial configuration that still provides some vari-
ability. In Figure 3, we show an extended ListPL model.
We use inheritance to denote specializations of ListPL,
which results in an specialization hierarchy. For example,
SortListPL and SyncListPL are specializations of ListPL,
each representing a subset of the variants. Feature Sort is
included in all instances of SortListPL. Hence, we can only
derive sorted lists from it. QuickSortListPL and Merge-

SortListPL are specializations of SortListPL that imple-
ment different sorting algorithms. A specialization step does
not necessarily add features to an SPL. For example, it may
explicitly exclude a feature. In general, arbitrary con-
straints can be used to create a specialized SPL by reducing
the number of valid configurations.
A fully specialized SPL represents only a single configura-

tion [7]. We can use it to directly derive the corresponding
SPL instance. In contrast, when creating an instance from
an incompletely specialized SPL, we have to bind remaining
variability first. For example, we can create an instance from
SortListPL by selecting feature QuickSort and excluding
feature Sync.

2.2 Subtyping and SPL Interfaces
The specialization hierarchy defines a subtype relation-

ship between SPLs: A specialized SPL D is a subtype of
a less specialized SPL B. If an SPL is a specialization of
another SPL, and thus a subtype, can be checked with a
SAT solver [23]. Subtyping between SPLs allows us to use
them polymorphically. For example, MailPL in Figure 3 uses
SortListPL, but also accepts every subtype thereof such as
an instance of QuickSortListPL. Hence, an SPL instance
can be used at places where its super type is required.
To describe the interaction between SPLs, we introduce

the notion of an SPL interface. We distinguish an SPL’s se-
mantic interface from its programming interface (which we
introduce in Section 3.3). We define the semantic interface
of a (specialized) SPL as the set of features that are present

in all valid instances of the SPL (i.e., the minimally required
features). These are mandatory features, features selected
via specialization, and features required due to constraints.
By adding features in specialization steps we extend the in-
terface of an SPL. However, not every specialization step
extends the interface. For example, the interface does usu-
ally not change when we add a constraint that excludes a
feature. Hence, when the semantic interface of an SPL D
(i.e., the set of features) is a superset of the the interface of
an SPL B then D is a subytpe of B. On the other hand, when
D is a subtype of B then the interface of D is a superset of
the interface of B, but not necessarily a proper superset.

The expected and required semantic interfaces (i.e., the
set of expected and required features) can be used to check
whether one component provides the functionality required
by another component. For example, we can check whether
an instance of ListPL provides all features an instance of
MailPL expects. This is a kind of semantic compatibility
which is in contrast to the syntactic compatibility that is
checked with programming interfaces.

2.3 Summary
Composition models and specialization hierarchies pro-

vide means to model MPLs and to distinguish different vari-
ants of an SPL at a conceptual level. The requirement to
distinguish different instances of an SPL (Req. 1 in Sec. 1)
is satisfied by using named SPL instances. The subtype
relationship between SPL specializations allows us to use
different instances polymorhically (Req. 2). Requirement
3 (Code Reuse) does not apply to the model level. Nev-
ertheless, we can reuse SPL instances (i.e., an SPL’s con-
figuration) at different places in an MPL model and thus
avoid redefinitions. In the next Section, we show how these
concepts can be mapped to the implementation of an SPL.

3. GENERATING COMPONENTS
We demonstrate how the concepts can be applied to SPL

implementation for the programming languages Jak2 and
FeatureC++3, which are FOP extensions for Java and C++.

3.1 Feature-oriented Programming
FOP allows a programmer to implement the features of an

SPL as separate feature modules. [19, 3]. Feature modules
decompose a class into a base class and class refinements. In
Figure 4, we depict the FeatureC++ code of the base imple-
mentation of a class List (Lines 1–6) of the ListPL, and two
refinements of the class (Lines 7–16). Elements are added to
the list via method add. The refinements in features Sort
and Sync extend the base implementation. They override
method add to implement sorted insertion (Line 8) and syn-
chronization (Line 12). Feature Sync also adds a new field
sync to synchronize access to the list. Overridden methods
are called with super as shown for feature Sync (Line 14).

A user defines an SPL instance by selecting a set of fea-
tures that satisfy her requirements. A generator composes
the corresponding feature modules to yield a concrete list
instance. Using the feature modules of Figure 4, we can gen-
erate a simple list using the base implementation only, but
we can also use different combinations of the features (e.g.,
to derive a sorted synchronized list). Jak and FeatureC++

2http://userweb.cs.utexas.edu/users/schwartz/
3http://fosd.de/fcc/

Feature Base

1 //Basic implementation of c lass List
2 template <class T>
3 class List {
4 Node <T>* head;
5 void add(T elem) { ... /∗ append at end ∗/ }
6 };

Feature Sort

7 refines class List {
8 void add(T elem) { ... /∗ sorted insert ∗/ }
9 };

Feature Sync

10 refines class List {
11 SyncObject sync;
12 void add(T elem) {
13 LockObject lock(sync); //syncronize access
14 super::Add(m); //add element
15 }
16 };

Figure 4: FeatureC++ code of class List decom-
posed along the features Sort and Sync.

support static composition of classes. This means that ac-
cording to the feature selection, the code of all refinements
is composed into a single class at compile time.

3.2 Component Hierarchies
We map the modeling concepts (i.e., named SPL in-

stances, SPL specialization, and subtyping) to the imple-
mentation of SPLs by generating component hierarchies.
Before we present implementation techniques, we review the
requirements defined in Section 1 with respect to FOP.

Instance Identification. Indentifying different instances of
the same SPL means to distinguish different variants of an
implementation class4 of these instances. For example, gen-
erating a sorted and a synchronized instance of ListPL re-
sults in different variants of class List (e.g., a sorted list in
one instance and a synchronized list in the other instance;
cf. Fig. 4). When using static composition mechanisms such
as Jak, FeatureC++, or the C/C++ preprocessor, all vari-
ants of class List have the same name. This makes it im-
possible to identify the different variants of a class (e.g., for
creating objects). Hence, the component generation process
must create unique names for implementation classes of dif-
ferent SPL instances.

Subtyping. Mapping the specialization hierarchy to the im-
plementation of an SPL means that generated components
(i.e., the SPL instances) have to follow this hierarchy too.
Hence, when an SPL Base is a super type of an SPL De-

rived then the whole set of implementation classes in Base

should be a super type of the corresponding classes in De-

rived. This is also known as Family Polymorphism [8]. The
resulting subtype relationship is needed to simplify client
development and must be available in the client language.
For example, FeatureC++ generates plain C++ code and
we should be able to use a generated component in C++
clients. This requires a subtype relationship between im-
plementation classes of different component variants in the
generated C++ code. Since we can have different SPL spe-

4We refer to the classes that are used to implement an SPL
as implementation classes.

cializations for different application scenarios, the special-
ization hierarchy and thus the subtype relationship may be
different for different client programs.

Code Reuse. Generating different variants of an SPL usu-
ally means code replication because the code of shared fea-
tures is repeated for each instance. As a result, we get a sim-
ilar increase in binary size as observed for C++ templates
(a.k.a. code bloat). Since whole features are replicated be-
tween generated variants, the classes, methods, and refine-
ments of a feature should be automatically reused across a
family of SPL instances [14].

3.3 SPL Programming Interfaces
In Section 2.2, we defined the semantic interface of a (spe-

cialized) SPL. Based on this definition we define an SPL’s
programming interface as the union of the programming in-
terfaces of the implementation classes defined in the features
of the semantic interface. For example, the programming in-
terface of SortListPL (cf. Fig. 3) consists of the interfaces
of all classes defined in the base implementation of ListPL
and feature Sort (cf. Fig. 1). It does not include classes or
methods introduced by features QuickSort, MergeSort,
or BubbleSort because only one of the features will be
present in an instance. In specialization steps, we extend an
SPL’s programming interface up to a complete interface for
a concrete component.

The subtype relationship between specialized SPLs also
applies to the implementation classes. Hence, when SPL
Derived is a specialization (and a subtype) of SPL Base

then an implementation class C defined in Derived is also
a subtype of class C defined in SPL Base. This means that
a feature can only add members to the interface of a class
but cannot modify members because it would conflict with
the subtype relationship. For example, a feature cannot ex-
tend the signature of a method as it is sometimes done in
preprocessor-based implementations of an SPL [12, 20]. We
argue that such extensions must be avoided because they
complicate SPL development and hamper use of SPL in-
stances [20].

4. IMPLEMENTATION MECHANISMS
We present different mechanisms for generating compo-

nent families that enable a programmer to use multiple in-
stances of an SPL at the same time. We analyze each mech-
anism with respect to the presented requirements.

4.1 Namespaces / Packages
A simple way to distinguish sets of classes that have the

same name is to group them into namespaces (C++) or
packages (Java). The FeatureC++ compiler supports the
generation of a package for each SPL instance. For exam-
ple, we can use a namespace SortList to group all classes
of a sorted list SPL instance. For Jak, this is possible with
refactoring feature modules which move generated classes
into a package [13]. Refactoring feature modules are a gen-
eral mechanism that can be applied to other languages as
well. In the following, we analyze the approach with respect
to our requirements.

Instance Identification. We distinguish classes of different
component variants via their package name. The package
thus provides a unique type for each class. For example, we

can define a client method that creates sorted lists:

class MailClient {

sortList.List createList() {

return new sortList.List();

}

}

The name of package sortList corresponds to the name of
the SPL instance defined in the MPL model (cf. Fig. 3). The
instance name can thus be used for the code generation pro-
cess. For example, the FeatureC++ compiler can generate
required instances with their namespaces as defined in the
composition model.

Subtyping. The namespace solution does not support sub-
typing between different variants of a class. The reason
is that every generated SPL instance uses its own names-
pace and classes of one namespace are independent of the
classes of a different namespace. For example, a class
quickSortList.List is not a subtype of sortList.List

even though both provide a similar interface. Furthermore,
there is no representation of specialized SPLs in the names-
pace approach.

Code Reuse. There is no code reuse between classes of
two SPL variants. For example, quickSortList.List and
mergeSortList.List completely replicate the code of fea-
ture Sort and the base implementation. However, classes
of different namespaces might be extracted and merged into
a common class library [14]. This cannot avoid code replica-
tion completely but may be sufficient for many application
scenarios. In contrast to the approach described in [14],
static fields have to be handled differently to avoid shared
state between different variants.

4.2 Virtual Classes
A namespace approach does not allow us to use implemen-

tation classes polymorhically. We can provide the required
subtype relationship with virtual classes [15] as supported
by CaesarJ5 [1]. A virtual class is a nested class whose type
depends on the type of an object of its enclosing class. In
our case, the enclosing class represents a specialized SPL.
With mixin-based inheritance [5], an enclosing CaesarJ class
composes multiple classes. Mixin composition is similar to
multiple inheritance but avoids some of its problems by lin-
earizing the base classes. When implementing SPL features
as enclosing classes, mixin composition can be used to com-
pose features. The composition results in a specialized SPL
that includes the features of all base classes. For example,
in CaesarJ we define SortListPL (cf. Fig. 3) as follows6:

cclass SortListPL extends Sort & ListPL { }

SortListPL represents a specialized SPL that is defined via
mixin composition of feature Sort with SPL ListPL.

Instance Identification. With virtual classes, a specialized
SPL as well as an SPL instance is represented by a class.
To use an SPL instance, we create an object of an SPL
class (e.g., an instance of class SortListPL). The type of
an implementation class, which is an inner virtual class, is
defined by an object of an SPL class. For example, we can
use an object of SortListPL to create sorted lists:
5http://caesarj.org
6CaesarJ classes are defined with keyword cclass.

cclass MailClient {

SortListPL sortList = new QuickSortListPL();

SortListPL.List createList() {

return sortList.new List();

}

}

In this example, sortList is an object of SPL instance
QuickSortListPL. This specialized SPL has to correspond
to a valid configuration. For example, we cannot create an
instance of SortListPL because it does not provide a sorting
implementation (cf. Fig. 3). The SPL instance object pro-
vides the new operator for creating objects of that instance.
This is similar to the namespace approach. As in the names-
pace approach, we use the instance name sortList as de-
fined in the MPL model.

Subtyping. The implementation classes of an SPL can be
used polymorphically. For example, method

void display(SortListPL.List l)

accepts all kinds of sorted lists, which are defined in an SPL
instance that is a subtype of SortListPL. Furthermore, due
to the virtual class mechanism, a type can also be specified
via an object. Hence, methods such as

void display(SortListPL plInst, plInst.List l)

can be used to ensure that an object (plInst.List l) cor-
responds to a particular SPL instance (plInst). In this ex-
ample, the actual type of plInst could be QuickSortListPL
(i.e., a subtype of SortListPL). List l then has to be an ob-
ject of QuickSortListPL.List. This is used to distinguish
objects of classes (e.g., List) of different SPL instances.
With static type checking we can ensure that an object of
one SPL instance is not passed to a different instance [9].

Code Reuse. The actual code reuse in a family of com-
ponents depends on the concrete implementation of virtual
classes. In CaesarJ, all implementation classes of a set of
generated components form an inheritance hierarchy [1].
The hierarchy of a class corresponds to the refinement chain
(i.e., the mixin list in CaesarJ) and is independent of the
specialization hierarchy. This reduces code replication but
does not completely avoid it: In a complex inheritance hier-
archy, we have to replicate the code of refinements that are
used multiple times at different positions in the hierarchy.
However, this could be avoided with a different implemen-
tation.

Mixin Composition and Complexity Issues. The pre-
sented approach causes problems with respect to compo-
sition and complexity. The first issue is related to mixin
composition. When creating a specialized SPL via mixin-
based inheritance, we have to inherit from the SPLs as de-
fined in our specialization hierarchy to achieve subtyping.
At the same time, mixin composition is used to define the
feature composition order: Features of the base classes are
merged in the same order as they are listed in the base class
definition. This entangles the subtype relationship and the
feature composition order. Since feature composition is not
commutative, it is impossible to achieve a valid feature or-
der for all component hierarchies. A workaround in CaesarJ
is to explicitly define the feature order as well as the par-
ent SPLs required for subtyping. For example, we define

a class SyncSortListPL (i.e., a synchronized sorted list),
which should be a subtype of SyncListPL (cf. Fig 3) and
SortListPL as:

cclass SyncSortListPL

extends SyncListPL & SortListPL

& Sync & Sort & ListBase { }

Here, Sync, Sort, and ListBase define the correct feature
order; SyncListPL and SortListPL are used to define the
required subtyping. However, mixin composition still in-
creases the complexity of the SPL configuration process,
which hinders its use for SPL development:

• Repeating the feature order for every SPL instance
means additional configuration effort and is error-
prone.

• An SPL instance is created by a user of an SPL (e.g.,
a developer of a client application) that does not know
SPL implementation details such as the feature com-
position order.

• Changing the configuration of an inner component of
the hierarchy (e.g., adding a feature to SortListPL; cf.
Fig 3) is not possible without modifying every instance
to explicitly define the feature order.

• The approach imposes an additional complexity on
client developers due to the use of virtual classes.
Hence, a client developer that uses only a single SPL
instance is faced with an unneeded complexity.

Some of these issues can be solved by extending CaesarJ,
e.g., by separating composition order from subclassing. We
propose to address these complexity issues with a genera-
tive approach: based on an SPL implementation in an FOP
language such as Jak, we generate virtual classes (e.g., Cae-
sarJ code) including the specialization hierarchy with mixin-
based inheritance. This generative approach avoids manual
configuration via mixin composition. Furthermore, when
only a single SPL instance is required, we generate plain
Java code and avoid the complexity of virtual classes.

4.3 Generating SPL Interfaces
Both, the namespace approach and the virtual class ap-

proach, have drawbacks that limit their applicability. For a
more general solution, we generate a hierarchy of SPL in-
terfaces (i.e., the SPL’s programming interface) to represent
specialized SPLs. We use nested interfaces to represent the
interfaces of SPL implementation classes. In Figure 5, we
show an example for the generated interfaces of a subset
of the ListPL hierarchy (Lines 1–15). A concrete SPL in-
stance is defined as a class that implements the interface
of the corresponding specialized SPL (Lines 16–20). This
code transformation is similar to the implementation used
in CaesarJ [1].
In contrast to the namespace approach, implementation

classes of an instance are defined as nested classes within
their instance (Lines 18–19). In contrast to virtual classes,
the SPL specialization hierarchy is represented as a hierar-
chy of interfaces in the client language. We thus separate
an SPL instance (i.e., a concrete implementation) from its
interface. This corresponds to the fact that we can have an
SPL specialization that does not correspond to a concrete
instance. The interface can be used to define which function-
ality an SPL provides without a concrete implementation.
The generated interface hierarchy provides an emulation

of virtual classes for plain Java and C++. As implemen-

SPL ListPL

1 interface ListPL {
2 abstract List newList ();
3 interface List {...}
4 interface Node {...}
5 }

SPL specialization SortListPL

6 interface SortListPL extends ListPL {
7 abstract List newList ();
8 interface List extends ListPL.List {...}
9 interface Node extends ListPL.Node {...}

10 }

SPL specialization QuickSortListPL

11 interface QuickSortListPL extends SortListPL {
12 abstract List newList ();
13 interface List extends ListPL.List {...}
14 interface Node extends ListPL.Node {...}
15 }

SPL instance QuickSortList

16 class QuickSortList implements QuickSortListPL {
17 List newList () {...}
18 class List implements QuickSortListPL.List {...}
19 class Node implements QuickSortListPL.Node {...}
20 }

Figure 5: Generated interface hierarchy repre-
senting SPL specialization (Lines 1–15) and a gen-
erated class representing an SPL instance (Lines
16–20).

tation mechanism, it is possible to use refactoring feature
modules to extract the required interface of a specialized
SPL. In the following, we analyze this solution with respect
to the requirements defined in Section 1.

Instance Identification. We refer to an implementation
class via its enclosing SPL class (which represents a con-
crete instance) or indirectly by using a generated factory
method (e.g., method newList() in Fig. 5), which is part of
the generated interface:

class MailClient {

SortListPL sortList = new QuickSortList();

SortListPL.List createList() {

return sortList.newList();

}

}

In this example, createList() invokes the virtual factory
method newList() (cf. Fig. 5), which is implemented by an
SPL instance that is a subtype of SortListPL. This is sim-
ilar to the use of the new operator in virtual classes which
simplifies to write generic client code.

In contrast to virtual classes, an SPL instance is repre-
sented by a class that implements the interface of a spe-
cialized SPL. This means that we can have different imple-
mentations of the same (fully) specialized SPL (i.e., that
implement the same interface). For example, we can have
two sorted lists, one providing a speed optimized implemen-
tation and one providing a memory optimized implementa-
tion and both can be used polymorphically. It is also possi-
ble to implement the same interface in two different SPLs,
which allows us to use instances of the SPLs interchange-
ably. Hence, we extend the interface concept of components
to component SPLs. This is different from the virtual class

solution (cf. Section 4.2) where we cannot distinguish spe-
cialized SPLs from SPL instances.

Subtyping. Subtyping of SPL implementation classes is re-
alized as subtyping between the nested interfaces. As with
virtual classes, the interface of a class can thus be used poly-
morphically. We can use it to reference all variants of a class
that are defined in a subytpe of the specialized SPL. For ex-
ample, a client method

void display(SortListPL.List l) { ... }

accepts all kinds of sorted lists. Similar to the CaesarJ ap-
proach, this solution achieves static subtyping also in case
of multiple inheritance between SPL specializations. It is
implemented as multiple inheritance between the SPL in-
terfaces and the nested interfaces of implementation classes.
For example, a sorted and synchronized list can be a sub-
type of SortListPL and SyncListPL. This does not cause
problems known from multiple inheritance of implementa-
tion classes. Finally, the approach allows us to add new
SPL specializations without modifying a client implementa-
tion as long as the new variant is not a super type of an
existing one (i.e., it does not modify the existing inheritance
hierarchy).
The main drawback of this solution is that it does not

allow us to statically check whether two objects of imple-
mentation classes are compatible with each other (i.e., if
they are part of the same SPL instance). For example, us-
ing the abstract list interface, we could pass a node of a
single linked list to a double linked list causing a runtime
type error. With virtual classes, such errors can already be
detected by the compiler [9].

Code Reuse. In the presented solution we do not address
the problem of code replication. Even though we are using
nested interfaces to represent a specialized SPL we cannot
use nested classes to represent fragments of SPL implemen-
tation classes. It would result in the same problems as ob-
served for mixin composition (entangled feature order and
subtyping). Furthermore, it would result in multiple inher-
itance of implementation classes when multiple inheritance
of their interfaces is needed. For example, a sorted and syn-
chronized list would inherit the basic list implementation
twice. However, a similar implementation as used in Cae-
sarJ could be used to avoid code replication.

5. DISCUSSION
We presented different approaches to generate component

families that allow us to use multiple variants of a component
in the same program. In the following, we discuss open
issues and suggest how FOP approaches should be changed
to provide a viable solution for generating components from
an SPL.

5.1 Code Reuse
In CaesarJ, code replication is reduced. It can be com-

pletely avoided with an implementation that avoids replica-
tion of refinements, e.g., using delegation. This is also possi-
ble for generated OO hierarchies and even for the namespace
approach. However, it means a more complex code trans-
formation than simply adding a namespace. Furthermore,
it may result in an overhead in terms of execution time for
introduced indirections, which has to be evaluated.

5.2 When to Use Which Mechanism?
Since all presented solutions have benefits and drawbacks,

no mechanism can be generally preferred. We discuss when
the different mechanisms should be used.

Plain Static Composition. When using a component, most
of the time this means to use a single instance of the com-
ponent only. This can be accomplished with current ap-
proaches for SPL development that use static composition
of features. Furthermore, the code transformations used for
Jak and FeatureC++ allow us to use generated components
in plain Java and C++ clients.

Namespaces. The namespace approach often suffices when
a client uses multiple variants of a component. However, it
does not support subtyping of generated components. This
causes a high effort to write generic code for different com-
ponent variants. Compared to the advanced solutions that
support subtyping, the namespace approach achieves better
performance due to the possibility of method inlining. How-
ever, a detailed performance evaluation is needed to analyze
the actual effect. Due to its simplicity, it can also be used
on deeply embedded devices when there is no support for
OOP or for some OOP concepts such as virtual methods.

Virtual Classes. Implementing an SPL with virtual classes
(e.g., with CaesarJ) allows us to to achieve subtyping of a
component hierarchy. By generating virtual classes from
an FOP implementation, we avoid the complexity of mixin
composition. However, once we have decided for such an
SPL implementation, a client developer is faced with the
complexity of virtual classes even when not needed. A re-
maining problem is that we cannot use this solution when
the client is developed with a mainstream OO language due
to missing support for virtual classes.

Generating SPL Interfaces. To achieve subtyping between
SPL specializations in languages that do not support virtual
classes, we propose to generate plain OO interfaces to repre-
sent specialized SPLs. This allows us to access different vari-
ants of a class with the same interface. The approach also
allows us to separate SPL instances (implemented as classes)
from SPL specializations (implemented as interfaces) and to
have different implementations of the same SPL specializa-
tion. The main drawback compared to virtual classes is that
we loose parts of static type safety on the client side.

5.3 Flexible Feature Composition
To allow programmers to choose the best solution accord-

ing to the application scenario, we propose to use a flexible
approach for feature composition that generates the actu-
ally required code. We already support this for plain static
composition and generating namespaces / packages. When
a component hierarchy and subtyping is needed, we pro-
pose to use more advanced approaches: generating virtual
classes if supported by the client language or generating a
plain OO interface hierarchy otherwise. It is also possible
to extend CaesarJ to avoid the problems mentioned above.
From CaesarJ code we could then generate code without
virtual classes when they are not needed or not supported.

A flexible approach allows us to switch from one imple-
mentation mechanism to another by regenerating the com-
ponents (i.e., when the requirements change). However, this
also means that the client, which uses the SPL, has to be
changed accordingly. With refactoring feature modules we
can automatically refactor the client program as well; but
this has to be further analyzed in future work.

6. RELATED WORK
There are also other languages that support virtual

classes, which we could have used for our analysis. How-
ever, we think that the problems are very similar to those
described for CaesarJ.
Nested Intersection. The language J& supports composi-

tion of multiple components using nested intersection [17].
It is based on composition of classes and packages with their
inner classes similar to virtual classes. J& might be better
suited for implementing specialization hierarchies than vir-
tual classes because it defines static virtual types, which are
attributes of packages or classes and not of objects. How-
ever, the composition mechanism does not linearize class ex-
tensions, which complicates development of independently
composable features. We intend to evaluate the approach
for implementing specialization hierarchies in further work.
Mixin Layers. Generics, such as C++ templates, can be

used to implement layered designs [22]. Similar to virtual
classes, nested classes of a mixin layer extend classes of their
super layers. As a precursor of FOP, the language P++ (an
extension of C++) provides composition of mixin layers and
explicitly defines layer interfaces [2]. Static mixin composi-
tion is similar to mixin composition of virtual classes but
different instances of a component are generated by tem-
plate instantiation at compile time. However, as in virtual
classes, the feature composition order and subtyping are not
independent. Moreover, generating hierarchies with multi-
ple inheritance would result in multiple inheritance of inner
classes. Jiazzi solves some of the problems of static mixin
composition with concepts similar to virtual classes [16].
Dynamic Feature Composition. Dynamic composition of

features means to derive an SPL instance by composing fea-
tures at runtime (e.g., supported by Delegation Layers [18],
Object Teams [10], and FeatureC++). Delegation layers
and Object Teams furthermore combine delegation-based
composition with virtual classes. Dynamic composition pro-
vides more flexibility than static composition of features be-
cause the feature selection of an SPL instance is determined
in a running program. When this flexibility is needed we
do not want to statically define a specialization hierarchy as
proposed in this paper.

7. CONCLUSION
Feature-oriented software development lacks support for

reusing multiple products of an SPL in the same program.
For example, programmers cannot model or implement large
software systems that use multiple component variants gen-
erated from an SPL. We propose to model and generate com-
ponent hierarchies from a feature-oriented SPL. A compo-
nent hierarchy allows a programmer to distinguish different
variants of a component and provides a subtype relation-
ship between components. This enables client developers to
write generic code to be used with different variants of a
component.
Based on modeling support for component hierarchies, we

apply the concept to feature-based software composition.
Since a component hierarchy is only needed when using dif-
ferent variants of the same component, we propose to use a
flexible approach to feature composition:

• we use plain static composition if only a single instance
of an SPL is used at a time,

• we generate namespaces when using multiple compo-

nent variants at the same time,
• we propose to generate component hierarchies when

subtyping is needed: (1) by generating virtual classes
or (2) by generating a hierarchy of OO interfaces when
the client language does not support virtual classes.

Due to a flexible composition mechanism a developer of a
component SPL does not have to consider the special needs
of different clients. Based on a feature-oriented implementa-
tion of an SPL, a client developer defines the required com-
ponent hierarchy (or uses a predefined one) and generates
the components that correspond to the application scenario
and the client language.

In future work, we plan to implement and evaluate the
proposed solutions for generating component hierarchies.
This means to connect modeling of component hierarchies
and feature composition and to extend the FOP code gen-
eration process accordingly (e.g., for FeatureC++).

Acknowledgments
We thank Don Batory for discussions about the presented
work. Marko Rosenmüller is funded by German Research
Foundation (DFG), project number SA 465/34-1.7 Norbert
Siegmund is funded by German Ministry of Education and
Research (BMBF), project number 01IM08003C.8

8. REFERENCES
[1] I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann.

An Overview of CaesarJ. In Transactions on
Aspect-Oriented Software Development I, volume 3880
of LNCS, pages 135–173. Springer, 2006.

[2] D. Batory, S. Dasari, B. Geraci, V. Singhal, M. Sirkin,
and J. Thomas. Achieving reuse with software system
generators. IEEE Software, pages 89–94, 1995.

[3] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
Step-Wise Refinement. IEEE Trans. Softw. Eng.
(TSE), 30(6):355–371, 2004.

[4] D. Batory, V. Singhal, M. Sirkin, and J. Thomas.
Scalable software libraries. SIGSOFT Softw. Eng.
Notes, 18(5):191–199, 1993.

[5] G. Bracha and W. R. Cook. Mixin-Based Inheritance.
In Proc. Int’l. Conf. Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA) and
the Europ. Conf. Object-Oriented Programming
(ECOOP), pages 303–311. ACM Press, 1990.

[6] K. Czarnecki and U. Eisenecker. Generative
Programming: Methods, Tools, and Applications.
Addison-Wesley, 2000.

[7] K. Czarnecki, S. Helsen, and U. W. Eisenecker. Staged
Configuration Using Feature Models. In Proc. Int’l.
Software Product Line Conf. (SPLC), volume 3154 of
LNCS, pages 266–283. Springer, 2004.

[8] E. Ernst. Family Polymorphism. In Proc. Europ.
Conf. Object-Oriented Programming (ECOOP),
volume 2072 of LNCS, pages 303–326. Springer, 2001.

[9] E. Ernst, K. Ostermann, and W. R. Cook. A Virtual
Class Calculus. In Proc. Int’l. Symposium on
Principles of Programming Languages (POPL), pages
270–282. ACM Press, 2006.

7http://fosd.de/multiple
8http://vierfores.de

[10] S. Herrmann. Object Teams: Improving Modularity
for Crosscutting Collaborations. In Proc. Int’l.
Net.ObjectDays Conf., volume 2591 of LNCS, pages
248–264. Springer, 2002.

[11] K. Kang, S. Cohen, J. Hess, W. Novak, and
A. Peterson. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute,
Carnegie Mellon University, 1990.

[12] C. Kästner, S. Apel, and M. Kuhlemann. Granularity
in Software Product Lines. In Proc. Int’l. Conf.
Software Engineering (ICSE), pages 311–320. ACM
Press, 2008.

[13] M. Kuhlemann, D. Batory, and S. Apel. Refactoring
Feature Modules. In Proc. Int’l. Conf. Software Reuse
(ICSR), pages 106–115. Springer, 2009.

[14] J. Liu and D. Batory. Automatic Remodularization
and Optimized Synthesis of Product-Families. In Proc.
Int’l. Conf. Generative Programming and Component
Eng. (GPCE), pages 379–395. Springer, 2004.

[15] O. L. Madsen and B. Moller-Pedersen. Virtual
Classes: A Powerful Mechanism in Object-Oriented
Programming. In Proc. Int’l. Conf. Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), pages 397–406. ACM Press, 1989.

[16] S. McDirmid, M. Flatt, and W. C. Hsieh. Jiazzi:
New-Age Components for Old-Fashioned Java. In
Proc. Int’l. Conf. Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA),
pages 211–222. ACM Press, 2001.

[17] N. Nystrom, X. Qi, and A. C. Myers. J&: Nested
Intersection for Scalable Software Composition. In
Proc. Int’l. Conf. Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA),
pages 21–35. ACM Press, 2006.

[18] K. Ostermann. Dynamically Composable
Collaborations with Delegation Layers. In Proc.
Europ. Conf. Object-Oriented Programming
(ECOOP), volume 2374 of LNCS, pages 89–110.
Springer, 2002.

[19] C. Prehofer. Feature-Oriented Programming: A Fresh
Look at Objects. In Proc. Europ. Conf.
Object-Oriented Programming (ECOOP), volume 1241
of LNCS, pages 419–443. Springer, 1997.

[20] M. Rosenmüller, M. Kuhlemann, N. Siegmund, and
H. Schirmeier. Avoiding Variability of Method
Signatures in Software Product Lines: A Case Study.
In Workshop on Aspect-Oriented Product Line
Engineering, pages 20–25, 2007.

[21] M. Rosenmüller and N. Siegmund. Automating the
Configuration of Multi Software Product Lines. In
Proc. Int’l. Workshop on Variability Modelling of
Software-intensive Systems (VaMoS), pages 123–130,
2010.

[22] Y. Smaragdakis and D. Batory. Implementing Layered
Designs with Mixin Layers. In Proc. Europ. Conf.
Object-Oriented Programming (ECOOP), volume 1445
of LNCS, pages 550–570, 1998.

[23] T. Thüm, D. Batory, and C. Kästner. Reasoning
about Edits to Feature Models. In Proc. 31th Int’l.
Conf. Software Engineering (ICSE), pages 254–264.
IEEE CS, 2009.

