
Pure Delta-oriented Programming ∗

Ina Schaefer1 † Ferruccio Damiani2
1Chalmers University of Technology, 421 96 Gothenburg, Sweden

2Dipartimento di Informatica, Università di Torino, C.so Svizzera, 185 - 10149 Torino, Italy

Abstract
Delta-oriented programming (DOP) is a modular approach for im-
plementing software product lines. Delta modules generalize fea-
ture modules by allowing removal of functionality. However, DOP
requires to select one particular product as core product from which
all products are generated. In this paper, we propose pure delta-
oriented programming (Pure DOP) that is a conceptual simplifica-
tion of traditional DOP. In Pure DOP, the requirement of one desig-
nated core product is dropped. Instead, program generation only re-
lies on delta modules comprising program modifications such that
Pure DOP is more flexible than traditional DOP. Furthermore, we
show that Pure DOP is a true generalization of FOP and supports
proactive, reactive and extractive product line engineering.

Categories and Subject Descriptors D.1.5 [Programming Tech-
niques]: Object-oriented Programming; D.3.3 [Programming
Languages]: Language Constructs and Features

General Terms Design, Languages, Theory

Keywords Software Product Line, Feature-oriented Program-
ming, Delta-oriented Programming, Program Generation

1. Introduction
A software product line (SPL) is a set of software systems with
well-defined commonalities and variabilities [12, 27]. The ap-
proaches to implementing SPL in the object-oriented paradigm can
be classified into two main directions [19]. First, annotative ap-
proaches (e.g., [4, 17]) mark the source code of all products with
respect to product features and remove marked code for particu-
lar feature configurations. Second, compositional approaches [23],
associate code fragments to product features that are assembled to
implement a given feature configuration.

Feature-oriented programming (FOP) [7] is a prominent ap-
proach for implementing SPLs by composition of feature modules.
A feature module directly corresponds to a product feature. In the
context of object-oriented programming, feature modules can intro-

∗Work partially supported by the German-Italian University Centre (Vigoni
program) and by MIUR (PRIN 2009 DISCO).
† This author has been supported by the Deutsche Forschungsgemeinschaft
(DFG) and by the EU project FP7-ICT-2007-3 HATS.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
FOSD’10 October 10, 2010, Eindhoven, The Netherlands
Copyright c© 2010 ACM 978-1-4503-0208-1/10/10. . . $10.00

duce new classes or refine existing ones by adding fields and meth-
ods or by overriding existing methods. In delta-oriented program-
ming (DOP) [29], feature modules are generalized to delta modules
that additionally allow the removal of classes, fields and methods
and that can refer to any combination of features. DOP requires se-
lecting one particular product as designated core product. The core
product is implemented in the core module. From this core module,
all other products are generated by delta module application. How-
ever, the requirement of the core product makes it difficult to deal
with product line evolution, for instance, if the product line evolves
such that the original core product is no longer a valid product.
Furthermore, the uniquely determined core product prevents a true
generalization of FOP by DOP, since feature module composition
in FOP may start from several different base feature modules that
may not correspond to valid products.

In this paper, we propose pure delta-oriented programming
(Pure DOP) as a conceptual simplification of traditional DOP [29],
which we will call Core DOP in the following. In Pure DOP, the
requirement to chose one product as core product is dropped. In-
stead, only delta modules are used for product generation. Thus,
we call the approach Pure DOP. A delta module can specify ad-
ditions, removals classes or modifications of classes. In order to
define a product line over a set of delta modules, each delta module
is attached an application condition determining for which feature
configurations the modifications of the delta module have to be ap-
plied. This creates the connection between the modifications of the
delta modules and the product features [16]. Additionally, the delta
modules can be partially ordered to ensure that for every feature
configuration a uniquely defined product is generated.

The contribution of this work is twofold. First, Pure DOP re-
laxes the requirement of a single valid core product. This makes
Pure DOP more flexible than Core DOP [29]. Pure DOP is a true
generalization of FOP since every FOP product line can be under-
stood as a Pure DOP product line which is not obvious for Core
DOP. Further, Pure DOP supports proactive, reactive and extrac-
tive product line development [22] by allowing program generation
from any set of existing legacy product implementations which is
not directly possible with Core DOP. Second, in the presentation of
(Pure) DOP given in this paper, the application conditions for delta
modules, as well as the delta module ordering, are only defined
when a product line is specified. In contrast, in the traditional pre-
sentation of (Core) DOP [29], application conditions and ordering
are fixed for each delta module. The separation of application con-
ditions and application ordering from the specification of the mod-
ifications in a delta module increases the reusability of delta mod-
ules and allows developing different product lines over the same set
of delta modules.

The paper is organized as follows: In Section 2, we present
Pure DOP of JAVA programs and show its formalization LP∆J
using LJ (LIGHTWEIGHT JAVA) [32] as base language for the
generated products in Section 3. We show that Pure DOP is a

Lit Eval

Data

Add Neg Print

Expression Product Line

Operations

Figure 1. Feature model for Expression Product Line

true generalization of FOP by providing an embedding of LFJ
(LIGHTWEIGHT FEATURE JAVA) [13] into LP∆J in Section 4.
We demonstrate that Pure DOP supports proactive, extractive and
reactive SPLE in Section 5. We show that Pure DOP is a conceptual
simplification of Core DOP in Section 6.

2. Pure Delta-oriented Programming
In order to illustrate the main concepts of Pure DOP, we use the
expression product line (EPL) as described in [23]. The EPL is
based on the expression problem [35], an extensibility problem, that
has been proposed as a benchmark for data abstractions capable to
support new data representations and operations. We consider the
following grammar:

Exp ::= Lit | Add | Neg
Lit ::= <non−negative integers>
Add ::= Exp "+" Exp
Neg ::= "-" Exp

Two different operations can be performed on the expressions de-
scribed by this grammar: printing, which returns the expression as a
string, and evaluation, which computes the value of the expression.
The products in the EPL can be described by two feature sets, the
ones concerned with data Lit, Add, Neg and the ones concerned
with operations Print and Eval. Lit and Print are mandatory fea-
tures. The features Add, Neg and Eval are optional. Figure 1 shows
the feature model [16] of the EPL.

Pure Delta Modules The main concept of pure DOP are delta
modules which are containers of modifications to an object-
oriented program. The modifications inside a delta module act on
the class level by adding, removing and modifying classes. A class
can be modified by changing the super class, by adding and remov-
ing fields and methods and by modifying methods. The modifica-
tion of a method can either replace the method body by another im-
plementation, or wrap the existing method using the original con-
struct. The original construct expresses a call to the method with
the same name before the modifications and is bound at the time the
product is generated. Before or after the original construct, other
statements can be introduced wrapping the existing method imple-
mentation. The original construct (similar to the Super() call in
AHEAD [7]) avoids a combinatorial explosion of the number of
delta modules in case the original method has to be wrapped dif-
ferently for a set of optional features. Listing 1 contains the delta
module for introducing the Lit feature. Listing 2 contains the delta
modules for incorporating the Print and Eval features by modifica-
tion of the class Lit.

Pure Delta-oriented Product Lines The delta-oriented specifica-
tion of a product line comprises the set of product features, the set
of valid feature configurations and the set of delta modules neces-
sary to implement all valid products. Furthermore, the specification
of a product line in Pure DOP associates each delta module with
the set of features configurations in which the delta modules has to
be applied by attaching an application condition in a when clause.
The application condition is a propositional constraint over the set

delta DLit{
adds interface Exp {
}
adds class Lit implements Exp {

int value;
Lit(int n) { value = n; }
}
}

Listing 1: Delta module for Lit feature

delta DLitPrint{
modifies interface Exp {

void print();
}
modifies class Lit implements Exp {
adds void print() { System.out.println(value); }
}
}

delta DLitEval{
modifies interface Exp {

adds eval();
}
modifies class Lit {

adds int eval() { return value; }
}
}

Listing 2: Delta modules for Print and Eval features

delta DAdd {
adds class Add implements Exp {

Exp expr1;
Exp expr2;
Add(Exp a, Exp b) { expr1 = a; expr2 = b; }
}
}

delta DAddPrint {
modifies class Add {

adds void print() { expr1.print(); System.out.print(" + "); expr2.print(); }
}
}

delta DAddEval {
modifies class Add {

adds int eval() { return expr1.eval() + expr2.eval(); }
}
}

Listing 3: Delta modules for Add, Print and Eval features

delta DNeg {
adds class Neg implements Exp {
Exp expr;
Neg(Exp a) { expr1 = a; }
}
}

delta DNegPrint {
modifies class Neg {

adds void print() { System.out.print("-("); expr.print(); System.out.print(")");}
}
}

delta DNegEval{
modifies class Neg {

adds int eval() { return (−1) ∗ expr.eval(); }
}
}

Listing 4: Delta modules for Neg, Print and Eval features

features Lit, Add, Neg, Print, Eval
configurations Lit & Print
deltas

[DLit,
DAdd when Add,
DNeg when Neg]

[DPrint,
DEval when Eval,
DAddPrint when Add,
DAddEval when (Add & Eval),
DNegPrint when Neg,
DNegEval when (Neg & Eval)]

Listing 5: Pure DOP specification of the EPL

of features. Since only feature configurations which are valid ac-
cording to the feature model are used for program generation, the
application conditions attached to delta modules have to be under-
stood as a conjunction with the formula describing the set of valid
feature configurations.1 The application condition creates the link
from the features in the feature model to the delta modules. In this
way, we can specify delta modules for combinations of features to
solve the optional feature problem [20].

In order to obtain a product for a particular feature configura-
tion, the modifications specified in the delta modules with valid
application conditions are applied incrementally to the previously
generated product. The first delta module is applied to the empty
product. All other delta modules are applied to the respective inter-
mediate product. The modifications of a delta model are applicable
to a (possibly empty) product if each class to be removed or modi-
fied exists and, for every modified class, if each method or field to
be removed exists, if each method to be modified exists and has the
same header as the modified method, and if each class, method or
field to be added does not exist. During product generation, every
delta module must be applicable. Otherwise, the resulting product
is undefined. In particular, the first delta module that is applied can
only contain additions.

In order to ensure that each delta module is applicable during
product generation, the delta modules are ordered in the specifica-
tion of a pure delta-oriented product line. The order of delta mod-
ule application is defined by a total order on a partition of the set
of delta modules. Deltas in the same partition can be applied in
any order to the previous product, but the order of the partitions
is fixed. The ordering captures semantic requires relations that are
necessary for the applicability of the delta modules.

Listing 5 shows a delta-oriented specification of the EPL. In
this specification, application conditions are attached to the delta
modules that are required to implement the different products of the
EPL. The used delta modules are depicted in Listings 1, 2, 3 and 4.
The order of delta module application is defined by an ordered list
of the delta module sets which are enclosed by [..].

Product Generation The generation of a product for a given fea-
ture configuration consists of two steps, performed automatically:

1. Find all delta modules with a valid application condition; and

2. Apply the selected delta modules to the empty product in any
linear ordering that is consistent with the total order on the
partitioning of the delta modules.

If two delta modules add, remove or modify the same class, the
ordering in which the delta modules are applied can influence the
resulting product. However, for a product line implementation, it is

1 In the examples the valid feature configurations are represented by a
propositional formula over the set of features. Other representations are
possible (see, e.g., [5] for a discussion of possible representations).

DMD ::= delta δ {DC} delta module
DC ::= adds cd | delta clause

modifies C [extending C] { DS } |
removes C

DS ::= adds fd | delta subclause
adds md |
modifies md |
modifies wmd |
removes a

wmd ::= ms {s; original(); s; return y;} method wrapper

Figure 2. LP∆J: syntax of delta modules

essential to guarantee that for every valid feature configuration ex-
actly one product is generated. This property is called unambiguity
of the product line. For unambiguity, the delta modules in each par-
tition must be compatible. This means that if one delta module in a
partition adds or removes a class, no other delta module in the same
partition may add, remove or modify the same class, and the mod-
ifications of the same class in different delta modules in the same
partition have to be disjoint. Defining the order of delta module ap-
plication by a total ordering on a delta module partition provides an
efficient way to ensure unambiguity, since only the compatibility of
each partition has to be checked.

3. A Kernel Calculus for Pure Delta Modules
In this section, we introduce the syntax and the semantics of LP∆J
(LIGHTWEIGHT PURE DELTA JAVA), a kernel calculus for Pure
DOP of product lines of JAVA programs. LP∆J is based on LJ
(LIGHTWEIGHT JAVA) [32]. Thus, it is particularly suitable for
comparison with the formalization of FOP in LFJ (LIGHTWEIGHT
FEATURE JAVA) [13].

LP∆J Syntax The syntax of LP∆J, as an extensions to LJ, is
given in Figure 2. Following [15], we use the overline notation
for possibly empty sequences. For instance, we write “s;” as short
for a possibly empty sequence of statements “s1; . . .sn;” and “DC”
as short for a possibly empty sequence of delta clause definitions
“DC1 . . .DCn”. Sequences of named elements (like delta clause or
delta subclause definitions) are assumed to contain no duplicate
names (that is, the names of the elements of the sequence must
be distinct). The constructs for class definitions cd, field definitions
fd, method definitions md, method signatures ms and statement s
are those of LJ [32] (and of LFJ [13]). The metavariable δ ranges
over delta module names.

A delta module definition DMD for a delta module with the
name δ can be understood as a mapping from class names to delta
clause definitions. A delta clause definition DC can specify the
addition, removal or modification of a class. The adds-domain,
the removes-domain and the modifies-domain of a delta module
definition DMD are defined as follows:

addsDom(DMD) = {C | DMD(C) = adds class C · · ·}
removesDom(DMD) = {C | DMD(C) = removes C}
modifiesDom(DMD) = {C | DMD(C) = modifies C · · ·}

The modification of a class is defined by possibly changing the su-
per class and by listing a sequence of delta subclauses DS defin-
ing modifications of methods and additions/removals of fields and
methods. A delta modifies clause DC can be understood as a map-
ping from the keyword extending to an either empty or singleton
set of class names and from field/method names to delta subclauses.
The adds-, removes- and modifies-domain of a delta modifies-
clause DC are defined as follows:

addsDom(DC) = {a | DMT(a) = adds · · · a · · ·}
removesDom(DC) = {a | DMT(a) = removes a}
modifiesDom(DC) = {m | DMT(m) = modifies · · · m · · ·}

The modification of a method, defined by a delta modifies sub-
clause, can either replace the method body by another implementa-
tion, or wrap the existing method using the original() call. In both
cases, the modified method must have the same header as the un-
modified method. The original() call may only occur in the body of
the method provided by a delta modifies subclause modifies wmd.
The occurrence of original() represents a call to the unmodified
method where the formal parameters of the modified method are
passed implicitly as arguments. In LFJ [13], the Super() construct
of AHEAD [7] is modeled in the same way.

After we have defined the notion of delta modules over LJ,
we can formalize LP∆J product lines. We use the metavariables
ϕ and ψ to range over feature names. We write ψ as short for
the set {ψ}, i.e., the feature configuration containing the features
ψ . A delta module table DMT is a mapping from delta module
names to delta module definitions. A LP∆J SPL is a 5-tuple L =
(ϕ,Φ,DMT,Γ,<DMT) consisting of:

1. the features ϕ of the SPL,

2. the set of the valid feature configurations Φ⊆P(ϕ),2

3. a delta module table DMT containing the delta modules,

4. a mapping Γ : dom(DMT)→ Φ determining for which feature
configurations a delta module must be applied (which is de-
noted by the when clause in the concrete examples),

5. a total order <DMT on a partition of dom(DMT), called the
application partial order, determining the order of delta module
application.

To simplify notation, in the following we always assume a fixed
SPL L = (ϕ,Φ,DMT,Γ,<DMT). We further assume that the SPL
L satisfies the following sanity conditions.

(i) For every class name C (except Object) appearing in DMT,
we have C ∈ (∪δ∈dom(DMT)addsDom(DMT(δ))), meaning that
every class is added at least once.

(ii) The mapping ∆ : Φ→P(dom(DMT)), such that ∆(ψ), the set
of names of delta modules whose application condition is sat-
isfied by the feature configuration ψ , is injective and such that
(∪ψ∈Φ∆(ψ)) = dom(DMT), i.e., for every feature configura-
tion a different set of delta modules is applied and every delta
module is applied for at least one feature configuration.

In the following, we write dom(δ) as short for dom(DMT(δ)), and
we write δ (C) as short for DMT(δ)(C).

LP∆J Product Generation A LJ program can be represented by
a class table. A class table CT is a mapping from class names
to class definitions. A delta module is applicable to a class table
CT if each class to be removed or modified exists and, for every
delta modifies clause, if each method or field to be removed exists,
if each method to be modified exists and has the same header
specified in method modifies subclause, and if each class, method
or field to be added does not exist.

Given a delta module δ and a class table CT such that δ is appli-
cable to CT, the application of δ to CT, denoted by APPLY(δ ,CT),
is the class table CT′ defined as follows:

2 The calculus abstracts from the concrete representation of the feature
model.

FMD ::= feature ϕ {cd rcd} feature module
rcd ::= refines class C extending C { fd; md rmd } class refinement
rmd ::= refines ms {s; Super(); s; return y;} method refinement

Figure 3. LFJ: syntax of feature modules

CT′(C) =

 CT(C) if C 6∈ dom(DMT(δ))
CD if δ (C) = adds CD
APPLY(δ (C),CT(C)) if C ∈ modifiesDom(δ)

where APPLY(δ (C),CT(C)), the application of the delta clause
δ (C) = DC = modifies C · · · {· · ·} to the class definition CT(C) =
CD, is the class definition CD′ defined as follows:

CD′(extends) =
{

CD(extends) if DC(extending) = /0
C′ if DC(extending) = {C′}

CD′(a) =


CD(a) if a 6∈ dom(DC)
AD if DC(a) = adds AD
MD[s/original()] if DC(a) = modifies MD

and CD(a) = · · ·a(· · ·){s; return y;}

The semantics of the original() call is captured by replacing the oc-
currence of original() in the method body specified by the modifies
subclause with the body of the unmodified method.

For any given total order of delta module application, a LP∆J
SPL defines a product generation mapping. That is, a partial map-
ping from each feature configuration ψ in Φ to the class table of the
product that is obtained by applying the delta modules ∆(ψ) to the
empty class table according to the given order. The product gener-
ation mapping can be partial since a non-applicable delta module
may be encountered during product generation such that the result-
ing product is undefined.

Unambiguous and Type-Safe LP∆J Product Lines A LP∆J
SPL is unambiguous if all total orders of delta modules that are
compatible with the application partial order define the same prod-
uct generation mapping. In an unambiguous SPL, for every feature
configuration at most one product implementation is generated.

In order to find a criterion for unambiguity, we define the notion
of compatibility of a set of delta modules. A set of delta modules is
called compatible if no class added or removed in one delta module
is added, removed or modified in another delta module contained
in the same set, and for every class modified in more than one
delta module, its direct superclass is changed at most by one delta
clause and the fields and methods added, modified or removed are
distinct. For a set of compatible delta modules, any order of delta
module application yields the same class table since the alterations
in compatible delta modules do not interfere with each other.

A SPL is locally unambiguous if every set S of delta modules
in the partition of dom(DMT) provided by the application partial
order <DMT is compatible. If the SPL L is locally unambiguous,
then it is unambiguous. Local unambiguity can be checked by
inspecting the delta modules in each partition only once.

A LP∆J SPL is type-safe if the following conditions hold: (i) its
product generation mapping is total, (ii) it is locally unambiguous,
and (iii) all generated products are well-typed LJ programs.

4. Generalization of FOP
In this section, we show that Pure DOP is generalization of FOP [7]
by providing a mapping from LFJ [13] into LP∆J.

4.1 Recalling LFJ
The syntax of the LFJ extensions to LJ is given in Figure 3. It is
taken from [13]. A feature module definition FMD contains the

Jfeature ϕ {cd rcd}K =
delta ϕ { adds cd JrcdK }

Jrefines class C extending C { fd; md rmd }K =
modifies C extending C { adds fd adds md JrmdK }

Jrefines ms {s; Super(); s; return y;}K =
modifies ms {s; original(); s; return y;}

Figure 4. Translation of a feature module to a delta module

feature ϕ and a set of class definitions cd and class refinement
definitions rcd. Class definitions are given according to the syntax
of LJ. A class refinement definition can change the superclass, add
fields fd, provide new method definitions md and refine existing
method definitions rmd. A method refinement can wrap the existing
method body using the Super() construct.

A feature module table FMT is a mapping from feature names
to feature module definitions. A LFJ product line can be described
by a 3-tuple L = (FMT,Φ,<FMT) consisting of:

1. a feature module table FMT with a feature module for each
feature of the SPL,

2. the set of the valid feature configurations Φ⊆P(dom(FMT)),

3. a total order <FMT on the set of features dom(FMT).

The product associated to a feature configuration ψ is gener-
ated by composing (see Section 3.1 of [13]) the feature modules
associated to the features in ψ according to the total order <FMT.
During feature module composition, newly defined classes, fields
and methods are added and class and method refinements are car-
ried out. According to [13], a LFJ product line is type-safe if all
generated products are well-typed LJ programs.

4.2 Mapping LFJ into LP∆J
A product line in FOP can be represented as a product line in Pure
DOP. The set of features and the set of valid feature configurations
in both product lines is the same. Every feature module in a LFJ
product line is mapped to a delta module where additions are
translated to adds clauses and refinements to modifies clauses. The
application condition of the delta module denotes all configurations
in which the respective feature is contained. The ordering of delta
module application is the total ordering of the feature modules.

Formally, the mapping from LFJ product lines to LP∆J prod-
uct lines is defined as follows: for a LFJ product line L =
(FMT,Φ,<FMT), JLK denotes the corresponding LP∆J product
line (ϕ,Φ,DMT,Γ,<DMT) where

• ϕ = dom(FMT) = dom(DMT),
• The delta module table DMT is obtained by translating each

feature module in FMT to a delta module with the same name,
according to the clauses in Figure 4,

• Γ : dom(DMT)→Φ, where Γ(ϕ) = {ψ | ψ ∈Φ and ϕ ∈ ψ},
• <DMT is the total order on {{ϕ} | ϕ ∈ ϕ} defined by:
{ϕ1}<DMT {ϕ2} if and only if ϕ1 <FMT ϕ2.

The following theorem states that the LP∆J product lines gen-
erates the same products as the LFJ product line. Hence, Pure DOP
is a true generalization of FOP.

THEOREM 4.1. If L is a type safe LFJ product line, then JLK is
a type safe LP∆J product line such that, for every valid feature
configuration ψ , the product for ψ generated by L is the same as
the product for ψ generated by JLK.

Although it is possible in principle to encode FOP in Core DOP,
a straightforward embedding as for Pure DOP is not possible. This

Lit Eval

Data

Add Neg Print

Expression Product Line

Operations

Sub

Figure 5. Feature model for evolved Expression Product Line

is because a feature-oriented SPL may have several base feature
modules, while Core DOP requires exactly one core module as
starting point for product generation.

5. Pure DOP for Product Line Development
Pure DOP supports proactive, extractive and reactive product line
development [22]. In the proactive approach, the scope of the prod-
uct line, i.e., the set of products to be developed, is analyzed before-
hand. All reusable artifacts are planned and developed in advance.
The example for Pure DOP presented in Section 2 can be seen as
proactive product line development, since we start from the feature
model defining the scope of the product line and develop delta mod-
ules and a Pure DOP SPL for these products. However, proactive
development requires a high upfront investment to define the scope
of the product line and to develop reusable artifacts.

Hence, in order to reduce the adoption barrier for product line
engineering, Krueger [22] proposes the usage of reactive and ex-
tractive approaches. In reactive product line engineering, only a ba-
sic set of products is developed. When new customer requirements
arise, the existing product line is evolved. The extractive approach
allows turning a set of existing legacy application into a product
line. Development starts with the existing products from which the
other products of the product line are derived.

FOP [7, 13] supports proactive product line development well.
However, since feature modules are restricted to add or refine
existing classes, FOP does not support extractive development and
only partially supports reactive development. It is not possible to
start from an existing legacy application comprising a larger set
of features and to remove features. Moreover, in order to deal with
new requirements following the reactive approach, feature modules
might have to be refactored to remove functionalities. Also, in Core
DOP, extractive product line development is not straight forward,
since one product has to be chosen as designated core product. In
contrast, Pure DOP is flexible and expressive enough to cover all
three product line engineering approaches directly.

5.1 Reactive Product Line Engineering
In reactive product line engineering, development starts with an
initial product line that is evolved in order to deal with changing
customer requirements. Consider as initial product line the example
depicted in Listing 5. Assume now that a new feature Sub should
be introduced for representing subtraction expressions. In the new
EPL, the Sub feature should be an alternative to the Neg feature.
Additionally, the Print feature should become optional and the Eval
feature mandatory. The feature diagram for the evolved product line
is given in Figure 5.

In order to realize the new Sub feature, we have to add delta
modules that introduce the corresponding data structure for sub-
traction and the associated print and the evaluation functionalities.
The respective delta modules are shown in Listing 6. The specifi-
cation for the evolved SPL is shown in Listing 7, where the op-
erator choose1(P1, . . . ,Pn) means at most one of the propositions
P1, . . . ,Pn is true (see [5]).

delta DSub {
adds class Sub implements Exp {

Exp expr1;
Exp expr 2:
Sub(Exp a, Exp b) { expr1 = a; expr2= b; }
}
}

delta DSubPrint {
modifies Sub {

adds void print() { expr1.print(); System.out.print("-"); expr2.print();}
}
}

delta DSubEval{
modifies class Sub {

adds int eval() { return expr1.eval() − expr2.eval(); }
}
}

Listing 6: Delta modules for Sub feature

features Lit, Add, Neg, Sub, Print, Eval
configurations Lit & Eval & choose1(Neg,Sub)
deltas

[DLit,
DAdd when Add,
DNeg when Neg,
DSub when Sub]

[DLitPrint when Print,
DLitEval,
DAddPrint when (Add & Print),
DAddEval when Add,
DNegPrint when (Neg & Print),
DNegEval when Neg,
DSubPrint when (Sub & Print),
DSubEval when Sub]

Listing 7: Pure DOP specification of the evolved EPL

As we can see in this example, Pure DOP supports reactive
product line development, first, by adding new delta modules to
implement new product features or to deal with new feature com-
binations, and, second, by reconfiguring the application conditions
and the delta module order in the product line configuration to cap-
ture changes in the feature model.

5.2 Extractive Product Line Engineering
Extractive product line engineering starts with a set of existing
legacy applications from which the other products of the product
line are generated. Assume that we have already developed a prod-
uct containing the Lit, Neg and Print features and a product con-
taining the Lit, Add and Print features. Now, we want to transform
these existing legacy applications into a product line according to
the feature model in Figure 1.

First, the existing applications have to be transformed into delta
modules that are applied initially. Listing 8 shows two delta mod-
ules adding the implementation of the two existing products, re-
spectively. Second, in order to provide product implementations
with less features, delta modules have to be specified that remove
functionality from the existing products. Listing 9 shows the delta
module that removes the feature Add.

Listing 10 shows the extractive implementation of the product
line described by the feature model in Figure 1 starting from a prod-
uct with features Lit, Neg and Print and a product with features Lit,
Add, and Print introduced by the delta modules DLitNegPrint
and DLitAddPrint in the first and second partitions, respectively.
Their application conditions are exclusive such that for any feature
configuration product generation starts with one of them. If the Add

delta DLitNegPrint{
adds interface Exp {

void print();
}
adds class Lit implements Exp {

int value;
Lit(int n) { value = n; }
void print() { System.out.println(value); }
}
adds class Neg implements Exp {
Exp expr;
Neg(Exp a) { expr1 = a; }
void print() { System.out.print("-("); expr.print(); System.out.print(")");}
}
}

delta DLitAddPrint{
adds interface Exp {

void print();
}
adds class Lit implements Exp {

int value;
Lit(int n) { value = n; }
void print() { System.out.println(value); }
}
adds class Add implements Exp {

Exp expr1;
Exp expr2;
Add(Exp a, Exp b) { expr1 = a; expr2 = b; }
void print() { expr1.print(); System.out.print(" + "); expr2.print(); }
}
}

Listing 8: Delta modules introducing the two legacy products

delta DremAdd {
remove Add
}

Listing 9: Delta module removing the Add feature

features Lit, Add, Neg, Print, Eval
configurations Lit & Print
deltas

[DLitNegPrint when (!Add & Neg)]

[DLitAddPrint when (Add | !Neg)]

[DNeg when (Add & Neg),
DremAdd when (!Add & !Neg)]

[DNegPrint when (Add & Neg),
DLitEval when Eval,
DAddEval when (Add & Eval),
DNegEval when (Neg & Eval)]

Listing 10: Pure DOP specification of the extractive EPL

feature is not selected and the Neg feature is selected, we start with
the existing product in delta module DLitNegPrint. Otherwise,
we start with the existing product in delta module DLitAddPrint.
If both features Add and Neg are selected, we add the Neg feature
by the delta modules DNeg and DNegPrint of Listing 4. If both the
Add feature and the Neg feature are not selected, we remove the
Add feature by the delta module DremAdd of Listing 9. Finally, we
add the evaluation functionality if the feature Eval is selected.

This example shows that Pure DOP supports extractive product
line engineering by introducing the existing products in initial delta
modules, by delta modules removing functionality, and by speci-
fying the product line to generate the products from the existing
products by suitable delta module application.

delta DremPrintLit {
modifies interface Exp { removes print }
modifies class Lit { removes print }
}

delta DremPrintAdd {
modifies class Add { removes print }
}

delta DremPrintNeg {
modifies class Neg { removes print }
}

Listing 11: Delta modules removing the Print feature

features Lit, Add, Neg, Sub, Print, Eval
configurations Lit & Eval & choose1(Neg,Sub)
deltas

[DLitNegPrint when (!Add & Neg),
DSub when Sub]

[DLitAddPrint when (Add | !Neg)]

[DNeg when (Add & Neg),
DremAdd when (!Add & !Neg)]

[DNegPrint when (Add & Neg & Print),
DLitEval,
DAddEval when Add,
DNegEval when Neg,
DremPrintLit when !Print,
DremPrintAdd when (!Print & Add),
DremPrintNeg when (!Print & Neg),
DSubPrint when (Sub & Print),
DSubEval when Sub]

Listing 12: Pure DOP specification of the evolved extractive EPL

5.3 Combining Extractive and Reactive PL Engineering
Extractive and reactive product line engineering can be combined.
An initial product line is developed from a set of existing legacy
applications and evolved when new requirements arise. Consider,
the product line developed using the extractive approach in List-
ing 10. Assume, that now the Sub feature should be added and the
product line should be changed to implement the feature diagram
in Figure 5. Since in this product line, the feature Print is optional,
we have to provide delta modules that remove the printing func-
tionality from the Lit, Add and Neg classes. These delta modules
are depicted in Listing 11.

Listing 12 shows the specification of the evolved product line
depicted in Listing 10. The generation starts again from the two
delta modules DLitNegPrint and DLitAddPrint introducing the
existing products. Additionally, the product line contains delta
modules for adding the Sub feature (cf. Listing 6) and delta mod-
ules for removing the Print feature (cf. Listing 11).

6. Comparison with Core DOP
In the traditional presentation of DOP [29], which we refer to as
Core DOP, program generation always starts from a core module
containing the implementation of a selected valid product of the
product line. Then, delta modules specify the changes to the core
module in order to implement the other products. Moreover, in the
presentation of Core DOP given in [29]:

• the feature configuration corresponding to the product imple-
mented by the core module is specified in the code of the core
module,

• the application condition of a delta module is specified in the
code of the delta module by a clause of the form “when γ”,

where γ is a propositional constraint specifying the feature
configurations in which the delta module has to be applied, and

• the application partial order for the delta modules is specified
in the code of the delta modules using a clause of the form
“after δ”, which specifies that the delta module must be applied
after all applicable delta modules in δ have been applied.

Pure DOP and Core DOP are indeed equivalent:

• A Pure DOP product line can be expressed as a Core DOP
product line by adding an empty product to the product line and
choosing it as the product implemented by the core module.

• A Core DOP product line can be expressed as a Pure DOP prod-
uct line by transforming the core module into a delta module
that has to be applied before any other delta module for all the
valid feature configurations.

Pure DOP is a conceptual simplification of Core DOP dropping
the notion of the core module and separating the specification of
the application conditions and of the application ordering from the
delta modules. This presents the following advantages:

• Pure DOP allows reusing delta modules for implementing dif-
ferent product lines (cf. Sections 2 and 5).

• Every delta module in Pure DOP containing only adds clauses
can play the role of the core module. Thus, product lines with
multiple base modules, that may not correspond to valid prod-
ucts, are possible. As a consequence, Pure DOP is a true gener-
alization of FOP (cf. Section 4).

• Pure DOP supports the evolution of product lines. If a product
line evolves such that the core product of a Core DOP product
line is no longer a valid product, the core module and potentially
all delta modules have to be refactored. In contrast, in pure
DOP, existing delta modules can be reused for the specification
of the evolved product line (cf. Section 5).

7. Related Work
The notion of program deltas is introduced in [23] to describe the
modifications of object-oriented programs. In [30], delta-oriented
modeling is used to develop product line artifacts suitable for au-
tomated product derivation and implemented with frame technol-
ogy [36]. This approach is extended in [28] to a seamless delta-
oriented model-based development approach for SPLs. In [11],
an algebraic representation of delta-oriented product lines is pre-
sented. The main focus in [11] is to reason about conflicting modi-
fications and to devise a general criterion to guarantee the unambi-
guity of product lines using conflict-resolving deltas. The unambi-
guity property presented in this work is an instance of the criterion
presented in [11], but it is more restrictive since it requires to or-
der all potential conflicts. Delta modules are one possibility to im-
plement arrows in the category-theoretical framework for program
generation proposed by Batory in [6].

Feature-oriented programming (FOP) [2, 7, 13, 34], Core
DOP [29] and Pure DOP are compositional approaches [19] for
implementing SPLs. For a detailed comparison between FOP and
Core DOP, the reader is referred to [29]. Other compositional ap-
proaches used to implement product lines rely on aspects [18],
framed aspects [24], combinations of feature modules and as-
pects [3, 25], mixins [31], hyperslices [33] or traits [8, 14]. In
[23], several of these modern program modularization techniques
are compared with respect to their ability to represent feature-
based variability. Furthermore, the modularity concepts of recent
languages, such as SCALA [26] or NEWSPEAK [10], can be used
to represent product features.

In [1], an approach is presented that combines reactive and ex-
tractive product line engineering [22] based on aspect-oriented pro-
gram refactorings. The modification operations that can be spec-
ified in delta modules are sufficient to express before, after and
around advice considered in aspect-oriented programming [21].
Delta modules do not comprise a specification formalism for mod-
ifications to be carried out at several places of a program (such as
pointcuts), such that all program modifications have to be explicitly
specified. Adding a pointcut-specification technique to delta mod-
ules would allow encoding AOP by DOP, which is a subject of fu-
ture work. However, delta modules are more flexible than aspects
by their ability to remove functionality, such that a program refac-
toring is not required to evolve a product line when functionality
has to be removed.

8. Conclusions and Future Work
In this paper, we have proposed pure delta-oriented programming
(Pure DOP) as a conceptual simplification of Core DOP [29]. An
implementation of the Pure DOP programming language presented
in this paper and a core calculus with a constraint-based type
system are currently being developed. Following the conceptual
comparison of FOP, Core DOP and Pure DOP in this paper, we
are evaluating Pure DOP empirically at larger case examples and
investigating the extraction of delta modules from version histories.

The concept of Pure DOP is not bound to a particular program-
ming language. In this work, we have instantiated it for LFJ. For
future work, we are aiming to use other languages for the under-
lying product implementations. A starting point is the trait-based
calculus FEATHERWEIGHT RECORD-TRAIT JAVA (FRTJ) [8, 9].
In FRTJ, classes are assembled from interfaces, records (providing
fields) and traits [14] (providing methods) that can be directly ma-
nipulated by designated composition operations. These operations
make FRTJ a good candidate for implementing delta modules in
an expressive way.

References
[1] V. Alves, P. Matos, L. Cole, A. Vasconcelos, P. Borba, and G. Ra-

malho. Extracting and evolving code in product lines with aspect-
oriented programming. In Transactions on aspect-oriented software
development IV, pages 117–142. Springer-Verlag, 2007.

[2] S. Apel, C. Kästner, and C. Lengauer. Feature Featherweight Java:
A Calculus for Feature-Oriented Programming and Stepwise Refine-
ment. In GPCE, pages 101–112. ACM, 2008.

[3] S. Apel, T. Leich, and G. Saake. Aspectual feature modules. IEEE
Trans. Software Eng., 34(2):162–180, 2008.

[4] P. G. Bassett. Framing software reuse: lessons from the real world.
Prentice-Hall, Inc., 1997.

[5] D. Batory. Feature Models, Grammars, and Propositional Formulas.
In SPLC, volume 3714 of LNCS, pages 7–20. Springer, 2005.

[6] D. Batory. Using modern mathematics as an FOSD modeling lan-
guage. In GPCE, pages 35–44. ACM, 2008.

[7] D. Batory, J. Sarvela, and A. Rauschmayer. Scaling Step-Wise Refine-
ment. IEEE Trans. Software Eng., 30(6):355–371, 2004.

[8] L. Bettini, F. Damiani, and I. Schaefer. Implementing Software Prod-
uct Lines using Traits. In SAC, OOPS Track, pages 2096–2102. ACM,
2010.

[9] L. Bettini, F. Damiani, I. Schaefer, and F. Strocco. A Prototypical
Java-like Language with Records and Traits. In PPPJ. ACM, 2010.

[10] G. Bracha. Executable Grammars in Newspeak. ENTCS, 193:3–18,
2007.

[11] D. Clarke, M. Helvensteijn, and I. Schaefer. Abstract delta modeling.
In Proc. of GPCE, 2010. (to appear).

[12] P. Clements and L. Northrop. Software Product Lines: Practices and
Patterns. Addison Wesley Longman, 2001.

[13] B. Delaware, W. Cook, and D. Batory. A Machine-Checked Model of
Safe Composition. In FOAL, pages 31–35. ACM, 2009.

[14] S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, and A. Black. Traits:
A mechanism for fine-grained reuse. ACM TOPLAS, 28(2):331–388,
2006.

[15] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal
core calculus for Java and GJ. ACM TOPLAS, 23(3):396–450, 2001.

[16] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson.
Feature-Oriented Domain Analysis (FODA) Feasibility Study. Tech-
nical report, Carnegie Mellon Software Engineering Institute, 1990.

[17] C. Kästner and S. Apel. Type-Checking Software Product Lines - A
Formal Approach. In ASE, pages 258–267. IEEE, 2008.

[18] C. Kästner, S. Apel, and D. Batory. A Case Study Implementing
Features Using AspectJ. In SPLC, pages 223–232. IEEE, 2007.

[19] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in Software
Product Lines. In ICSE, pages 311–320. ACM, 2008.

[20] C. Kästner, S. Apel, S. S. ur Rahman, M. Rosenmüller, D. Batory, and
G. Saake. On the Impact of the Optional Feature Problem: Analysis
and Case Studies. In SPLC. IEEE, 2009.

[21] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold. An Overview of AspectJ. In ECOOP, volume 2072 of
LNCS, pages 327–353. Springer, 2001.

[22] C. Krueger. Eliminating the Adoption Barrier. IEEE Software,
19(4):29–31, 2002.

[23] R. Lopez-Herrejon, D. Batory, and W. Cook. Evaluating Support
for Features in Advanced Modularization Technologies. In ECOOP,
volume 3586 of LNCS, pages 169–194. Springer, 2005.

[24] N. Loughran and A. Rashid. Framed aspects: Supporting variability
and configurability for aop. In ICSR, volume 3107 of LNCS, pages
127–140. Springer, 2004.

[25] M. Mezini and K. Ostermann. Variability management with feature-
oriented programming and aspects. In SIGSOFT FSE, pages 127–136.
ACM, 2004.

[26] M. Odersky. The Scala Language Specification, version 2.4. Technical
report, Programming Methods Laboratory, EPFL, 2007.

[27] K. Pohl, G. Böckle, and F. van der Linden. Software Product Line
Engineering - Foundations, Principles, and Techniques. Springer,
2005.

[28] I. Schaefer. Variability Modelling for Model-Driven Development of
Software Product Lines. In Intl. Workshop on Variability Modelling of
Software-intensive Systems, 2010.

[29] I. Schaefer, L. Bettini, V. Bono, F. Damiani, and N. Tanzarella. Delta-
oriented Programming of Software Product Lines. In SPLC, volume
6287 of LNCS. Springer, 2010.

[30] I. Schaefer, A. Worret, and A. Poetzsch-Heffter. A Model-Based
Framework for Automated Product Derivation. In Proc. of MAPLE,
2009.

[31] Y. Smaragdakis and D. Batory. Mixin layers: an object-oriented imple-
mentation technique for refinements and collaboration-based designs.
ACM Trans. Softw. Eng. Methodol., 11(2):215–255, 2002.

[32] R. Strniša, P. Sewell, and M. Parkinson. The Java module system: core
design and semantic definition. In OOPSLA, pages 499–514. ACM,
2007.

[33] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr. N degrees of
separation: multi-dimensional separation of concerns. In ICSE, pages
107–119, 1999.

[34] S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe Composition of
Product Lines. In GPCE, pages 95–104. ACM, 2007.

[35] M. Torgersen. The Expression Problem Revisited. In ECOOP, volume
3086 of LNCS, pages 123–146. Springer, 2004.

[36] H. Zhang and S. Jarzabek. An XVCL-based Approach to Software
Product Line Development. In Software Engineering and Knowledge
Engineering, pages 267–275, 2003.

