
Patching Product Line Programs
∗

Martin Kuhlemann
Faculty of Computer Science

University of Magdeburg, Germany

martin.kuhlemann@ovgu.de

Martin Sturm
Faculty of Computer Science

University of Magdeburg, Germany

MartinSturm@gmx.net

ABSTRACT

Software product line engineering is one approach to imple-
ment sets of related programs efficiently. Software product
lines (SPLs) can be implemented using code transformations
which are combined in order to generate a program. A code
transformation may add functionality to a program or may
alter its structure. Though implemented with less effort, a
single malfunctioning SPL program is harder to patch be-
cause patches must effect the SPL transformations which
the program was generated from. In this paper, we present
a new approach to patch programs of a transformation-based
SPL. We demonstrate the feasibility of this approach using
a prototype.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids

General Terms

Algorithms, Design

1. INTRODUCTION
A software product line (SPL) is a set of related programs

which are generated from a shared code base [6]. SPL pro-
grams are defined using features (user-visible program char-
acteristics [17]) and programs of an SPL differ in features.
Features can be implemented by program transformations,
which add functionality to a program or alter the structure
of a program. An SPL program then is generated by select-
ing features and executing code transformations which im-
plement those features. Reusing transformations across SPL
programs reduces the overall effort to implement the SPL

∗This paper summarizes and extends the Master’s Thesis
of Martin Sturm [31]. An extended version of this paper
with more technical details has been published before as a
technical report [21]. The authors thank Christian Kästner,
Don Batory, and Marko Rosenmüller for helpful comments.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOSD’10 October 10, 2010, Eindhoven, The Netherlands
Copyright 2010 ACM 978-1-4503-0208-1/10/10 ...$10.00.

programs. In prior studies on transformation-based SPLs,
however, we and others observed that errors were hard to
track and remove [2, 20, 33]. The solutions presented ac-
cordingly concentrate on syntactic correctness but semantic
correctness is not discussed, i.e., patching SPL programs is
not discussed.

As a first contribution of this paper, we provide an analy-
sis on how SPL programs can be patched (manually edited).
In particular, we compare the patching of SPL transforma-
tions with the patching of generated programs. As sample
transformations used in SPLs, we concentrate on superim-
positions and refactorings. From our analysis we argue that
patching the transformations of an SPL can be inappropri-
ate – we need techniques to also patch the generated code.

As a second contribution, we present and demonstrate a
new approach for propagating patches from generated SPL
programs to SPL transformations. That is, after the devel-
oper stepped through and patched the generated program, a
propagation tool identifies and propagates the patches to the
SPL transformations. In this approach, we combine an index
data structure with a transformation history data structure
to optimize patch propagation. We demonstrate the feasi-
bility of this approach with our prototype.

2. TRANSFORMATIONS IN SPLS

Superimposition. A number of approaches use superim-
position transformations to implement SPLs, e.g., [2, 4, 25].
A superimposition creates classes in its input program and
executes class refinements on this input program. A class re-
finement creates members in input-program classes and exe-
cutes method refinements. Method refinements create state-
ments in input-program methods. We use feature-oriented
programming to represent SPL techniques that use super-
imposition transformations; further, we use Jak as a sample
feature-oriented language [4]. Jak extends Java by superim-
position mechanisms.

In Figure 1a, we sample code which is similar to code of
an SPL from prior work where we integrated programs of a
compression-library SPL with environments, i.e., we bridged
incompatible structures between them [19]. A superimpo-
sition transformation Base is defined to transform a pos-
sibly empty input program by creating a class ZipArchive,
i.e., Base encapsulates ZipArchive. Superimposition Stats
encapsulates a class refinement of ZipArchive which extends
ZipArchive in the input program of Stats. This class refine-
ment encapsulates members (Lines 4-7) and a method refine-
ment (Lines 8-10). The method refinement ZipArchive.getID

Transformation Base

1 class ZipArchive{
2 int getID(){return 1;} }

Transformation Stats

3 refines class ZipArchive{
4 int counter=0;
5 void count(){
6 counter = counter/1;
7 System.out.print(counter); }
8 int getID(){
9 count();

10 return Super.getID(); } }

Transformation MakeCompatible

11 Rename method: ZipArchive.getID() 7→id

(a) SPL transformations.

1 class ZipArchive{
2 int counter=0;
3 void count(){
4 counter = counter/1;
5 System.out.print(counter);}
6 int getID(){
7 count();
8 return 1;} }

(b) SPL product generated
from Stats, Base.

1 class ZipArchive{
2 int counter=0;
3 void count(){
4 counter = counter/1;
5 System.out.print(counter);}
6 int id(){
7 count();
8 return 1;} }

(c) SPL product generated
from MakeCompatible,

Stats, Base.

Figure 1: Superimpositions and their composition
result.

of Stats extends method ZipArchive.getID in the input pro-
gram of Stats (method created by Base) and creates state-
ments in this method. The extended method is called with
Super (Line 10). The result of executing Base and Stats
from Figure 1a is shown in Figure 1b. A class ZipArchive
there encapsulates the members of both ZipArchive class
fragments it was generated from (members getID, counter,
count). Method getID encapsulates the code generated from
getID of Base and of Stats.

Refactoring. Program generation may involve configuring
the program’s structure using selectable refactorings. Refac-
torings are transformations which alter the structure of a
program but do not alter its functionality [13]. For example,
renaming a method of a program and updating all method
calls is a Rename-Method refactoring [13]. We use refactor-
ing feature modules (RFMs) [19] to represent SPL techniques
which use refactoring transformations.
We introduced RFMs to allow configuring the structure

of SPL programs [19]. RFMs allowed us to reuse SPL pro-
grams in different incompatible environments in which they
could not have been reused as is before. One selection of
refactorings then allowed us to reuse SPL programs in one
environment and another selection allowed us to reuse the
same programs in another environment.
In Figure 1a, we defined an RFM MakeCompatible in the

SPL code base. Executing Base, Stats and MakeCompatible
generates a class ZipArchive with members id, count, and
counter but no member getID, see Figure 1c.

Refactoring transformations have preconditions that spec-
ify which properties a piece of code must fulfill such that the
executed transformation does not alter the piece’s function-
ality [28]. The above refactoring of MakeCompatible (Re-
name Method: ZipArchive.getID 7→ id) requires that method
ZipArchive.getID exists and that no method ZipArchive.id ex-
ists in the code to refactor. (Further preconditions exist, but
are not important for now.)

Refactorings can replace pieces of code one-by-one, can
merge code, can multiplex code, and can create code in their
respective input programs. Since transformations with these
abilities are considered non-trivial [1, 8, 12, 38], refactorings
are non-trivial transformations in SPL technology. For ex-
ample, a Rename-Class refactoring inside an RFM replaces
(renames) a class of an input program one-by-one by a class
in the according output program [13]. A Pull-Up-Method
refactoring inside an RFM merges multiple methods of an
input program into one method in the according output pro-
gram.1 A Push-Down-Field refactoring inside an RFM mul-
tiplexes a single field of an input program in the according
output program.2 An Encapsulate-Field refactoring inside
an RFM creates a get and a set method for a field and no
code is removed for that [13].

3. PROBLEM STATEMENT
A generated SPL program may work incorrectly due to

bugs. As an example, we placed a bug in the code of Fig-
ure 1. The program in Figure 1c should print the oper-
ation count (consecutive numbers) but it prints zeros in-
stead. The reason is that the code in Line 4 is incorrect
and should be patched to “counter=counter+1;”. Finally,
however, this patch must affect Line 6 of the SPL transfor-
mations (Fig. 1a). To patch SPL programs, we can (a) patch
the transformations (Fig. 1a) and then regenerate the pro-
gram, or (b) patch the generated program (Fig. 1c) and later
possibly propagate the patches to the transformations. We
now discuss strengths and weaknesses of both approaches.

3.1 Mapping Problem
SPL transformations like superimpositions and refactor-

ings are executed one after the other such that the over-
all mapping of code in the generated program to code in
transformations is complex [12, 36]. A piece of code in the
generated program might be the result of merging, multi-
plexing, and replacing code during program generation, so
we should hide this complex mapping from the developer.
Additionally, the code shown to the developer should be in
a language which she is familiar with.

When patching generated programs, a patch must
be propagated to an SPL transformation T (we call this
transformation target). For that, all SPL transformations
T that follow T must be inverted (undone) in the generated
program. To invert a refinement we can instantiate a remove
operation; for a refactoring A, we can instantiate a refactor-
ing of which the type is hard-coded to invert A. Patches may
prevent a transformation of T being inverted. For example,
adding a method ZipArchive.getID to the code of Figure 1c
prevents inverting the transformation MakeCompatible (Re-

1Pull-Up Method moves a subclass method to a superclass
and removes equivalent methods of other subclasses [13].
2Push-Down Field generates a copy of the pushed field in
multiple subclasses and removes the superclass field [13].

SubArchive1
getID()g

SubArchive2
getID()g

SubArchive1
g

SubArchive2
g

ZipArchive
g

ZipArchive
getID()g

△ △

Pull-Up Method
−−−−−−−−−−−−→

Figure 2: Pull-Up Method refactoring merges code.

name Method: ZipArchive.getID 7→ id) because otherwise
ZipArchive.getID would be generated twice in SPL programs
(which is an error in most languages). Approaches to patch
generated programs, thus, need a fallback strategy. The code
shown to the developer is in a language (Java) which is very
similar to the language the developer used to implement the
SPL (Jak+RFM), i.e., she should be familiar with it.
When patching SPL transformations and the code

executed in the generated program was created by a refac-
toring (code did not exist before), there is no code on the
level of the transformations to show to a developer accord-
ingly [38]. Showing transformation definitions instead is not
an option as they might not show the code they generate,
either. For example, RFMs define properties of code to gen-
erate but RFMs do not include this code [19], e.g., they
define which field to encapsulate but do not include get and
set methods. However, skipping this code is error prone [12].
If an executed method was merged by a refactoring from

multiple methods, each of these methods in the transfor-
mations is a valid (with respect to the generated program)
mapping value from the executed, generated method [38].
Showing the wrong method with respect to the transforma-
tions, however, causes confusion. In the example of Figure 2,
a Pull-Up-Method refactoring merges SubArchive1.getID and
SubArchive2.getID to ZipArchive.getID. Assume, the patch
tool defines SubArchive1.getID to represent the executed,
merged method ZipArchive.getID on the level of the trans-
formations. But if SubArchive2.getID was called on the level
of transformations the developer is confused seeing Sub-
Archive1.getID.
If executed code was merged by a refactoring from mul-

tiple methods, then breakpoints set in the transformations
to one of the original methods can match too often or too
rarely [1]. For example, methods SubArchive1.getID and Sub-
Archive2.getID in Figure 2 are merged by a Pull-Up-Method
refactoring. Assume, the patch tool maps the executed,
merged method ZipArchive.getID to SubArchive1.getID which
hosts a breakpoint in the transformations, then this break-
point will match for SubArchive2.getID, too incorrectly. A
breakpoint set to SubArchive2.getID (not referenced from the
generated program) will never match. This nondeterminism
hampers stepping through the program.
If executed code was generated by a refactoring which

multiplexes code, multiple values of variables from the gen-
erated program might need to be merged on the level of
transformations – this, however, might be impossible. As
an example, consider a Push-Down-Field refactoring on a
static field which generates multiple static fields in the gen-
erated program; these generated fields can expose different
values in the executed program but can only expose one
on the level of transformations. According values must be

merged to be presented as one value for the single (pushed)
field in the transformations. However, this is not possible
generally. Variable values then cannot be analyzed.

The code shown to the developer is in the language the
developer used to write the SPL, i.e., she should be familiar
with it. (Solutions exist for problems similar to the prob-
lems above [1, 14, 38]. However, approaches are limited to
languages for which conditional breakpoints and path anal-
yses can be compiled into binaries.)

3.2 Scattering Program Code
During patching an SPL program a developer should con-

centrate on this program’s bug in the first place. Just in the
second place other SPL programs should be considered.

When patching generated programs, code of other
SPL programs, i.e., code that does not contribute to the
patched program, is hidden and errors in these other pro-
grams are postponed until finishing program patching. Nev-
ertheless, the patches can be checked automatically against
all SPL programs, e.g., during propagation, and an error can
be reported when a patch introduces a program in error [33].

When patching transformations, code that contribu-
tes to one SPL program is scattered across transformations.
For that, the developer must execute the transformations
in-mind in order to foresee the code actually executed when
stepping over it, e.g., when stepping over a method call. The
developer needs similar knowledge to decide which methods
she can call in a patch of a transformation (“How do input
programs of a transformation-to-patch look like?”). Note,
if tools would visualize generated code they switch to the
patch-generated-programs approach.

As an example of in-mind transformation execution, re-
consider Figure 1a. In these SPL transformations, a devel-
oper may want to add to superimposition Base a method
that calls Element.id (not depicted). As Element.id is unde-
fined in Base the developer must generate the patched pro-
gram in-mind to verify that she is able to call this method in
Base. Transformations in the SPL code base which do not
contribute to the patched program distract the developer
from the bug to repair.

Code in unpatched superimpositions might be replaced or
overridden by a patch, accidentally, in the currently patched
SPL program or others. For example, when a developer ap-
plies a patch (not depicted) in Figure 1a such that she adds a
new superimposition AfterStats which follows Stats and such
that she adds a method ZipArchive.count to AfterStats, then
this AfterStats method replaces ZipArchive.count of Stats. It
can get worse. If Stats would not contribute to the patched
program but to a different program, the patch could replace
count in this other program, unnoticed. Current approaches
which validate the whole SPL [33] may help but execut-
ing them during patching hampers implementing the patch.
When a method created in a patch overrides a method in a
different SPL program accidentally current mechanisms do
not help; especially, when the developer intended to override
some different method.

3.3 Bounded Quantification Problem
Bounded quantification is a guideline to reduce complexity

in transformation systems [23, 26]. Bounded quantification
restricts code generated by a transformation to only access
code which exists in the transformation’s input program,
i.e., which has been generated by preceding transformations.

SPL

Generation
Tool
Propagation

Tool
1

3

2

¬=select SPL program
=patch SPL program
®=propagate patches

Figure 3: Use case for patching SPL programs.

Bounded quantification should hold before patching and af-
ter, e.g., no developer/tool should patch a class in a transfor-
mation A to subtype a class which is generated by a follower
transformation of A.3 Developers should be advised in which
transformation and how to implement a patch.
When patching generated programs, a patch is de-

tected and propagated automatically. Thereby, the tool can
advise in choosing a transformation to host the patch (tar-
get). The tool can further check that bounded quantification
is not broken with this advice, even in other SPL programs.
When patching transformations, the developer may

realize during patching that with the patch just implemented
she breaks bounded quantification. Then she might have
to move the patch (manually) into another transformation.
Additional complexity is put upon the developer when patch-
es break subsequent transformations (maybe in other SPL
programs). In the example of Figure 1a, a developer, who
aims to patch superimposition Base and, for that, adds a
method ZipArchive.id, breaks the follower RFM MakeCom-
patible because this RFM requires ZipArchive.id not to exist
in its input program. With a growing number of super-
imposition and refactoring transformations, the restrictions
imposed by transformations, which follow a transformation
to patch, become opaque and unmanageable [12].

3.4 Summary
Patching SPL transformations may present incorrect or no

code to the developer (cf. Sec. 3.1), may show scattered code
(cf. Sec 3.2), and may require to re-implement patches (cf.
Sec. 3.3). Patching generated programs may “just” require a
fallback strategy when transformations cannot be inverted.

4. PATCHING THE TRANSFORMATIONS
Some researchers argue to step through code and to patch

it on the level of transformations (there: high-level code),
e.g., [7, 15, 37]. From our analysis and in line with oth-
ers [1, 8, 12,36] we argue that stepping through code can be
meaningful at every level of abstraction. We show now how
code generated from transformations can be patched, too.

4.1 Conceptual Process
We propose to let the developer step through and patch

the generated program, and to propagate automatically each
patch to the best SPL transformation; this use case is de-
picted abstractly in Figure 3. The propagation tool is pro-
posed to find and link patches, prepare the propagation, per-
form the propagation, and to save the propagation.

3Some languages used for SPLs, e.g., Jak or AspectJ, do not
enforce bounded quantification. Patches to SPLs written in
these languages can break bounded quantification.

Index Key Index Value

ZipArchive.id [Base::ZipArchive.getID,
Stats::ZipArchive.getID]

ZipArchive [Base::ZipArchive,
Stats::ZipArchive]

ZipArchive.counter [Base::ZipArchive.counter]
ZipArchive.count [Stats::ZipArchive.count]

Table 1: Sample index for code of Figure 1c.

Find and link patches. At first, the propagation tool should
compare the patched program with an unpatched version of
this program to find patches. To ease propagation later, the
tool should link each patch to a qname (abbreviation for
fully-qualified name) which encapsulates the patch. In our
example of Figure 1, the propagation tool should find the
patch in Line 4 of Figure 1c and should link it to qname
ZipArchive.count.

Prepare propagation. To advise where, i.e., to which SPL
transformation, to propagate a patch best later (we call such
transformation target), the propagation tool should calcu-
late the origins of generated members and classes. For that,
it should analyze the executed superimposition transforma-
tions and refactoring transformations in execution order.
The propagation tool should record in an index structure
for every generated qname a (list of) qname from the trans-
formations of which the code includes the generated code. If
there is no such qname in the transformations, i.e., when an
RFM creates code, then an empty list is recorded as index
value for the qname of this code.

An index for the SPL program of Figure 1c is given in
Table 1. The index key is a qname from the generated pro-
gram and the index value is a list of qnames from code of the
transformations, prefixed with these transformations. For
example, ZipArchive.id is indexed to be generated from Zip-
Archive.getID in transformations Base and Stats.

To advise how a patch should be implemented in the tar-
get later, the propagation tool should record all code trans-
formations which executed in a transformation history. In
the transformation history of Figure 1c, MakeCompatible is
recorded to affect Base and Stats.

Perform propagation. To perform patch propagation, the
propagation tool first should calculate a good target and
then invert all transformations on the patch which executed
after the target during program generation. The tool should
calculate a good target in three steps: First, the tool ana-
lyzes the qnames which the patch relates/references to, e.g.,
qnames of called method and hosting classes – the origin of
these qnames is the best target for hosting the patch. Sec-
ond, to avoid that an inverted transformation cannot be re-
performed after propagation, the propagation tool should,
for every transformation to invert, analyze the qnames and
their relations in the respective transformation’s input pro-
gram. That is, the described index should also keep qnames
deleted during program generation and tag them. If qname
relations required by a transformation conflict a patch (dis-
allow to invert a transformation), then we apply a fallback
strategy. Third, the propagation tool should check whether
bounded quantification is broken when the patch is propa-

gated to its target – if so, the propagation tool should adapt
the target to be the follower of all transformations which
introduce code the patch references (required condition for
bounded quantification).
The fallback strategy we propose (there might be more):

When inverting a transformation fails, the propagation tool
creates a transformation which follows the non-invertible
transformation; a transformation which will replace the er-
roneous code in future SPL programs.
We want to exemplify patch propagation with the pri-

orly discussed patch for Figure 1c (“counter=counter/1;”
7→ “counter=counter+1;”). The patch is found and linked
to ZipArchive.count. In the index shown in Table 1, Zip-
Archive.count is recorded to be generated in Stats, so Stats
is calculated as target for the patch. The patch does not ref-
erence other qnames (bounded quantification cannot break)
and so the target remains Stats. The propagation tool finally
inverts MakeCompatible on the patch (nothing changes) and
provides this propagated patch as advice to the developer.
If MakeCompatible could not be inverted in the presence of
patched ZipArchive.count, the tool should advise our fallback
strategy, i.e., it should insert a new transformation as a fol-
lower of MakeCompatible with patched ZipArchive.count.
When a qname exists in the index but maps to an empty

list of value qnames (the piece of code got created by a refac-
toring), then the tool should propagate the patch along the
reverse global sequence of program transformations. Thereby,
it should invert SPL transformations until one transforma-
tion identifies the patched piece of code as “self-generated”
and provides a target. As an example, assume the patched
ZipArchive.count would have been created by MakeCompat-
ible (e.g., when MakeCompatible is an Encapsulate Field
refactoring) – then ZipArchive.count would occur in the index
but would map to an empty list. In this case, the transfor-
mations from MakeCompatible to Base would be inverted.
The inversion process of MakeCompatible would stop this
target-less propagation because at first it defines a new tar-
get for the patch. In this special case of MakeCompatible
creating count, the target would be a new follower of Make-
Compatible because RFM MakeCompatible does not encap-
sulate code to patch. If MakeCompatible would have merged
ZipArchive.count from multiple pieces of code, then the inver-
sion algorithm for MakeCompatible would generate multiple
targets and propagation continues.

Save propagation. We use metrics (origins of referenced
code) to identify the best target for a patch and so this
target might be suboptimal semantically though meaningful
and correct syntactically. A propagation tool, thus, should
advise a mapping to the developer but should ask the de-
veloper to confirm. For instance, the tool could save the
patched SPL transformations separately such that the de-
veloper can decide whether to accept the propagation. If
she accepts, the original SPL transformations are replaced.

4.2 Unsupported Patches & Transformations
The transformations available for program generation limit

the patches which can be propagated from the generated
program to the transformations. Depending on the trans-
formation language, no fallback strategy seems available.
As a first example, superimpositions in Jak cannot replace

constructors generated by preceding transformations [29].
Patches in constructor bodies must be propagated to the

transformation which created the constructor. If they can-
not be propagated, we emphasize the advice from the Jak
documentation to extract constructors into initialization
methods [29]; methods which then can be replaced with our
fallback strategy.4

As a second example, code removed from the generated
program might not be allowed to be removed in the trans-
formations, accordingly. If the deletion in the generated
program prevents to invert a transformation, a propagation
tool cannot propagate the patch but also cannot delete the
qname by adding a superimposition (because superimposi-
tions can only generate code) nor by adding a refactoring
(because refactorings can only change code structure).

Refactorings (e.g., of RFMs), refinements (e.g., of Jak) as
well as aspects [18] and rewrites [35] can be inverted such
that patch propagation is possible, but this is not the gen-
eral case. Higher-order rewrites (where pieces of code are
matched by incomplete patterns) [34] can only be inverted
when code matched with wildcards can be reconstructed. If
a transformation cannot be inverted, we propose to apply
our fallback strategy.

The mapping from the generated program towards the
transformations is specific to tools. If different tools trans-
late the same set of transformations differently, the index
creation tool must be parameterized with the transforma-
tion tool used. For example, for Jak at least 2 different
tools with 2 different translations into Java exist [3]. (Note,
this situation adds effort in every solution approach.)

5. PROTOTYPE & DEMONSTRATION
We demonstrate that stepping through and patching the

generated program and that propagating patches afterwards
is feasible for superimposition- and refactoring-based SPLs.
That is, we implemented the above concepts prototypically
and used the tool in a demonstrating example.

Our prototype finds patches and links them to qnames
(Phase 2 in Sec. 4.1), calculates the best target for every
patch (Phase 3), and stores the propagation advice sep-
arately (Phase 4). To do this, for every superimposition
(analyzed in composition order), the prototype collects the
qnames of code which is generated in these superimpositions
as index keys and as index values. Recorded transforma-
tions are executed on index keys but not on index values.
Thus, the index in the end maps qnames of the generated
program to qnames of the transformations. Our prototype
currently supports one transformation tool for Jak and one
for refactoring feature modules (RFMs) – error detection
based on qname relations during program generation is not
yet implemented (keeping and tagging deleted qnames). For
more implementation details, simplifications, and for more
demonstrating examples please consult [21, 31] – they are
omitted for readability.

Demonstrating example. We demonstrate the propaga-
tion approach using the Graph Product Line (GPL) which
has been proposed to be a standard benchmark for SPL tech-
nology [22]. Specifically, we use a version from prior work
in which we added RFMs to GPL in order to integrate GPL

4For patched field initializations (fields also cannot be re-
placed in Jak superimpositions) we envision to encapsulate
their initialization in methods, too, which can be replaced.

Transformation (Superimp.) Directed

1 class Graph{ ...
2 public void addEdge(Edge the edge){
3 Vertex start = the edge.start;
4 Vertex end = the edge.end;
5 edges.add(the edge);
6 start.addNeighbor(new Neighbor(end,the edge)); }}

Transformation (Superimp.) Weighted
Transformation (Superimp.) Shortest

Transformation (Superimp.) Benchmark
Transformation (Superimp.) adaptToClient

Transformation (RFM) VertexVerteximpl

7 Rename class: Vertex 7→VertexImpl

Transformation (RFM) GraphWgraph

8 Rename class: Graph 7→WeightedGraphImpl

Transformation (RFM) AddvertexAdd

9 Rename method:˜˜˜˜˜˜˜˜
WeightedGraphImpl.addVertex(VertexImpl) 7→add

Transformation (RFM) ShortestSmall

10 Rename method:
WeightedGraphImpl.ShortestPath(VertexImpl) 7→shortestPath

(a) Original SPL transformations

⇓

Transformation (Superimp.) Directed

1 class Graph{ ...
2 public void addEdge(Edge the edge) {
3 if(the edge != null){
4 Vertex start = the edge.start;
5 Vertex end = the edge.end;
6 edges.add(the edge);
7 start.addNeighbor(new Neighbor(end, the edge));
8 }else{
9 System.out.println(”Param the edge was null!”); } }}

Transformation (Superimp.) notInvertibleFor ShortestSmall

10 refines class WeightedGraphImpl{
11 public WeightedGraphImpl ShortestPath(VertexImpl s){
12 return shortestPath(s); }}

(d) Propagation advice (patched SPL transformations)

⇑

1 class WeightedGraphImpl{ ...
2 public void addEdge(Edge the edge) {
3 VertexImpl start = the edge.start;
4 VertexImpl end = the edge.end;
5 edges.add(the edge);
6 start.addNeighbor(new Neighbor(end, the edge)); }}

(b) Generated SPL program ⇒

1 class WeightedGraphImpl{ ...
2 public void addEdge(Edge the edge) {
3 if (the edge != null) {
4 VertexImpl start = the edge.start;
5 VertexImpl end = the edge.end;
6 edges.add(the edge);
7 start.addNeighbor(new Neighbor(end, the edge));
8 }else{
9 System.out.println(”Param the edge was null!”); } }

10 public WeightedGraphImpl ShortestPath(VertexImpl s) {
11 return shortestPath(s); }}

(c) Patched, generated SPL program

Figure 4: Stepping through and patching the code of the GPL class Graph/WeightedGraphImpl.

programs with incompatible environments [19].5 The refac-
torings we apply, Rename-Class and Rename-Method, pose
an important fraction when integrating programs [19].
We selected 9 features from GPL which correspond to pro-

gram transformations which in turn generate a compilable
program; 5 superimpositions and 4 RFMs. In Figure 4a, we
list the transformation names in execution order (top-down)
and show relevant code snippets from these transformations.
The superimpositions generate and refine the classes Edge,
Graph, Neighbor, and Vertex. The RFMs rename class Ver-
tex into VertexImpl, class Graph into WeightedGraphImpl,
method WeightedGraphImpl.addVertex(VertexImpl) into add,
and method WeightedGraphImpl.ShortestPath(VertexImpl)
into shortestPath. With these RFMs, the GPL program of
the 4 superimpositions can be configured to be reusable as
a library in a program with which this GPL program was
incompatible before [19]. As we did not find bugs in the

5We pruned the GPL version according to the current limi-
tations of our prototype.

GPL program, we patched this generated program at will to
cover interesting cases.

Using Figure 4, we want to demonstrate the proposed pro-
cess in a practical scenario for patching class Graph. At first
the developer executes the SPL transformations (Fig. 4a) to
generate the SPL program (Fig. 4b). Later, this program
is observed to not work properly, is stepped through, and
is patched (Fig. 4c). By comparing the generated program
(Fig. 4b) and the generated, patched code (Fig. 4c), the
propagation tool finds three patches applied to class Weight-
edGraphImpl – we underline them in Figure 4c. The tool
links these patches to qnames, e.g., it links the patch in
Line 3 to WeightedGraphImpl.addEdge(Edge). The method
addEdge(Edge) is found to be patched (not created) because
an index key exists. As a result, the tool computes from
its index that addEdge was generated lastly in the superim-
position Directed which becomes target (cf. Fig. 4a). The
propagation tool detects that code in the patch does not ref-
erence qnames others than the hosting method addEdge did

1 class VertexImpl{ ...
2 private boolean displayed = false;
3 public void display() {
4 System.out.print(”Pred ”+ predecessor + ”DWeight ”+

dweight + ””);
5 display$$eval$outWeighted$GG();
6 this.displayed = true;}
7 public boolean wasDisplayed(){
8 return displayed; }
9 public VertexImpl assignName(String name) {

10 this.name = name;
11 if(this.wasDisplayed()){
12 System.out.println(”was already displayed!”); }
13 return (VertexImpl)this; }}

Figure 5: Patches to Vertex/VertexImpl.

before, so Directed remains target. The propagation tool
inverts the 4 RFMs, which executed after target Directed,
on the patch and advises the developer to replace method
addEdge in transformation Directed (Fig. 4d, Lines 2-9).
The second patch (Fig. 4c, Lines 8-9) is linked to the same
qname WeightedGraphImpl.addEdge and is propagated to-
gether with the first one.
The third patch (Fig. 4c, Lines 10-11) requires the fall-

back strategy. The patch concerns a method ShortestPath,
which was created during patching (no index key exists).
The tool analyzes that ShortestPath solely references short-
estPath (generated in Shortest) and thus the tool uses Short-
est as target for ShortestPath. Next, the target Shortest
is validated whether all RFMs that executed after Short-
est can be inverted with ShortestPath.6 The propagation
tool cannot invert RFM ShortestSmall (Rename Method:
WeightedGraphImpl.ShortestPath(VertexImpl) 7→ shortestPath)
because this would make SPL transformations, which exe-
cute before ShortestSmall, generate two methods Weight-
edGraphImpl.ShortestPath(VertexImpl) in products – this is
an error in most product languages. Following our fall-
back strategy, the propagation tool adds a superimposition
notInvertibleFor ShortestSmall as a follower of ShortestSmall
(cf. Fig. 4d), a superimposition which then adds the patch
ShortestPath to future programs. Note in Figure 4d, as
ShortestSmall is not inverted, the tool advises to refine class
WeightedGraphImpl (exists after ShortestSmall) instead of
Graph.
In a final analyzed case, we added references towards

qnames in a patch. In Figure 5, we underline the patches
applied to class VertexImpl.7 The field displayed and the
method wasDisplayed got added, and methods display and as-
signName got patched to access the added field and method.
Our propagation tool detects those accesses and for that ad-
vises to use superimposition Shortest (refines display lastly)
as target for displayed. As wasDisplayed got added and solely
accesses displayed, the propagation tool advises to propa-
gate wasDisplayed to Shortest (target of displayed), too. If
we would patch display and assignName in Directed (creates
display and assignName), the reference to a Shortest method

6Superimpositions are invertible in Jak naturally due to the
Jak composer implementation. In other languages local vari-
ables might need to be transformed into fields.
7Line 5 of Fig. 5 shows a possible translation for Su-
per.display(); inlining this call would remove the statement.

or field would break bounded quantification. For that, the
patches to methods assignName and display are advised to
be propagated to Shortest, too. In Shortest they replace the
methods created in Directed. Summarizing, our tool advised
well where and how to propagate patches which we made to
an SPL program.

6. RELATED WORK
There is much work on how to relate generated and trans-

formation code, e.g., for stepping through code [12, 27, 30,
32,34,35,37]. In addition to this work, we propagate patches
from generated SPL programs to the code base of an SPL.
There is further work on how to propagate patches from
generated programs to the code of a superimposition-based
SPL [3]. In addition to this work, we support SPLs which
are implemented by superimpositions and refactorings.

Compilers execute refactoring-like transformations (opti-
mizations) on code which keep functionality. Patching these
(one-of-a-kind) programs poses similar problems as we faced
for SPLs [1, 7, 14, 15, 36, 38]. In contrast to according work,
the transformations we considered (superimpositions and
refactorings) cannot only change code structure but also add
functionality. As a result, executed code exists in the gen-
erated program but has no origin in the (possibly empty)
initial input program.

MolhadoRef inverts refactorings to reduce human inter-
action when integrating a patched program with a former
revision of this program [10,11]. Lynagh provides ideas sim-
ilar to MolhadoRef for edits [24]. While both approaches
propagate patches of a program toward a single program (an
earlier revision), we propagate patches of a program toward
the code base of a transformation-based SPL.

Bidirectional transformations (a.k.a. lenses) synchronize
multiple related representations of elements where patches
can be propagated in any representation [9,16]. In the patch
propagation problem we focused on, edits to the generated
program may prevent the execution of inverse RFMs (we,
thus, discussed a fallback strategy) – such situation may
not occur for bidirectional transformations.

Design maintenance systems execute transformations in
order to generate a program [5]. In design maintenance
systems, maintenance deltas are transformations which are
added to a transformation history during maintenance of
the generated program [5]. Baxter indicates patch propaga-
tion toward an old abstraction (specification) [5], but this
old abstraction is no code base of an SPL (instrumenting
superimpositions and refactorings). Baxter did not explore
backward integration mechanisms though.

7. CONCLUSIONS
In this paper we discussed a number of problems which

occur when stepping through and patching a program gen-
erated from a transformation-based software product line
(SPL). Specifically, we discussed problems of complex map-
pings of code between the transformations and the gener-
ated program, problems of scattered SPL program code, and
problems of patches that increase complexity. We found that
for SPLs implemented with transformations of superimpo-
sitions and refactorings, the generated code is a beneficial
option for stepping and patching. We automated the prop-
agation of patches from the generated program to the SPL
transformations and demonstrated its feasibility.

For our approach, we combined index techniques and trans-
formation histories (both known from other contexts) to aid
patching in transformation-based SPLs. Our propagation
tool links detected patches to fully-qualified names of the
generated program. It calculates the best SPL transforma-
tion to host a patch. The tool finally advises how to inte-
grate the patch with the SPL transformations.

8. REFERENCES
[1] A.-R. Adl-Tabatabai. Source-level debugging of

globally optimized code. PhD thesis, Carnegie Mellon
University Pittsburgh, 1996.

[2] S. Apel, C. Kästner, A. Größlinger, and C. Lengauer.
Type safety for feature-oriented product lines.
Automated Software Engineering – An International
Journal, 17(3):251–300, 2010.

[3] D. Batory. A tutorial on feature oriented
programming and the AHEAD tool suite. In GTTSE,
pages 3–35, 2006.

[4] D. Batory, J.N. Sarvela, and A. Rauschmayer. Scaling
step-wise refinement. TSE, 30(6):355–371, 2004.

[5] I.D. Baxter. Transformational maintenance by reuse of
design histories. PhD thesis, University of California
at Irvine, 1990.

[6] P. Clements and L. Northrop. Software product lines :
Practices and patterns. Addison-Wesley, 2006.

[7] D.L. Curreri, A.K. Iyengar, R.A. Biesele, and M.A.
Ruscetta. Debugging optimized code using data
change points, 2000. US patent #6,091,896.

[8] K. Czarnecki and U. Eisenecker. Generative
programming: Methods, tools, and applications.
Addison-Wesley, 2000.

[9] K. Czarnecki, J.N. Foster, Z. Hu, R. Lämmel,
A. Schürr, and J.F. Terwilliger. Bidirectional
transformations: A cross-discipline perspective. In
ICMT, pages 260–283, 2009.

[10] D. Dig. Automated upgrading of component-based
applications. PhD thesis, University of Illinois at
Urbana-Champaign, 2007.

[11] D. Dig, K. Manzoor, R.E. Johnson, and T.N. Nguyen.
Effective software merging in the presence of
object-oriented refactorings. TSE, 34(3):321–335, 2008.

[12] R.E. Faith. Debugging programs after
structure-changing transformation. PhD thesis,
University of North Carolina at Chapel Hill, 1998.

[13] M. Fowler. Refactoring: Improving the design of
existing code. Addison-Wesley Longman Publishing
Co., Inc., 1999.

[14] J. Hennessy. Symbolic debugging of optimized code.
TOPLAS, 4(3):323–344, 1982.

[15] U. Hölzle, C. Chambers, and D. Ungar. Debugging
optimized code with dynamic deoptimization. ACM
SIGPLAN Notices, 27(7):32–43, 1992.

[16] Z. Hu, S.-C. Mu, and M. Takeichi. A programmable
editor for developing structured documents based on
bidirectional transformations. In PEPM, pages
178–189, 2004.

[17] K. Kang, S. Cohen, J. Hess, W. Novak, and
A. Peterson. Feature-oriented domain analysis
(FODA) feasibility study. Technical Report
CMU/SEI-90-TR-21, Carnegie Mellon University
Pittsburgh, 1990.

[18] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of
AspectJ. In ECOOP, pages 327–353, 2001.

[19] M. Kuhlemann, D. Batory, and S. Apel. Refactoring
feature modules. In ICSR, pages 106–115, 2009.

[20] M. Kuhlemann, D. Batory, and C. Kästner. Safe
composition of non-monotonic features. In GPCE,
pages 177–186, 2009.

[21] M. Kuhlemann and M.Sturm. Debugging product line
programs. Technical Report 6, Faculty of Computer
Science, University of Magdeburg, 2010.

[22] R.E. Lopez-Herrejon and D. Batory. A standard
problem for evaluating product-line methodologies. In
GCSE, pages 10–24, 2001.

[23] R.E. Lopez-Herrejon and D. Batory. Improving
incremental development in AspectJ by bounding
quantification. In SPLAT, 2005.

[24] I. Lynagh. An algebra of patches, 2006. http://-
urchin.earth.li/∼ian/conflictors/paper-2006-10-30.pdf.

[25] M. Odersky. The Scala language specification (version
2.7), 2005.

[26] D.L. Parnas. Designing software for ease of extension
and contraction. In ICSE, pages 264–277, 1978.

[27] Z. Porkoláb, J. Mihalicza, and Á. Sipos. Debugging
C++ template metaprograms. In GPCE, pages
255–264, 2006.

[28] D.B. Roberts. Practical analysis for refactoring. PhD
thesis, University of Illinois at Urbana-Champaign,
1999.

[29] Software Systems Generator Research Group. The
jampack composition tool. AHEAD tool suite
v2008.07.22, manual.

[30] B. Stroustrup. The C++ programming language.
Addison-Wesley Longman Publishing Co., Inc., 2
edition, 1991.

[31] M. Sturm. Debugging Generierter Software nach
Anwendung von Refactorings. Master thesis,
University of Magdeburg, Germany, 2010.
http://wwwiti.cs.uni-magdeburg.de/iti db/publi-
kationen/ps/auto/thesisSturm.pdf.

[32] Sun Microsystems, Inc. JSR-000045 Debugging
support for other languages 1.0 FR, 2003.

[33] S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe
composition of product lines. In GPCE, pages 95–104,
2007.

[34] A. van Deursen and T.B. Dinesh. Origin tracking for
higher-order term rewriting systems. In HOA, pages
76–95, 1994.

[35] A. van Deursen, P. Klint, and F. Tip. Origin tracking.
Journal of Symbolic Computation, 15(5-6):523–545,
1993.

[36] H. Venturini, F. Riss, J.-C. Fernandez, and
M. Santana. A fully-non-transparent approach to the
code location problem. In SCOPES, pages 61–68, 2008.

[37] H. Wu, J. Gray, and M. Mernik. Grammar-driven
generation of domain-specific language debuggers.
SP&E, 38(10):1073–1103, 2008.

[38] P.T. Zellweger. An interactive high-level debugger for
control-flow optimized programs (summary). In
Software Engineering Symposium on High-Level
Debugging, pages 159–171, 1983.

