
Toolchain-Independent Variant Management
with the Leviathan Filesystem∗

Wanja Hofer1, Christoph Elsner1,2, Frank Blendinger1,
Wolfgang Schröder-Preikschat1, Daniel Lohmann1

1Friedrich–Alexander University Erlangen–Nuremberg, Germany
2Siemens Corporate Research & Technologies, Erlangen, Germany

{hofer,elsner,wosch,lohmann}@cs.fau.de

ABSTRACT
Preprocessor-configured software needs tool support for the
developer to be able to cope with the complexity introduced
by optional and alternative code blocks in the source. Cur-
rent approaches, which assist the software developer by pro-
viding preprocessed views, are all bound to a special in-
tegrated development environment. This eliminates them
from being used both in industry settings (where domain-
specific toolchains are often mandated) and in open-source
projects (where diverse sets of editors and tools are being
used and freedom of tool choice is crucial for the project
success).

We therefore propose to tackle the problem at a lower
level by implementing variant views at the filesystem level.
By mounting one or more variants using our Leviathan
filesystem, we enable the use of standard tools such as syn-
tax validators, code metric analysis tools, or arbitrary edi-
tors to view or modify a variant. The major benefit (and
challenge) is the support for automatically writing back to
the configurable code base when editing one of the mounted
variant views.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Tech-
niques—Program editors; D.2.6 [Software Engineering]:
Programming Environments; D.2.13 [Software Engineer-
ing]: Reusable Software

General Terms
Human Factors, Languages

∗This work was partly supported by the German Research
Council (DFG) under grants no. SCHR 603/4 and SCHR
603/7-1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOSD ’10 October 10, 2010, Eindhoven, The Netherlands
Copyright 2010 ACM 978-1-4503-0208-1/10/10 ...$10.00.

Keywords
Leviathan, Software Product Lines, Variability Imple-
mentation, Preprocessor-Based Configuration, Toolchain-
Independent Variability Support, Filesystem Views

1. INTRODUCTION AND MOTIVATION
A lot of configurable software projects implement their

variability in the sources using a preprocessor, which in-
cludes or excludes annotated code blocks depending on a
given configuration. Preprocessor-based configuration is
supported by all major software product line tools (e.g.,
pure::variants [1], Gears [7], etc.) and is especially prevalent
in the domain of embedded systems and operating systems,
because preprocessor-based configuration causes no run-time
overhead. The matter of the fact, however, is that develop-
ers of systems such as Linux or eCos [11], an embedded
configurable operating system, have to face a myriad of pre-
processor directives and optional code blocks in the sources,
even though they might only be working on the implementa-
tion of a single feature at a time. Thus, it has long been rec-
ognized that tool support is needed to cope with that com-
plexity (colloquially termed #ifdef hell) to aid maintenance,
evolution, and testing of such configurable software [6, 14].
For instance, in a previous study, we have found feature im-
plementations in eCos to be highly scattered across different
source files and to be tangled within the source files [9], ren-
dering comprehension of certain files almost impossible.

Tools such as CIDE [6] or C-CLR [13] therefore each ex-
tend a special integrated development environment (IDE)
and provide preprocessed views on the configurable code
base depending on a given configuration. The main disad-
vantage of those approaches is that they force the developers
into using that special IDE to cope with preprocessor com-
plexity. This is infeasible both in industry projects, where
toolchains are often fixed, and in open-source projects such
as Linux, where the personal freedom of the developers to
choose their editors and toolchains is of paramount impor-
tance1. Embedded software product lines, for instance, are
developed in very heterogeneous setups: Engineers include
domain experts in operating systems, in the actual embed-
ded application, or specialized in drivers. Oftentimes, those
engineers work in different companies supplying parts of the
code, and they make use of different, special-purpose tools
while developing and maintaining their subsystems, such as
network analysis or real-time analysis tools. Most of those

1To put it bluntly: Kernel hackers hate Eclipse.

bar.c

#ifdef FEAT_A
int var_a;
#%endif
bar();
bar2();
something();

bar.c

int var_a;
bar();
bar2();
something();

bar.c

bar();
bar2();
something();

Leviathan Filesystem

Configurable Code Base

View on Variant 1

View on Variant 2

foo.c

foo_init();
#ifdef FEAT_A
do_feat_a();
#endif
#ifdef FEAT_B
do_feat_b();
#endif
foo_cleanup();

foo.c

foo_init();
do_feat_a();
foo_cleanup();

foo.c

foo_init();
do_feat_b();
foo_cleanup();

Mount
Engine

Write-Back
Engine

M4
CPP

plug in

Preprocessor Components

vim

emacs

Var0 = {}
Var1 = {FEAT A}
Var2 = {FEAT B}
Var3 = {FEAT A, FEAT B}

Variant Definitions

User

input (1.)

merge changes (7.) mount Var1 (3.)

write() (6.)

mount Var2 (4.)

notify (8.)

specify (2.)

select
variant
(3., 4.)

save (5.)

reload (9.)

Figure 1: Example Work Flow in Leviathan.

tools are either unaware of—or even incapable of dealing
with—configurable source code.

Unaware tools include debuggers, for instance, which
show the complete configurable base code in a debug ses-
sion although only one concrete variant is being debugged
at a time, possibly obfuscating program comprehension due
to #ifdef cluttering. Tools that are unaware of a source
code base being configurable simply do not work too well on
those code bases, or they do not work to their full potential.
Incapable tools, on the other hand, break when they are fed
configurable source code instead of stand-alone code. Such
incapable tools include many kinds of source analysis tools
such as for execution time analysis, call graph extraction,
deadlock detection, syntax validators, reverse engineering
tools that generate UML diagrams from source code, and
others. Liebig et al., for instance, report that existing tool
support for Java or C# is broken by CPP conditional com-
pilation [8].

In order to better support configurable software projects
in industry and the open-source community, we therefore
propose to implement variant views at the filesystem level.
Our Leviathan filesystem is given a configurable software
base with existing annotated code blocks (e.g., via CPP
#ifdefs), and it can then mount views (i.e., it creates a
virtual disk volume) depending on a user-provided config-
uration. The mounted views provide virtual directories and
files, enabling the developer to use arbitrary file-based tools
on that variant. Additionally, we aim at providing write-
back support in Leviathan, enabling the developer to di-
rectly edit the virtual variants; the changes are then au-
tomatically merged back into the configurable code base.
By providing generic, toolchain-independent, and language-
independent variant views, Leviathan can therefore ideally
support configurable software in industry and open-source
projects.

In this paper, we first describe Leviathan in an example

work flow, complemented by a classification of use cases we
envision our system to be used in (see Section 2). Then,
we detail Leviathan’s architecture and implementation in
Section 3 before providing a comprehensive description of its
challenging write-back feature (see Section 4). After that,
we discuss our approach and related work in Section 5 before
concluding with Section 6.

Without loss of generality, for the remainder of the paper
we assume the preprocessor directives to be #ifdefs and the
preprocessor to be the subset of the C preprocessor CPP
that is used for conditional compilation. The Leviathan
architecture, however, incorporates a plug-in mechanism to
support arbitrary preprocessors (see Section 3).

2. WORK FLOW AND USE CASES
Figure 1 shows an example work flow how a target devel-

oper would use Leviathan for software maintenance. First,
he localizes a given configurable code base that he wants to
reason about or work on (e.g., the Linux kernel sources) in
the base filesystem. Second, he defines one or more variants
as sets of enabled and disabled features (e.g., #define direc-
tives). Both of those pieces of information are fed into Levi-
athan as input (steps 1 and 2 in Figure 1). The developer
can then mount several variants simultaneously to different
mount points by specifying the variant names (steps 3 and
4). After that, the user can operate as usual on the virtual
directories and files, which are in fact slices of the original
configurable code base. Operation includes read-only tasks
such as reasoning about variants by viewing the differences
between them as well as editing the virtual files with arbi-
trary tools; Leviathan will merge back the changes into the
configurable code base transparently in the background.

The work flow just described is, however, only one pos-
sible setting in which Leviathan can come in handy. We
envisage four types of settings, differing in whether the ac-
tual user is human or a software tool, and whether read-only

Leviathan Filesystem

Base Filesystem

write()read()open()getattr() readdir() rename() ...

Caching Layer
Processed FileProcessed FileProcessed File

M4
CPP

Configured
Blocks

Evaluator

Block Structure

ParserP
re

pr
o
ce

ss
or

C
om

p
on

en
ts

W
ri
te

-B
ac

k
E
n
gi

n
e Parser

Generic Blocks

Merger

Blocks

Parser

Serializer

Serializer

Observer

m
o

d
ifi

ca
ti

o
n

ev
en

t
tr

ig
g

er
in

va
li
d

a
ti

o
n

p
a

ss
th

ro
u

g
h

u
n

p
re

p
ro

ce
ss

a
b

le
fi

le
s

Figure 2: Leviathan Architecture and Data Flow.

or also write-back support is necessary. Each of the following
four use cases provides an example for such a usage setting:

• WCET analysis: A real-time analysis tool shall be
used to calculate the worst case execution time of a
specifically configured variant (user is a tool, read-only
access).

• Code reasoning: A software developer wants to get
an understanding of the source code; the code of fea-
tures irrelevant for the main functionality shall be ex-
cluded to improve comprehensibility (user is human,
read-only access).

• Feature refactoring: A source code refactoring tool
(e.g., Coccinelle [12]) shall be applied to a certain sub-
set of features within the code base (user is a tool,
write-back support required).

• Maintenance changes: The software developer fixes
localized bugs in a configured variant and wants them
to be merged back to the original source code base
(user is human, write-back support required).

The different settings result in different general require-
ments for Leviathan. First, if a human user is involved,
configurable display options help to comprehend the source
code independent of the capabilities of the employed editor.
In some cases, marking the beginning and end of each fea-
ture block with a dedicated marker may hinder readability,
whereas, in other cases, such markers are crucial to under-
stand the prerequisites for a piece of code to be included.
Second, Leviathan’s write-back support must prevent or
handle cases of ambiguity when merging changes back to the

configurable code base. Depending on the fact whether the
user is human or a software tool, one strategy or the other
will be more appropriate for disambiguation. We will discuss
the corresponding write-back approaches in Section 4.

3. LEVIATHAN ARCHITECTURE AND
IMPLEMENTATION

In this section we will describe Leviathan’s architecture,
its implementation and present some preliminary evaluation
results.

3.1 Architecture and Implementation
Internally, Leviathan has a modular architecture and

several layers, as depicted in Figure 2.
The topmost filesystem layer communicates with applica-

tions such as editors via the standard Linux VFS filesys-
tem interface, which includes system calls such as open(),
close(), read(), and write() to be called on files. This
layer is implemented as a driver for FUSE [4], a framework
that allows its actual drivers to run in user space; only a
very small FUSE kernel module is executed in privileged
mode. Thus, the Leviathan filesystem driver can link to
any third-party libraries built to support application devel-
opment. FUSE supports various Unix variants as well as
Mac OS X. There are also projects aiming at porting FUSE
to Windows, making it the most portable framework for im-
plementing filesystems.2

When processing a read() request, Leviathan first de-
termines if the corresponding file needs to be preprocessed

2See http://sourceforge.net/apps/mediawiki/
fuse/index.php?title=OperatingSystems.

depending on its file type. Read requests on binaries, for
instance, are directly passed through to the base filesystem.
If a file does have to be preprocessed, Leviathan directs
that request to its cache, which holds contents and meta
data about files that have been processed before. An addi-
tional observer component monitors modification events on
the base filesystem (via the inotify Linux kernel subsys-
tem) and invalidates the corresponding cache entry appro-
priately upon changes. This is needed to synchronize both
with changes made directly to the configurable code base on
the base filesystem and with indirect changes to that code
base via another mounted Leviathan variant (see also steps
6–8 in Figure 1). Only when a cache miss occurs does Le-
viathan direct the read() request to the corresponding
preprocessor component.

The preprocessor component itself has a well-defined in-
terface concerning the block structure it has to output for
Leviathan to work on; it effectively encapsulates the syntax
parsing and expression evaluating for a concrete preproces-
sor, such as CPP or M4 [10]. When the content of a virtual
Leviathan file is requested for the first time or needs to be
recalculated, the preprocessor component reads the base file
from the base filesystem and uses its parsing subsystem to
delineate configuration blocks encapsulated by preprocessor
directives. The parser of our CPP preprocessor component,
for instance, uses the Boost::Wave lexer [2] for that pur-
pose, and it will only resolve those macros that are used
for conditional compilation; that is, #defines used for def-
inition of constants or #includes are not resolved in order
not to impair code comprehension of the mounted variant.
Each configuration block is bound to a preprocessor expres-
sion, which is stored together with the corresponding block.
An expression evaluator then accesses the configuration that
was handed to Leviathan at mount time and uses those
preprocessor variable definitions (e.g., #defines in the CPP
language) to evaluate if a given block is to be included in the
virtual file or not. Note that this configuration can in fact
be the output of an external feature modeling tool, which
assures correctness in terms of feature selection and met de-
pendencies.

Our CPP component parses the CPP expression and eval-
uates them. It supports some basic arithmetical operations
as the original C preprocessor does. As a special feature,
logical expressions are evaluated using three-valued logic;
CPP variables and whole expressions can evaluate to true,
false, or undecided. True blocks are included in the virtual
file, false blocks are excluded, and undecided blocks are out-
put together with their preprocessor annotations. As the
negation of undecided also evaluates to undecided, the #else
clause of an #if/#else statement evaluating to undecided is
also included. This way, the developer can explicitly express
partial configurations by setting features to undecided, be-
sides being able to activate and deactivate features.

The data structure as output by the preprocessor compo-
nent is then stored in Leviathan’s cache to serve future read
requests. Additionally, a serializer component computes the
plain data stream that the application that has issued the
read() call will be given as a result.

3.2 Preliminary Evaluation
Our preliminary evaluation of the Leviathan filesystem

has yielded promising results. We have tested its perfor-
mance by measuring the time required to read, parse, and

output the complete source tree of Linux (version 2.6.31) and
the eCos embedded operating system (CVS-version 2010-03-
29). The test system has an Intel Core 2 Quad CPU Q9550
processor clocked at 2.83GHz, equipped with 4GB of RAM.

For Linux, the time to read, preprocess, and output (to
/dev/null) its complete source tree of 408MB takes Le-
viathan 130 seconds. Directly reading and outputting the
source tree without employing Leviathan (and therefore
without preprocessing) took 14 seconds. Thus the slow down
factor as caused by Leviathan is about 10. As Leviathan
only parses the actually accessed files and we expect most
use cases for Leviathan to involve only a rather small num-
ber of files (a human user, for example, only can read one
file at a time), we do not consider this decrease to be a
show stopper. Furthermore, both the 130 and the 14 sec-
onds were produced without caching to ensure comparable
figures. When using caching (the operating system’s file
system caching as well as Leviathan’s caching), the figures
decrease considerably, to 12 seconds for Leviathan and to
1 second for direct reading. The fact that Leviathan is still
notably slower is caused by its implementation as a FUSE
filesystem in user space, which by design causes expensive
additional context switching overhead between kernel and
user space.

When using Leviathan to read, preprocess, and output
the eCos embedded operating system, which has a code base
of only 1MB, all figures drop well below 1 second and no
noticeable disruptions occur in the work flow of a user. Al-
though, in its current state of development, Leviathan is
not optimized for speed, we consider its performance suffi-
cient for the aspired use cases described in Section 2.

4. WRITE-BACK SUPPORT
In addition to offering read-only views for analysis tools

and tasks that work on a configured variant (e.g., code met-
ric tools or execution time analysis tools), we want to en-
able the software developer and his tools to edit a mounted
variant. For instance, if he wants to perform maintenance
changes (see also the corresponding use case in Section 2),
this provides him with the ability to specify a configuration,
mount the variant, debug it, and modify the variant code
directly to get rid of the bug, eventually saving the changes
in his editor (step 5 in Figure 1). In the background, the
Leviathan filesystem will handle the write request by the
editor appropriately by directing it to its write-back engine
(step 6 in Figure 1; see also the corresponding architecture
part in Figure 2).

The actual write-back support is challenging. To this
end, Leviathan needs the additional information that the
preprocessor component has computed—the mapping from
source configuration blocks (source code blocks enclosed in
preprocessor directives) to variant blocks (those configura-
tion blocks actually visible in a given configuration) includ-
ing their positions. Note that in the mounted view, changes
in the configuration block structure are not supported. That
is, if additional #ifdef blocks need to be introduced, for in-
stance, this has to be done directly in the configurable code
base.

Since Leviathan is editor-independent, it does not have
an actual edit protocol available that shows which lines were
changed in which manner. Instead, it needs to operate
on discrete file content snapshots provided only when the

foo.c

foo_init();
#ifdef FEAT_A
do_feat_a();
#endif
#ifdef FEAT_B
do_feat_b();
#endif
foo_cleanup();

foo.c (modified view)

foo_init();
do_feat_a();
a_new_line();
foo_cleanup();

Figure 3: Example Ambiguity Problem During
Write-Back.

write() system call is issued (by saving the changes in an
editor, for instance). Such discrete snapshots make it im-
possible to know for certain what the user actually did and
semantically intended to express. Consider, for instance,
which block to assign a line to that was inserted exactly be-
tween two variant blocks (see Figure 3). This example is but
one of several edit scenarios that causes potential ambigu-
ity in the write-back process. We have therefore found two
different ways to deal with write-back requests.

4.1 Write-Back Heuristics
Using heuristics to merge changes performed on a

mounted variant view back into the configurable code base
is feasible as long as two conditions hold:

1. The configuration blocks in the configurable code base
are rather large and therefore there are relatively few
edges between variant blocks and a lot of context for
merge algorithms to work with. A recent survey cov-
ering 40 software product lines suggests that this is a
valid assumption [8].

2. The changes in the mounted view are saved rather in-
crementally and therefore the change sets are relatively
small. Again, in that case, the merge algorithms have a
lot of unchanged lines serving as context to work with.
Maintenance changes would be a typical use case that
fulfills this property (see also Section 2).

If those assumptions hold, then Leviathan’s write-back
algorithm will provide proper merge results to be written
back to the configurable code base. If one of those conditions
does not hold, then it is Leviathan’s heuristics that will
make a decision in corner cases, such as which block to assign
an inserted line to, as described above and in Figure 3. In
any case, if the code base itself is checked into a revision
control system, then the merge results can still be double-
checked in a difference view before actually committing them
to see whether the changes have been applied by Leviathan
as intended.

The actual heuristics algorithm and, with it, the question
which decisions to make in critical corner cases, is currently
still work in progress. There are lots of different possibili-
ties how to match context lines that are unchanged or that
changed only to a certain degree, and how to match altered
variant blocks back to source configuration blocks to apply
the write-back operation. In order to offer an algorithm that
proves to be valuable in practice, we are preparing an analy-
sis of typical changesets in a couple of software product lines
to be able to make an informed decision about the heuristics
parameters.

4.2 Marker-Based Write-Back
If the developer’s changes on a mounted view have to

be a hundred percent unambiguous, Leviathan offers an
additional, optional mechanism called markers. Markers
are language-dependent comment lines that delineate for-
mer configuration blocks in the variant views. If Levia-
than is configured to generate marker lines at mount time,
those lines are generated by the serializer component when
presenting the virtual file contents to the applications (see
Figure 2). By leaving the marker lines in place and only
editing the lines between them, the Leviathan user can
fully convey what he intends to change and how.

Upon saving the changes, Leviathan’s write-back pars-
ing component parses the altered virtual file for the marker
lines and maps the variant blocks in between to configura-
tion blocks in the configurable code base (see Figure 2). The
merge component then updates the file block structure in
Leviathan’s cache for future read accesses; another serial-
izer component writes back the altered file together with all
of its original preprocessor directives to the base filesystem.

With its marker mechanism, Leviathan’s write-back sup-
port is completely unambiguous at the cost of slightly in-
creased clutter through the introduced marker lines. How-
ever, the mounted variant will still be a lot more maintain-
able than the original configurable code base, since non-
active configuration blocks and the corresponding directives
are not visible in it; only active blocks and their markers are
displayed in the view.

Optionally, editors can implement light-weight plug-ins to
interpret Leviathan’s markers and highlight the informa-
tion in an editor-specific way, for example using vim’s folds
or CIDE’s colors. This means that those tools can be used
complementary to Leviathan. In that way, those tools can
be seen as the independent view parts of a model–view–
controller architecture; the actual preprocessing part is pro-
vided by Leviathan.

5. DISCUSSION
In this section, we discuss how Leviathan compares to

existing tooling and how integration with those tools may
be achieved. Additionally, we discuss current limitations of
our approach and how to overcome them.

5.1 Using and Integrating Other Tools
Some of the use cases identified in Section 2 can also be

addressed with existing tooling. However, our approach is
the only one that is toolchain-independent and, thus, allows
to work on a variant with arbitrary file-based tools. In the
following, we will address each of the four use cases identified
in Section 2.

When a tool works on a variant file read-only (e.g., for
WCET analysis), a separate preprocessor tool could be ap-
plied to the code base before analysis. Integrating the pre-
processor with the filesystem may be more convenient than
manually executing an external preprocessor, but basically
both perform the same task equally well. Variability-aware
code reasoning up to now has required dedicated viewers
and editors such as CIDE [6] or C-CLR [13]. Our solution is
generic and can be used both with the developer’s favorite
open source editor as well as prescribed fixed editors in in-
dustrial settings. In case of feature-local refactorings, some
refactorings might be done with semantic patch tools such as

Coccinelle [12]. However, Coccinelle detects semantic con-
texts based on matching normalized source code strings only.
As the expressions are not evaluated, more complex Boolean
conditions might be matched erroneously, resulting in patch-
ing the wrong set of code blocks. Furthermore, the patch
transformations must be formulated in the Coccinelle lan-
guage, whereas, with the Leviathan filesystem, arbitrary
tools, such as sed, Perl, or source code transformation lan-
guages such as TXL [3] may be used. Maintenance changes
as well can be performed on a specific variant and be written
back to the source code base using the developer’s editor of
choice.

Although Leviathan’s toolchain independence allows de-
velopers to use arbitrary editors and IDEs to work on
mounted variants, even in scenarios where a developer em-
ploys variability-enabled editors such as CIDE [6] or Fea-
tureMapper [5], Leviathan may come in handy. As both
have their own means for internally dealing with variabil-
ity, Leviathan could be used to transparently supply them
with the variability file format they require, while the actual
source code variability is managed with a preprocessor such
as CPP. This means that those tools can be used comple-
mentary to Leviathan. In that way, those tools can be seen
as the independent view parts of a model–view–controller
architecture; the actual preprocessing part is provided by
Leviathan. For this purpose, the expression evaluator (see
also Figure 2) would be dispensable, as these tools do not
work on variant files, but on unconfigured code bases. Fur-
thermore, to actually integrate such tools, our serialization
and parsing mechanisms need to be adapted accordingly in
order to be able to write and read the variability file formats
of tools such as CIDE and FeatureMapper.

5.2 Limitations of the Approach
One current limitation of our approach is that it does not

support changing the structure of conditional blocks in a
mounted view. This means that it is not possible to add,
remove, or change the inclusion condition of such a block
when working on the mounted view. This limitation is un-
problematic for such use cases as feature-local refactorings
and incremental maintenance changes (as described in Sec-
tion 2), which do not affect the conditional structure. If,
however, changes to the conditional structure are necessary,
those changes can be performed directly on the configurable
code base. By means of its internal notification mechanism
(see also Section 3), Leviathan will be able to update all
of its mounted views where needed.

As mentioned before, Leviathan’s CPP component only
evaluates the subset of CPP constructs used for conditional
compilation such as #if, #ifdef, and #ifndef; it leaves out
#include or #define statements. As a drawback we cur-
rently cannot definitely evaluate expressions containing CPP
macros. However, only 2 of the 27,569 conditional expres-
sions used for feature-based configuration in Linux3 call
a macro function (e.g., #if LINUX_VERSION_CODE >=
KERNEL_VERSION(2,2,0) to query the kernel version).
We deal with such cases by simply setting such expressions
to undecided, which results in the inclusion of the corre-
sponding block including its CPP annotations into the pre-
processed file.

One very general concern about any tool that provides

3Each preprocessor variable used for configuration starts
with the prefix CONFIG_.

views on configurable code bases (such as Leviathan) is
the effect of a local feature change that was performed in
a view on other features that are not visible in the current
view. Consider, for instance, renaming a variable that is also
used in a hidden feature block; this refactoring will make
any variant that uses that feature stop from even compiling.
If such problems are to be avoided, either the write-back
results can be double-checked in the configurable code base,
or the change can be performed directly in the code base
itself, thereby effectively avoiding Leviathan’s advantage of
taming #ifdef clutter. This has to be decided on a case-by-
case basis, and some of the analyzed use cases (see Section 2)
will be more susceptible to that problem than others.

6. CONCLUSION AND FUTURE WORK
We have shown a way to deal with the complexity of

preprocessor-configured software—by using views as pro-
vided by our Leviathan filesystem. Our approach improves
on those based on special IDEs since it enables the use of
arbitrary toolchains that work directly on files. This is cru-
cial both in industry settings with fixed toolchains as well as
in open-source projects, where very heterogeneous tools and
development environments are used. Although some tools
may in fact be #ifdef-aware, Leviathan modularizes pre-
processor functionality by implementing it on the filesystem
level, providing true separation of concerns.

We still need to fully evaluate our Leviathan approach
and especially its write-back engine and approaches to be
able to exactly state its benefits and disadvantages; the
evaluation targets will be Linux and eCos, as well as a
department-internal operating system product line that is
used in classes. In future work, we additionally want to
tackle read and write support for code bases that imple-
ment optional features with patch sets, which are, for ex-
ample, prevalent for freshly implemented and experimental
features in Linux. Furthermore, we are working on a formal-
ization of our two write-back approaches to be able to grasp
their respective advantages and boundaries—and, therefore,
their applicability to different use cases.

7. REFERENCES
[1] D. Beuche. Variant management with pure::variants.

Technical report, pure-systems GmbH, 2006.
http://www.pure-systems.com/fileadmin/
downloads/pv-whitepaper-en-04.pdf%, visited
2010-08-23.

[2] Wave V2.0: Wave C++ preprocessor library.
http://www.boost.org/doc/libs/1_43_0/
libs/wave/index.html, visited 2010-07-29.

[3] J. Cordy. The TXL source transformation language.
Science of Computer Programming, 61(3):190–210,
Aug. 2006.

[4] FUSE: Filesystem in userspace.
http://fuse.sourceforge.net/, visited
2010-07-29.

[5] F. Heidenreich, J. Kopcsek, and C. Wende.
FeatureMapper: Mapping features to models. In
Proceedings of the 30th International Conference on
Software Engineering (ICSE ’08), pages 943–944, New
York, NY, USA, 2008. ACM Press.

[6] C. Kästner, S. Apel, and M. Kuhlemann. Granularity
in software product lines. In Proceedings of the 30th

International Conference on Software Engineering
(ICSE ’08), pages 311–320, New York, NY, USA,
2008. ACM Press.

[7] C. W. Krueger. BigLever software Gears and the
3-tiered SPL methodology. In Companion to the 22nd
ACM SIGPLAN Conference on Object-Oriented
Programming Systems and Applications (OOPSLA
’07), pages 844–845, New York, NY, USA, 2007. ACM.

[8] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and
M. Schulze. An analysis of the variability in forty
preprocessor-based software product lines. In
Proceedings of the 32nd International Conference on
Software Engineering (ICSE ’10), New York, NY,
USA, 2010. ACM Press.

[9] D. Lohmann, F. Scheler, R. Tartler, O. Spinczyk, and
W. Schröder-Preikschat. A quantitative analysis of
aspects in the eCos kernel. In Proceedings of the ACM
SIGOPS/EuroSys European Conference on Computer
Systems 2006 (EuroSys ’06), pages 191–204, New
York, NY, USA, Apr. 2006. ACM Press.

[10] GNU M4 – GNU Project – Free Software Foundation

(FSF). http://www.gnu.org/software/m4/,
visited 2010-07-29.

[11] A. Massa. Embedded Software Development with eCos.
New Riders, 2002.

[12] Y. Padioleau, J. L. Lawall, G. Muller, and R. R.
Hansen. Documenting and automating collateral
evolutions in Linux device drivers. In Proceedings of
the ACM SIGOPS/EuroSys European Conference on
Computer Systems 2008 (EuroSys ’08), Glasgow,
Scotland, Mar. 2008.

[13] N. Singh, C. Gibbs, and Y. Coady. C-CLR: A tool for
navigating highly configurable system software. In
Proceedings of the 6th AOSD Workshop on Aspects,
Components, and Patterns for Infrastructure Software
(AOSD-ACP4IS ’07), pages 1–6, New York, NY,
USA, 2007. ACM Press.

[14] H. Spencer and G. Collyer. #ifdef considered harmful,
or portability experience with C News. In Proceedings
of the 1992 USENIX Annual Technical Conference,
Berkeley, CA, USA, June 1992. USENIX Association.

