
Assessment of Product Derivation Tools in the Evolution
of Software Product Lines: An Empirical Study

Mário Torres, Uirá Kulesza,

Matheus Sousa, Thais Batista
DIMAp-UFRN, Brazil

{mario, uira, thais, matheus}@dimap.ufrn.br

Leopoldo Teixeira, Paulo Borba

CIn-UFPE, Brazil
{lmt, phmb}@cin.ufpe.br

Rosana Braga, Paulo Masiero

ICMC-USP, Brazil
{rtvb, masiero}@icmc.usp.br

Elder Cirilo, Carlos Lucena
PUC-Rio, Brazil

{ecirilo, lucena}@inf.puc-rio.br

ABSTRACT

Product derivation approaches automate the customization
process of software product lines. Over the last years, many tools
have been proposed aiming at synthesize and generate products
from a set of reusable assets. These tools adopt different
techniques and strategies to implement and automate the product
derivation activities. In this paper, we analyzed six modern
product derivation tools (Captor, CIDE, GenArch, MSVCM,
pure::variants, XVCL) in the context of evolution scenarios of a
software product line. Our study has adopted several metrics to
analyze the modularity, complexity and stability of product
derivation artifacts related to configuration knowledge along
different releases of a mobile product line. The preliminary results
of our study have shown that approaches with a dedicated model
or file to represent the CK specification can bring several benefits
to the modularization and stability of a software product line.

Categories and Subject Descriptors

D.2.8 [Metrics]: Product Metrics.

General Terms

Measurement, Experimentation

Keywords

Product Derivation Tools, Measurement

1. INTRODUCTION

A software product line (SPL) [8] is a set of related software
systems from a particular market segment that share common
functionalities, but are sufficiently distinct from each other.
Existing approaches [9, 8] propose and motivate SPL
development by means of the specification, modeling and
implementation of features. A feature [9] is a system property or
functionality that is relevant to a stakeholder. It is used to capture
commonalities and discriminate variabilities among SPL systems.

SPL development involves the design and implementation of core
assets (components, frameworks, libraries and others) that
adequately modularize common and variable features during
domain engineering [9].

Product derivation [10] refers to the process of building a product
from the set of code assets implemented for a SPL. It encompasses
the selection, composition and customization of these code assets,
in order to address a specific SPL product (configuration).
Existing product derivation approaches [7, 6, 22, 4, 20, 13, 14, 3]
automate the synthesis and customization of SPL products. Over
the last years, many tools have been proposed with this aim. They
adopt different techniques and strategies to implement and
automate the product derivation activities, varying in different
perspectives, such as: (i) from visual and model-based tools to
textual and domain-specific approaches that specify the problem
space (e.g., feature model), solution space (e.g., code assets) and
configuration knowledge (mapping between features and code
assets) from the SPL; and (ii) they adopt a positive or negative
derivation process to customize and generate SPL products.

Many tools have been proposed, with several advantages of their
adoption in real and industrial scenarios [7, 6, 22, 4, 20, 13, 14,
3]. However, there are few studies addressing the assessment and
comparison of these tools that demonstrates the real impact,
benefits and disadvantages of using a specific tool. Existing
research work focuses on qualitative tool analysis [18, 21, 16, 15].
None of the existing studies have explored or analyzed the
product derivation artifacts produced during the evolution of an
existing SPL. Besides, to the best of our knowledge, there is no
existing work that quantifies metrics that assess the modularity,
complexity and stability of product derivation artifacts during the
evolution of SPLs.

In this context, this work proposes to assess and compare existing
product derivation approaches considering the evolution releases
of a SPL. Our analysis focuses mainly on the modularity,
complexity, and stability attributes of derivation artifacts specified
to support the process of automatic product derivation. Existing
metrics adopted in other recent empirical studies [12, 19] are
adapted to quantify these attributes in product derivation artifacts
that specify the configuration knowledge (CK) between features
and code assets. The metrics are computed in the aspect-oriented
implementations of four evolution releases of MobileMedia [12],
a software product line for media (photo, video and audio)
management on mobile devices. The following six existing
product derivation tools are analyzed and compared in our study

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FOSD’10, October 10, 2010, Eindhoven, The Netherlands.
Copyright 2010 ACM 978-1-4503-0208-1/10/10…$10.00.

from the perspective of CK specification: Captor [20, 13], CIDE
[14], GenArch [7], Hephaestus [5], pure::variants [3] and XVCL
[22]. The preliminary results of our study have shown that
approaches with a dedicated model or file to represent the CK
specification can bring several benefits to the modularization and
stability of a software product line.

The remainder of this paper is organized as follows. Section 2
presents the study settings of our comparative study: it overviews
the investigated product derivation approaches, it details the
phases and assessment procedures adopted, and finally, it
describes the metrics adopted to quantify the modularity,
complexity and stability of the SPL releases. Section 3 analyzes
and discusses the results obtained for the metrics considering the
different releases of MobileMedia. Some general discussions are
made on section 4. Section 5 relates our study to other existing
ones developed by the community. Finally, Section 6 concludes
the paper and provides directions for future work.

2. STUDY SETTINGS
This section presents detailed information about our assessment of
product derivation tools. The main aim of our study was to
analyze and observe the modularity and stability of existing
product derivation artifacts, and also to validate the usefulness of
some metrics in the quantification of these attributes. In Section
2.1, we present the approaches we have evaluated in this study.
Section 2.2 presents the phases and assessment procedures of our
preliminary study. Section 2.3 describes the metrics suite adopted
to enable the modularity, complexity and stability analysis of the
approaches.

2.1 Product Derivation Approaches
This section provides an overview of the evaluated approaches.
We discuss their particularities, identifying how the configuration
knowledge (CK) is expressed in each approach. In most of the

approaches, feature models [9] are used to represent the
commonalities and variabilities of the SPL, defining its scope.
Feature models denote the set of products that can be generated
for the SPL, through the relationships between features and their
types (alternative, optional, mandatory, and so on). The
approaches in our preliminary study were chosen according to the
following criteria: (i) they represent approaches that were
developed by our research groups (Captor, MSVCM and
GenArch) or they are considered relevant product derivation tools
in the research or industrial community (CIDE, pure::variants and
XVCL); (ii) they are code-oriented, meaning that when we refer

to reusable assets, we are mainly referencing code assets, such as
classes, aspects, interfaces, packages, except stated otherwise; and
(iii) there is an available implementation of the approach in order
to allow its use in the case study. Unfortunately, due to time
restrictions, it was not possible to include or consider other
product derivation tools in this preliminary study. We intend to
extend and consider new approaches in a future and more
controlled study.

Captor. The Captor tool is a Configurable Application Generator
used to support the development of applications on a specific
domain [20]. It covers domain and application engineering. It uses
an Application Modeling Language (AML), used in a way similar
to a feature model, that can be specified through a graphical user
interface, or directly in XML. The CK is also composed by

templates with XSL tags, and a mapping file called rules.xml, that
links the defined AML with the templates. Captor also provides
pre and post processors, also specified on XML files, which can
be used to define tasks like copying mandatory files to the output
directory. The application engineer defines an instance of the
AML previously created to build and derive a product.

CIDE. The Colored Integrated Development Environment
(CIDE) is a SPL tool for decomposing legacy code into features
[14]. It follows the paradigm of virtual separation of concerns,
i.e., developers do not physically extract the feature code, but just
annotate code fragments inside the original code, in a similar
fashion to conditional compilation tags (#ifdef). However, instead
of using tags in comments throughout the code, it uses
background colors. So, code fragments belonging to a feature are
shown with the background color of the feature. Another
difference to conditional compilation is that annotations are
disciplined, in order to prevent syntax and type errors. The
underlying structure of the code to be annotated is considered,
allowing developers to annotate, and thus, remove from assets,
only program elements like classes, methods, or statements. These
annotations represent the CK information, associating these
elements to features.

GenArch. GenArch [7, 6] is a model-based tool for automating
the product derivation process. The GenArch approach is centered
on the definition of three models: feature, architecture and
configuration. The architecture model defines a visual
representation of the reusable assets in order to relate them to
features. The configuration model is responsible for defining the
mapping between features and assets, representing the CK. This
model is fundamental to link the problem space (features) to the
solution space (implementation assets), and to enable automatic
product derivation.

MSVCM. The Modeling Scenario Variability as Crosscutting
Mechanisms (MSVCM) approach [4] was initially proposed to
deal with requirements variability, but it has been extended to deal
with variabilities in source code and build files [5]. In MSVCM,
the CK is specified into a separate model, relating features and
their combinations (feature expressions) to transformations that
translate SPL assets into product specific artifacts. The approach
is named crosscutting because product derivation is resultant of a
weaving process that takes as input artifacts such as the feature
model, configuration knowledge, instance model, and so forth.
These models crosscut each other with respect to the resulting
product. If a given feature expression is evaluated as True for a
given product (defined in the instance model), the related
transformations are applied.

pure::variants. pure::variants [3] is a SPL model-based product
derivation tool. Its modeling approach considers mainly two
models: feature and family models. The family model describes
the internal structure of the individual components and their
dependencies on features. The family model is structured in
several levels. The highest level is formed by the components.
Each component represents one or more functional features of the
solutions and consists of logical parts of the software (reusable
assets). The physical elements can be assets that already exist,
assets that will be created and transformations that will be
performed based on the feature selection. A transformation can be
any activity, such as copying code assets from a repository to a
specific location, customizing configuration files, or even UML

models.

XVCL. The XML-based Variant Configuration Language (XVCL)
[22] is a language for configuring variability in textual-based
assets. XVCL is based on Bassett's frames [2], every file on its
structure needs to be a frame (XML file combined with code and
XVCL commands) linked to other frames. This hierarchical
structure is called x-framework. This approach has no specific
structure to organize the CK. Instead, we use XVCL variables to
set features and then validate if that feature should be present or
not in the derivated product. The XVCL processor then, given a
set of features (variables) and their values (selected or not)
processes the frames files in order to generate the product.

2.2 Study Phases and Assessment Procedures
Our study was organized in the following major phases: (i)
specification of the SPL artifacts related to product derivation
considering all the approaches presented in Section 2.1; (ii)
quantification of the selected metrics over the different derivation
artifacts produced for each one of the investigated approaches;
and (iii) quantitative analysis and assessment of the obtained
results for the different modularity, complexity and stability
metrics adopted in our study. Following we provide additional
details of these phases.

In the first phase of our study, the aspect-oriented
implementations of 4 releases (release 4 to 7) of MobileMedia
SPL [12] were considered to implement the different artifacts of
the product derivation approaches. The available documentation
of MobileMedia was used as a base to specify and implement the
derivation artifacts. MobileMedia (MM) was selected to be part of
our study for different reasons. First, because it is an expressive
SPL implemented with modern technologies, including an aspect-
oriented language (AspectJ) and the Java Micro Edition (Java
ME) API. Second, it has been used and validated in many other
empirical studies [12, 1]. Finally, MM provides different
evolution releases which allowed us to observe the effects of
change scenarios along derivation artifacts considering the
different approaches. This last criterion was preponderant to the
choice of MM to this preliminary study.

During the specification of the derivation artifacts, we established
alignment rules between the approaches in order to guarantee that:
(i) the best practices of each approach were used to implement the
artifacts; and (ii) the comparison between the derivation artifacts
was equitable and fair. Five researchers performed these
alignment activities. All misalignments found were discussed
between the study participants and eventual corrections were
applied to the artifacts implementation to guarantee their
alignment. It was ensured, for example, that: (i) the same set of
common and variable features were used in the derivation artifacts
considering each release of MM; (ii) every variability and
implementation artifacts were expressed using the appropriate
mechanisms of the product derivation approaches; and (iii) the
CK specifications in the different approaches are consistent
between them, which means that all product derivation
approaches are specifying the same products that can be
automatically produced from each MM release.

After implementing MM derivation artifacts using the six different
approaches, we applied and quantified the modularity, complexity
and stability metrics along these different artifacts. We considered
the artifacts that are responsible to specify the configuration

knowledge in the different approaches. Our main aim was to
quantify the tangling, scattering, size and instability of the
derivation artifacts in the light of change scenarios demanded by
MM evolution. Additional details about the adopted metrics to
quantify these properties are presented in the next section. Finally,
after the collection of all the metrics, the computed data was
organized in spreadsheets and graphics in order to be analyzed.
Results of this analysis are presented in Section 3.

2.3 The Metrics Adopted in Our Study
In order to compare the CK specification of the different product
derivation approaches, we have selected a metrics suite to enable
their quantitative analysis. The metrics are divided into three
main groups: (i) modularity, (ii) complexity and (iii) stability.

Modularity. The modularity metrics are adapted from previously
proposed metrics by Sant'Anna et al [19]. This previous work has
proposed a set of modularity metrics to measure the separation of
concerns in aspect-oriented implementations. The main goal of
these metrics is to quantify the degree of scattering and tangling of
concerns in aspect-oriented artifacts. They have been used and
validated not only in the assessment of aspect-oriented
implementations, but also to artifacts produced in other
development stages: such as requirements, architecture and
design, textual and model specifications [4,12]. In our study, we
have adapted these metrics to quantify the scattering and tangling
of CK specifications along product line assets (configuration files,
derivation models, templates and source code) that are
implemented to enable automatic product derivation.

We measure the scattering counting 1 for each SPL asset that
contains some sort of CK specification, including any textual
document or model associated with CK, when applied. In the
CIDE approach, we counted every code asset colored according to
a specific feature, as a unit of CK scattering. Tangling is
calculated in a similar way than the Concern Diffusion over Lines
of Code (CDLoC) metric, where we count the number of concern
switches in a given source code asset [19]. In our case, we
calculate this metric considering the CK specification as the
concern. Thus, for each derivation artifact that includes some sort
of CK specification tangled with specification or code related to
another concern (variabilities and implementation), there is a
switch, which we count. If the approach has a dedicated CK
model or textual specification, we do not take this model into
account for this metric, because it completely modularizes this
concern.

Complexity. The goal of this analysis is to measure the effort
needed by domain engineers to prepare the artifacts that support
the automatic product derivation in a specific approach.
Complexity is directly related to the size of configuration items
needed to represent the CK in each approach. Two metrics were
used: (i) number of tokens in CK sentence expressions; and (ii)
number of CK sentence expressions.

The first metric counts the number of tokens needed to build the
CK, i.e., the data that the domain engineer must effectively write
to configure the SPL according to the feature model. The counting
was based on the native tokens provided by each language/tool to
represent the CK. In the XVCL approach, for example, we define
the following expression for the feature Photo: <select

option="Photo"> <option value="yes">. Here we count

the total of 16 tokens, 8 for each statement. On the other hand, in

the GenArch tool, it is only necessary to provide the feature name
associated - in this case, Photo - with a specific code asset in the
configuration model. Thus the number of token in this case for
GenArch was 1, because that is all the domain engineer has to
write. The complete specification is transparent and is maintained
through the configuration model.

The second metric, number of CK sentence expressions, analyzes
the conciseness and expressiveness of the CK in the different
approaches. It quantifies the amount of CK sentence expressions
needed to support the product derivation process. When the SPL
evolves, the concision of these expressions becomes even more
important. In some approaches, it enables adding new assets
without requiring the inclusion of a new expression. We count the
number of CK sentence expressions by quantifying the amount of
feature expressions specified in the CK artifacts. Note that this
counting is independent of the effort to build the expression or its
size. These are addressed by the number of tokens in CK sentence
expressions metric.

Stability. The stability metric is used to analyze the impact of
evolving the SPL on the derivation artifacts (CK). The metric was
computed in terms of CK sentence expressions added, changed or
removed during the SPL evolution. We measure the difference
between releases, it is inspired on Yau and Collofello study [23].
A CK sentence expression is considered new when there is a new
feature expression in the CK for that release. When a new code
asset is included in the SPL, this not necessarily imply in the
inclusion of a new CK feature expression. This depends on the
approach. In some cases, an existing expression can be modified
to address the new code assets. With this metric analysis we can
measure the effort needed to evolve the CK during SPL
maintenance.

3. STUDY RESULTS
In this section, we present and discuss the collected results for the
modularity, complexity and stability metrics from our study. Our
analysis considers the specification of the derivation artifacts
considering 4 different releases of the Mobile Media SPL.

3.1 Modularity Analysis
The main goal of modularity analysis is to quantify the degree of
scattering and tangling of the CK over the SPL assets.

Configuration Knowledge Scattering. We measured the degree
of scattering of the configuration knowledge by quantifying all
SPL assets that have some sort of CK specification in them.
Source code, for example, might contain such information in the
form of a conditional compilation tag (#ifdef). Figure 1 shows the
results of the collected values for this metric considering the four
releases of MobileMedia specified using the different approaches.
We can observe that GenArch, pure::variants and MSVCM tools
presented more stable and lower values for this metric compared
to other approaches, even when new features and assets are added.
This happens mainly because these approaches provide a separate
model or configuration model to specify the configuration
knowledge with the mapping between features and code assets.
The CIDE, Captor, and XVCL approaches presented higher
values for the CK scattering, as shown in Figure 1. CIDE presents
a higher scattering because it does not provide dedicated support
to modularize the CK. In this approach, every colored element in
the code assets can be seen as a CK sentence expression that
relates the element to a feature. The Captor and XVCL

approaches also presented high values for the CK scattering
metric. The product derivation assets from these approaches are
composed by a set of specific files that describe transformation
rules, which represent a significant part of the CK specification.
Nonetheless, code assets also contain CK specification in the form
of tags. This explains why these two approaches got quite similar
values for CK scattering metrics in all MobileMedia releases. As
we see in Figure 1, the collected values for the CK scattering
metric were higher for the Captor and XVCL approaches.

Figure 1. Configuration Knowledge Scattering.

Figure 7 illustrates the product derivation artifacts specified for
five approaches that are responsible for the inclusion of the Photo
and Music features in the MobileMedia SPL. For example, XVCL
requires that each SPL asset that is processed to be a frame. In
order to transform an asset in a frame, we have to include basic
tags with some parameters, whether this frame has fine-grained
variability or not. In the right side of Figure 7 for example,
PhotoAndMusicAspect.aj.xvcl represents the correspondent
aspect specified as a frame. On the other hand, Captor also needs
to use XSL tags, and every variable asset has to be a template. The
right side of Figure 7 also shows PhotoAndMusicAspect.aj aspect
specified with a set of XSL tags used by Captor derivation
artifacts. The left side of Figure 7 illustrates the configuration files
of the Captor and XVCL approaches that are used to specify the
transformation rules mentioned above. The scattering of these
transformation rules and code tags along product derivation
artifacts and code was quantified by the degree of scattering
metric. Note that GenArch, MSVCM and pure::variants does not
contain CK information on the code asset. The CK is modularized
into a single file.

Configuration Knowledge Tangling inside Code Assets. Figure
2 shows the collected values for CK tangling metric. The Captor
and XVCL approaches presented higher values for the tangling
metric. This mainly occurs because both approaches must contain
specific headers and footers in any code asset associated with CK.
This information is used during the product derivation process of
each approach. Figure 7(right side) shows, for example, that the
PhotoAndMusicAspect.aj aspect needs to include configuration
tags for both Captor and XVCL approaches. All the code assets
associated with variabilities required the insertion of these same
configuration tags thus contributing to improve the CK scattering.
Precisely because GenArch, MSVCM and pure::variants, have the
CK properly insulated, there is no CK tangling inside code asset.

The CK tangling metric was quantified in CIDE by the
occurrence of color sentences spread along code assets. Because
of that, CIDE initially presented a low tangling considering the
MobileMedia release 4, but as the number of features increased,
values got higher compared to other approaches. It mainly

happens because with the increase of features to be managed,
feature expressions also become more complex. GenArch,
pure::variants and MSVCM had equivalent and the best results for
the CK tangling metric considering all the releases. On the first
three releases investigated (releases 4 to 6), the CK tangling for
these approaches was zero. This occurred because the CK was
adequately modularized into a dedicated model.

Figure 2. CK Tangling inside Code Assets.

We can also observe that fine-grained variability increases CK
tangling in code assets. The fact that most of MobileMedia
variations are well modularized with aspects contributed for the
lower values of the scattering and tangling metrics in releases 4-6.
However, release 7 has a particular case where one asset
(OptionalFeatureAspect.aj) contains fine-grained variability that
cannot be handled using only the CK model. Figure 3 illustrates
this aspect, where the arguments passed on the declare precedence
clause are variabilities and depend on the selection of specific
features to be included in the aspect code. Because of that, this
file needs to be processed using conditional compilation tags
(MSVCM and pure::variants) or template processing (GenArch
and Captor). Both techniques are used during product derivation
to decide if part of this asset will be included or not. This kind of
fine-grained variability usually happens on legacy SPLs[14]. Note
that all the approaches and metrics from this study suffer
influence of this fine-grained variability. This fine-grained
variability was responsible for the light increase in the collected
results for the CK tangling metric considering the Captor and
XVCL for the release 7 of MobileMedia.

Figure 3. OptionalFeatureAspect.

3.2 Complexity Analysis
The main goal of the two metrics on this group is to measure the
complexity/size of the CK specification in each approach, and
furthermore analyze how they behave when evolving the SPL.

Number of tokens in CK specification. The number of tokens
metric allowed us to distinguish the size and complexity of CK
specification on the different derivation approaches. Figure 4
shows the collected values for this metric. Captor is the approach
that requires the higher number of tokens in CK specification.
Reasons for that include the need for creating several CK decision
expressions (task calls and definitions), and headers and footers

specified in the code templates. XVCL also presented higher
values for the number of tokens in CK metric. This happens due
to the same reason of Captor, except that task definition and call is
specified directly in XVCL files. In MSVCM, values for this
metric are higher than GenArch since it is necessary to specify
asset names and mandatory associations as well.

Figure 7 shows how we count tokens in all approaches (except
CIDE), for the case of the PhotoAndMusicAspect asset. This
aspect is related to the joint selection of the Photo and Music
features. For this metric, in XVCL, Captor, GenArch, MSVCM
and pure::variants approaches, we count 94, 129, 3,3 and 15,
respectively. In the CIDE approach, since we just color code
elements with associated features, there is no textual CK
specification. Therefore, the metric values for all releases are zero.
GenArch, pure::variants and MSVCM have values much smaller
than other approaches. In GenArch, the architecture model that
abstracts all the code assets is built automatically by the tool.
Product line engineers only need to write feature expressions,
associating features to assets. So, metric values tend to be lower
for GenArch. This happens similarly in MSVCM.

Figure 4. Number of Tokens in CK specification.

Figure 5. XVCL – Sentence Expression.

Figure 6. Sentence Expressions in CK Specification.

Sentence Expressions in CK specification. Figure 6 shows the
number of sentence expressions for the different MobileMedia

releases specified in the six approaches. Similarly to the tangling
metric, the CIDE approach presented a considerable increase
when adding new features. A sentence expression in CIDE is
considered as a colored element. Therefore, these metric values
are somewhat correspondent to the scattering metric values for the
CIDE approach. The XVCL and MSVCM approaches can group
many assets into a single sentence. A difference is that in
MSVCM, we also specify the mandatory relationships as
previously mentioned. Figure 6 illustrates this grouping
characteristic of XVCL. It shows that, in release 6, the Photo
feature is associated with 5 assets. In the next release, 3 new
assets are added to this expression, and no other sentence needs to
be created. In Captor, pure::variants and GenArch, we need to add
3 sentence expressions. This can be mitigated in pure::variants
and GenArch by associating higher level abstractions, such as
packages, with feature expressions. However, if feature
implementation is highly scattered, it might not be possible to do

so. In Figure 7 the sentence expressions are showed for the
different approaches.

3.3 Stability Analysis
This analysis looks at three different perspectives of sentence
expressions between releases: added, modified and removed.

Added. Figure 8 (a) shows the number of sentence expressions
added in the configuration knowledge of each approach between
releases. When adding code assets, GenArch, pure::variants,
Captor and CIDE treat assets individually, so they have larger
effort than MSVCM and XVCL, which can group these assets. In
GenArch and Captor, the inclusion of an asset represents a new
sentence expression added to the configuration knowledge.

Changed. Figure 8(b) shows the number of sentence expressions
changed in the configuration knowledge. The releases 4, 5 and 6

Figure 8. Stability – Added (A), Modified (B) and Removed (C) .

Figure 7. Approaches and Metrics.

had many new assets and few expressions, or none in most cases,
that could be reused. Again, the approaches (GenArch, Captor and
pure::variants) that treat assets individually had larger effort than
the other ones. The CIDE approach has not changed items,
because when changes occur in an asset, you must remove its
color and then mark the new artifact with this color.

Removed. Figure 8(c) shows the numbers of sentence expressions
removed from the CK in each approach. This usually occurs when
code assets are removed. These metric results are very similar to
almost all approaches, variation happens only in cases that the
approach could reuse some expressions, reflecting on Figure 8(b).
The fact that CIDE cannot change the sentence expressions results
in the increase of the number of removed items.

4. DISCUSSIONS
In this section, we discuss interesting issues and lessons learned
related to the assessment of the product derivation approaches in
our preliminary evolution study.

General Analysis of the Study Results. The GenArch,
pure::variants and MSVCM approaches presented the best results
considering most of the modularity and complexity metrics. The
main reason that contributed to the good performance of these
approaches is the use of a separated CK specification. Captor and
XVCL obtained the less satisfactory results considering the
modularity and complexity metrics. This mainly occurred due to
the textual and complex nature of CK specification provided by
these approaches. Considering initial MobileMedia releases,
CIDE presented reasonable results for the modularity and
complexity metrics. However, it did not scale along the
subsequent ones in terms of CK scattering and tangling, because
of the increasing number of CK color sentences specified in the
code assets. Regarding the stability metrics, we have observed that
Captor, GenArch, MSVCM and XVCL required to add and
modify a small and stable number of CK sentence expressions
along the different releases. MSVCM was the approach that
presented the better stability for the CK expressions. On the other
hand, CIDE exhibited higher values for the number of removed
CK expressions due to the need to reassign new colors to CK
sentences that are changed in the code assets along the releases.

Automated and Model-driven Tools. Our study has revealed that
the CK specification in a dedicated model or file can bring several
benefits to the modularization, complexity and stability attributes.
That was the case for GenArch, MSVCM and pure::variants
approaches. Captor and XVCL did not obtained better results in
most of the modularization and complexity metrics. These
approaches require manually written transformation rules related
to the product derivation process. It is interesting to notice that the
simple automated support to the specification and generation of
the transformation rules that represents CK in both Captor and
XVCL approaches could bring equivalent results to the other
approaches.

CK Specification inside Code Assets. Another interesting issue
that our study has also revealed is the positive/negative impact of
the variability implementation technique in the modularization of
the product derivation artifacts. Most of the variabilities
implemented for MobileMedia releases were codified using
aspect-oriented programming. This contributed to the positive

values obtained for most of the modularity, complexity and
stability for the different approaches. Analysis of the
MobileMedia implementation using conditional compilation
(CC), for example, would find a large number of CC directives
(IFDEFs) spread and tangled along the different code assets. All
these CC directives can also contribute to the instability of the
product derivation artifacts during SPL evolution because they are
not adequately modularized. Although the adoption of aspect-
oriented programming in the MobileMedia implementation
brought advantages and benefits to the specification of the
product derivation artifacts, our study also illustrated that fine-
grained variabilities encountered inside code assets can lead to
difficult CK modularization scenarios, even for approaches that
provides a separate CK specification. This was illustrated in our
study by the OptionalFeatureAspect that establishes the
precedence between aspects (variabilities) that will be applied to
the SPL core.

5. RELATED WORK
To the best of our knowledge, we are not aware of empirical
research on the assessment of different product derivation tools
used in the evolution context for SPLs. Many works evaluate a
single approach for SPL implementation used in a SPL evolution
scenario. The original MobileMedia study [12] compares the
negative and positive impact of using aspects for implementing
SPLs, instead of conditional compilation. There are some
similarities to our work, since we are using the same releases and
adapting some of the used metrics. So, instead of evaluating the
code only, in this work we focus on how different CK
representations provided by the product derivation tools behave in
a SPL evolution scenario.

Mannisto et al. discuss the problem of managing configuration
knowledge evolution [17], describing key elements and presenting
an outline for future work. They present an approach based on the
Generic Product Structure Model and directions on how this
approach should be used. However, they do not evaluate its use in
a case study, as we focus on this work.

Dhungana et al. present a tool-supported approach for treating
evolution in Model-based Product Line Engineering [11]. The
approach decomposes large variability models into sets of
interrelated model fragments. Such fragments are merged to
provide full variability models. They report an experience of using
it in an industrial collaboration. Some of the approaches we
evaluate in this work (GenArch and pure::variants) are model-
based and provide similar functionality. A difference to our
evaluation is that due to model decomposition, they evaluate
multi-team support for creating and maintaining SPL variability
models. This is not something we investigated in this work, but it
could be targeted in future work.

Many works compare product derivation tools in a systematic, but
general way, not specifically focusing the CK. Rabiser et al. aim
to identify and validate requirements for tool-supported product
derivation [18]. Requirements are identified in a high-level way
through a systematic literature review and validated through an
expert survey. Sinnema and Delstra classify six variability
modeling techniques [21] using a running example. They define a
classification framework that lists a number of aspects that a
variability modeling technique should possess. Lisboa et al.
present a systematic review of domain analysis tools [16]. They

focus on identifying (i) whether current available tools support a
specific or generic process; (ii) their main functionalities; and (iii)
the development context, and where it is being used --- academia
or industry. Functionalities identified are categorized in priority
levels: essential, important, and low. Khurum and Gorschek also
conducted a systematic review of domain analysis solutions, but
only for tools that focus on software product lines [15]. They
focus on the usability and usefulness of the existing solutions, in
terms of scalability of introduction and use, better alternative
investment, and effectiveness. These works focus on comparing
functionalities that existing product derivation tools provide. As
mentioned, they do not focus on the configuration knowledge, nor
evaluate tools in the evolution context. Khurum and Gorschek
findings [15] indicate an absence of qualitative and quantitative
results from empirical application of the approaches. Such
absence, they argue, complicates the task of evaluating usability
and usefulness of existing solutions. In this work, we attempt to
fill this gap, through a quantitative and qualitative assessment of
the configuration knowledge using different releases of the
MobileMedia SPL.

6. CONCLUSIONS AND FUTURE WORK
This paper presented a preliminary empirical study that focused
on comparing different product derivation approaches and their
configuration knowledge representation. We performed this
comparison through a quantitative analysis that measured
modularity, complexity and stability attributes along product
derivation artifacts produced for four evolution releases of a
mobile SPL. Different metrics were used to quantify these
attributes in terms of scattering, tangling, number of tokens and
amount of CK sentence expressions, and number of
added/removed/changed CK expressions considering all the SPL
releases. We noticed that the adoption of specific approach
strategies can lead to positive results in terms of the investigated
attributes. From a general analysis, we concluded that approaches
with a dedicated model or file to represent the CK specification
had better results on many aspects. It was also observed that
modest adaptations in some existing tools and approaches can
bring a significant improvement on their performance, such as: (i)
the automatic generation of headers and footers on Captor and
XVCL tools; and (ii) the introduction of the capability to relate
different sentence expression to two or more assets.

As a future work, we plan to replicate our study for different SPL
domains and different variability implementation techniques in
order to observe if the same obtained results of this study can be
found in other SPL evolution scenarios. Besides, we also intend to
include other existing product derivation tools in our future
empirical studies. We intend to define and run more controlled
experiments and case studies that follow the guidelines of the
empirical software engineering. Last but not least, we are also
working to adopt many of the findings and guidelines provided by
our study in the design and implementation of our product
derivation tools.

Acknowledgements. This work is supported in part by
Brazilian Council on Research (CNPq), grants 313064/2009-1
and 480978/2008-5 ; and CAPES/PROCAD, grant 090/2007.

7. REFERENCES
[1] J. Barreiros and A. Moreira. A Model-based Representation of

Configuration Knowledge. In FOSD ’09:, pages 43–48, New York, NY,
USA, 2009. ACM.

[2] P. Bassett. Framing Software Reuse - Lessons from Real World.
Prentice Hall, 1997.

[3] D. Beuche. Modeling and Building Software Product Lines with
pure::variants. In SPLC, page 358. IEEE Computer, 2008.

[4] R. Bonifácio and P. Borba. Modeling Scenario Variability as
Crosscutting Mechanisms. In AOSD’09, pages 125–136, USA.

[5] R. Bonifácio, L. Teixeira, and P. Borba. Hephaestus: A Tool for
Managing Product Line Variabilities. In III SBCARS 2009 – Tools
Session, pages 26–34, Natal, RN, Brazil, 2009.

[6] E. Cirilo, et al. Integrating Component and Product Lines
Technologies. In H. Mei, editor, ICSR, volume 5030 of Lecture Notes in
Computer Science, pages 130–141. Springer, 2008.

[7] E. Cirilo, et al. A Product Derivation Tool Based on Model-Driven
Techniques and Annotations. J. UCS, 14(8):1344–1367, 2008.

[8] P. Clements and L. M. Northrop. Software Product Lines: Practices
and Patterns. Professional. Addison-Wesley, 2001.

[9] K. Czarnecki and S. Helsen. Feature-based survey of model
transformation approaches. IBM Systems Journal, 45(3):621–645, 2006.

[10] S. Deelstra, et al. Product derivation in software product families: a
case study. Journal of Systems and Software, 74(2):173–194, Jan. 2005.

[11] D. Dhungana, T. Neumayer, P. Grunbacher, and R. Rabiser.
Supporting evolution in model-based product line engineering.
Proceedings of SPLC ’08, IEEE Computer Society.

[12] E. Figueiredo, et al. Evolving Software Product Lines with Aspects:
An Empirical Study on Design Stability. Proceedings of of ICSE’08,
pages 261–270, New York, NY, USA, 2008. ACM.

[13] P. Junior and C. A. de Freitas. Geração de aplicações para linhas de
produtos orientadas a aspectos com apoio da ferramenta Captor-AO, MSc

Dissertation, University of São Paulo, Nov. 2008.

[14] C. Kastner, S. Apel, and M. Kuhlemann. Granularity in Software
Product Lines. Proceedings of ICSE 2008, Leipzig, Germany, May 10-18,
2008, pages 311–320. ACM, 2008.

[15] M. Khurum and T. Gorschek. A Systematic Review of Domain
Analysis Solutions for Product Lines. Journal of Systems and Software,
82(12):1982 – 2003, 2009.

[16] L. B. Lisboa, et al. A Systematic Review of Domain Analysis Tools.
Information and Software Technology, 52(1):1 – 13, 2010.

[17] T. Mannisto, H. Peltonen, and R. Sulonen. View to product
configuration knowledge modelling and evolution, Oct. 21 1996.

[18] R. Rabiser, et al. Requirements for Product Derivation Support:
Results from a Systematic Literature Review and an Expert Survey.
Information and Software Technology, 52(3):324 – 346, 2010.

[19] A. Garcia, et al. Modularizing Design Patterns With Aspects: A
Quantitative Study. Proceedings of AOSD´2005, pp. 3-14, Chicago, 2005.

[20] E. K. Shimabukuro Junior. Um Gerador de Aplicações Configurável,
MSc Dissertation, University of São Paulo, 2006.

[21] M. Sinnema, S. Deelstra. Classifying Variability Modeling
Techniques. Information and Software Technology, 49(7):717 – 739,
2007.

[22] S. Swe, et al. XVCL: A Tutorial. In Proceedings of SEKE´2002,
Ischia, Italy, 2002.

[23] S. S. Yau and J. S. Collofello. Design stability measures for software
maintenance. IEEE Transactions on Software Engineering, 11(9):849–
856, Sept. 1985.

