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ABSTRACT 

Product derivation approaches automate the customization 
process of software product lines. Over the last years, many tools 
have been proposed aiming at synthesize and generate products 
from a set of reusable assets. These tools adopt different 
techniques and strategies to implement and automate the product 
derivation activities. In this paper, we analyzed six modern 
product derivation tools (Captor, CIDE, GenArch, MSVCM, 
pure::variants, XVCL) in the context of evolution scenarios of a 
software product line. Our study has adopted several metrics to 
analyze the modularity, complexity and stability of product 
derivation artifacts related to configuration knowledge along 
different releases of a mobile product line. The preliminary results 
of our study have shown that approaches with a dedicated model 
or file to represent the CK specification can bring several benefits 
to the modularization and stability of a software product line.  

Categories and Subject Descriptors 

D.2.8 [Metrics]: Product Metrics.  

General Terms 

Measurement, Experimentation 

Keywords 

Product Derivation Tools, Measurement 

1. INTRODUCTION 

A software product line (SPL) [8] is a set of related software 
systems from a particular market segment that share common 
functionalities, but are sufficiently distinct from each other. 
Existing approaches [9, 8] propose and motivate SPL 
development by means of the specification, modeling and 
implementation of features. A feature [9] is a system property or 
functionality that is relevant to a stakeholder. It is used to capture 
commonalities and discriminate variabilities among SPL systems. 

SPL development involves the design and implementation of core 
assets (components, frameworks, libraries and others) that 
adequately modularize common and variable features during 
domain engineering [9].  

Product derivation [10] refers to the process of building a product 
from the set of code assets implemented for a SPL. It encompasses 
the selection, composition and customization of these code assets, 
in order to address a specific SPL product (configuration). 
Existing product derivation approaches [7, 6, 22, 4, 20, 13, 14, 3] 
automate the synthesis and customization of SPL products. Over 
the last years, many tools have been proposed with this aim. They 
adopt different techniques and strategies to implement and 
automate the product derivation activities, varying in different 
perspectives, such as: (i) from visual and model-based tools to 
textual and domain-specific approaches that specify the problem 
space (e.g., feature model), solution space (e.g., code assets) and 
configuration knowledge (mapping between features and code 
assets) from the SPL; and (ii) they adopt a positive or negative 
derivation process to customize and generate SPL products.  

Many tools have been proposed, with several advantages of their 
adoption in real and industrial scenarios [7, 6, 22, 4, 20, 13, 14, 
3]. However, there are few studies addressing the assessment and 
comparison of these tools that demonstrates the real impact, 
benefits and disadvantages of using a specific tool. Existing 
research work focuses on qualitative tool analysis [18, 21, 16, 15]. 
None of the existing studies have explored or analyzed the 
product derivation artifacts produced during the evolution of an 
existing SPL. Besides, to the best of our knowledge, there is no 
existing work that quantifies metrics that assess the modularity, 
complexity and stability of product derivation artifacts during the 
evolution of SPLs.  

In this context, this work proposes to assess and compare existing 
product derivation approaches considering the evolution releases 
of a SPL. Our analysis focuses mainly on the modularity, 
complexity, and stability attributes of derivation artifacts specified 
to support the process of automatic product derivation. Existing 
metrics adopted in other recent empirical studies [12, 19] are 
adapted to quantify these attributes in product derivation artifacts 
that specify the configuration knowledge (CK) between features 
and code assets. The metrics are computed in the aspect-oriented 
implementations of four evolution releases of MobileMedia [12], 
a software product line for media (photo, video and audio) 
management on mobile devices. The following six existing 
product derivation tools are analyzed and compared in our study 
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from the perspective of CK specification: Captor [20, 13], CIDE 
[14], GenArch [7], Hephaestus [5], pure::variants [3] and XVCL 
[22]. The preliminary results of our study have shown that 
approaches with a dedicated model or file to represent the CK 
specification can bring several benefits to the modularization and 
stability of a software product line. 

The remainder of this paper is organized as follows. Section 2 
presents the study settings of our comparative study: it overviews 
the investigated product derivation approaches, it details the 
phases and assessment procedures adopted, and finally, it 
describes the metrics adopted to quantify the modularity, 
complexity and stability of the SPL releases. Section 3 analyzes 
and discusses the results obtained for the metrics considering the 
different releases of MobileMedia. Some general discussions are 
made on section 4. Section 5 relates our study to other existing 
ones developed by the community. Finally, Section 6 concludes 
the paper and provides directions for future work.  

2. STUDY SETTINGS 
This section presents detailed information about our assessment of 
product derivation tools. The main aim of our study was to 
analyze and observe the modularity and stability of existing 
product derivation artifacts, and also to validate the usefulness of 
some metrics in the quantification of these attributes. In Section 
2.1, we present the approaches we have evaluated in this study. 
Section 2.2 presents the phases and assessment procedures of our 
preliminary study. Section 2.3 describes the metrics suite adopted 
to enable the modularity, complexity and stability analysis of the 
approaches. 

2.1 Product Derivation Approaches 
This section provides an overview of the evaluated approaches. 
We discuss their particularities, identifying how the configuration 
knowledge (CK) is expressed in each approach. In most of the 

approaches, feature models [9] are used to represent the 
commonalities and variabilities of the SPL, defining its scope.   
Feature models denote the set of products that can be generated 
for the SPL, through the relationships between features and their 
types (alternative, optional, mandatory, and so on). The 
approaches in our preliminary study were chosen according to the 
following criteria: (i) they represent approaches that were 
developed by our research groups (Captor, MSVCM and 
GenArch) or they are considered relevant product derivation tools 
in the research or industrial community (CIDE, pure::variants and 
XVCL); (ii) they are code-oriented, meaning that when we refer 

to reusable assets, we are mainly referencing code assets, such as 
classes, aspects, interfaces, packages, except stated otherwise; and 
(iii) there is an available implementation of the approach in order 
to allow its use in the case study. Unfortunately, due to time 
restrictions, it was not possible to include or consider other 
product derivation tools in this preliminary study. We intend to 
extend and consider new approaches in a future and more 
controlled study.  

Captor. The Captor tool is a Configurable Application Generator 
used to support the development of applications on a specific 
domain [20]. It covers domain and application engineering. It uses 
an Application Modeling Language (AML), used in a way similar 
to a feature model, that can be specified through a graphical user 
interface, or directly in XML. The CK is also composed by 

templates with XSL tags, and a mapping file called rules.xml, that 
links the defined AML with the templates. Captor also provides 
pre and post processors, also specified on XML files, which can 
be used to define tasks like copying mandatory files to the output 
directory. The application engineer defines an instance of the 
AML previously created to build and derive a product. 

CIDE. The Colored Integrated Development Environment 
(CIDE) is a SPL tool for decomposing legacy code into features 
[14]. It follows the paradigm of virtual separation of concerns, 
i.e., developers do not physically extract the feature code, but just 
annotate code fragments inside the original code, in a similar 
fashion to conditional compilation tags (#ifdef). However, instead 
of using tags in comments throughout the code, it uses 
background colors. So, code fragments belonging to a feature are 
shown with the background color of the feature. Another 
difference to conditional compilation is that annotations are 
disciplined, in order to prevent syntax and type errors. The 
underlying structure of the code to be annotated is considered, 
allowing developers to annotate, and thus, remove from assets, 
only program elements like classes, methods, or statements. These 
annotations represent the CK information, associating these 
elements to features. 

GenArch. GenArch [7, 6] is a model-based tool for automating 
the product derivation process. The GenArch approach is centered 
on the definition of three models: feature, architecture and 
configuration. The architecture model defines a visual 
representation of the reusable assets in order to relate them to 
features. The configuration model is responsible for defining the 
mapping between features and assets, representing the CK. This 
model is fundamental to link the problem space (features) to the 
solution space (implementation assets), and to enable automatic 
product derivation. 

MSVCM. The Modeling Scenario Variability as Crosscutting 
Mechanisms (MSVCM) approach [4] was initially proposed to 
deal with requirements variability, but it has been extended to deal 
with variabilities in source code and build files [5]. In MSVCM, 
the CK is specified into a separate model, relating features and 
their combinations (feature expressions) to transformations that 
translate SPL assets into product specific artifacts. The approach 
is named crosscutting because product derivation is resultant of a 
weaving process that takes as input artifacts such as the feature 
model, configuration knowledge, instance model, and so forth. 
These models crosscut each other with respect to the resulting 
product. If a given feature expression is evaluated as True for a 
given product (defined in the instance model), the related 
transformations are applied. 

pure::variants. pure::variants [3] is a SPL model-based product 
derivation tool. Its modeling approach considers mainly two 
models: feature and family models. The family model describes 
the internal structure of the individual components and their 
dependencies on features. The family model is structured in 
several levels. The highest level is formed by the components. 
Each component represents one or more functional features of the 
solutions and consists of logical parts of the software (reusable 
assets). The physical elements can be assets that already exist, 
assets that will be created and transformations that will be 
performed based on the feature selection. A transformation can be 
any activity, such as copying code assets from a repository to a 
specific location, customizing configuration files, or even UML 



models. 

XVCL. The XML-based Variant Configuration Language (XVCL) 
[22] is a language for configuring variability in textual-based 
assets. XVCL is based on Bassett's frames [2], every file on its 
structure needs to be a frame (XML file combined with code and 
XVCL commands) linked to other frames. This hierarchical 
structure is called x-framework. This approach has no specific 
structure to organize the CK. Instead, we use XVCL variables to 
set features and then validate if that feature should be present or 
not in the derivated product. The XVCL processor then, given a 
set of features (variables) and their values (selected or not) 
processes the frames files in order to generate the product. 

2.2 Study Phases and Assessment Procedures 
Our study was organized in the following major phases: (i) 
specification of the SPL artifacts related to product derivation 
considering all the approaches presented in Section 2.1; (ii) 
quantification of the selected metrics over the different derivation 
artifacts produced for each one of the investigated approaches; 
and (iii) quantitative analysis and assessment of the obtained 
results for the different modularity, complexity and stability 
metrics adopted in our study. Following we provide additional 
details of these phases.  

In the first phase of our study, the aspect-oriented 
implementations of 4 releases (release 4 to 7) of MobileMedia 
SPL [12] were considered to implement the different artifacts of 
the product derivation approaches. The available documentation 
of MobileMedia was used as a base to specify and implement the 
derivation artifacts. MobileMedia (MM) was selected to be part of 
our study for different reasons. First, because it is an expressive 
SPL implemented with modern technologies, including an aspect-
oriented language (AspectJ) and the Java Micro Edition (Java 
ME) API. Second, it has been used and validated in many other 
empirical studies [12, 1]. Finally, MM provides different 
evolution releases which allowed us to observe the effects of 
change scenarios along derivation artifacts considering the 
different approaches. This last criterion was preponderant to the 
choice of MM to this preliminary study.  

During the specification of the derivation artifacts, we established 
alignment rules between the approaches in order to guarantee that: 
(i) the best practices of each approach were used to implement the 
artifacts; and (ii) the comparison between the derivation artifacts 
was equitable and fair. Five researchers performed these 
alignment activities. All misalignments found were discussed 
between the study participants and eventual corrections were 
applied to the artifacts implementation to guarantee their 
alignment. It was ensured, for example, that: (i) the same set of 
common and variable features were used in the derivation artifacts 
considering each release of MM; (ii) every variability and 
implementation artifacts were expressed using the appropriate 
mechanisms of the product derivation approaches; and (iii) the 
CK specifications in the different approaches are consistent 
between them, which means that all product derivation 
approaches are specifying the same products that can be 
automatically produced from each MM release.  

After implementing MM derivation artifacts using the six different 
approaches, we applied and quantified the modularity, complexity 
and stability metrics along these different artifacts. We considered 
the artifacts that are responsible to specify the configuration 

knowledge in the different approaches. Our main aim was to 
quantify the tangling, scattering, size and instability of the 
derivation artifacts in the light of change scenarios demanded by 
MM evolution. Additional details about the adopted metrics to 
quantify these properties are presented in the next section. Finally, 
after the collection of all the metrics, the computed data was 
organized in spreadsheets and graphics in order to be analyzed. 
Results of this analysis are presented in Section 3. 

2.3 The Metrics Adopted in Our Study 
In order to compare the CK specification of the different product 
derivation approaches, we have selected a metrics suite to enable 
their quantitative  analysis. The metrics are divided into three 
main groups: (i) modularity, (ii) complexity and (iii) stability. 

Modularity. The modularity metrics are adapted from previously 
proposed metrics by Sant'Anna et al [19]. This previous work has 
proposed a set of modularity metrics to measure the separation of 
concerns in aspect-oriented implementations. The main goal of 
these metrics is to quantify the degree of scattering and tangling of 
concerns in aspect-oriented artifacts. They have been used and 
validated not only in the assessment of aspect-oriented 
implementations, but also to artifacts produced in other 
development stages: such as requirements, architecture and 
design, textual and model specifications [4,12]. In our study, we 
have adapted these metrics to quantify the scattering and tangling 
of CK specifications along product line assets (configuration files, 
derivation models, templates and source code) that are 
implemented to enable automatic product derivation.  

We measure the scattering counting 1 for each SPL asset that 
contains some sort of CK specification, including any textual 
document or model associated with CK, when applied. In the 
CIDE approach, we counted every code asset colored according to 
a specific feature, as a unit of CK scattering. Tangling is 
calculated in a similar way than the Concern Diffusion over Lines 
of Code (CDLoC) metric, where we count the number of concern 
switches in a given source code asset [19]. In our case, we 
calculate this metric considering the CK specification as the 
concern. Thus, for each derivation artifact that includes some sort 
of CK specification tangled with specification or code related to 
another concern (variabilities and implementation), there is a 
switch, which we count. If the approach has a dedicated CK 
model or textual specification, we do not take this model into 
account for this metric, because it completely modularizes this 
concern. 

Complexity. The goal of this analysis is to measure the effort 
needed by domain engineers to prepare the artifacts that support 
the automatic product derivation in a specific approach. 
Complexity is directly related to the size of configuration items 
needed to represent the CK in each approach. Two metrics were 
used: (i) number of tokens in CK sentence expressions; and (ii) 
number of CK sentence expressions.   

The first metric counts the number of tokens needed to build the 
CK, i.e., the data that the domain engineer must effectively write 
to configure the SPL according to the feature model. The counting 
was based on the native tokens provided by each language/tool to 
represent the CK. In the XVCL approach, for example, we define 
the following expression for the feature Photo: <select 

option="Photo"> <option value="yes">. Here we count 

the total of 16 tokens, 8 for each statement. On the other hand, in 



the GenArch tool, it is only necessary to provide the feature name 
associated - in this case, Photo - with a specific code asset in the 
configuration model. Thus the number of token in this case for 
GenArch was 1, because that is all the domain engineer has to 
write. The complete specification is transparent and is maintained 
through the configuration model.  

The second metric, number of CK sentence expressions, analyzes 
the conciseness and expressiveness of the CK in the different 
approaches. It quantifies the amount of CK sentence expressions 
needed to support the product derivation process. When the SPL 
evolves, the concision of these expressions becomes even more 
important. In some approaches, it enables adding new assets 
without requiring the inclusion of a new expression. We count the 
number of CK sentence expressions by quantifying the amount of 
feature expressions specified in the CK artifacts. Note that this 
counting is independent of the effort to build the expression or its 
size. These are addressed by the number of tokens in CK sentence 
expressions metric. 

Stability. The stability metric is used to analyze the impact of 
evolving the SPL on the derivation artifacts (CK). The metric was 
computed in terms of CK sentence expressions added, changed or 
removed during the SPL evolution. We measure the difference 
between releases, it is inspired on Yau and Collofello study [23]. 
A CK sentence expression is considered new when there is a new 
feature expression in the CK for that release. When a new code 
asset is included in the SPL, this not necessarily imply in the 
inclusion of a new CK feature expression. This depends on the 
approach. In some cases, an existing expression can be modified 
to address the new code assets. With this metric analysis we can 
measure the effort needed to evolve the CK during SPL 
maintenance. 

3. STUDY RESULTS 
In this section, we present and discuss the collected results for the 
modularity, complexity and stability metrics from our study. Our 
analysis considers the specification of the derivation artifacts 
considering 4 different releases of the Mobile Media SPL. 

3.1 Modularity Analysis 
The main goal of modularity analysis is to quantify the degree of 
scattering and tangling of the CK over the SPL assets. 

Configuration Knowledge Scattering. We measured the degree 
of scattering of the configuration knowledge by quantifying all 
SPL assets that have some sort of CK specification in them. 
Source code, for example, might contain such information in the 
form of a conditional compilation tag (#ifdef). Figure 1 shows the 
results of the collected values for this metric considering the four 
releases of MobileMedia specified using the different approaches. 
We can observe that GenArch, pure::variants and MSVCM tools 
presented more stable and lower values for this metric compared 
to other approaches, even when new features and assets are added. 
This happens mainly because these approaches provide a separate 
model or configuration model to specify the configuration 
knowledge with the mapping between features and code assets.  
The CIDE, Captor, and XVCL approaches presented higher 
values for the CK scattering, as shown in Figure 1. CIDE presents 
a higher scattering because it does not provide dedicated support 
to modularize the CK. In this approach, every colored element in 
the code assets can be seen as a CK sentence expression that 
relates the element to a feature. The Captor and XVCL 

approaches also presented high values for the CK scattering 
metric. The product derivation assets from these approaches are 
composed by a set of specific files that describe transformation 
rules, which represent a significant part of the CK specification. 
Nonetheless, code assets also contain CK specification in the form 
of tags. This explains why these two approaches got quite similar 
values for CK scattering metrics in all MobileMedia releases. As 
we see in Figure 1, the collected values for the CK scattering 
metric were higher for the Captor and XVCL approaches. 

 
Figure 1. Configuration Knowledge Scattering. 

Figure 7 illustrates the product derivation artifacts specified for 
five approaches that are responsible for the inclusion of the Photo 
and Music features in the MobileMedia SPL. For example, XVCL 
requires that each SPL asset that is processed to be a frame. In 
order to transform an asset in a frame, we have to include basic 
tags with some parameters, whether this frame has fine-grained 
variability or not. In the right side of Figure 7 for example, 
PhotoAndMusicAspect.aj.xvcl represents the correspondent 
aspect specified as a frame. On the other hand, Captor also needs 
to use XSL tags, and every variable asset has to be a template. The 
right side of Figure 7 also shows PhotoAndMusicAspect.aj aspect 
specified with a set of XSL tags used by Captor derivation 
artifacts. The left side of Figure 7 illustrates the configuration files 
of the Captor and XVCL approaches that are used to specify the 
transformation rules mentioned above. The scattering of these 
transformation rules and code tags along product derivation 
artifacts and code was quantified by the degree of scattering 
metric. Note that GenArch, MSVCM and pure::variants does not 
contain CK information on the code asset. The CK is modularized 
into a single file. 

Configuration Knowledge Tangling inside Code Assets. Figure 
2 shows the collected values for CK tangling metric. The Captor 
and XVCL approaches presented higher values for the tangling 
metric. This mainly occurs because both approaches must contain 
specific headers and footers in any code asset associated with CK. 
This information is used during the product derivation process of 
each approach. Figure 7(right side) shows, for example, that the 
PhotoAndMusicAspect.aj aspect needs to include configuration 
tags for both Captor and XVCL approaches. All the code assets 
associated with variabilities required the insertion of these same 
configuration tags thus contributing to improve the CK scattering. 
Precisely because GenArch, MSVCM and pure::variants, have the 
CK properly insulated, there is no CK tangling inside code asset.  

The CK tangling metric was quantified in CIDE by the 
occurrence of color sentences spread along code assets. Because 
of that, CIDE initially presented a low tangling considering the 
MobileMedia release 4, but as the number of features increased, 
values got higher compared to other approaches. It mainly 



happens because with the increase of features to be managed, 
feature expressions also become more complex. GenArch, 
pure::variants and MSVCM had equivalent and the best results for 
the CK tangling metric considering all the releases. On the first 
three releases investigated (releases 4 to 6), the CK tangling for 
these approaches was zero. This occurred because the CK was 
adequately modularized into a dedicated model. 

 
Figure 2. CK Tangling inside Code Assets. 

We can also observe that fine-grained variability increases CK 
tangling in code assets. The fact that most of MobileMedia 
variations are well modularized with aspects contributed for the 
lower values of the scattering and tangling metrics in releases 4-6. 
However, release 7 has a particular case where one asset 
(OptionalFeatureAspect.aj) contains fine-grained variability that 
cannot be handled using only the CK model. Figure 3 illustrates 
this aspect, where the arguments passed on the declare precedence 
clause are variabilities and depend on the selection of specific 
features to be included in the aspect code. Because of that, this 
file needs to be processed using conditional compilation tags 
(MSVCM and pure::variants) or template processing (GenArch 
and Captor). Both techniques are used during product derivation 
to decide if part of this asset will be included or not. This kind of 
fine-grained variability usually happens on legacy SPLs[14]. Note 
that all the approaches and metrics from this study suffer 
influence of this fine-grained variability. This fine-grained 
variability was responsible for the light increase in the collected 
results for the CK tangling metric considering the Captor and 
XVCL for the release 7 of MobileMedia. 

 
Figure 3. OptionalFeatureAspect. 

3.2 Complexity Analysis 
The main goal of the two metrics on this group is to measure the 
complexity/size of the CK specification in each approach, and 
furthermore analyze how they behave when evolving the SPL. 

Number of tokens in CK specification. The number of tokens 
metric allowed us to distinguish the size and complexity of CK 
specification on the different derivation approaches. Figure 4 
shows the collected values for this metric. Captor is the approach 
that requires the higher number of tokens in CK specification. 
Reasons for that include the need for creating several CK decision 
expressions (task calls and definitions), and headers and footers 

specified in the code templates. XVCL also presented higher 
values for the number of tokens in CK metric. This happens due 
to the same reason of Captor, except that task definition and call is 
specified directly in XVCL files. In MSVCM, values for this 
metric are higher than GenArch since it is necessary to specify 
asset names and mandatory associations as well.  

Figure 7 shows how we count tokens in all approaches (except 
CIDE), for the case of the PhotoAndMusicAspect asset. This 
aspect is related to the joint selection of the Photo and Music 
features. For this metric, in XVCL, Captor, GenArch, MSVCM 
and pure::variants approaches, we count 94, 129, 3,3 and 15, 
respectively. In the CIDE approach, since we just color code 
elements with associated features, there is no textual CK 
specification. Therefore, the metric values for all releases are zero. 
GenArch, pure::variants and MSVCM have values much smaller 
than other approaches. In GenArch, the architecture model that 
abstracts all the code assets is built automatically by the tool. 
Product line engineers only need to write feature expressions, 
associating features to assets. So, metric values tend to be lower 
for GenArch. This happens similarly in MSVCM. 

 
Figure 4. Number of Tokens in CK specification. 

 
Figure 5. XVCL – Sentence Expression. 

 
Figure 6. Sentence Expressions in CK Specification. 

Sentence Expressions in CK specification. Figure 6 shows the 
number of sentence expressions for the different MobileMedia 



releases specified in the six approaches. Similarly to the tangling 
metric, the CIDE approach presented a considerable increase 
when adding new features. A sentence expression in CIDE is 
considered as a colored element. Therefore, these metric values 
are somewhat correspondent to the scattering metric values for the 
CIDE approach. The XVCL and MSVCM approaches can group 
many assets into a single sentence. A difference is that in 
MSVCM, we also specify the mandatory relationships as 
previously mentioned. Figure 6 illustrates this grouping 
characteristic of XVCL. It shows that, in release 6, the Photo 
feature is associated with 5 assets. In the next release, 3 new 
assets are added to this expression, and no other sentence needs to 
be created. In Captor, pure::variants and GenArch, we need to add 
3 sentence expressions. This can be mitigated in pure::variants 
and GenArch by associating higher level abstractions, such as 
packages, with feature expressions. However, if feature 
implementation is highly scattered, it might not be possible to do 

so. In Figure 7 the sentence expressions are showed for the 
different approaches. 

3.3 Stability Analysis 
This analysis looks at three different perspectives of sentence 
expressions between releases: added, modified and removed.  

Added. Figure 8 (a) shows the number of sentence expressions 
added in the configuration knowledge of each approach between 
releases. When adding code assets, GenArch, pure::variants, 
Captor and CIDE treat assets individually, so they have larger 
effort than MSVCM and XVCL, which can group these assets. In 
GenArch and Captor, the inclusion of an asset represents a new 
sentence expression added to the configuration knowledge. 

Changed.  Figure 8(b) shows the number of sentence expressions 
changed in the configuration knowledge. The releases 4, 5 and 6 

Figure 8. Stability – Added (A), Modified (B) and Removed (C) . 

Figure 7. Approaches and Metrics. 



had many new assets and few expressions, or none in most cases, 
that could be reused. Again, the approaches (GenArch, Captor and 
pure::variants) that treat assets individually had larger effort than 
the other ones. The CIDE approach has not changed items, 
because when changes occur in an asset, you must remove its 
color and then mark the new artifact with this color. 
 

Removed. Figure 8(c) shows the numbers of sentence expressions 
removed from the CK in each approach. This usually occurs when 
code assets are removed. These metric results are very similar to 
almost all approaches, variation happens only in cases that the 
approach could reuse some expressions, reflecting on Figure 8(b). 
The fact that CIDE cannot change the sentence expressions results 
in the increase of the number of removed items. 

4. DISCUSSIONS 
In this section, we discuss interesting issues and lessons learned 
related to the assessment of the product derivation approaches in 
our preliminary evolution study. 

General Analysis of the Study Results. The GenArch, 
pure::variants and MSVCM approaches presented the best results 
considering most of the modularity and complexity metrics. The 
main reason that contributed to the good performance of these 
approaches is the use of a separated CK specification. Captor and 
XVCL obtained the less satisfactory results considering the 
modularity and complexity metrics. This mainly occurred due to 
the textual and complex nature of CK specification provided by 
these approaches. Considering initial MobileMedia releases, 
CIDE presented reasonable results for the modularity and 
complexity metrics. However, it did not scale along the 
subsequent ones in terms of CK scattering and tangling, because 
of the increasing number of CK color sentences specified in the 
code assets. Regarding the stability metrics, we have observed that 
Captor, GenArch, MSVCM and XVCL required to add and 
modify a small and stable number of CK sentence expressions 
along the different releases. MSVCM was the approach that 
presented the better stability for the CK expressions. On the other 
hand, CIDE exhibited higher values for the number of removed 
CK expressions due to the need to reassign new colors to CK 
sentences that are changed in the code assets along the releases.  

Automated and Model-driven Tools. Our study has revealed that 
the CK specification in a dedicated model or file can bring several 
benefits to the modularization, complexity and stability attributes. 
That was the case for GenArch, MSVCM and pure::variants 
approaches. Captor and XVCL did not obtained better results in 
most of the modularization and complexity metrics. These 
approaches require manually written transformation rules related 
to the product derivation process. It is interesting to notice that the 
simple automated support to the specification and generation of 
the transformation rules that represents CK in both Captor and 
XVCL approaches could bring equivalent results to the other 
approaches.  

CK Specification inside Code Assets. Another interesting issue 
that our study has also revealed is the positive/negative impact of 
the variability implementation technique in the modularization of 
the product derivation artifacts. Most of the variabilities 
implemented for MobileMedia releases were codified using 
aspect-oriented programming. This contributed to the positive 

values obtained for most of the modularity, complexity and 
stability for the different approaches. Analysis of the 
MobileMedia implementation using conditional compilation 
(CC), for example, would find a large number of CC directives 
(IFDEFs) spread and tangled along the different code assets. All 
these CC directives can also contribute to the instability of the 
product derivation artifacts during SPL evolution because they are 
not adequately modularized. Although the adoption of aspect-
oriented programming in the MobileMedia implementation 
brought advantages and benefits to the specification of the 
product derivation artifacts, our study also illustrated that fine-
grained variabilities encountered inside code assets can lead to 
difficult CK modularization scenarios, even for approaches that 
provides a separate CK specification. This was illustrated in our 
study by the OptionalFeatureAspect that establishes the 
precedence between aspects (variabilities) that will be applied to 
the SPL core. 

5. RELATED WORK 
To the best of our knowledge, we are not aware of empirical 
research on the assessment of different product derivation tools 
used in the evolution context for SPLs. Many works evaluate a 
single approach for SPL implementation used in a SPL evolution 
scenario. The original MobileMedia study [12] compares the 
negative and positive impact of using aspects for implementing 
SPLs, instead of  conditional compilation. There are some 
similarities to our work, since we are using the same releases and 
adapting some of the used metrics. So, instead of evaluating the 
code only, in this work we focus on how different CK 
representations provided by the product derivation tools behave in 
a SPL evolution scenario.   

Mannisto et al. discuss the problem of managing configuration 
knowledge evolution [17], describing key elements and presenting 
an outline for future work. They present an approach based on the 
Generic Product Structure Model and directions on how this 
approach should be used. However, they do not evaluate its use in 
a case study, as we focus on this work.   

Dhungana et al. present a tool-supported approach for treating 
evolution in Model-based Product Line Engineering [11]. The 
approach decomposes large variability models into sets of 
interrelated model fragments. Such fragments are merged to 
provide full variability models. They report an experience of using 
it in an industrial collaboration. Some of the approaches we 
evaluate in this work (GenArch and pure::variants) are model-
based and provide similar functionality. A difference to our 
evaluation is that due to model decomposition, they evaluate 
multi-team support for creating and maintaining SPL variability 
models. This is not something we investigated in this work, but it 
could be targeted in future work.  

Many works compare product derivation tools in a systematic, but 
general way, not specifically focusing the CK. Rabiser et al. aim 
to identify and validate requirements for tool-supported product 
derivation [18]. Requirements are identified in a high-level way 
through a systematic literature review and validated through an 
expert survey. Sinnema and Delstra classify six variability 
modeling techniques [21] using a running example. They define a 
classification framework that lists a number of aspects that a 
variability modeling technique should possess. Lisboa et al. 
present a systematic review of domain analysis tools [16]. They 



focus on identifying (i) whether current available tools support a 
specific or generic process; (ii) their main functionalities; and (iii) 
the development context, and where it is being used --- academia 
or industry. Functionalities identified are categorized in priority 
levels: essential, important, and low. Khurum and Gorschek also 
conducted a systematic review of domain analysis solutions, but 
only for tools that focus on software product lines [15]. They 
focus on the usability and usefulness of the existing solutions, in 
terms of scalability of introduction and use, better alternative 
investment, and effectiveness. These works focus on comparing 
functionalities that existing product derivation tools provide. As 
mentioned, they do not focus on the configuration knowledge, nor 
evaluate tools in the evolution context. Khurum and Gorschek 
findings [15] indicate an absence of qualitative and quantitative 
results from empirical application of the approaches. Such 
absence, they argue, complicates the task of evaluating usability 
and usefulness of existing solutions. In this work, we attempt to 
fill this gap, through a quantitative and qualitative assessment of 
the configuration knowledge using different releases of the 
MobileMedia SPL.  

6. CONCLUSIONS AND FUTURE WORK 
This paper presented a preliminary empirical study that focused 
on comparing different product derivation approaches and their 
configuration knowledge representation. We performed this 
comparison through a quantitative analysis that measured 
modularity, complexity and stability attributes along product 
derivation artifacts produced for four evolution releases of a 
mobile SPL. Different metrics were used to quantify these 
attributes in terms of scattering, tangling, number of tokens and 
amount of CK sentence expressions, and number of 
added/removed/changed CK expressions considering all the SPL 
releases. We noticed that the adoption of specific approach 
strategies can lead to positive results in terms of the investigated 
attributes. From a general analysis, we concluded that approaches 
with a dedicated model or file to represent the CK specification 
had better results on many aspects. It was also observed that 
modest adaptations in some existing tools and approaches can 
bring a significant improvement on their performance, such as: (i) 
the automatic generation of headers and footers on Captor and 
XVCL tools; and (ii) the introduction of the capability to relate 
different sentence expression to two or more assets.  

As a future work, we plan to replicate our study for different SPL 
domains and different variability implementation techniques in 
order to observe if the same obtained results of this study can be 
found in other SPL evolution scenarios. Besides, we also intend to 
include other existing product derivation tools in our future 
empirical studies. We intend to define and run more controlled 
experiments and case studies that follow the guidelines of the 
empirical software engineering. Last but not least, we are also 
working to adopt many of the findings and guidelines provided by 
our study in the design and implementation of our product 
derivation tools.  
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