
Proceedings of the First International Work-
shop on Feature-Oriented Software Develop-
ment (FOSD)

October 6, 2009
Denver, Colorado, USA

Editors: Sven Apel (University of Passau, DE)
William R. Cook (University of Texas at Austin, US)
Krzysztof Czarnecki (University of Waterloo, CA)
Christian Kästner (University of Magdeburg, DE)
Neil Loughran (SINTEF, NO)
Oscar Nierstrasz (University of Berne, CH)

Proceedings published online in the
ACM Digital Library

www.acm.org

Printed proceedings sponsored by
Metop GmbH

www.metop.de

The Association for Computing Machinery
2 Penn Plaza, Suite 701

New York, New York 10121-0701
U.S.A.

ACM COPYRIGHT NOTICE. Copyright c© 2009 by the Association for Computing Machinery, Inc. Per-
mission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.

For other copying of articles that carry a code at the bottom of the first or last page, copying is permitted
provided that the per-copy fee indicated in the code is paid through the Copyright Clearance Center, 222
Rosewood Drive, Danvers, MA 01923, +1-978-750-8400, +1-978-750-4470 (fax).

Notice to Past Authors of ACM-Published Articles ACM intends to create a complete electronic archive
of all articles and/or other material previously published by ACM. If you have written a work that was
previously published by ACM in any journal or conference proceedings prior to 1978, or any SIG Newsletter
at any time, and you do NOT want this work to appear in the ACM Digital Library, please inform
permissions@acm.org, stating the title of the work, the author(s), and where and when published.

ACM ISBN: 978-1-60558-567-3

i

Foreword

Feature orientation is an emerging paradigm of software development. It supports the largely automatic
generation of large software systems from a set of units of functionality, so-called features. The key idea
of feature-oriented software development (FOSD) is to emphasize the similarities of a family of software
systems for a given application domain (e.g., database systems, banking software, text processing systems)
with the goal of reusing software artifacts among the family members. Features distinguish different
members of the family. For example, features of a database system could be transaction management,
query optimization, and multi-user operation, those of a banking software could be account management,
authentication, and financial transactions, and those of a text processing system could be printing, spell
checking, and document format conversion. A challenge in FOSD is that a feature does not map cleanly to
an isolated module of code. Rather it may affect (“cut across”) many components/documents of a modular
software system. For example, the feature transaction management would affect many parts of a database
system, e.g., query processing, logical and physical optimization, and buffer and storage management.
Research on FOSD has shown that the concept of features pervades all phases of the software life cycle and
requires a proper treatment in terms of analysis, design, and programming techniques, methods, languages,
and tools, as well as formalisms and theory.

The main goal of the FOSD’09 workshop is to foster and strengthen the collaboration between the
different researchers who work in the field of FOSD or in the related fields of software product lines, aspect-
oriented software development, service-oriented architecture, and model-driven engineering. A keynote by
Don Batory, a leading researcher in FOSD, will be an excellent start up for discussions on historical
perspectives, current issues, and visions of FOSD.

The FOSD workshop builds on the success of a series of workshops on product lines, generative program-
ming, and aspect orientation, held at GPCE’06, GPCE’07, and GPCE’08. In the predecessor workshops
it became apparent that the concept of features and the paradigm of FOSD is central to the thinking
of a whole community and is related to the concepts found in different other communities. So, the idea
grew to dedicate a workshop specifically to FOSD in order to set a proper focus. Furthermore, four of
the organizers of this workshop (Sven Apel, William R. Cook, Krzysztof Czarnecki, and Oscar Nierstrasz)
are organizing a research seminar on FOSD at the renowned Dagstuhl castle. The seminar proposal has
recently been accepted by Dagstuhl castle and the seminar will take place in January 2011. So, a further
motivation for the FOSD workshop is the idea to hold the workshop at MODELS / GPCE / SLE 2009 as
a kick-off meeting for the FOSD Dagstuhl Seminar.

Sven Apel
William R. Cook
Krzysztof Czarnecki
Christian Kästner
Neil Loughran
Oscar Nierstrasz

ii

iii

Program Committee

Vander Alves (University of Brasilia, BR)
David Benavides Cuevas (University of Seville, ES)

Danilo Beuche (pure-systems, DE)
Iris Groher (University of Linz, AT)
Kyo-Chul Kang (POSTECH, KR)

Thomas Leich (Metop Research Institute, DE)
Christian Lengauer (University of Passau, DE)

Roberto Lopez-Herrejon (Bournemouth University, UK)
Klaus Ostermann (University of Aarhus, DK)

Susanne Patig (University of Berne, CH)
Christian Prehofer (Nokia Research, FI)

Olaf Spinczyk (University of Dortmund, DE)
Christine Schwanninger (Siemens, DE)

Salvador Trujillo (IKERLAN Research Centre, ES)

iv

v

Table of Contents

Keynote

On the Importance and Challenges of FOSD . 1
Don Batory

Session 1: Languages & Product Derivation

Language Support for Feature-Oriented Product Line Engineering . 3
Wonseok Chae and Matthias Blume

Feature-Oriented Programming with Ruby . 11
Sebastian Günther and Sagar Sunkle

Remodularizing Java Programs for Comprehension of Features . 19
Andrzej Olszak and Bo Nørregaard Jørgensen

An Orthogonal Access Modifier Model for Feature-Oriented Programming . 27
Sven Apel, Jörg Liebig, Christian Kästner, Martin Kuhlemann, and Thomas Leich

Product Derivation for Solution-Driven Product Line Engineering . 35
Christoph Elsner, Daniel Lohmann, and Wolfgang Schröder-Preikschat

A Model-Based Representation of Configuration Knowledge . 43
Jorge Barreiros and Ana Moreira

Session 2: Experience Reports & Correctness

Domain analysis on an Electronic Health Records System . 49
Xiaocheng Ge, Richard Paige, and John McDermid

How to Compare Program Comprehension in FOSD Empirically – An Experience Report 55
Janet Feigenspan, Christian Kästner, Sven Apel, and Thomas Leich

RobbyDBMS – A Case Study on Hardware/Software Product Line Engineering . 63
Jörg Liebig, Sven Apel, Christian Lengauer, and Thomas Leich

Towards Systematic Ensuring Well-Formedness of Software Product Lines . 69
Florian Heidenreich

An Extension for Feature Algebra . 75
Peter Höfner and Bernhard Möller

Dead or Alive: Finding Zombie Features in the Linux Kernel . 81
Reinhard Tartler, Julio Sincero, Wolfgang Schröder-Preikschat, and Daniel Lohmann

vi

Session 3: Model-Driven Development

Feature-Oriented Refinement of Models, Metamodels and Model Transformations . 87
Salvador Trujillo, Ander Zubizarreta, Xabier Mendialdua, and Josune De Sosa

Model-Driven Development of Families of Service-Oriented Architectures . 95
Mohsen Asadi, Bardia Mohabbati, Nima Kaviani, Dragan Gasevic, Marko Boskovic, and Marek Hatala

Interaction-based Feature-Driven Model-Transformations for Generating E-Forms 103
Bedir Tekinerdogan and Namik Aktekin

Towards Feature-driven Planning of Product-Line Evolution . 109
Götz Botterweck, Andreas Pleuss, Andreas Polzer, and Stefan Kowalewski

Detecting Feature Interactions in SPL Requirements Analysis Models . 117
Mauricio Alferez, Ana Moreira, Uirá Kulesza, Joao Araujo, Ricardo Mateus, and Vasco Amaral

Appendix

Author Index . 125

vii

On the Importance and Challenges of FOSD

Don Batory
Department of Computer Science
University of Texas at Austin, USA

batory@cs.utexas.edu

ABSTRACT
Among the key elements of mature engineering is automated
production: we understand the technical problems and we
understand their solutions; our goal is to automate produc-
tion as much as possible to increase product quality, re-
duce costs and time-to-market, and be adept at creating
new products quickly and cheaply.

Automated production is a technological statement of ma-
turity: ”We’ve built these products so often by hand that
we’ve gotten it down to a Science”. Models of automated
production are indeed the beginnings of a Science of Auto-
mated Design (SOAD). Feature Oriented Software Develop-
ment (FOSD) will play a fundamental role in SOAD, and I
believe also play a fundamental role in the future of software
engineering.

In this presentation, I explain what distinguishes FOSD
from other software design disciplines and enumerate key
technical barriers that lie ahead for FOSD and SOAD.

Categories and Subject Descriptors: D.2.2 [Software]:
Software Engineering—Design Tools and Techniques; D.2.11
[Software]: Software Architectures—Domain-specific Ar-
chitectures; D.3.3 [Software]: Programming Languages—
Language Constructs and Features.

General Terms: Design, Languages, Theory.

Keywords: Features, Verification, Testing, Feature Inter-
actions, Feature-Oriented Software Development, Science of
Automated Design.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOSD’09, October 6, 2009, Denver, Colorado, USA.
Copyright 2009 ACM 978-1-60558-567-3/09/10 ...$10.00.

1

2

Language Support for Feature-Oriented Product Line
Engineering

Wonseok Chae
Toyota Technological Institute at Chicago

wchae@tti-c.org

Matthias Blume
Google, Inc.

blume@google.com

ABSTRACT
Product line engineering is an emerging paradigm of devel-
oping a family of products. While product line analysis and
design mainly focus on reasoning about commonality and
variability of family members, product line implementation
gives its attention to mechanisms of managing variability. In
many cases, however, product line methods do not impose
any specific synthesis mechanisms on product line implemen-
tation, so implementation details are left to developers. In
our previous work, we adopted feature-oriented product line
engineering to build a family of compilers and managed vari-
ations using the Standard ML module system. We demon-
strated the applicability of this module system to product
line implementation. Although we have benefited from the
product line engineering paradigm, it mostly served us as
a design paradigm to change the way we think about a set
of closely related compilers, not to change the way we build
them. The problem was that Standard ML did not fully
realize this paradigm at the code level, which caused some
difficulties when we were developing a set of compilers.

In this paper, we address such issues with a language-
based solution. MLPolyR is our choice of an implemen-
tation language. It supports three different programming
styles. First, its first-class cases facilitate composable ex-
tensions at the expression levels. Second, its module lan-
guage provides extensible and parameterized modules, which
make large-scale extensible programming possible. Third,
its macro system simplifies specification and composition of
feature related code. We will show how the combination of
these language features work together to facilitate the prod-
uct line engineering paradigm.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software—do-
main engineering ; D.3.2 [Programming Languages]: Lan-
guage Classifications—applicative (functional) languages, ex-
tensible languages, multiparadigm languages

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOSD’09, October 6, 2009, Denver, Colorado, USA.
Copyright 2009 ACM 978-1-60558-567-3/09/10 ...$10.00.

General Terms
Design, Languages

Keywords
Feature-Oriented Programming, Product line engineering

1. INTRODUCTION
Product line engineering is a paradigm of developing a

family of products [19, 22]. This emerging paradigm en-
courages developers to focus on developing a set of products
rather than on developing one particular product. There-
fore, we are expected to develop products from a common
set of components (core assets) rather than from scratch. So
far most efforts of working under this paradigm have focused
on how to analyze a family of products and develop reusable
assets. Features are commonly used to reason about com-
monality and variability in product lines. A set of features
define a design space and the selection of a particular subset
is the first step towards the synthesis of a design artifact [18].

In our previous work, we demonstrated that the product
line engineering as a developing paradigm was a very effec-
tive way to build a family of compilers [12]. We showed engi-
neering activities from product line analysis through product
line architecture design to product line component design.
Then, we presented how to build particular compilers from
core assets resulting from such domain engineering activi-
ties. This approach especially helped us maintain source
code by providing a systematic way to identify variations.
This variability analysis provided us with the better chance
of utilizing underline implementation technology. For ex-
ample, the product line analysis enabled us to predict which
parts would be mostly changeable, so we could parameter-
ize over them via functorization provided by the Standard
ML [5]. Then, the main program became a functor which
took variations and produced a specific compiler. That is,
we obtained a compiler generator. Product line engineer-
ing as a design paradigm was truly helpful here in that its
product line analysis acts as a systematic way of identify-
ing commonalities and variabilities. This made it possible
to design and implement reusable and flexible software by
supplying guidance on where relevant implementation tech-
niques could be applied.

Although we have benefited from the product line engi-
neering paradigm, it mostly served us as a design paradigm
to change the way we think about a set of closely related
compilers, not to change the way we build them. The prob-
lem was that our implementation technology did not fully

3

realize this paradigm at the code level. As a result, we ex-
perienced some difficulties:

• The relations among features and core assets (i.e., ar-
chitecture and component models) were implicitly ex-
pressed only during the product line analysis as a form
of documentation. Other product line model-based
methods usually provide a way to express those re-
lations explicitly by using CASE tools. In FORM, for
example, those explicit relations make it possible to
automatically generate product code from specifica-
tions [18].

• Our approach poorly supported systematic generation
of family members.

• While we demonstrated our underline implementation
technology (i.e., the Standard ML module system) was
powerful enough to manage variations in the context of
product lines, its type system sometimes imposed re-
strictions which caused code duplication between func-
tions on data types.

This paper proposes a language support approach to ad-
dress such limitations. Firstly, we will give a brief overview
of the feature-oriented product line engineering (Section 2).
As in our previous work, we will start with the feature
modeling followed by product line asset design activities.
Then, we will review the above issues in the context of
product line implementation. Then, we present a language-
based solution to better support product line implementa-
tion (Section 3). Our choice of an implementation language
is MLPolyR [10]. It supports extensible programming in
a compositional way and its module language provides pa-
rameterization mechanisms. Furthermore, its macro system
provides feature-related code composition which is based on
the feature selection. We will show how the combination of
these language features work together to facilitate the prod-
uct line engineering paradigm. Finally, we will review other
feature-oriented implementation approaches (Section 4).

2. PRODUCT LINE ENGINEERING
Product line engineering highlights the development of

products from core assets rather than from scratch. There-
fore, this paradigm separates the process of building core
assets from the process of building an individual product as
shown in Figure 1. Product line asset development con-
sists of analyzing a product line, designing reference archi-
tectures, and developing reusable components. In the prod-
uct development process, a particular product is instantiated
by selecting a proper architecture and adapting components.
Among various product line approaches, we adopt FORM
product line engineering for the following reasons:

• The method relies on a feature-based model which
provides adequate means for reasoning about product
lines [19].

• The method supports architecture design which plays
an important role in bridging the gap between the con-
cepts at the requirement level and their realization at
the code level by deciding how variations are modular-
ized by means of architectural components [25].

In this section, we will give an overview of overall engineer-
ing activities for developing a family of the simple arithmetic

Figure 1: Development process (adopted from
FORM [19]).

language interpreters. We believe that this simplified exam-
ple can demonstrate the same limitation that our previous
experience showed without dealing with unrelated technical
details. Furthermore, this example is designed to precisely
capture so-called the expression problem [29], which can even
facilitate a comparative study of language support for prod-
uct line implementation. The more detailed discussion of our
choice of this example and the working draft of this compar-
ative study can be found at our technical report [13].

2.1 Problem description
Let us consider a Simple Arithmetic Language (SAL) that

contains terms such as numbers, variables, additions and a
let-binding form. Suppose we start with two basic opera-
tions on terms: a function eval that realizes the evaluation
semantics and a function check that realizes the static se-
mantics. (In this case the static semantics just makes sure
that all variables are in scope.)

In this setup, assume one wants to build an SAL inter-
preter I, which is the composition of the combinators eval
and check where o means function composition:

I = eval o check

Sometimes, we want to replace an old implementation with
a new one. For example, instead of the evaluation seman-
tics eval, we can define a machine semantics (for example
because we want to make control explicit) and implement
its realization (evalm):

Im = evalm o check

Optionally, the combinator opt which performs some simple
term rewriting (e.g., constant-folding, strength-reduction,
etc.) may be inserted to build an optimized interpreter Iopt:

Iopt = evalm o opt o check

When the base language grows to support additional terms
(e.g., a conditional term), eval, opt and check also evolve to
constitute a new interpreter I′opt:

I′opt = eval′ o opt′ o check′

Since all these interpreters have so much in common, we
should be able to understand them as a family of inter-
preters. Therefore, it is natural to apply product line en-
gineering for better support of their development.

2.2 Feature-oriented product line engineering
To analyze a set of interpreters as a family, we adopt

feature-oriented product line engineering, which consists of
following engineering activities:

4

Figure 2: Feature model for the SAL interpreter.
A closed triangle (many-of) represents multiple op-
tional relationship and an open triangle (one-of)
represents alternative relationship [15].

• Product line analysis. We perform commonality and
variability analysis for the family of the SAL inter-
preters. We can easily consider features in the base in-
terpreter as commonalities and exclusive features only
in some extensions as variations. Based on this anal-
ysis, we identify two kinds of variations: architectural
variation and component level variations. Then we
determine which factors cause these variations. Such
factors are represented as features in the feature model
as illustrated in Figure 2.

• Product line architecture design. Architecture design
involves identifying conceptual components and spec-
ifying their configuration. During this phase, we have
to not only identify components but also define inter-
faces between components:

checker : term → term
optimizer : term → term
evaluator : term → value

As usual, the arrow symbol → is used to specify a
function type. In our example, components act like
pipes in a pipe-and-filter the architectural style, so all
interface information is captured by the type.

By using the above conceptual components, we can
specify the overall structure (i.e., architecture) of var-
ious interpreters:

interp = evaluator o checker
interpOpt = evaluator o optimizer o checker

• Product line component design. Next, we identify con-
ceptual components which are constituents of a con-
ceptual architecture. A conceptual component can
have multiple implementations. For example, there are
many versions of the evaluator component depending
on the evaluation strategy:

eval : term → value
evalm : term → value

At the same time, the language term can be extended
to become term′ which is an extension of term (for
example to support conditionals):

eval′ : term′ → value
eval′m : term′ → value

Figure 3: The overall product engineering process.
Each selected feature gives advice on how to choose
an architecture and how to instantiate required com-
ponents. For example, the reference architecture
interpOpt gets selected, guided by the presence of the
Optimizer feature. The presence of the Constant folding
feature guides us to choose the component optimizer
with the implementation optcons [13].

Similarly, check and check′ can be specified as follows:

check : term → term
check′ : term′ → term′

For the optimizer component, there are many possi-
ble variations due to inclusion or exclusion of vari-
ous individual optimization steps (i.e., constant folding
and short-circuiting) and due to the variations in the
underlying term language (i.e., base and extended):
optcont, opt′cons, opt′short or opt′cons+short.

• Product engineering. Product engineering starts with
analyzing the requirements provided by the user and
finds a corresponding set of required features from the
feature model. Assuming we are to build four kinds
of interpreters, we have to have four different feature
selections:

FS(I) = {Evaluation semantics}
FS(Im) = {Machine semantics}
FS(Iopt) = {Machine semantics, Optimizer,

Constant folding}
FS(I′opt) = {Conditional, Evaluation semantics, Optimizer,

Constant folding, Short− circuit}
Here, the function FS maps a feature product to its
corresponding set of its required features. (For brevity
only non-mandatory features are shown.) Selected fea-
ture sets give advice on the selection among both ref-
erence architectures and components. Figure 3 shows
the overall product engineering process. The target
product would be instantiated by assembling such se-
lections.

2.3 Issues in product line implementation
During the product line asset development process, we

obtain reference models which represent architectural and
component level variations. Such variations should be re-
alized at the code level. The first step is to refine concep-
tual architectures into concrete architectures which describe
how to configure conceptual components. Then, product

5

line component implementation involves realization of con-
ceptual components with the proper product feature deliv-
ery methods. Based on our experience of building a family
of compilers [12], we see three issues that surfaced during
product line implementation.

• Product line architecture implementation. Since there
may be multiple reference architectures, it would be
convenient to have mechanisms for abstracting archi-
tectural variations, capturing the inclusion or exclu-
sion of certain components. Hence, any adequate im-
plementation technique should be able to provide mech-
anisms for:

– declaration of required conceptual components
(checker, optimizer and evaluator) and their inter-
face

– specification of the base reference architecture
interp and its optimized counterparts interpOpt by
using such conceptual components.

Our experience showed that the Standard ML (SML)
module language was powerful enough to describe both
components and their interfaces. Each components
in a reference architecture was mapped into a SML
program unit (called structure) and interfaces among
them as signatures. Furthermore, functors make it
possible to implement the common part once and pa-
rameterize variations so that different products can be
instantiated by assigning distinct values as parameters:

1 functor InterpFun (structure C : CHECKER
2 structure E : EVALUATOR
3 sharing C.T = E.T) : INTERP
4 where type term = E.T. term =
5 struct
6 type term = E.T. term
7 val i n t e rp = E. eva l o C. check
8 end

Here, the functor InterpFun takes two components checker
and evaluator and then returns their composition. How-
ever, all necessary sharing constraints between param-
eters must be declared explicitly. For example, in order
to avoid type errors we had to specify that the types
of term in both components should coincide.

• Product line component implementation. This phase
involves realization of conceptual components. The
main challenge of this phase is how to implement vari-
ations at the component level. Such variations could
be in the form of either code extension or code substi-
tution. For our running example, a pair of check and
check′ corresponds to code extension while a pair of
eval and evalm corresponds to code substitution. While
its parameterized module (i.e., functor) provides an ef-
ficient way to implement code substitution, the SML
type system sometimes imposes restriction on code ex-
tension, which causes code duplication between func-
tions on data types.

• Product engineering. Based on the product analysis,
a feature product is instantiated by assembling prod-
uct line core assets. For example, an extended inter-
preter I′ can be instantiated by applying the functor

InterpFun to the modules EChecker (realizing check′)
and EBigStep (realizing eval′) based on the feature se-
lection. Each selected feature gives advice on how to
choose an application architecture and how to instanti-
ate required components. However, such instantiation
was manually performed since the relations between
features and core assets are implicitly expressed as a
form of documentation.

3. LANGUAGE SUPPORT FOR PRODUCT
LINE IMPLEMENTATION

In this section, we present product line implementation us-
ing MLPolyR as a language-based solution. MLPolyR is
an ML-like language with row polymorphism, polymorphic
record selection and polymorphic sums, functional record
update and a Hindley-Milner-style type system with princi-
pal types [10, 11]. Among its many features, we focus on
three aspects in this paper:

• The extensible module language. Similar to functors in
the Standard ML module system, MLPolyR provides
an parameterized mechanism called template. Further-
more, its modules are extensible and compiled sepa-
rately.

• Extensible programming with first-class cases. With
cases being first-class and extensible, one can use the
usual mechanisms of functional abstraction in a style of
programming that facilitates composable extensions.
Note that these composable extensions are type-safe in
a sense that well-typed programs do not go wrong [24].

• The macro system. Recent addition to MLPolyR
supports code expansion at the level of a macro sys-
tem. This mechanism makes it possible to write com-
position specification in terms of features, then feature
selection will integrate the corresponding code easily.

In the remainder of this section, we will show how such mech-
anisms resolve each issue previously identified.

3.1 Product line architecture implementation
Each component in a reference architecture is mapped to

an MLPolyR module. We first define types (or signatures)
of the interested components based on the outcome of prod-
uct line architecture design:

Checker : {{ check : term → term, . . . }}
Optimizer : {{ opt : term → term, . . . }}
Evaluator : {{ eval : term → int, . . . }}

where . . . implies that there may be more parts in a compo-
nent, but they are not our concerns. In practice, we do not
have to write such interface explicitly since the type checker
infers the principal types. Then, by using these conceptual
modules (Checker, Optimizer and Evaluator), we can define
two reference architectures:

1 module In te rp = {{
2 val i n t e rp = fn e => Evaluator . eva l
3 (Check . check e)
4 }}
5

6 module InterpOpt = {{
7 val i n t e rp = fn e => Evaluator . eva l
8 (Optimizer . opt
9 (Checker . check e))

10 }}

6

Alternatively, like functors in SML, we can use a parame-
terized module called a template which takes concrete mod-
ules as arguments and instantiates a composite module:

1 template InterpFun (C, E) = {{
2 val i n t e rp = fn e => E. eva l (C. check e)
3 }}
4

5 template InterpOptFun (C, O, E) = {{
6 val i n t e rp = fn e => E. eva l
7 (O. opt
8 (C. check e))
9 }}

where C, O and E implicitly imply Checker, Optimizer and
Evaluator respectively and their signatures are captured as
constraints by the type checker. For example, the type
checker infers the constraint that the module C should have
a component named check which has a type of α → β and
β should be either an argument type of the module E (Line
1) or that of O (Line 5).

The second approach with templates supports more code
reuse because a reference architecture becomes polymorphic
because it is parameterized over its components including
their types. As long as components satisfy constraints that
the type checker computes, any components can be plugged
into a reference architecture. For example, for the argument
C, either the base module Check and its extension EChecker
can applied to the template InterpFun.

3.2 Product line component implementation
Modules in MLPolyR realize components. In order to

manage component-level variations, we have to deal with
both code extension and code substitution. For example, we
will see multiple implementations of the component Evaluator:

BigStep : {{ eval : term → int, . . . }}
Machine : {{ eval : term → int, . . . }}
EBigStep : {{ eval : term′ → int, . . . }}
EMachine : {{ eval : term′ → int, . . . }}

where term represents a type of the base constructors and
term′ that of the extension. BigStep and EBigStep implement
the evaluation semantics and its extension while Machine
and EMachine implement the machine semantics and its ex-
tension. Note that a pair of BigStep and EBigStep (and also
a pair of Machine and EMachine) corresponds to code ex-
tension while a pair of BigStep and Machine corresponds to
code substitution.

Code extension is supported by first-class extensible cases.
Figure 4 shows how such extensions are made. First, we
define cases (Line 4-10) separately from a match expression
(Line 14) where cases will be consumed. Then, we wrap such
cases in functions by abstracting over their free variables
(i.e., eval and env) (Line 3). One of these variables is eval—
the whole evaluator itself. Its inclusion in the argument list
achieves open recursion, which is essential to extensibility.
With this setup, it becomes easy to add a new case (i.e.,
IF0). In an extension, only a new case is handled (Line 22-
24) and the default explicitly refers to the original set of
other cases represented by BigStep.bases (Line 25). Then,
EBigStep.bases can handle five cases including IF0. We can
obtain a new evaluator EBigStep.eval by closing the recursion
through applying bases to evaluator itself (Line 29). Note
that a helper function run is actually applied instead of eval
in order to pass an initial environment in Line 30.

1 (∗ module f o r the eva lua t i on semantics ∗)
2 module BigStep = {{
3 fun bases (eval , env) =
4 cases ‘VAR x => env x
5 | ‘NUM n => n
6 | ‘PLUS (e1 , e2) =>
7 eva l (env , e1) + eva l (env , e2)
8 | ‘LET (x , e1 , e2) =>
9 eva l (Env . bind

10 (eva l (env , e1) , x , env) , e2)
11

12 fun eva l e =
13 let fun run (env , e) =
14 match e with bases (run , env)
15 in run (Env . empty , e)
16 end
17 }}
18

19 (∗ module f o r the extended eva lua t i on semantics ∗)
20 module EBigStep = {{
21 fun bases (eval , env) =
22 cases ‘ IF0 (e1 , e2 , e3) =>
23 i f eva l (env , e1) == 0 then
24 eva l (env , e2) else eva l (env , e3)
25 default : BigStep . bases (eval , env)
26

27 fun eva l e =
28 let fun run (env , e) =
29 match e with bases (run , env)
30 in run (Env . empty , e)
31 end
32 }}

Figure 4: The module BigStep realizes the evalua-
tion semantics (eval) and the module EBigStep realizes
the extended evaluation semantics (eval′) by defining
only a new “conditional” case ‘IF0.

Code substitution as another form of variation at the
component level does not cause any trouble. For exam-
ple, the module Machine implements the machine semantics
(i.e., evalm). In our example two different implementations
(BigStep and Machine) provide interchangeable functional-
ity, but neither is an extension of the other, so they are
implemented independently.

3.3 Product engineering
Our example asks us instantiate four interpreters (I, Im, Iopt

and I′opt) differentiated by the feature selection. As Figure 3
demonstrates, each will be instantiated by selecting a proper
architecture (either InterpFun and InterOptFun) and choosing
its components (either BigStep or Machine, etc) with implicit
advice from the selected feature set. For example:

• When the feature set is FS(Im), the reference archi-
tecture InterpFun gets chosen. Then, two components
Machine and Checker are selected because of the pres-
ence of Machine semantics feature. Therefore, we in-
stantiate the interpreter Im as follows:

module Im = InterpFun (Checker, Machine)

• When the feature set is FS(I′opt), the reference archi-
tecture InterpOptFun is chosen. As far as the compo-
nents are concerned, the presence of the Conditional
and Evaluation semantics features guide us to choose
the component EBigStep. Similarly, the presence of

7

the Optimizer, Conditional, Constant folding and Short-
circuit forces the use of component ECSOptimizer (re-
alizing opt′cons+short). Therefore, we instantiate the in-
terpreter I′opt as follows:

module I′opt = InterpOptFun (EChecker,
ECSOptimizer,
EBigStep)

In this approach, we have to rely on implicit guidance on
how to assemble core assets and then we manually perform
a product instantiation since conventional languages cannot
state the relations between a feature and its corresponding
code segments in the program text.However, the MLPolyR
macro system provides a way to explicitly specify the rela-
tions between features and core assets as a set of rules, so
we can specify feature configuration in a separate file. One
benefit of it is that the MLPolyR compiler can automate
product engineering process, that is, it can automatically
pick a right reference architecture and its associated compo-
nents with respect to the given rules.

Figure 5 shows the expansion rules for a family of the
SAL interpreters. It is used to map feature sets into feature-
related abstractions (i.e., module names). For example, sup-
pose the following macro term in the program text:

1 module Ix = @Interp

The macro term @Interp gets expanded recursively depend-
ing on the feature selection at the parse time. Let us as-
sume that the selected feature set equals to FS(I′opt). A ref-
erence architecture InterpOptFun will get selected (Line 4
in Figure 5) because of the presence of the Optimizer fea-
ture. Then, its conceptual component arguments Checker,
Optimizer, Evaluator will be recursively instantiated into the
proper concrete components. Checker will be expanded into
a component ECheck due to the presence of Conditional (Line
10). Optimizer will be expanded into ECSOptimizer due
to Optimizer, Conditional, Constant folding and Short-circuit
(Line 15). Evaluator will be expanded into EBigStep due to
the Conditional and Evaluation semantics features (Line 18).
As a result, the term @Interp expands to the following ex-
pressions, which equals to the declaration of the module I′opt

that we had to manually write down:

1 InterpOptFun (EChecker , ECSOptimizer , EBigStep)

In summary, the MLPolyR compiler can expand macro
terms with respect to rules, so the feature composition can
be done automatically once we write expansion rules and
provide a valid feature set.

4. DISCUSSION AND RELATED WORK
Our approach adopts FORM which aims to provide an

unified feature-oriented development methodology [18, 19].
This method describes a mapping between features and core
assets (i.e., design and implementation artifacts). However,
it does not impose any specific synthesis mechanisms on
its implementation, so implementation details are left to
developers. Its early papers only illustrated the usage of
the object-oriented programming annotated by the FORM
macro language [18, 17] but recently, aspect-oriented pro-
gramming has become popular as a way of implementing
features in a compositional way [21, 14]. Our prior work
on building a family of compilers introduced another choice

of implementation mechanism, i.e., functorization [12]. The
contribution of this paper lies that we identify some difficul-
ties of our previous approach and propose a direct language
support for each phases in the product line implementation
process:

• Product line architecture implementation. Similar to
functors in SML, MLPolyR provides a parameterized
module which has been demonstrated to be powerful
to manage variations. Unlike SML, however, we do not
have to write signatures explicitly since the MLPolyR
type checker infers the principal types, which is ex-
pected to lessen the burden of product line implemen-
tors.

• Product line component implementation. The main
challenge of this phase is to provide extensibility mech-
anism. Here, MLPolyR supports first-class cases that
facilitate composable extensions.

• Product engineering. The MLPolyR macro system
simplifies feature selection-based composition, so prod-
uct instantiation can be automated once we supply a
valid feature set.

While we aim to map between features in feature model-
ing and language constructs (realizing features), there have
been attempts to support the concept of features more ex-
plicitly at code level. AHEAD, FeatureC++, CaesarJ and
FeatureHouse are such feature-oriented programming lan-
guages that provide better abstraction and modularization
mechanisms for features in various ways [8, 4, 6, 2]. Most
these existing mechanisms fall into one of three categories:

• The annotative approach. This approach implements
features using some form of annotations. Typically,
preprocessors, e.g., macro systems, have been used in
many literature examples. For example, the macro
language in FORM determines inclusion or exclusion of
some code segments based on the feature selection [18,
17].

• The compositional approach. In this approach, fea-
tures are implemented as distinct units which are then
integrated to become a product. Aspect-oriented or
mixin-layered extension are such examples [8, 7].

• The parameterization approach. The idea of param-
eterized programming is to implement the common
part once and parameterize variations so that different
products can be instantiated by assigning distinct val-
ues as parameters. Higher-order modules, also known
as functors—e.g., in SML are a typical example [5].
The SML module system has been demonstrated to
be powerful enough to manage variations in the con-
text of product lines [12].

Note that there have been hybrid attempts combining
multiple different approaches [3, 20] and the MLPolyR
language supports all three different programming styles.
Similarly, FeatureC++ also supports all of them by com-
bining aspect-oriented programming style, generic program-
ming style (which enables parameterization over refinements)
and an annotative approach [4]. However, its annotations
are line-based in the style of #ifdef directives. Therefore,

8

1 (∗ Arch i t ec ture Model ∗)
2

3 In te rp : := InterpFun (Checker , Evaluator) {}
4 | InterpOptFun (Checker , Optimizer , Evaluator) {Optimizer }
5

6

7 (∗ Component Model ∗)
8

9 Checker : := Check () {}
10 | ECheck () {Condi t iona l }
11

12 Optimizer : := COptimizer () {Optimizer , Constant f o l d i n g }
13 | ECOptimizer () {Optimizer , Condit ional , Constant f o l d i n g }
14 | ESOptimizer () {Optimizer , Condit ional , Short−Ci r cu i t }
15 | ECSOptimizer () {Optimizer , Condit ional , Constant f o ld ing , Short−Ci r cu i t }
16

17 Evaluator : := BigStep () {Evaluat ion semant ics }
18 | EBigStep () {Evaluat ion semantics , Cond i t iona l }
19 | Machine () {Machine semant ics }
20 | EMachine () {Machine semantics , Cond i t iona l }

Figure 5: Expansion rules for the SAL product line. ::= denotes a “is-one-of” relation. For example, a macro
term @Interp can be implemented by either a template InterpFun or InterpOptFun (Line 3-4). A template can
have module arguments in the following (. . .). A module argument can recursively have its own expansion
rules. Each rule defines the corresponding features in the list bracketed by {. . .}.

their feature specific code segments (if annotated) are scat-
tered across multiple classes, so code easily becomes com-
plicated. Saleh and Gomaa proposes the feature description
language to overcome such problem [27]. Its syntax looks
similar to the C/C++ preprocessor but it supports separa-
tion of concerns by modularizing feature specific code in a
separate file. So does our macro system in that expansion
rules are maintains in a separate file in order to prevent the
growth of complexity.

Sunkle et al. proposed features as first-class entities [28]
but our approach focuses on not features but relations be-
tween features and assets so that a user’s feature selection
can pull the trigger at assembling, adapting and integrat-
ing core assets. Similarly, the AHEAD tools suite and Fea-
tureHouse provide application generators but they treat a
feature as a program increment or a program delta at the
code level [23, 2]. These tools assume that there is a one-to-
one mapping between conceptual features in feature mod-
eling and concrete features in code. Therefore, in their ap-
proaches, the concepts at the requirement level and their
realization at the code level should be similar while our ap-
proach studies features mainly in the requirement level and
they are incrementally realized as assets during design and
implementation phase. Therefore, the connection between
mechanisms and each phase of the development process is of
importance in our approach. This paper can be considered
as an effort to make such connection explicit by providing
relevant language supports.

The interpreter family example in this paper was origi-
nally designed to capture the so-called expression problem
which describes the difficulty of two dimensional extensibil-
ity [13]. Variants of this problem have been popularly used
to demonstrate the expressive power of feature-oriented pro-
gramming. For example, as a variant, Lopez-Herrejon et
al. defined the Expression Product-Line (EPL) to perform
comparative study on feature modulization [23]. The as-
pect of generating different product-lines in the context of
the expression problem has also been studied in the work

on Origami [9]. In an Origami matrix, orthogonal features
are described as either rows or columns and they are synthe-
sized through a series of matrix transformation to generate a
product-line. Since Origami is not implementation-specific,
we believe that their matrix transformation (i.e., folding a
matrix) can be implemented using our language features in
a way that rows and columns are represented by our exten-
sible module language and extensible first-class cases and
then our macro system performs a matrix transformation
by assembling them.

Recently, Apel et al. discussed feature (de)composition in
the context of functional programming [1]. However, their
interest lies in the problem of cross cutting in functional pro-
gramming while we are interested in applying functional pro-
gramming techniques (e.g., higher-order modules and type-
safe extensible cases) into feature composition.

5. CONCLUSIONS AND OUTLOOK
Our work shows that advanced programming language

technology such as extensible cases and parameterized mod-
ules are helpful when we express and implement variations
identified by product line analysis. Furthermore, our macro
system simplifies feature selection-based composition. Al-
though each of these mechanisms alone may make feature-
oriented development more convenient, building a family of
products becomes easier when all mechanisms are available.

We are continuing this work in several ways. First, we
plan to integrate a feature modeling tool with our work.
Since our expansion rules do not support any specification
of feature relationships (i.e., mutually exclusive or required
relations), the MLPolyR compiler cannot detect any in-
valid feature sets. We leave such validation to feature mod-
eling tools which provide various diagnoses on feature mod-
els. Our goal is to let a front-end modeling tool generate
valid expansion rules. Then, application engineering would
only require feature selection.

We will also continue to improve architectural expressive-
ness of MLPolyR to enable it to describe various view-

9

points. For example, FORM supports three viewpoints (i.e.,
subsystem, process and module) [18]. So far only mod-
ules have been the focus in our architecture models. Note
that our programming styles rely on the fact that there
are two kinds of variations: architectural variations and
component-level variations. We conjecture that different ar-
chitecture styles (i.e., layered or blackboard style [16]) may
require different programming models. In this line of re-
search, we are investigating the usage of more expressive
architecture description languages such as ArchJava which
provides more explicit notations for dynamic configuration
of product lines [26].

6. REFERENCES

[1] S. Apel, C. Kästner, A. Größlinger, and C. Lengauer.
Feature (de)composition in functional programming.
In Proceedings of the 8th International Conference on
Software Composition (SC), pages 9–26, July 2009.

[2] S. Apel, C. Kästner, and C. Lengauer. FeatureHouse:
Language-independent, automated software
composition. In Proceedings of the 31th International
Conference on Software Engineering, 2009.

[3] S. Apel, M. Kuhlemann, and T. Leich. Generic Feature
Modules: Two-Staged Program Customization. In
Proceedings of International Conference on Software
and Data Technologies, pages 127–132, Sept. 2006.

[4] S. Apel, T. Leich, M. RosenmÃijller, and G. Saake.
Featurec++: On the symbiosis of feature-oriented and
aspect-oriented programming. In Proceedings of the
International Conference on Generative Programming
and Component Engineering, pages 125–140, 2005.

[5] A. W. Appel and D. B. MacQueen. Standard ML of
New Jersey. In Proceedings of the third International
Symp. on Prog. Lang. Implementation and Logic
Programming, pages 1–13, New York, Aug. 1991.

[6] I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann.
An Overview of CaesarJ. Lecture Notes in Computer
Science : Transactions on Aspect-Oriented Software
Development I, 2006.

[7] AspectJ. http://www.eclipse.org/aspectj/, 2008.

[8] D. Batory. Feature-oriented programming and the
ahead tool suite. In Proceedings of the International
Conference on Software Engineering, 2004.

[9] D. Batory, R. E. Lopez-Herrejon, and J.-P. Martin.
Generating product-lines of product-families. In
Proceedings of the 17th IEEE International Conference
on Automated Software Engineering, page 81, 2002.

[10] M. Blume, U. A. Acar, and W. Chae. Extensible
programming with first-class cases. In Proceedings of
the International Conference of Functional
Programming, pages 239–250, 2006.

[11] M. Blume, U. A. Acar, and W. Chae. Exception
handlers as extensible cases. In Proceedings of the
ASIAN Symposium on Programming Languages and
Systems, 2008.

[12] W. Chae and M. Blume. Building a family of
compilers. In Proceedings of the 12th International
Software Product Line Conference, 2008.

[13] W. Chae and M. Blume. An evaluation framework for
product line implementation. Technical Report
TTIC-TR-2009, TTI at Chicago, 2009.

[14] H. Cho, K. Lee, and K. C. Kang. Feature relation and
dependency management: An aspect-oriented
approach. In Proceedings of Software Product Line
Conference, 2008.

[15] K. Czarnecki and U. W. Eisenecker. Generative
programming: methods, tools, and applications. ACM
Press/Addison-Wesley Publishing Co., 2000.

[16] D. Garlan and M. Shaw. An introduction to software
architecture. Technical report, Carnegie Mellon
University, Pittsburgh, PA, USA, 1994.

[17] K. C. Kang, M. Kim, J. Lee, and B. Kim.
Feature-oriented re-engineering of legacy systems into
product line assets - a case study. In Proceedings of the
Software Product Line Conference, pages 45–56, 2005.

[18] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and
M. Huh. Form: A feature-oriented reuse method with
domain-specific reference architectures. Ann. Softw.
Eng., 5:143–168, 1998.

[19] K. C. Kang, J. Lee, and P. Donohoe. Feature-oriented
product line engineering. IEEE Softw., 19(4):58–65,
2002.

[20] C. Kästner and S. Apel. Integrating compositional and
annotative approaches for product line engineering. In
Proceedings of the GPCE Workshop on
Modularization, Composition and Generative
Techniques for Product Line Engineering (McGPLE),
pages 35–40, Oct. 2008.

[21] K. Lee, K. C. Kang, M. Kim, and S. Park. Combining
feature-oriented analysis and aspect-oriented
programming for product line asset development. In
Proceedings of the 10th International on Software
Product Line Conference, pages 103–112, 2006.

[22] K. Lee, K. C. Kang, and J. Lee. Concepts and
guidelines of feature modeling for product line software
engineering. In Proceedings of the 7th International
Conference on Software Reuse, pages 62–77, 2002.

[23] R. E. Lopez-herrejon, D. Batory, and W. Cook.
Evaluating support for features in advanced
modularization technologies. In European Conference
on Object-Oriented Programming, 2005.

[24] R. Milner. A theory of type polymorphism in
programming. J. Comput. Syst. Sci., 17(3):348–375,
1978.

[25] N. Noda and T. Kishi. Aspect-oriented modeling for
variability management. In Proceedings of the
International Software Product Line Conference, 2008.

[26] S. Pavel, J. Noyé, and J.-C. Royer. Dynamic
configuration of software product lines in archjava. In
Proceedings of Software Product Line Conference,
pages 90–109, 2004.

[27] M. Saleh and H. Gomaa. Separation of concerns in
software product line engineering. SIGSOFT Softw.
Eng. Notes, 30(4):1–5, 2005.

[28] S. Sunkle, M. Rosenmüller, N. Siegmund, S. S.
ur Rahman, G. Saake, and S. Apel. Features as
first-class entities - toward a better representation of
features. In Proceedings of the GPCE Workshop on
Modularization, Composition, and Generative
Techniques for Product Line Engineering (McGPLE),
pages 27–34, Oct 2008.

[29] P. Wadler. The expression problem, Dec. 1998. Email
to the Java Genericity mailing list.

10

Feature-Oriented Programming with Ruby

Sebastian Günther and Sagar Sunkle
Faculty of Computer Science

University of Magdeburg
{sebastian.guenther|sagar.sunkle}@ovgu.de

ABSTRACT
Features identify core characteristics of software in order to
produce families of programs. Through configuration, differ-
ent variants of a program can be composed. Our approach is
to design features as first-class entities of a language. With
this approach, features can be constructed and returned by
methods, stored in variables and used in many expressions
of the language. This paper introduces rbFeatures, an im-
plementation of first-class features in the dynamic program-
ming language Ruby. Our goal is to show how such a lan-
guage extension works with respect to its dynamic host lan-
guage and the applicability of our results. In particular, we
present a step-by-step walkthrough how to use rbFeatures in
order to implement known case-studies like the Graph Prod-
uct Line or the Expression Product Line. Since we created a
pure Ruby language extension, rbFeatures can be used with
any existing programs and in any virtual machine imple-
menting Ruby.

Categories and Subject Descriptors: D.2.2 [Software]:
Software Engineering - Design Tools and Techniques; D.3.3
[Software]: Programming Languages - Language Constructs
and Features

General Terms: Languages

Keywords: Feature-Oriented Programming, Domain-Specific
Languages, Dynamic Programming Languages

1. INTRODUCTION
Software has an inherent complexity. Since the advent of

software engineering with the Nato conference in 1968, the
question of how to cleanly modularize software into its var-
ious concerns is an ongoing question [1]. Today’s challenges
involve multiple requirements and different domains that
software must consider. However, the tyranny of the domi-
nant decomposition forces developers to decompose software
along one dimension only [23]. This leads to several software

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOSD’09, October 6, 2009, Denver, Colorado, USA.
Copyright 2009 ACM 978-1-60558-567-3/09/10 ...$10.00.

defects, such as tangled and bloated code [13] and structural
mismatches of requirements and programs because they can
not be mapped one to one. Solution suggested to the code-
tangling problems are concepts like Copliens ideas on multi-
paradigm design [5], Kiczales et al. about Aspect-Oriented
Programming [13] and Prehofer’s Feature-Oriented Program-
ming [20].This paper focuses on Feature-Oriented Program-
ming, or short FOP.

Features are characteristics of software that distinguish
members of a so called program family [4]. Program families
are comparable with Software Product Line (SPL). An SPL
is a set or related programs with different characteristics
where the features reflect the requirements of stakeholders
[11]. The challenge which SPL engineering addresses is to
structure valuable production assets in a meaningful way
to support productivity and reusability [6]. Withey further
defines product lines as a “sharing a common, managed set
of features” [25].

Features can be realized with very different approaches:
mixin-layers [21], AHEAD-refinements [4], and aspectual
feature modules [1] to name a few. Approaches can be dif-
ferentiated [12] into compositional (e.g., features are added
as refinements to a base program [4]) and annotative (e.g.,
features are implemented as annotations inside the source
code [12]).

Because of the several limitations and drawbacks that
named FOP approaches have [18, 12, 22], we are actively
suggesting new concepts that close the gap between the con-
ceptual and the implementation view of features. One such
suggestion was to implement features as first-class entities
in a host language. We implemented features as first-class
entities with the static programming language Java as the
host language called FeatureJ 1 [22]. First-class entities are
characterized by the following abilities: They can be instan-
tiated at run-time, stored in variables, used as parameters
to methods or being returned from them, and also used in
various statements and expressions. The gap is closed if
we extend a host language with first-class features [22]. In
such case features are language-level entities used actively
in programming while retaining their status as a high-level
modularization concept.

This paper supports our ideas by providing Feature-Ori-
ented Programming (FOP) for the dynamic programming
language Ruby. We named our FOP implementation rbFea-
tures2. rbFeatures is a language extension for Ruby that
provides features as language entities in Ruby. Our motiva-

1http://firstclassfeatures.org/FeatureJ.htm
2http://firstclassfeatures.org/rbFeatures.htm

11

tion is twofold. At first, we want to create another imple-
mentation of features as first-class entities to better compare
with the Java version and other approaches. We await to
gain more insight into language extensions that can be real-
ized with respect to static and dynamic programming lan-
guages. The second part is applicability of the result. Since
rbFeatures is implemented in pure Ruby, using no external
libraries, it is widely usable with both different virtual ma-
chines and types of programs. Such discussions however will
be deferred to the later part of the paper - the focus is to
explain how to use rbFeatures and how features are realized
as first-class entities.

The remainder of this paper is structured as follows. The
next section will further explain feature-terminology and
characteristics. Section 3 introduces the core concepts of
the Ruby language. Section 4 explains rbFeatures in detail
with a walkthrough by defining an example. We further ex-
plain other examples in Section 5. The last two sections
discuss our experiences and related work.

2. FEATURE-ORIENTED PROGRAMMING
Modern FOP methods should combine both the concep-

tual view and the implementation view on features. Con-
sidering our earlier proposal to close the gap between the
conceptual and implementation views on features [22], we
want to elaborate a refined terminology and show proper-
ties of first-class features.

2.1 Feature Terminology
We observe that features try to tackle two main problems

of software engineering. On the one hand to capture the con-
ceptual higher-level view in order to abstract and configure
core functionality, and on the other hand to provide a low-
level implementation view for identification and composition
of feature-relevant parts of a program.

From a conceptual viewpoint, a feature is an abstract en-
tity which expresses a concern. Concerns can be general re-
quirements of stakeholders [11] or increments in functional-
ity [12]. From the functionality viewpoint, features describe
modularized core functionality that can be used to distin-
guish members of a program family [4]. The functionality
viewpoint is taken from here on.

A feature plays an important role in the analysis, design,
and implementation phases of software development. In the
first part of the development, conceptual features describe
in natural language, the name, intent, scope, and functions
that a feature provides to a program. Conceptual features
are thus an additional unit to express the programs decom-
position - providing some remedy to the tyranny of the dom-
inant decomposition problem. In the implementation phase,
concrete features are constructed. Concrete features are the
implementation of features inside the program. Often, these
concrete features are seen as refinements that add code to
a certain base program, e.g. as shown in typical FOP case
studies like the graph product line [14] or in the expression
product line [15].

This describes our terminology in the remainder of the
paper. If not stated otherwise, we use the word feature to
denote a concrete feature.

2.2 Feature Properties
Features have properties needed to define their character-

istics and role they have in programming. We see properties

as defining steps when using FOP. We studied the suggested
properties of Lopez-Herrejon [15]. From the viewpoint of dy-
namic languages, the characteristics Separate Compilation
and Static Typing have no meaning because Ruby is inter-
preted and typeless. We abstract and generalize the other
characteristics as followed (we name the grouping at the end
of each property in italics text).
• Naming Conceptual features are means to abstract

the core functionality. This functionality is given a
unique name and intent. The concrete feature should
also have the same name, while presenting its intent
with the following identification and composition mech-
anisms. (Cohesion)
• Identification To form concrete features, one must

first identify what parts of the program belong to fea-
ture. Those parts can be coarse or fine grained. Coarse-
grained features can be thought of as stand-alone parts
of the program - they cleanly integrate with the base
program via defined interfaces or by adding new clas-
ses. On the contrary, fine-grained features impact var-
ious parts of the source code: extending code lines
around existing blocks of code, changing parameters of
methods, or adding single variables at arbitrary places.
(Deltas)
• Expressing A concrete feature needs not only to spec-

ify what parts of the program belong to it, but also
how these parts are added to the program. Such ex-
pressions must work on the same abstraction level as
the programs language. (Deltas)
• Composition Once all feature related code is identi-

fied and expressed, the composition is the process to
configure and build a variant. It is desirable that the
composition-order of features imposes no constraint to
compose a working program. (Flexible Composition,
Flexible Order, Closure under Composition)

3. RUBY PROGRAMMING LANGUAGE
Ruby is a completely object-oriented dynamic program-

ming language. Its inventor, Yukihiro Matsumoto, took the
best concepts of his favorite programming languages and put
them inside one language. His foremost motivation was to
make programming faster and easier [10].

Ruby has many capabilities for flexible extension and mod-
ification of the source code. Naturally, this makes Ruby a
good vehicle for FOP. This section introduces Ruby with the
most important concepts which play a role in rbFeatures, so
that readers yet unfamiliar with Ruby can better follow the
ideas proposed later. All material in this section stems from
[10] and [24].

3.1 Class Model
Five classes are the foundation of Ruby. At the root lies

BasicObject. It defines just a handful of methods needed for
creating objects from it and is typically used to create ob-
jects with minimal behavior. Object is the superclass from
which all other classes and modules inherit. However, most
of its functionality (like to copy, freeze, marshal and print
objects) is actually derived from Kernel. Another impor-
tant class is Module, which mainly provides reflection mech-
anisms, like getting methods and variables, and metapro-
gramming capabilities, e.g. to change module and class def-
initions. Finally, Class defines methods to create instances
of classes.

12

3.2 Core Objects
We discuss the objects of the classes Proc, Method, Class,

and Module. The core objects play a fundamental part in
rbFeatures. Most of these objects should be familiar to read-
ers experienced with object-oriented programming. How-
ever, Ruby’s dynamic nature makes following objects more
versatile compared to static languages.
• Proc A Proc is an anonymous block of code. Like

other objects, Procs can either be created explicitly or
referenced by a name or implicitly as an argument to
a method. Procs allow two kind of usages: On the
one hand they can reference variables in their creation
scope as a closure3, and on the other hand they can
reference variables which at their creation do not exist.
Procs are executed with the call method in any place.
• Method As a language entity, methods consist of the

method’s name, a set of (optional) parameters (which
can have default values), and a body. Methods are re-
alized inside modules and classes. There are two kinds
of Method objects. The normal Method is bound to a
certain object upon which it is defined. The Unbound-
Method has no such object, and, for executing it, must
be bound to an object of the same class in which the
method was originally defined.
• Class A class consists of its name and its body. Each

class definition creates an object of class Class. Classes
can have different relationships. First, they can form
a hierarchy of related classes via single sub-classing,
inheriting all methods of their parents. Second, they
can mix-in arbitrary modules.
• Module Modules have the same structure as classes

do. Modules can not have subclassing like inheritance
relationships - they can only mix-in other modules.

3.3 Classes instead of Types
Ruby does not have a static language-like type hierarchy

for its classes and objects. The now deprecated4 method
Object.type would just return the name of the class the ob-
ject corresponds to. Instead of a type, the classes inside
Ruby are identified according to the methods they provide.
An object of any class can be used in all contexts as long
as it responds to the given method calls. In the Ruby com-
munity, this is called duck typing: “If an object walks like a
duck and talks like a duck, then the interpreter is happy to
treat it as if it were a duck”[24]. One usage of duck typing
is to swap the used objects at runtime, e.g. to provide more
performance for data storage.

With this, we finish our introduction of basic concepts.
Many more details can be found in [10] and [24]. The next
section explains rbFeatures in detail.

4. RBFEATURES
rbFeatures is a language extension to Ruby for realizing

Feature-Oriented Programming. Language extension here
means two things: At first, new entities and operations are
added that represent features at the source-code level, and
second that the feature properties defined in section 2.2 to
name, identify, express and compose features are supported.

3Closures stems from functional programming and capture
values and variables in the context they are defined in.
4This method was declared deprecated in Ruby 1.8, and has
vanished from the current 1.9 release.

To convey our ideas, we choose to present a side-by-side
rbFeatures walkthrough. We start with introducing a run-
ning example, present the three steps of naming and iden-
tifying features, composing a product line and using the
product line. Each section motivates an example and ex-
plains rbFeatures details. At the end, we summarize the
rbFeatures workflow.

For clarity, we introduce two new notations: Slanted text
for Features as defined in the product line, and verbatim
text for language entities which are part of rbFeatures
and the developed product line.

4.1 Example: Expression Product Line
The Expression Product Line (EPL) is a common prob-

lem used in programming language design as exemplified by
Lopez et. al. in [15]. EPL considers the case of differ-
ent types of numbers, expressions and operations, which are
used to compare design and synthesis of variants [15]. The
product line is presented as a feature diagram in �Figure
1. We see that two different Numbers, Lit (literal) and
Neg (negative literal) exist. The numbers are usable in Add
(addition) and Sub (subtraction) Expressions. The Oper-
ations imposed upon an expression are Print for showing
the string containing the expression and Eval for evaluating
the expression. As can be seen from �Figure 1, we define
the product line with many of its features as being optional,
so no strict rules governing the composition need to be con-
sidered.

Add SubLit Neg Print Eval

EPL

ExpressionsNumbers Operations

Mandatory

feature

Optional

feature

More

relation

OR

relation

AND

relation

Figure 1: EPL Feature Diagram

4.2 Implementing the Expression Product Line
In three steps we will show how to implement features, de-

fine the product line and finally compose and use its variants.
Ruby does not impose a fixed structure where expressions
must be defined. Programmers can split module and class
definitions in separate files, put it all in one file or define it
on-the-fly in a shell session using IRB (Interactive Ruby).
The original source code for the EPL is contained in one file
only.

Step 1: Defining Features
The first step is to define the features. This is done with a
very concise notation: objects of class Class simply include
the Feature module. To define the root features, one must
write the following (cf. �Figure 2, left part).

Afterwards, concrete numbers and operations are defined.
These features also contain methods themselves. We im-
plement Lit with the following code (cf. �Figure 2, right
part). In line 1 we declare the class Lit to be a subclass

13

[]

�
1 class Numbers
2 is Feature
3 end
4
5 class Expressions
6 is Feature
7 end
8
9 class Operations

10 is Feature
11 end� �

[]

�
1 class Lit < Numbers
2 def initialize(val)
3 @value = val
4 end
5 end� �

Figure 2: Defining basic Features

of Numbers. With subclassing, we express the natural tree-
structure of the product line. The subclasses here inherit
the methods of module Feature from their parents. We
then define in line 3 the initialize method which receives
the initial value for Lit. We implement Neg likewise.

This is followed by defining Add with the following code
(cf. �Figure 3). We use again subclassing to define the rela-
tionship to Operations}, and define the initialize method
to get two values (which can be Add, Sub, Neg and Lit val-
ues). Again, Sub is implemented likewise.

[]

�
1 class Add < Operations
2 def initialize(left , right)
3 @left = left
4 @right = right
5 end
6 end� �

Figure 3: Defining the Add Operation

Having defined all Numbers and Expressions, we now de-
fine the Print feature (cf. �Figure 4). We then add print

methods to Lit and Add. Line 5 shows a feature contain-
ment.

[]

�
1 class Print < Operations
2 end
3
4 class Lit
5 Print.code do
6 def print
7 Kernel.print @value
8 end
9 end

10 end� �
Figure 4: Defining Print Feature and Operations

The first part, just Print in this case, is the contain-
ment condition. A containment condition is an arbitrary
expression combining features with operations. The second
part is the containment body. The body is surrounded by
a do...end block, and contains in this case a method def-
inition for print. The containment body can be any Ruby
statement. Feature containments can be used to encapsu-
late coarse-grained modules, classes, and methods, as well as
fine grained individual lines or even parts of a source code
line. In total, the containment from line 5 to 9 expresses
that only if Print is activated, then the print method is
defined properly. Likewise, implementing the Eval feature

is expressed as a feature containment with Eval as the con-
tainment condition, and a declaration of the eval method
(which returns the value of Lit) as the containment body.

+ +()

+ -()

+ +@()

+ -@()

+ |()

+ &()

Operations

+activate()

+deactivate()

+code()

Core

-active

-temp_active +method_defined()

+singleton_method_defined()

+apply_visibility()

MethodAddedHook

Feature

Figure 5: The Feature Module

The internals of features are as follows. rbFeatures de-
fines the Feature module as a composition of three different
modules, as seen in �Figure 5. Each module encapsulates a
set of operations needed for Feature to function properly:

• Core Provides the basic method to use a Feature as
a configuration unit. We spoke of activating a feature
- meaning that the internal class-variable active is
set to true. The methods activate and deactivate

change the activation status. The other operation is
code, which was used in the example for defining the
print method. The code receives a Proc object that is
the containments body. Internally, code checks if the
feature is activated - if yes, the body gets executed.
• Operations This module defines operations5 which

can be used inside the containment condition:
– Plus (+) => Activation (single feature)
– Minus (-) => Deactivation (single feature)
– And (&) => Activation (all features)
– Or (|) => Activation (at least one feature)

Operations and features can be chained to arbitrary
expressions. Conditions like ”If feature A, B and C,
but not D are activated”, translate to a natural syntax
(A + B + C - D). Or “Feature A or B and C, but not
D” translates to ((A | (B & C)) - D).
• MethodAddedHook This module defines a special

hook. When methods are defines in an object, the pri-
vate method method added is called. We use this as
a hook in the case of a feature containment defining
a method. If the containments condition is not true,
then the methods body will be replaced with a error
message. This error message details which features ac-
tivation status prohibits the method’s definition. For
example, if the print method is called on a Lit, but
feature Print is not activated, the error message will
be“FeatureNotActivatedError: Feature Print is not ac-
tivated”. This error message is computed dynamically
and names the right-most feature inside a containment
condition that has the wrong activation status. The
apply_visibility method is needed to retain the vis-
ibility of the defined method in the case its body is
overwritten.

5Concerning the method-declaration as shown in �Figure 5:
The methods containing an“@”symbol are unary operations
defined on the object itself.

14

Step 2: Implementing the Product Line
Assume that all other features and the concrete semantics of
each entity have been implemented. We now need to imple-
ment the Product Line. Currently, we use no special object,
but a native Proc object. This allows two composition ap-
proaches: To manually surround all code in a lambda do;
...; end block (cf. �Figure 6, line 1 to 5) or to join the

content of all source files and define a lambda from them.
To stay at a higher abstraction level, we usually name this
proc as the product line it represents.

[]

�
1 EPL = lambda do
2 class Lit < Numbers
3 def initialize(value)
4 ...
5 end
6
7 FeatureResolver.initialize EPL� �

Figure 6: Defining and Initializing the EPL

Having defined the product line, the user then directly in-
teracts with a module called FeatureResolver. This module
handles initialization and resetting of the product line. As
shown in �Figure 7, four methods are available. We ex-
plain in opposite direction. With reset!, all classes which
include the Feature module are deleted so that their ini-
tial definition can be restored. The update method is called
whenever a feature changes its activation status. Finally,
init and register are used during initialization.

+init()

+update()

+reset!()

+register()

FeatureResolver

-base

-classes

-init_run

-violation

Figure 7: The Feature Resolver Module

The initialization composes the product line by evaluat-
ing the proc. Evaluating means that all code is executed
once, and this leads to classes and modules defining the
program. Classes including the Feature module register
themselves with the FeatureResolver. A challenge is to
regard classes or methods defined in feature containments.
Most feature containments will not be executed because one
feature may violate the containment condition. As men-
tioned before, rbFeatures informs the user if a method can
not be called because of a certain feature violating the con-
tainment condition. Methods may be defined in contain-
ments which are violating a condition. How to define those
methods properly? In the initialization phase, all contain-
ments are executed once - even if a violation occurred. This
can lead to a method declaration, which is caught by the
MethodAddedHook. If a violation occurred and the initializa-
tion phase is happening, then the original method body will
be replaced with the error message. In the case of features
defining functions themselves, their methods get deactivated
with the same mechanism. Once the product line is com-
posed, we can start using it actively.

Step 3: Composing and Using Variants
After initialization, the EPL is ready to use. The dynamic
nature of Ruby allows two kinds of usages: static configura-
tion of a variant before executing the program and dynamic
configuration at runtime.

We start with static configuration. By defining the activa-
tion or deactivation of certain features, we define a variant.
For example, we want to define a EPL with features Lit,
Add, Sub and Print. This configuration can be represented
as a class containing activation statements (cf. �Figure 8).

[]

�
1 class Variant1
2 Lit.activate
3 Add.activate
4 Sub.activate
5 Print.activate
6 end� �

Figure 8: Static Configuration of EPL

�
1 >> FeatureResolver.init ExpressionProductLine
2 => true
3 >> Add.activate
4 => :activated
5 >> Lit.activate
6 => :activated
7 >> Lit 1
8 => #<Lit:0 xb7b35968 @value=1>
9 >> a = Add Lit (11), Lit(7)

10 => #<Add:0 xb7c57544 @right=#<Lit:0 xb7c57558
@value=7>, @left#<Lit:0 xb7c5756c @value =11>

11 >> a.print
12 FeatureNotActivatedError: Feature Print is not

activated
13
14 >> Print.activate
15 => :activated
16 >> a.print
17 11+7=> nil
18 >> a.eval
19 FeatureNotActivatedError: Feature Eval is not

activated
20 >> Eval.activate
21 => :activated
22 >> a.eval
23 => 18
24 >> Print.deactivate
25 => :deactivated
26 >> a.print
27 FeatureNotActivatedError: Feature Print is not

activated� �
Figure 9: Session with EPL

The second usage kind is dynamic configuration. At run-
time, we can activate and deactivate arbitrary features. Con-
sider the following session with the interactive Ruby shell
(�Figure 9). In the session, lines starting with “>>” de-
note input, and lines with “=>” denote output. In line 2 we
load the ExpressionProductLine into the FeatureResolver
module. Following lines 4 - 7 activate the features Add and
Lit. We then create a single Lit object (line 8), and a com-
pound Add object (line 10). Line 11 shows the return value
of object creation - its in-memory representation. We then
want to call print on the add statement (line 12), but get
a FeatureNotActivatedError in return. After activation in
line 15, we can print and see 11+7 in line 18. The same is
shown for eval in lines 19-25. After that, we decide to de-

15

activate Print again by calling the same-named method in
line 26. Successively, calls to print fail again.

4.3 Summary Workflow
Summarizing, using rbFeatures consists of the following

steps. �Figure 10 shows these steps graphically.
• Name and identification of the features
• Defining features via including the feature module and

building subclass relationships
• Put all source code inside a Proc
• Initialize the proc to compose a variant
• Static or dynamic configuration of the variant

Feature1

Feature 2

...

Create Proc Hand Proc to FeatureResolver

Register all Features

Activate Feature

Deactivate Feature

Reevaluate Proc

Software initialized

Figure 10: rbFeatures’ basic Workflow

5. OTHER EXAMPLES
The EPL illustrates rbFeatures with a simple scenario.

We also developed two other programs which are presented
shortly. Our major motivation is to show that rbFeatures
was successfully applied to two other product lines, with the
second example having a graphical representation as well.

5.1 Graph Product Line
The Graph Product Line (GPL) describes a family of re-

lated program in the domain of graphs [14]. We see a graph-
ical representation of the features and their relationships in�Figure 11. We assume the reader understands this figure
with respect to the legend in �Figure 1.

GPL

Algorithms

Weight

Weighted Unweighted

Type

Directed Undirected

Search

BFS DFS None

Connected

Components
Strongly Connected

Components
Cycle

MST

Prime

MST

Kruskal
Number

Shortest

Path

Figure 11: The Graph Product Line

Although heavyweight graph computations demand a so-
lution using matrices, we implemented all entities of the
domain, like nodes and edges, as objects. This was also
reported in [14] as a better way to compose the program.

Our approach was to first develop the whole program with-
out thinking about features. Once all algorithms were im-
plemented, we feature refactored the program. Refactoring
means to define concrete features with the same name as
shown on the feature diagrams, and then to identify and ex-
press those parts of the program which belong to a certain
feature.

An example of the refactoring is shown in �Figure 12.
The feature Weight modifies the Edge class by forming con-
tainments around the attr_accessor (line 3) and by adding
another line which deletes any given weights to edges so that
the body is not changed (line 5).�

1 class Edge
2 attr reader :source , :sink
3 Weighted.code { attr accessor :weight }
4 def initialize(params)
5 Weighted.code { @weight = params.delete :weight }
6 params.delete :weight if params.include? :weight
7 @source = params.first [0]
8 @sink = params.first [1]
9 end

10 end� �
Figure 12: Feature-Refactoring Changes in GPL

Feature containments for Type only wrapped existing lines.
Finally, all Algorithms and Search features are put in
containments. No further changes are required - even if fea-
tures depend on other features. Consider the case of using
Strongly Connected Components. It requires to use
DFS. If a variant is created without activating DFS, then
calling the method strongly_connected_components sim-
ply returns a “FeatureNotActivatedError: Feature DFS is
not activated”. Activating DFS remedies this situation.

5.2 Calculator Product Line
In the third example, we targeted an open source imple-

mentation of a simple graphical calculator. Feature refac-
toring changes to the source code were of medium nature,
because the original program was very concise and used
batch-like operation for method declaration. We also added
a graphical configurator. At runtime, multiple instances of
the Calculator, configured in different variants, can be cre-
ated (�Figure 13).

6. COMPARISON AND DISCUSSION
In order to integrate rbFeatures into overall FOP research,

we want to discuss a number of points. In our view, the
most distinguishing point are to realize FOP as a pure and
lightweight language extension, to use a dynamic program-
ming language and finally the possibility to include modeling
capabilities for further closing the gap between abstract and
concrete features.

Language Extension
Many techniques have been introduced that implement FOP
[2, 3, 17, 19]. Features are represented in terms of refine-
ments, feature structure trees, more flexible containers than
classes and interfaces, and hyperspaces. These approaches
either impose modifications to the existing tools used in writ-
ing and generating the programs, like compiler extensions,

16

Figure 13: Configuring and Executing Variants of
the Calculator Product Line

or use an external structure which maps features to an ex-
isting source code. rbFeatures has no such restrictions.

First, it is based on pure Ruby - no change to the in-
terpreter and no additional library is needed. Programmers
just need a virtual machine implementing Ruby 1.8.6 respec-
tive 1.9, such as MRI6 written in C or JRuby7 written in
Java. The VM’s capability may further broaden what pro-
grams can be written using rbFeatures. JRuby, which uses
Java as its interpreter language, allows many cross-language
developments, like calling Java code from inside Ruby or
vice versa [9]. As applications written in JRuby can access
native Java libraries, those libraries become feasible for FOP
using rbFeatures.

Second, rbFeatures operates on the same abstraction level
as the program - the language level. Developers directly
include feature containments at the place in the program
where code belonging to a feature is expressed. They do
not need to switch to another representation, possible using
another language or syntax. In terms of the feature prop-
erties in section 2.2, the tasks of feature identification and
expression become the same in rbFeatures. Further more,
the amount of changes to a program without features is very
minimal. Typical changes just introduce containments with
a condition around an existing block of code. At least with
the presented case studies, we seldom had a case where we
need to rewrite the code. �Table 1 shows what changes
occurred in the show examples when rbFeatures was used.
Column 2 and 3 lists the loc for the normal and feature-
based version of the program. Column 4 shows the total
LOC added, followed by percental increase. We see that
smaller programs tend to have a comparatively big amount
of changes when using rbFeatures. For programs with a
large LOC, the lines added from using rbFeatures are rela-
tively small. Also, the number of methods is an indicator
for changes. For example, the changes in EPL were mostly
the containments do...end block around the methods.

Dynamic Language vs. Static Language
Techniques implemented in statically typed object-oriented
programming languages have dominated research in FOP.
Most of the aforementioned techniques are implemented in
more conventional programming languages like Java and
C++, which are usually static. On the contrary, Ruby’s

6http://www.ruby-lang.org/en/
7http://jruby.codehaus.org/

PL Normal Feature #LOC %LOC Methods

EPL 74 97 23 31% 10
CPL 70 89 19 27% 4
GPL 291 323 32 11% 9

Table 1: Comparing LOC for rbFeatures Programs

dynamic typing and interpreted execution enables metapro-
gramming mechanisms which strengthens implementing lan-
guage extensions. Proc objects defined at a certain place in
the program can either be called at this place or called in
another context. And since the variables contained inside a
proc can either reference existing ones or yet to be defined
ones allows very flexible composition. But this flexibility
comes at a price. First, static languages are more efficient
then interpreted languages in terms of runtime and perfor-
mance. Second, typeless languages can introduce bugs to
programs that are only countered with testing. We used a
fully test-driven approach to rbFeatures and tested all men-
tioned properties in different contexts.

Including Feature Modeling Capabilities
rbFeatures can be seen as a so-called Domain Specific Lan-
guage (DSL). It uses suitable notation and abstraction to
represent domain-knowledge and concepts in a precise form
[8]. For rbFeatures, this domain is feature-oriented program-
ming. But, we can extend rbFeatures with concepts from
textual feature modeling languages to allow expressing both
conceptual features and concrete features.

The array of feature modeling languages is vast - we want
to give two examples here. Deursen and Klint propose a
feature description language in [7] in which they consider
automated manipulation of feature descriptions. Feature
composition is achieved by translating the textual feature
descriptions to unified modeling language models. Similarly,
Loughran et al. [16] present the variability modeling lan-
guage (VML). VML supports first-class representation of
architectural variabilities. VML consists of explicit refer-
ences to variation points and composition of both fine and
coarse-grained variabilities. With this capability, VML re-
sembles more an architectural description language.

Expressing conceptual features in rbFeatures requires a
language extension which uses similar metaprogramming con-
cepts as shown before. We would need a first-class represen-
tation of a product line, product variant, and constraints re-
garding legal combinations of features. This is future work.

7. SUMMARY
rbFeatures is a pure language extension to Ruby in order

to enable feature-oriented programming. We introduced the
Ruby language, and presented a step-by-step walkthrough
how to use rbFeatures and how the extension works inter-
nally. By discussing the main cases studies of FOP, namely
the Graph Product Line and the Expression Product Line,
we enable the direct comparison of rbFeatures with other
approaches.

Defining features as first-class entities leads to full usabil-
ity of features in all parts of a program. Features can be
stored in variables, returned from methods and extended
like any other object. Only minimal changes are required to
make a program feature-oriented. Because of the lightweight
implementation using only core Ruby mechanisms, rbFea-

17

tures is useable with all other virtual machines.
We want to extend rbFeatures in several ways. Additional

to known FOP case studies, we want to use rbFeatures also
in the context of web applications written with the Rails
framework. Furthermore, we want to combine rbFeatures
with a already implemented software product line configu-
ration language for abstract modeling and concrete imple-
mentation at the same abstraction level.

Acknowledgements
We thank Christian Kästner for his comments on an earlier
draft of this paper.

8. REFERENCES
[1] S. Apel. The role of features and aspects in software

development. PhD Thesis, Otto-von-Guericke-Univer-
sität Magdeburg, 2007.

[2] S. Apel, T. Leich, M. Rosenmüller, and G. Saake.
FeatureC++: On the Symbiosis of Feature-Oriented and
Aspect-Oriented Programming. In Proceedings of the 4th
International Conference on Generative Programming
and Component Engineering, Lecture Notes in Computer
Science, Springer, Heidelberg, 3676:125–140, 2005.

[3] D. Batory. Feature-Oriented Programming and the
AHEAD Tool Suite. In Proceedings of the 26th
International Conference on Software Engineering. IEEE
Computer Society, pages 702–703, 2004.

[4] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
step-wise refinement. IEEE Transactions on Software
Engineering, 30:355–371, 2004.

[5] J. O. Coplien. Multi-paradigm design. PhD Thesis,
Vrije Universiteit Brussels, 2000.

[6] K. Czarnecki and U. W. Eisenecker. Generative
programming: methods, tools, and applications.
Addison-Wesley, Boston, San Francisco et. al., 2000.

[7] A. v. Deursen and P. Klint. Domain-specific language
design requires feature descriptions. Journal of
Computing and Information Technology, 10(6):1–17,
2002.

[8] A. v. Deursen, P. Klint, and J. Visser. Domain-specific
languages: an annotated bibliography. SIGPLAN Not.,
35(6):26–36, 2000.

[9] J. Edelson and H. Liu. JRuby Cookbook. O’Reilly Media
Inc., Sebastopol, 2008.

[10] D. Flanagan and Y. Matsumoto. The Ruby
Programming Language. O-Reilly Media Inc.,
Sebastopol, 2008.

[11] K. Kang, S. Cohen, J. Hess, W. Novak, and
A. Peterson. Feature-oriented domain analysis (foda)
feasibility study. Technical report CMU/SEI-90-TR-021,
Carnegie Mellon University, 1990.

[12] C. Kästner, S. Apel, and M. Kuhlemann. Granularity
in software product lines. In Proceedings of the 30th
International Conference on Software Engineering
(ICSE), ACM, New York, pages 311–320, 2008.

[13] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In Proceedings of the 11th European
Conference on Object-Oriented Programming (ECOOP),
Lecture Notes in Computer Science, Springer, Berlin,
Heidelberg et. al, 1241:220–242, 1997.

[14] R. E. Lopez-Herrejon and D. Batory. A standard
problem for evaluating product-line methodologies. In
Proceedings of the 3rd International Conference on
Generative and Component-Based Software Engineering
(GCSE), Lecture Notes in Computer Science, Springer,
Berlin, Heidelberg, 2186:10–24, 2001

[15] R. E. Lopez-Herrejon, D. Batory, and W. Cook.
Evaluating support for features in advanced
modularization techniques. In Proceedings of the 19th
European Conference on Object-Oriented Programming
(ECOOP), Lecture Notes in Computer Science,
Springer, Berlin, Heidelberg, 3586:1–37, 2005.

[16] N. Loughran, P. Sánchez, A. Garcia, and L. Fuentes.
Language support for managing variability in
architectural models. In Proceedings of the 7th
International Symposium on Software Composition (SC),
Lecture Notes in Computer Science, Springer, Berlin,
Heidelberg 4954:36–51, 2008.

[17] S. McDirmid, M. Flatt, and W. C. Hsieh. Jiazzi:
New-Age Components for Old-Fashioned Java. ACM
Press, pages 211–222, 2001.

[18] M. Mezini and K. Ostermann. Variability management
with feature-oriented programming and aspects. ACM
SIGSOFT Software Engineering Notes, 29(6):127–136,
2004.

[19] H. Ossher and P. Tarr. Hyper/J: Multi-Dimensional
Separation of Concerns for Java. In Proceedings of the
23rd International Conference on Software Engineering
(ICSE), IEEE Computer Society, pages 729–730, 2001.

[20] C. Prehofer. Feature-oriented programming: A fresh
look at objects. In Proceedings of the 11th European
Conference on Object-Oriented Programming (ECOOP),
Lecture Notes in Computer Science, Springer, Berlin,
Heidelberg, 1241:419–443, 1997.

[21] Y. Smaragdakis and D. Batory. Mixin layers: An
object-oriented implementation technique for
refinements and collaboration-based designs. ACM
Transactions on Software Engineering and Methodology
(TOSEM), 11(2):215–255, 2002.

[22] S. Sunkle, M. Rosenmüller, N. Siegmund, S. S.
Ur Rahman, G. Saake, and S. Apel. Features as
first-class entities - toward a better representation of
features. In Workshop on Modularization, Composition,
and Generative Techniques for Product Line
Engineering, pages 27–34, 2008.

[23] P. Tarr, H. Ossher, W. Harrison, and S. M. J. Sutton.
N degrees of separation: Multi-dimensional separation of
concerns. In Proceedings of the 21st International
Conference on Software Engineering (ICSE), ACM,
pages 107–119, 1999.

[24] D. Thomas, C. Fowler, and A. Hunt. Programming
Ruby 1.9 - The Pragmatic Programmers’ Guide. The
Pragmatic Bookshelf, Raleigh, 2009.

[25] J. Withey. Investment analysis of software assets for
product lines. Technical Report CMU/SEI96-TR-010,
Carnegie Mellon University, 1996.

18

Remodularizing Java Programs for Comprehension of
Features

Andrzej Olszak and Bo Nørregaard Jørgensen
The Maersk Mc-Kinney Moller Institute

University of Southern Denmark
Campusvej 55, 5230 Odense M, Denmark

{ao, bnj}@mmmi.sdu.dk

ABSTRACT

Feature-oriented decomposition of software is known to improve

a programmer’s ability to understand and modify software during

maintenance tasks. However, it is difficult to take advantage of

this fact in case of object-oriented software due to lack of

appropriate feature modularization mechanisms. In absence of

these mechanisms, feature implementations tend to be scattered

and tangled in terms of object-oriented abstractions, making the

code implementing features difficult to locate and comprehend. In

this paper we present a semi-automatic method for feature-

oriented remodularization of Java programs. Our method uses

execution traces to locate implementations of features, and Java

packages to establish explicit feature modules. To evaluate

usefulness of the approach, we present a case study where we

apply our method to two real-world software systems. The

obtained results indicate a significant improvement of feature

representation in both programs, and confirm the low level of

manual effort required by the proposed remodularization method.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance, and

Enhancement – restructuring, reverse engineering, and

reengineering.

General Terms

Design

Keywords

Features, feature location, remodularization.

1. INTRODUCTION
Program comprehension was reported to consume more than half

of all resources during software maintenance [1]. An important

part of the overall comprehension effort is spent on relating

program features to source code [2]. A feature, being a cohesive

set of functionality [2], serves software users as a means for

formulating their requirements, change requests, and error reports.

In turn, developers need to relate the descriptions obtained from

the users to appropriate fragments of a program’s source code in

order to carry out the requested modifications. Thus, the easier it

is to understand correspondence between features and their

implementations, the easier it is to modify a program’s

functionality [3].

In object-oriented software, mapping between features and source

code is often not explicit. This is due to the fact that

decompositions of object-oriented programs tend to follow

architectural styles based on layered arrangement of code [4].

Features are not represented explicitly in such decompositions.

Instead, implementations of individual program features crosscut

multiple modules and multiple architectural layers. This scattering

makes it a difficult and tedious task to identify the classes and

methods that implement a given feature. As a result, programmers

need to use additional effort to understand how features are

implemented, and how their implementations relate to each other.

Comprehension of features in existing object-oriented software

can be enhanced by visualizing the mapping between features and

code [5][6]. Furthermore, to address the problems of feature

implementations’ scattering and tangling, a one-to-one

correspondence between a program’s functionality and its static

structure is needed. Modularizing software according to its

features creates such a correspondence by encapsulating feature

implementations in terms of distinct modules. Feature-oriented

decomposition is expected to enable the three main outcomes of

modularity [7]: feature-wise program understanding, feature-wise

division of work [8], and confinement of change propagation to

boundaries of features’ implementations.

However, achieving the aforementioned comprehension benefits

in existing object-oriented programs is difficult due to the

complexity of the remodularization process. Insufficient level of

automation of the time-consuming and error-prone restructuring

activities was found to be a significant barrier for scalability of the

existing remodularization approaches [9]. This suggests that if an

approach for feature-oriented remodularization is to be adopted in

real-world software projects it needs to require very little manual

work. Ideally, it should be possible to remodularize software in an

on-demand fashion [10], so that programmers could switch to the

decomposition best suited for accomplishing a task at hand in a

completely automatic manner.

Finally, during remodularization of existing programs human-

understandable concepts present in the original decomposition

should be taken into account and preserved. Such concepts reflect

a program’s problem domain, and are usually implemented in the

code in form of a domain model [11]. For the programmers, who

are familiar with the original codebase, it is crucial to preserve

these concepts in order to increase their understanding of the new

decomposition [12].

In this paper we present an approach for semi-automatic

remodularization of existing Java programs towards feature-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

FOSD'09, October 6, 2009 Denver, Colorado, USA

Copyright © 2009 ACM 978-1-60558-567-3/09/10... $10.00

19

oriented decomposition. Our approach represents features in terms

of explicit feature modules. To locate source code fragments that

implement program features we use execution tracing based on a

proposed notion of feature entry points. For the purpose of

creating feature modules we use Java packages. Our approach

progresses the state of the art in the area of automated refactoring

of object-oriented software towards explicit representation of

features. Furthermore, our approach points out the important

problem of preserving concepts present in the original program

throughout the remodularization process.

To evaluate our approach we have conducted a case study on two

real-world software systems: JHotDraw and BlueJ. The obtained

results show that we have substantially improved the

representation of features in the created modularizations.

The rest of this paper is organized as follows: Section 2 provides

an overview of our remodularization approach. Section 3

describes the implementation details of the approach. Section 4

presents two case studies, and discusses the results. Section 5

presents related work. Finally, Section 6 concludes the paper.

2. OVERVIEW
Our remodularization approach establishes a feature-oriented

decomposition for a Java program. The approach was designed to

be used for reengineering of existing software, and to require as

little manual effort as possible.

The idea behind our approach is to create an explicit feature

representation for a Java program by grouping classes that

implement distinct program features. Our remodularization

approach consists of two subsequent steps: feature location and

feature representation. The semi-automatic feature location

procedure identifies methods that participate in implementations

of program features. Then, a feature representation is established

by assigning classes to their corresponding feature modules. The

remainder of this section provides a conceptual overview of these

two steps, whereas their details are given in the next section.

2.1 Feature Location
Feature location is concerned with identifying source code that

contributes to implementations of program features [13][14]. Our

feature location procedure uses feature entry points to recognize

execution of concrete features at a program’s runtime.

We propose the notion of a feature entry point. By a feature entry

point we understand the first method through which a thread of

execution enters when a user interacts with a program feature.

Every method called inside the control flow of a feature entry

point is assumed to belong to the implementation of that feature

entry point’s feature.

In order to declare a method as being a feature entry point, a

programmer needs to manually tag the candidate method using a

Java annotation. The reasons for using annotations for this

purpose are that they do not impact a program’s correctness, and

that they stay synchronized with the code during common

refactorings like changing method signature, or moving method to

another class. Finally, annotations introduce no performance

overhead when the program is executed in non-traced mode.

When a Java program is executed with tracing enabled, the

information about the methods participating in tagged program

features is recorded in the form of feature traces. A program’s

functionality can be executed by a test suite, or by a human user.

Unlike existing approaches, our approach imposes no

requirements for precisely defined execution scenarios, or

presence of extensive test suites.

Declaring feature entry points and executing the annotated

program are the only manual activities in our remodularization

method.

2.2 Feature Representation
The feature representation step of our remodularization method

aims at explicitly representing program functionality in the code

using feature modules. We use Java packages as the mechanism

for creating feature modules. The package in the Java

programming language is a construct for declaring group of

classes, separating the groups from each other in terms of

namespace, and controlling access to members of the groups. Our

feature representation procedure creates one feature module per

program feature, and moves all the participating classes into it.

Hence, grouping of classes into feature modules is done

accordingly to their participation in the collected feature traces.

One of the issues, which we need to cope with when moving

classes into new packages, is the fact that feature traces allow

classes and methods to take part in the implementations of

multiple features. To assign classes to appropriate feature modules

despite of this fact, we use a number of feature membership

indicators that we describe in detail in the next section.

The key assumption behind our feature representation procedure

is that it is possible to automatically create explicit feature

modules, while at the same time preserving the human-

understandable concepts existing in the original code. In order to

achieve this, we do not split existing classes among the new

feature modules. Our motivation is that splitting existing classes

would inevitably invalidate their representation of the domain

concepts. It needs to be pointed out though that this rather coarse

granularity limits the potential of our method for separating

features tangled at class, method, or statement level. Since our

approach has to assign a single class to a single feature module,

some methods will end up placed in incorrect feature modules.

To make the programmers aware of such cases, we mark the

methods that are misplaced, or shared between multiple features

using two Java annotations: @Misplaced, @Shared. We

parameterize these annotations with identifiers of features in

whose implementations the target methods participate. The

explicit indication of these kinds of methods allows a programmer

to discover and reason about such inter-feature relations more

easily.

Although our representation procedure does not split classes that

belong to multiple feature modules, it provides some support to

programmers who wish to split classes manually. We generate a

list of classes that are potential subjects to refactoring. This list is

sorted according to the estimated splitting effort. The effort is

proportional to the number of features that are tangled in methods

of a subject class. We determine the concrete values using a

measure for feature tangling in terms of class methods

. We base the formulation of it on the general

feature tangling indicator defined in [15]. After a programmer

chooses the candidate class to split, he is guided in determining

the division of the class between features by the mentioned

indications of misplaced and shared methods.

20

3. IMPLEMENTATION
In this section we describe the implementation details of the two

subsequent steps of our remodularization method: feature location

and feature representation.

3.1 FeatureTracer
We have implemented FeatureTracer - a feature location library

based on the proposed notion of feature entry points. A program

that is subject to feature location should be annotated with

FeatureEntryPoint annotations prior to using the library. Based on

that, FeatureTracer detects the execution of features at runtime.

The code responsible for execution tracing is implemented as an

aspect using AspectJ, an aspect-oriented programming tool for

Java [16].

A Java program is executed in the traced mode by using AspectJ

load-time weaver to instrument program classes with a tracing

aspect. The aspect matches every call and execution in the Java

program. The tracing code extracts declarations of feature entry

points from program methods and constructors, and identifies

caller-callee pairs of methods, objects and classes. The

information about the features being executed at a given time is

maintained on thread basis. The collected trace data is used to

build a set of feature trace models – one model instance per

feature. The definition of the model is given in Figure 1.

Figure 1. Feature trace model

Feature trace models capture the executions of methods and

constructors that occurred at run-time in context of their

corresponding features. A method is placed in a feature trace only

if it was executed at least once during program execution – an

analogous rule applies to types. In case of feature reentries or

multithreaded executions, the new trace data is aggregated so that

a one-to-one correspondence between model instances and

features is preserved. Collected feature-trace models are

automatically saved to files during program termination.

In the special cases of abstract methods, inherited methods, and

polymorphic method invocations, we follow the rule that feature

traces should only capture the methods and types that are

executed. This means that for every executed method we register

the signature of a class that defines that method’s body, and not

only inherits or declares it. However, this implies that interfaces

will never be registered in feature traces, even though they play an

important role as abstractions for concrete classes. We

compensate for this in the feature-representation step.

Since one possible use of FeatureTracer is to trace a Java program

while a user is interacting with it, the robustness in terms of

memory usage over time becomes a serious concern. We avoid

the proportionality relation between FeatureTracer’s memory

usage and the duration of subject program execution by neither

collecting information about the order of method invocations, nor

timing information. The library increases its memory footprint

only for objects and methods that are unique to traces.

3.2 Feature Representation
In order to establish a representation of features in program code

we create a new package structure based on the collected feature

traces. All source code modifications are done using Spoon

program processor library [17].

For every feature identifier found in feature traces, we create a

corresponding feature module in terms of a Java package named

after the identifier. Program types are then assigned to feature

modules based on the category they belong to. For the purpose of

type categorization we adopt the four-category scheme defined in

[18], and supplement it with three new categories of types: single-

feature entry point, single-feature instantiated, and feature-

referenced. The handling of the types belonging to the distinct

categories is summarized in Table 1.

Table 1. Assignment of type categories

Type category Destination package

Single-feature

Corresponding feature module Single-feature entry point

Single-feature instantiated

Group-feature Based on dynamic dependencies

Infrastructural Infrastructure module

Feature-referenced Based on static dependencies

Non-participating Type’s original module

Single-feature types are the types present in execution traces of

exactly one feature [18]. This means they are not shared among

implementations of multiple features, and therefore can be

assigned to their respective feature modules.

Single-feature entry point types are the types that contain

feature entry points of only one feature. The methods marked as

feature entry points are assumed to have particular importance in

implementation of features, since they are explicitly chosen by

programmers during the feature location phase.

Instantiation only in a single feature gives a strong indication of

membership in that feature's implementation. Furthermore, if such

a type does not contain any feature entry points, then it is assumed

to belong to implementation of the feature instantiating it.

Group-feature types are present in execution traces of more than

one but less that 50% of features [18]. Each type from this

category that does not have any of the previously mentioned

feature membership indicators is assigned to one of the feature

modules based on the number of dynamic dependencies incoming

from the feature modules. The dynamic dependencies consist of

inter-method invocations collected in the feature traces.

Infrastructural types participate in implementations of 50%, or

more, of program features [18]. We assign these types to one

common “infrastructure” module, as they do not belong to any

particular program feature.

TraceModel

 featureID: String

Type

 signature: String
 package: String
 instances: Set<String>

*

Execution

 signature: String
 featureEntryPoint: boolean
 constructor: boolean
 executionCount: int

Invocation

*

*

callee

enclosingType

caller

21

By feature-referenced types we understand the types that are not

present in the feature traces, but are statically referenced by the

methods, or type declarations contained in the feature traces.

Taking these types into account allows us to reduce the impact of

particular realization of program execution on identified

implementations of features. A good example of the types that are

often not present in feature traces, but should be treated as

belonging to implementations of features are Java exception types.

During program execution, they are referenced dynamically only

when they should be thrown, which is likely to occur seldom. All

the types that do not get referenced due to a particular realization

of the execution flow inside methods are assigned to existing

feature modules that statically reference them the most. Interface

types, which are not registered in feature traces, also belong to

this category.

Non-participating types are the types that are not present in the

collected feature traces, and are not feature-referenced types. Non-

participating types are an outcome of the fact that we cannot

assume full coverage of program code with usage of program

execution tracing. All types that are not covered by feature traces

are left in their original packages, since there is no indication of

their membership in any of the features.

3.2.1 Access Control at Package Boundaries
As our remodularization method alters the existing package

structure of the program subject to remodularization, we need to

use the access control mechanisms available in Java in a proper

way.

First of all, we deal with the issue of the default and protected

scope modifiers. If they are present in the program, they put

constraints on the remodularization process, since not every

assignment of types to packages can be compiled. We handle the

default and protected scope declarations by increasing the

visibility of their corresponding Java code elements to public. In

our opinion it is fully justified to do so, because by changing the

criteria for program modularization, one also changes the criteria

for access control at boundaries of modules.

Furthermore, the scope declarations can be used to improve

encapsulation of feature implementations in the resulting

decomposition. We do that by reducing the visibility of types and

methods that are used exclusively by single features from public

to package-scoped.

4. CASE STUDY
In the presented case studies we evaluate our remodularization

approach in terms of required manual effort and quality of the

established decompositions. The case studies were conducted on

two real-world programs: BlueJ and JHotDraw.

The first case study is concerned with BlueJ [19], an open-source

interactive programming environment created to help learning the

basics of object-oriented programming in Java. Since BlueJ is a

nontrivial application, whose operation involves compilation,

dynamic loading, execution, and debugging of Java code, we were

particularly eager to test our FeatureTracer library on it. In our

case studywe have used BlueJ version 2.5.2.

The second case study investigates JHotDraw [20] - an open-

source graphical framework created as an example of a well-

designed object-oriented application. Its wide usage in software

case studies and the claimed property of good design was what

motivated us to include it in our case study. We focus our

investigations on the example application SVG, which is based on

the framework and distributed together with it. The version used

here is 7.2.

4.1 Manual Effort
During the manual part of the remodularization process, we

needed to identify features, annotate feature entry points, and

trigger features from the GUI for both programs.

In the case of BlueJ we were able to infer almost all program

features from the available user documentation, since it is written

in form of usage scenarios. For JHotDraw such user

documentation did not exist, and therefore we needed to rely on

the contents of program menus, contextual menus, and toolbars.

We followed a procedure of identifying all possible use-cases, and

then grouping them into semantically coherent sets constituting

features. For instance, two low-level use-cases like “create

project”, “remove project” would be grouped as a single “project

management” feature.

To make the process of annotating feature entry points as

consistent as possible, we have forged two rules. Firstly, for each

use-case in each feature we tried to find two feature entry points:

one in the GUI classes, which most of the time would be the

“actionPerformed” method of a corresponding action listener, and

another feature entry point that would actually perform the

requested action on a program’s domain model. The second rule

was to not restrict ourselves to only two annotations per use-case.

For instance, if we discovered multiple entry points to the same

usage scenario, we annotated all of them. These two rules ensure

that even if the program control flow enters a feature’s

implementation in another way than through its action listeners,

the execution of the feature will still be recognized.

We have collected feature traces of the two annotated programs

by manually executing all the identified use-cases using the

programs’ GUIs. No significant performance overhead was

observed due to usage of tracing.

Table 2. Summary of the manual effort

 BlueJ JHotDraw

Program size 78 KLOC 62 KLOC

Number of features 38 28

Number of use-cases 121 80

Number of feature entry points 228 91

Total time of indentifying

features and use-cases
2 hours 1 hour

Total time of annotating feature

entry points
6 hours 4 hours

A summary of the performed manual work is shown in Table 2.

The table depicts the effort required to enumerate the programs’

functionality, and to place the feature entry point annotations on

appropriate methods. It is worth mentioning that we did not know

the code, or the architectures of the two programs beforehand.

4.2 Results
By executing our remodularization method on BlueJ and

JHotDraw, we obtained the results presented in this section.

In Table 3 we show the distribution of top-level types in the

programs among the categories described in Section 3.2. In

addition we include the count of types that were found to be “dead

code” – meaning they are not referenced from the main codebases

22

of the programs. For BlueJ the majority of these types are in

package org.syntax.jedit.tokenmarker, whereas for JHotDraw

these are the framework classes not used by the investigated SVG

application.

Table 3. Number of top-level types in type categories

Type category BlueJ JHotDraw

Single-feature 45 57

Single-feature entry point 35 20

Single-feature instantiated 27 19

Group-feature 159 100

Infrastructural 9 12

Feature-referenced 129 88

Non-participating 97 37

“Dead code” 34 161

The main results of our case study are shown in Table 4. The table

presents the quantifiable impact of our remodularization method

on the quality of feature representation in subject programs. For

this purpose we have used the notions of feature tangling and

scattering in terms of packages , as defined in

[15]. Since we aim to improve representation of features, we want

to reduce scattering and tangling of feature implementations.

Table 4. Summary impact on feature representation’s quality

 BlueJ JHotDraw

pre post change pre post change

 0.230 0.168 -27% 0.280 0.160 -43%

 0.300 0.245 -18% 0.367 0.281 -23%

A more detailed overview of how scattering and tangling changes

during the remodularization process is given in Figures 2-5. These

figures visualize the distributions of scattering and tangling in

both subject programs before and after remodularization.

Scattering of feature implementations is presented on feature-

basis, allowing for direct comparison between the original and the

remodularized versions of the programs. For tangling, we give

only a general overview of the distribution shapes, as no

traceability can be established between package structures of the

programs pre and post the remodularization process.

Figure 2. Scattering of features in BlueJ

Figure 3. Scattering of features in JHotDraw

Figure 4. Tangling of features in packages of BlueJ

Figure 5. Tangling of features in packages of JHotDraw

0

0,005

0,01

0,015

0,02

fs
ca

Feature

BlueJ
pre

post

0

0,005

0,01

0,015

0,02

fs
c
a

Feature

JHotDraw
pre

post

0

0,01

0,02

0,03

0,04

1 6 11 16 21 26 31 36

ft
a

n
g

Package

BlueJ
pre

post

0

0,01

0,02

0,03

0,04

1 6 11 16 21 26 31 36

ft
a

n
g

Package

JHotDraw
pre

post

23

4.3 Discussion
Comparison between the original programs and their

remodularized versions reveals that our approach has reduced the

total tangling and scattering of feature implementations. For

BlueJ, scattering of feature implementations was decreased by

27%, whereas in case of JHotDraw it was reduced by 43%.

Tangling of feature implementations in terms of program

packages was diminished by 18% for BlueJ and by 23% for

JHotDraw. These results indicate that our remodularization

approach has significantly improved representation of features in

the two programs, despite of avoiding the splitting of classes and

methods.

Presented plots of feature implementations’ scattering over

programs’ packages indicate that our method has reduced the

scattering for the majority of features in both programs. However,

there exist a total of four features for which scattering was

increased. In case of BlueJ the three negatively impacted features

handle editing of class implementations in BlueJ’s source code

editor, whereas in case of JHotDraw the feature that became more

scattered is the “canvas” feature responsible for displaying and

changing properties of the drawing canvas. At present we do not

have any confirmed explanation of this phenomenon, but we plan

to investigate it further.

Last but not least, we believe that the manual effort needed to

annotate both programs with feature entry points turns out to be

relatively low. In total we needed 13 hours to finalize this task.

We have found the required manual work to be simple, and not

requiring extensive knowledge of the subject code. Most

importantly, we have found FeatureTracer to be non-invasive in a

sense that it did not oblige us to modify any of the original

method implementations. Thus we are confident that the

correctness of the subject programs was not altered during the

process.

One issue that we have experienced with the proposed feature-

location procedure is the inability to consistently repeat the

feature-annotation process. This was found to impede

reproducibility of the remodularization results. However, no

formal investigation of this issue was conducted in the context of

this case study.

5. RELATED WORK
An approach, which is strongly related to ours, was described in

[21]. The authors present a method for locating and refactoring

features into fine-grained components. Their approach emphasizes

improvement of evolvability as the primary reason for

remodularization, which is closely related to our point of view.

However, the two approaches have different purposes, and

different levels of automation. The approach presented in [21]

aims at extracting program features and refactoring them into

reusable components. Feature location is done by triggering

runtime traces using a dedicated regression test suite. Feature

implementations are then manually analyzed, and manually

refactored into components, according to a proposed component

model.

Feature location based on feature entry points overcomes some of

the limitations of the existing approaches. FeatureTracer does not

rely on extensive test suites as in [22], manual marking of

complete feature implementations in IDE [23], or external meta-

data descriptors [24][25]. Apart from the small manual workload

required, our location procedure has two more advantages over

the existing approaches. The mapping of feature entry points to

program methods will be preserved during program refactoring,

which is not necessarily the case for approaches like the

mentioned IDE-marking, or the external meta-data descriptors.

Last but not least, user-driven usage of FeatureTracer allows for

tracing GUI classes, which can be difficult to achieve with test

suite-driven triggering (e.g. [22]).

A large portion of the existing feature representation research has

been carried out in the area of feature-oriented refactoring (FOR)

[23]. Feature-oriented refactoring is the process of decomposing a

program into features, where a feature is an increment in program

functionality [23]. This definition implies that features, as

functionality increments, do not share any code with each other.

This is opposed to the definition used in this work, where we

acknowledge that a fragment of code can participate in the

implementation of multiple features. Based on the mentioned

formulation, the FOR approach aims at a complete separation of

features’ implementations. Realizations of this idea were shown to

be successfully created using diverse tools: AHEAD [23][26],

AspectJ [9], Hyper/J [9], Jiazzi [25], and Caesar [27].

Our approach differs from FOR in one significant way. In our

method we aim at preserving existing concepts expressed in the

code through types, where the FOR aims at achieving a complete

separation of feature implementations through modification of

existing concepts. In case of FOR, preservation of human-

understandable abstractions is usually not a requirement, since the

goal is to compose product line members in an automated fashion,

as shown for instance in [23]. In contrast, our method is targeted

at supporting traditional development and maintenance, during

which program comprehension is an important factor. However,

we achieve that at a cost of not being able to fully separate feature

implementations.

6. CONCLUSION AND FUTURE WORK
As mentioned previously, current techniques for remodularization

of object-oriented software towards feature decomposition require

a substantial amount of manual effort, and invalidate concepts

existing in the original code.

In this paper we have proposed a semi-automatic remodularization

method that does not have these limitations. The method involves

non-invasive, low-workload feature location, and explicit feature

representation based on Java packages. Our method does not split

existing classes in order to preserve human-understandable

concepts that are present in the original decompositions of subject

programs in form of their domain models.

We have demonstrated that the proposed method successfully

improves feature representation in a static program structure in

terms of reducing feature implementations’ scattering and

tangling.

Our approach makes it possible to switch from standard program

decomposition to feature decomposition without imposing an

extensive workload on the programmer. Thereby, we believe that

our method is well suited for supporting the activities of change

adoption and error correction during software maintenance.

Our future plans include attempts to further reduce the manual

effort required by our remodularization approach. We would like

to experiment with the usage of the canonical features [28] as a

basis for creating feature modules. Another direction is to

enumerate ideas for automated placement of feature entry points

24

in program code, which can help to improve reproducibility of the

process. Finally, we plan to seek for a lightweight, Java-based

approach for splitting feature implementations, which would

allow for preservation of existing code concepts.

7. AVAILABILITY
The FeatureTracer library can be obtained by contacting the

authors. We also plan to release it as an open-source project in the

near future.

8. REFERENCES
[1] Bennett, K. H. and Rajlich, V. T. 2000. Software

maintenance and evolution: a roadmap. In Proceedings of the

Conference on the Future of Software Engineering

(Limerick, Ireland, June 04 - 11, 2000). ICSE '00. ACM,

New York, NY, 73-87.

[2] Turner, C. R., Fuggetta, A., Lavazza, L., and Wolf, A. L.

1999. A conceptual basis for feature engineering. J. Syst.

Softw. 49, 1 (Dec. 1999), 3-15.

[3] Shaft, T., and Vessey, I. 2006. The role of cognitive fit in the

relationship between software comprehension and

modification. MIS Quarterly, 30, 1 (2006), 29-55.

[4] Krasner, G. E. and Pope, S. T. 1988. A cookbook for using

the model-view controller user interface paradigm in

Smalltalk-80. J. Object Oriented Program. 1, 3 (Aug. 1988),

26-49.

[5] Röthlisberger, D., Greevy, O., and Nierstrasz, O. 2007.

Feature driven browsing. In Proceedings of the 2007

international Conference on Dynamic Languages: in

Conjunction with the 15th international Smalltalk Joint

Conference 2007 (Lugano, Switzerland, August 25 - 31,

2007). ICDL '07, vol. 286. ACM, New York, NY, 79-100.

[6] Cornelissen, B., Zaidman, A., Van Rompaey, B., and van

Deursen, A. 2009. Trace visualization for program

comprehension: A controlled experiment. In Proceedings of

the 17th International Conference on Program

Comprehension. ICPC. IEEE Computer Society, 2009, pp.

100-109.

[7] Parnas, D. L. 1972. On the criteria to be used in

decomposing systems into modules. Commun. ACM 15, 12

(Dec. 1972), 1053-1058.

[8] Greevy, O., Girba, T., and Ducasse, S. 2007. How

Developers Develop Features. In Proceedings of the 11th

European Conference on Software Maintenance and

Reengineering (March 21 - 23, 2007). CSMR. IEEE

Computer Society, Washington, DC, 265-274.

[9] Murphy, G. C., Lai, A., Walker, R. J., and Robillard, M. P.

2001. Separating features in source code: an exploratory

study. In Proceedings of the 23rd international Conference

on Software Engineering (Toronto, Ontario, Canada, May 12

- 19, 2001). ICSE. IEEE Computer Society, Washington,

DC, 275-284.

[10] Ossher, H., and Tarr, P. 2000. On the need for on-demand

remodularization. In ECOOP’2000 workshop on Aspects and

Separation of Concerns (2000).

[11] Korson, T. and McGregor, J. D. 1990. Understanding object-

oriented: a unifying paradigm. Commun. ACM 33, 9 (Sep.

1990), 40-60.

[12] Rajlich, V. and Wilde, N. 2002. The Role of Concepts in

Program Comprehension. In Proceedings of the 10th

international Workshop on Program Comprehension (June

27 - 29, 2002). IWPC. IEEE Computer Society, Washington,

DC, 271.

[13] Wilde, N., Gomez, J. A., Gust, T., and Strasburg, D. 1992.

Locating user functionality in old code. In Proceedings of

International Conference on Software Maintenance (1992),

200-205.

[14] Biggerstaff, T. J., Mitbander, B. G., and Webster, D. 1993.

The concept assignment problem in program understanding.

In Proceedings of the 15th international Conference on

Software Engineering (Baltimore, Maryland, United States,

May 17 - 21, 1993). International Conference on Software

Engineering. IEEE Computer Society Press, Los Alamitos,

CA, 482-498.

[15] Brcina, R., Riebisch, M. 2008. Architecting for evolvability

by means of traceability and features. In 23rd IEEE/ACM

International Conference on Automated Software

Engineering - ASE Workshops (2008), 72-81.

[16] Kiczales, G., Irwin, J., Lamping, J., Loingtier, J., M., Lopes,

C., V., Maeda, C., and Mendhekar, A. 1996. Aspect-oriented

programming. ACM Computing Surveys (1996), vol. 28.

[17] http://spoon.gforge.inria.fr/

[18] Greevy, O. and Ducasse, S. 2005. Correlating Features and

Code Using a Compact Two-Sided Trace Analysis

Approach. In Proceedings of the Ninth European Conference

on Software Maintenance and Reengineering (March 21 - 23,

2005). CSMR. IEEE Computer Society, Washington, DC,

314-323.

[19] http://www.bluej.org/

[20] http://www.jhotdraw.org/

[21] Mehta, A. and Heineman, G. T. 2002. Evolving legacy

system features into fine-grained components. In

Proceedings of the 24th international Conference on

Software Engineering (Orlando, Florida, May 19 - 25, 2002).

ICSE '02. ACM, New York, NY, 417-427.

[22] Wilde, N. and Scully, M. C. 1995. Software reconnaissance:

mapping program features to code. Journal of Software

Maintenance 7, 1 (Jan. 1995), 49-62.

[23] Liu, J., Batory, D., and Lengauer, C. 2006. Feature oriented

refactoring of legacy applications. In Proceedings of the 28th

international Conference on Software Engineering

(Shanghai, China, May 20 - 28, 2006). ICSE '06. ACM, New

York, NY, 112-121.

[24] Tarr, P., Ossher, H., Harrison, W., and Sutton, S. M. 1999. N

degrees of separation: multi-dimensional separation of

concerns. In Proceedings of the 21st international

Conference on Software Engineering (Los Angeles,

California, United States, May 16 - 22, 1999).

[25] McDirmid, S., Flatt, M., and Hsieh, W. C. 2001. Jiazzi: new-

age components for old-fasioned Java. In Proceedings of the

16th ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications

(Tampa Bay, FL, USA, October 14 - 18, 2001). OOPSLA

'01. ACM, New York, NY, 211-222.

25

[26] Trujillo Trujillo, S., Batory, D., and Diaz, O. 2006. Feature

refactoring a multi-representation program into a product

line. In Proceedings of the 5th international Conference on

Generative Programming and Component Engineering

(Portland, Oregon, USA, October 22 - 26, 2006). GPCE '06.

ACM, New York, NY, 191-200.

[27] Mezini, M. and Ostermann, K. 2004. Variability

management with feature-oriented programming and aspects.

In Proceedings of the 12th ACM SIGSOFT Twelfth

international Symposium on Foundations of Software

Engineering (Newport Beach, CA, USA, October 31 -

November 06, 2004). SIGSOFT '04/FSE-12. ACM, New

York, NY, 127-136.

[28] Kothari, J., Denton, T., Shokoufandeh, A., and Mancoridis,

S. 2007. Reducing Program Comprehension Effort in

Evolving Software by Recognizing Feature Implementation

Convergence. In Proceedings of the 15th IEEE international

Conference on Program Comprehension (June 26 - 29,

2007). ICPC. IEEE Computer Society, Washington, DC, 17-

26.

26

An Orthogonal Access Modifier Model
for Feature-Oriented Programming

Sven Apel and Jörg Liebig
Department of Informatics and Mathematics

University of Passau, Germany
{apel, joliebig}@fim.uni-passau.de

Christian Kästner and Martin Kuhlemann
School of Computer Science

University of Magdeburg, Germany
{kaestner, kuhlemann}@iti.cs.uni-magdeburg.de

Thomas Leich
Metop Research Center
Magdeburg, Germany

thomas.leich@metop.de

ABSTRACT
In feature-oriented programming (FOP), a programmer de-
composes a program in terms of features. Ideally, features
are implemented modularly so that they can be developed in
isolation. Access control is an important ingredient to attain
feature modularity as it provides mechanisms to hide and
expose internal details of a module’s implementation. But
developers of contemporary feature-oriented languages did
not consider access control mechanisms so far. The absence
of a well-defined access control model for FOP breaks the
encapsulation of feature code and leads to unexpected and
undefined program behaviors as well as inadvertent type er-
rors, as we will demonstrate. The reason for these problems
is that common object-oriented modifiers, typically provided
by the base language, are not expressive enough for FOP and
interact in subtle ways with feature-oriented language mech-
anisms. We raise awareness of this problem, propose three
feature-oriented modifiers for access control, and present an
orthogonal access modifier model.

Categories and Subject Descriptors: D.2.2 [Software]:
Software Engineering—Design Tools and Techniques; D.3.3
[Software]: Programming Languages—Language Constructs
and Features

General Terms: Design, Languages

Keywords: Feature-Oriented Programming, Orthogonal Ac-
cess Modifier Model

1. INTRODUCTION
The goal of feature-oriented programming (FOP) is to

modularize software systems in terms of features [19, 11].
A feature is a unit of functionality of a program that sat-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOSD’09, October 6, 2009, Denver, Colorado, USA.
Copyright 2009 ACM 978-1-60558-567-3/09/10 ...$10.00.

isfies a requirement, represents a design decision, and pro-
vides a potential configuration option [2]. A feature module
encapsulates exactly the code that contributes to the imple-
mentation of a feature [8]. The goal of the decomposition
into feature modules is to construct well-structured software
that can be tailored to the needs of the user and the appli-
cation scenario. Typically, from a set of feature modules,
many different programs can be generated that share com-
mon features and differ in other features, which is also called
a software product line [12,18].

Many feature-oriented languages aim at feature modular-
ity, e.g, AHEAD/Jak [11], FeatureC++ [7], and Feature-
House [6]. Feature modules are supposed to hide implemen-
tation details and to provide access via interfaces. The ratio-
nale behind such information hiding is to allow programmers
to develop, type check, and compile features in isolation.
However, contemporary feature-oriented languages do not
perform well with regard to feature modularity [16]; they
lack sufficient abstraction and modularization mechanisms
to support (1) independent development based on informa-
tion hiding, (2) modular type checking, and (3) separate
compilation. In a theoretical work, Hutchins has shown that,
in principle, feature-oriented languages should be able to at-
tain this level of feature modularity [14]. However, there are
many open issues regarding the implementation on the basis
of a mainstream programming language, such as the inter-
action with other language mechanisms, efficiency, and tool
support.

An important ingredient for feature modularity that is
missing in contemporary feature-oriented languages is a proper
mechanism for access control. Access modifiers allow pro-
grammers to define the scope and visibility of their program
elements such that implementation details can be encapsu-
lated. For example, in Java, programmers use access modi-
fiers (e.g., private or public) to grant or prohibit access to
classes, methods, and fields. However, there are no specific
modifiers tailored to feature-oriented language mechanisms.
Well, since a feature-oriented language usually extends an
object-oriented language (e.g., Jak extends Java [11] and
FeatureC++ extends C++ [7]), the object-oriented access
modifiers are (re)used. But it is not possible to grant ac-
cess, e.g., to a program element for all other program ele-
ments from the same feature and to disallow the access for
all program elements of other features.

27

As said before, access control has not been considered so
far in research on feature-oriented languages. In some sense
access control mechanisms were for free when extending an
existing object-oriented language. Of course, the object-
oriented modifiers were not intended for the use in FOP, so
one can say that they are misused. We contribute an ana-
lysis of object-oriented modifiers used in FOP and identify
several shortcomings and problems that lead to a limited ex-
pressiveness of feature-oriented languages, unexpected and
undefined program behaviors, and inadvertent type errors.
We explore the design space of feature-oriented access con-
trol mechanisms and propose three concrete access modi-
fiers. Furthermore, we present an orthogonal access modifier
model, which integrates common object-oriented modifiers
with our novel feature-oriented modifiers.

2. BACKGROUND
Often, a feature-oriented language extends an object-oriented

base language by mechanisms for the abstraction and mod-
ularization of features.1 In order to implement the additions
and changes a feature makes, feature-oriented languages like
Jak introduce a mechanism for class refinement.

In Figure 1, we depict a class Stack written in Jak, which
is an extension of Java and belongs to the AHEAD tool
suite [11]. The class definition is identical to a definition
in Java except for the layer declaration, which defines the
feature to which class Stack belongs – in our case feature
Base.

Feature Base

1 layer Base;
2 class Stack {
3 private LinkedList elements = new LinkedList();
4 public void push(Object element) {
5 elements.addFirst(element);
6 }
7 public Object pop() {
8 if(elements.size() > 0) { return elements.removeFirst(); }
9 else { return null; }

10 }
11 }

Figure 1: A basic stack implemented in Jak.

In Figure 2, we depict a refinement of class Stack, de-
clared by keyword refines. The refinement is part of fea-
ture Undo, which allows the clients of the stack to revert the
last operation. When feature Undo is composed with fea-
ture Base, the refinement adds a new method undo and two
new fields lastPush and lastPop to class Stack. Further-
more, it refines the methods push and pop (by overriding)
in order to store the last item added to or removed from the
stack. Keyword Super is used to invoke the method that
has been refined.2

Typically, a feature comprises multiple class declarations
and class refinements, which implement the feature in con-
cert. We visualize a feature-oriented program design – like
the design of our stack example – using a collaboration di-

1We are aware that some feature-oriented tools build on
languages that are not object-oriented [11, 1, 6]. These lan-
guages are outside the scope of the paper, as they do not
provide access modifiers like the ones we consider here.

2Note that, for brevity, we use a slightly less verbose
notation than in Jak; other feature-oriented languages use
different keywords anyway.

Feature Undo

12 layer Undo;
13 refines class Stack {
14 private Object lastPush = null;
15 private Object lastPop = null;
16 public void push(Object item) {
17 lastPush = item; lastPop = null;
18 Super.push(item);
19 }
20 public Object pop() {
21 lastPop = Super.pop();
22 lastPush = null; return lastPop;
23 }
24 public void undo() {
25 if(lastPush != null) { Super.pop(); }
26 else if(lastPop != null) { Super.push(lastPop); }
27 }
28 }

Figure 2: A refinement of class Stack implemented
in Jak.

P
1

P
2

F
2

F
1

F
3

package role feature class refinement inheritance

1

2

3

1

2

3

C

C

C

D

D

D

A
1

A

A

2

3

1

2

3

B

B

B

A DCB

Figure 3: A sample feature-oriented design.

agram [20, 23, 21]. In Figure 3, we show a sample feature-
oriented design, which decomposes the underlying object-
oriented design into features. The design in Figure 3 con-
sists of the four classes A−D (represented by medium-gray
boxes), which are located in the two packages P1 and P2

(represented by light-gray boxes). The diagram displays
features (F1 − F3) as slices that cut across the core object-
oriented design (represented by dark-gray boxes). Hence, a
class is decomposed into several fragments, called roles, that
belong to different features [23]; the set of roles belonging
to a feature is called a collaboration [21] and is encapsulated
by a feature module [8]. For example, class A consists of
the roles A1, A2, and A3; feature F1 is implemented by the
roles A1, B1, C1, and D1. The top most role of a class is
also called the base class (e.g., A1) and the other roles are
called class refinements (e.g., A2 and A3) [11]. The solid
arrow denotes the refinement relationship between roles and
the empty arrow denotes inheritance between full classes.

3. PROBLEM STATEMENT
We explain the problems we encountered with feature-

oriented languages by means of Jak. Jak, as a Java ex-
tension, has inherited the access modifiers of Java. Hence,
programmers can control the access to classes and members
in Jak using the modifiers private, protected, package,
and public.3 But there are two problems with this:

3We assume a basic knowledge on Java’s access modifiers.
In Java, if a class, field, or method does not have an access
modifier then only elements from the same package may ac-

28

1. Undefined semantics: object-oriented modifiers in-
teract in undefined ways with feature-oriented mecha-
nisms such as class refinements

2. Limited expressiveness: object-oriented modifiers
are not expressive enough to control the access to ele-
ments introduced by features.

Undefined Semantics
Let us illustrate the first problem by means of our stack
example. Suppose we refine our class Stack by applying a
feature Trace. Feature Trace monitors the accesses to
the stack and, as soon as the stack is changed, it writes
all stack elements to the console. In Figure 4, we depict a
corresponding refinement, which refines the methods push

and pop, accesses the list storing the stack’s elements, and
prints them to the console.

Feature Trace

1 layer Trace;
2 refines class Stack {
3 public void push(Object item) {
4 Super.push(item);
5 trace();
6 }
7 public Object pop() {
8 Object res = Super.pop();
9 trace(); return res;

10 }
11 private void trace() {
12 for(int i = 0; i < elements.size(); i++) {
13 System.out.print(elements.get(i).toString() + ””);
14 }
15 }
16 }

Figure 4: A refinement of class Stack to trace ac-
cesses to a stack instance.

The question is whether the above example is correct. Is
it allowed for the class refinement to access the private field
elements of the refined class? The answer is not obvious
since feature-oriented languages usually do not come with a
specification (the behavior is de facto defined by the imple-
mentation of the composition engine) and formally specified
subsets of feature-oriented languages do not include modi-
fiers [5, 13, 4]. Compiling this code (or similar code) with
the Jak compiler reveals that it depends on certain compiler
flags whether this code is considered correct.

The background is that the Jak compiler generates Java
code in an intermediate step and it supports two options to
do so [15]: in the first option, called Mixin, the compiler
generates an inheritance hierarchy with one subclass per re-
finement; in the second option, called Jampack, the compiler
generates a single class consisting of the elements of the base
class and all of its refinements. Comparing the two options
it becomes clear why they show different behaviors in our
example, which we illustrate in Figure 5. In the first op-
tion, private field elements cannot be accessed because the
refinement is translated to a subclass, which cannot access
private members of superclasses. In the second option, pri-
vate field elements can be accessed because all code of all
refinements is moved to the class that is refined. So we have
two different behaviors of a single program depending on a
compiler flag that is intended for optimization.

cess them. For sake of symmetry with the other modifiers,
we introduce modifier package for this case.

1 class StackBase {
2 private LinkedList elements ...
3 }
4 class Stack extends StackBase {
5 ...
6 private void trace() {
7 ... elements.size() ...
8 ... elements.get(i) ...
9 }

10 }

1 class Stack {
2 private LinkedList elements ...
3 ...
4 private void trace() {
5 ... elements.size() ...
6 ... elements.get(i) ...
7 }
8 }

Figure 5: Mixin vs. Jampack.

One can argue for one or the other behavior, and certainly
it is possible to fix either Mixin or Jampack such that both
obey an equal behavior, but what we would like to stress is
that the semantics of access modifiers and their interaction
with feature-oriented mechanisms such as class refinements
is not well-defined. This fact is not only a matter of tool
support since it can affect the program semantics beyond
type errors. Have a look at the example shown in Figure 6.4

Which value is returned by method bar? Again, it depends
on the composition mechanism: using Jampack, bar returns
23; using Mixin, bar returns 42. A comprehensive discus-
sion of the reason of difference is outside the scope of the
paper and we leave it as“homework”for the reader. A hint is
that it depends again on the underlying composition mecha-
nism (Mixin-like or Jampack-like) and that it has to do with
Java’s overloading mechanism.

Feature Base

1 layer Base;
2 class A {}
3 class B extends A {}
4 class Foo {
5 protected int foo(A a) { return 23; }
6 private int foo(B b) { return 42; }
7 }

Feature Ext

8 layer Ext;
9 refines class Foo {

10 public int bar() { return foo(new B()); }
11 }

Figure 6: Which value is returned by method bar?

In Table 1, we compare different (variants of) feature-
oriented languages with respect to their rules for accessing
fields from a refinement and the program behavior with re-
spect to our example of Figure 6. We argue that the differ-
ences between the individual (variants of) feature-oriented
languages are not intended but stem solely from the fact
that research on FOP did not consider access modifiers so
far. The language developers got modifiers for free from the
base language and the implementation of the composition
in a preprocessing step decides over the semantics of the
composed program.

We hope that the above examples make clear that we need
well-defined semantics of feature-oriented languages includ-
ing access modifiers as well as a scientific discussion that
motivates the choices of the semantics definition. What we
do not want is that internal implementation details of com-
pilers or the use of compiler flags, which target at optimiza-
tion [15], decide arbitrarily over the program semantics.

4For brevity we have merged the definitions of the classes
A, B, and Foo in a single listing.

29

Ja
k

1
(M

ix
in

)

Ja
k

1
(J

am
pa

ck
)

Fe
at

ur
eH

ou
se

2

Fe
at

ur
eC

+
+

3

C
la

ss
bo

x/
J

4

C
ae

sa
rJ

5

O
T

/J
6

private × X X X X × X
protected X X X X X X X
package X X X — X — X
public X X X X X X X
bar() (Fig. 6) 23 42 42 42 42 23 42

1
http://www.cs.utexas.edu/~schwartz/ATS.html

2
http://www.fosd.de/fh/

3
http://wwwiti.cs.uni-magdeburg.de/iti_db/forschung/fop/featurec/

4
http://scg.unibe.ch/research/classboxes/

5
http://caesarj.org/

6
http://www.objectteams.org/

Table 1: Which members of a class can be accessed by a refinement? What is the return value of bar?
(× access prohibited; X access granted; — not supported)

Limited Expressiveness
With regard to the second problem (object-oriented modi-
fiers are not expressive enough for feature-oriented mecha-
nisms), consider the following example. Suppose we refine
our class Stack such that accessing the stack’s methods is
thread-safe. The refinement shown in Figure 7 adds a new
field lock and overrides the methods push and pop in or-
der to synchronize access via the methods lock and unlock.
Furthermore, suppose that feature Sync also refines many
other classes in order to attain thread safety (e.g., Queue,
Map, and Set) and that a central registry keeps track of all
locks in use. In order to grant the lock registry access to
the lock fields of the synchronized stack (queue, map, set,
. . .) objects, we have to change the access modifier in Line 3
from private to public (similarly for the other synchro-
nized classes). However, this also means that every class
of the entire program has access to the lock (not only the
lock registry), which is certainly not desired. Other mod-
ifiers such as package and protected are not sufficient as
well, which is easy to see and omitted for brevity. Instead,
we envision a modifier that states that all roles of a given
feature may access a member within the same feature. In
our case, we would like to grant access to the locks from the
lock registry, which is introduced in the same feature as the
locks are. The synchronization example illustrates that the
access modifiers available in contemporary feature-oriented
languages are not sufficient for fine-grained, feature-based
access control.

Feature Sync

1 layer Sync;
2 refines class Stack {
3 private Lock lock = new Lock();
4 public void push(Object item) {
5 lock.lock();
6 Super.push(item);
7 lock.unlock();
8 }
9 public Object pop() {

10 lock.lock();
11 Object res = Super.pop();
12 lock.unlock(); return res;
13 }
14 }

Figure 7: A refinement of class Stack to synchronize
accesses to a stack instance.

Summary
Our previous discussion shows that we need access modi-
fiers that are specific to the needs of FOP. Programmers
would like to provide access to a program element from cer-
tain features. Furthermore, we would like to define how the
feature-oriented modifiers interplay with the object-oriented
modifiers in order to avoid inadvertent interactions. To this
end, in the next section, we define an orthogonal access mod-
ifier model for feature-oriented languages.

4. AN ORTHOGONAL ACCESS MODIFIER
MODEL

Next, we explore the design space of possible and poten-
tially useful modifiers for feature-oriented language mecha-
nisms. First, we introduce three feature-oriented modifiers
and, second, we explain how they can be combined with the
modifiers commonly found in object-oriented languages.

4.1 Feature-Oriented Modifiers
Using the sample feature-oriented design of Figure 3, we

explain three possible modifiers that control the access to
members of roles. The motivation for the modifiers comes
directly from the fact that features cut across the underlying
object-oriented design.

Modifier feature
The idea for modifier feature is motivated by our exam-
ple, in which we added synchronization support to a stack
and other data structures. There we had the problem that
with object-oriented modifiers we were not able to express
that only elements introduced by the synchronization fea-
ture may access the lock fields of the refined classes. The
modifier feature grants exactly this access and forbids the
access from other features, as we illustrate for our stack ex-
ample in Figure 8. Modifying a member with feature allows
every other role of the same feature to access the member
in question, in our example, including the lock registry.

Modifier subsequent
The proposal of modifier subsequent is motivated by the
fact that some FOP approaches treat features as stepwise
refinements. That is, starting from a base program, fea-
tures gradually refine the existing program code and pro-

30

Feature Sync

1 layer Sync;
2 refines class Stack {
3 feature Lock lock = new Lock();
4 ...
5 }

Figure 8: Using modifier feature to grant access to
field lock from all members of feature Sync.

duce in each step a new version [11, 17]. Some researchers
even draw a connection to functions that map programs to
programs [10,11,17]. In the stepwise refinement scenario, it
has been argued that a feature (represented by a function)
does never “know” about program elements applied by fea-
ture that have been applied subsequently. The positive effect
of such a disciplined programming style is that inadvertent
interactions cannot occur with program elements that are
not known at the development time of a feature [17]. This is
especially important for languages that support a pattern-
based selection of extension points such advice and implicit
invocation [22,3], which have been discussed recently in the
context of FOP [17,8]. In order to support this view, we pro-
pose a modifier subsequent that grants access to a program
element from all elements of the same feature or of features
added subsequently. Features that have been added previ-
ously cannot access the program element in question.

Modifier program
Modifier program broadens the scope of access to a mem-
ber from program elements of all features. This is like the
current situation in feature-oriented languages where pro-
grammers have no fine-grained access control with regard to
feature-related code, except that in our novel proposal the
semantics of object-oriented modifiers and their interplay
with feature-oriented mechanisms is well-defined, which we
explain in Section 4.2.

Discussion
A question that arises is whether the new modifiers are
expressive enough or whether we need even a more fine-
grained access control mechanism. The smallest modular-
ization unit in feature-oriented designs is the role. With our
three feature-oriented modifiers, we are able to precisely con-
trol the access of individual roles to the elements of another
role. So there is no need for a more fine-grained access. At
the other end of the spectrum, it is possible to grant univer-
sal access, which is like leaving out feature-oriented access
modifiers at all. The modifier subsequent is in the middle
and motivated by previous work on program design. One
can imagine a further modifier previous, which would be
the inverse of subsequent, but we argue that such a modi-
fier is not of practical value. Although it has been observed
that there are situations, in which a feature access elements
that have been introduced later, this is not the rule [3]. In
these situations, a programmer can use modifier program be-
cause it is certainly not meaningful full to forbid the access
from subsequent features.

A further possibility would be to grant access only to a
special feature or a subset of features. We did not consider
this possibility so far because we would like to minimize the
coupling between feature implementation and feature man-
agement. Apart from the layer declaration at the beginning
of each Jak file, there is no information about the actual fea-

A2 feature subsequent program

private A2 A2, A3 A1, A2, A3

protected
A2,
B2

A2, A3,
B2, B3

A1, A2, A3,
B1, B2, B3

package

A2,
B2,
C2

A2, A3,
B2, B3,
C2, C3

A1, A2, A3,
B1, B2, B3,
C1, C2, C3

public

A2,
B2,
C2,
D2

A2, A3,
B2, B3,
C2, C3,
D2, D3

A1, A2, A3,
B1, B2, B3,
C1, C2, C3,
D1, D2, D3

Table 2: Overview of the roles that may access a
member that has been introduced in role A2.

tures. Instead, the relation between features and code is im-
plicit and managed externally by the tool infrastructure. We
believe that this separation of concerns (feature implemen-
tation vs. feature management) is one of the success factors
for contemporary feature-oriented languages and tools [2].
But the last word is not spoken on this issue.

Some feature-oriented languages support to modify the
access to individual roles, e.g., public refines class A {

. . . }. Using such a modifier in such a position we can subse-
quently broaden the access to a class. That is, we can make
a private class protected or public but not vice versa. Thus,
a modifier in such a position does not control the access to
program elements of feature-related code, but it overrides an
existing object-oriented modifier. This mechanism can also
be used to broaden the access to the members of a class.

Finally, it remains open how modifiers like abstract and
final fit into the picture and how they can be combined
gainfully with feature-oriented modifiers. We shall address
this issue in further work.

4.2 Object-Oriented and Feature-Oriented
Modifiers in Concert

We have proposed three feature-oriented access modifiers,
which interact with object-oriented modifiers in different
ways. In Table 2, we depict the interplay between object-
oriented and feature-oriented modifiers with respect to the
sample feature-oriented design of Figure 3. For each combi-
nation of object-oriented and feature-oriented modifiers, the
table shows the roles that may access the members of role
A2 in our sample design of Figure 3. That is, each cell of Ta-
ble 2 contains the roles that are allowed to access role A2’s
members, which have the combined modifiers corresponding
to the cell’s column and row. For example, a member of
role A2 with the modifiers protected and feature can be
accessed by the roles A2 and B2 (first column, second row);
a member of role A2 modified with private and program

can be accessed by the roles A1, A2, and A3 (third column,
first row).

Looking closer at Table 2, it is interesting to observe
that the individual modifier combinations constitute a lat-
tice with ‘private feature’ as bottom element and ‘public
program’ as top element, as illustrated in Figure 9. The
lattice can guide the formalization and implementation of
a corresponding type system, which is concerned with the
question whether the scope of the requested access is smaller
or larger than the one of the accessed element. When a

31

private

feature

protected

subsequent

package

program

protected

program

package

feature

public

subsequent

public

feature

public

program

package

subsequent

protected

feature subsequent

private

private

program

Figure 9: A lattice formed by modifier combina-
tions.

programmer overrides a member, as in the case of method
overriding, the scope of the member’s access may stay un-
changed, can be extended, but cannot be limited, which
means the modifier itself or any modifiers below the original
modifier.

5. FORMALIZATION AND
IMPLEMENTATION ISSUES

Although Table 2 captures the idea of our modifiers nicely,
in further work, a formal definition of the operational seman-
tics and type system of a feature-oriented language that sup-
ports these modifiers is desirable. This way, we will be able
to define the semantics of our modifiers unambiguously and
to guide the implementation of feature-oriented compilers.
As a formal system, we will use the Feature Featherweight
Java (FFJ) calculus [5], which extends a minimal core of
Java with feature-oriented mechanisms. The formalization
of the orthogonal access modifier model should be straight-
forward and we believe that we will be able to prove the
soundness of the corresponding type system.

We intend to implement a compiler on the basis of an ex-
isting feature-oriented language, preferably Jak or Feature-
House, which can be used for an empirical evaluation. The
problem of current language implementations is that they
do not provide a type system that takes the feature-oriented
abstractions into account. Merely, feature-oriented code is
translated to object-oriented code, and an object-oriented
compiler type checks the translated code. Since our feature-
oriented modifiers do not have corresponding constructs in
the generated object-oriented code, the object-oriented com-
piler is not able to detect access violations offhand. Hence,
we need a feature-oriented compiler with feature-oriented
type system. Whereas there are some formalizations of sub-
sets of feature-oriented type systems, there are no fully-
fledged compilers that have been developed with feature ori-
entation in mind. Another possibility is to adapt existing
compilers of related languages such as CaesarJ [9].

Once we have a feature-oriented compiler, case studies
should explore the practicality of feature-oriented modifiers

and reveal potential problems but also potential benefits for
the mission of attaining real feature modularity.

6. CONCLUSION
Based on our experience with contemporary feature-oriented

languages, we have proposed three modifiers targeting specif-
ically at feature-oriented languages mechanisms. Further-
more, we have developed an orthogonal access modifier model
that seamlessly integrates object-oriented and feature-orien-
ted modifiers. The background is that the notion of access
control has not gained much attention in feature-oriented
language design, which leads to a suboptimal modularity
and expressiveness and unintuitive semantics and inadver-
tent errors in feature-oriented programs.

A question that remains is whether the novel modifiers will
prove of value in practical software development. Certainly,
in order to attain real modularity, further ingredients are
necessary (e.g., declarative completeness and modular link-
ing), which are outside the scope of this paper (see the work
of Hutchins for details [14]). Also it is not clear whether our
names of the modifiers match the intuition of the program-
mers well. In the case a program element has no modifiers,
which modifiers should we assume as default? We intend
to initiate a discussion about these and other open issues
and inspire further research that evaluates the benefits and
drawbacks of our model and its successors.

Furthermore, it is open which further mechanisms are nec-
essary to attain the properties necessary for real modularity
(information hiding, modular type checking, and separate
compilation) and how they interact with our orthogonal ac-
cess modifier model.

Acknowledgments
This work is being supported in part by the German Re-
search Foundation (DFG), project number AP 206/2-1 and
by the Metop Research Center.

7. REFERENCES
[1] F. Anfurrutia, O. Dı́az, and S. Trujillo. On Refining

XML Artifacts. In Proceedings of International
Conference on Web Engineering (ICWE), volume
4607 of Lecture Notes in Computer Science, pages
473–478. Springer-Verlag, 2007.

[2] S. Apel and C. Kästner. An Overview of
Feature-Oriented Software Development. Journal of
Object Technology (JOT), 8(5):49–84, 2009.

[3] S. Apel, C. Kästner, and D. Batory. Program
Refactoring using Functional Aspects. In Proceedings
of the International Conference on Generative
Programming and Component Engineering (GPCE),
pages 161–170. ACM Press, 2008.

[4] S. Apel, C. Kästner, A. Größlinger, and C. Lengauer.
Type-Safe Feature-Oriented Product Lines. Technical
Report MIP-0909, Department of Informatics and
Mathematics, University of Passau, 2009.

[5] S. Apel, C. Kästner, and C. Lengauer. Feature
Featherweight Java: A Calculus for Feature-Oriented
Programming and Stepwise Refinement. In
Proceedings of the International Conference on
Generative Programming and Component Engineering
(GPCE), pages 101–112. ACM Press, 2008.

32

[6] S. Apel, C. Kästner, and C. Lengauer. FeatureHouse:
Language-Independent, Automated Software
Composition. In Proceedings of the International
Conference on Software Engineering (ICSE), pages
221–231. IEEE Computer Society, 2009.

[7] S. Apel, T. Leich, M. Rosenmüller, and G. Saake.
FeatureC++: On the Symbiosis of Feature-Oriented
and Aspect-Oriented Programming. In Proceedings of
the International Conference on Generative
Programming and Component Engineering (GPCE),
volume 3676 of Lecture Notes in Computer Science,
pages 125–140. Springer-Verlag, 2005.

[8] S. Apel, T. Leich, and G. Saake. Aspectual Feature
Modules. IEEE Transactions on Software Engineering
(TSE), 34(2):162–180, 2008.

[9] I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann.
An Overview of CaesarJ. Transactions on
Aspect-Oriented Software Development (TAOSD),
1(1):135–173, 2006.

[10] D. Batory. Program Refactoring, Program Synthesis,
and Model-Driven Development. In Proceedings of the
International Conference on Compiler Construction
(CC), volume 4420 of Lecture Notes in Computer
Science, pages 156–171. Springer-Verlag, 2007.

[11] D. Batory, J. Sarvela, and A. Rauschmayer. Scaling
Step-Wise Refinement. IEEE Transactions on
Software Engineering (TSE), 30(6):355–371, 2004.

[12] P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley, 2002.

[13] B. Delaware, W. Cook, and D. Batory. A
Machine-Checked Model of Safe Composition. In
Proceedings of the International Workshop on
Foundations of Aspect-Oriented Languages (FOAL),
pages 31–35. ACM Press, 2009.

[14] D. Hutchins. Pure Subtype Systems: A Type Theory
For Extensible Software. PhD thesis, School of
Informatics, University of Edinburgh, 2008.

[15] M. Kuhlemann, S. Apel, and T. Leich. Streamlining
Feature-Oriented Designs. In Proceedings of the
International Symposium on Software Composition
(SC), volume 4829 of Lecture Notes in Computer
Science, pages 168–175. Springer-Verlag, 2007.

[16] R. Lopez-Herrejon, D. Batory, and W. Cook.
Evaluating Support for Features in Advanced
Modularization Technologies. In Proceedings of the
European Conference on Object-Oriented Programming
(ECOOP), volume 3586 of Lecture Notes in Computer
Science, pages 169–194. Springer-Verlag, 2005.

[17] R. Lopez-Herrejon, D. Batory, and C. Lengauer. A
Disciplined Approach to Aspect Composition. In
Proceedings of the International Symposium on Partial
Evaluation and Semantics-Based Program
Manipulation (PEPM), pages 68–77. ACM Press,
2006.

[18] K. Pohl, G. Böckle, and F. van der Linden. Software
Product Line Engineering. Foundations, Principles,
and Techniques. Springer-Verlag, 2005.

[19] C. Prehofer. Feature-Oriented Programming: A Fresh
Look at Objects. In Proceedings of the European
Conference on Object-Oriented Programming
(ECOOP), volume 1241 of Lecture Notes in Computer
Science, pages 419–443. Springer-Verlag, 1997.

[20] T. Reenskaug, E. Andersen, A. Berre, A. Hurlen,
A. Landmark, O. Lehne, E. Nordhagen,
E. Ness-Ulseth, G. Oftedal, A. Skaar, and P. Stenslet.
OORASS: Seamless Support for the Creation and
Maintenance of Object-Oriented Systems. Journal of
Object-Oriented Programming (JOOP), 5(6):27–41,
1992.

[21] Y. Smaragdakis and D. Batory. Mixin Layers: An
Object-Oriented Implementation Technique for
Refinements and Collaboration-Based Designs. ACM
Transactions on Software Engineering and
Methodology (TOSEM), 11(2):215–255, 2002.

[22] F. Steimann, T. Pawlitzki, S. Apel, and C. Kästner.
Types and Modularity for Implicit Invocation with
Implicit Announcement. ACM Transactions on
Software Engineering and Methodology (TOSEM),
2009.

[23] M. VanHilst and D. Notkin. Using Role Components
in Implement Collaboration-based Designs. In
Proceedings of the International Conference on
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pages 359–369. ACM
Press, 1996.

33

34

Product Derivation for Solution-Driven
Product Line Engineering

Christoph Elsner†, Daniel Lohmann‡, Wolfgang Schröder-Preikschat‡
†Siemens AG, Corporate Technology & Research
‡Friedrich-Alexander University Erlangen-Nuremberg

†christoph.elsner.ext@siemens.com, ‡{lohmann,wosch}@cs.fau.de

ABSTRACT
Solution-driven product line engineering is a project busi-
ness where products are created for each customer individu-
ally. Although reuse of results from former projects is widely
done, configuration and integration of the results currently
is often a manual, time-consuming, and error-prone task and
needs considerable knowledge about implementation details.

In this paper, we elaborate and approach the challenges
when giving automated support for product derivation (i.e.,
product configuration and generation) in a large-scale solu-
tion-driven product line context. Our PLiC approach resem-
bles the fact that, in practice, the domain of a large prod-
uct line is divided into sub-domains. A PLiC (product line
component) packages all results (configuration, generation,
and implementation assets) of a sub-domain and offers inter-
faces for configuration and generation. With our approach
we tackle the challenges of using multiple and different types
of configuration models and text files, give support for au-
tomated product generation, and integrate feature modeling
to support application engineering as an extensive develop-
ment task.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software

General Terms
Design

Keywords
Software Product Line Development, Solution-Driven Soft-
ware Development, Feature Modeling

1. INTRODUCTION
In classical software product line engineering (SPLE), a

software product line is defined as a set of software-intensive
systems that share a common, managed set of features sat-
isfying the specific needs of a particular market segment or

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOSD’09, October 6, 2009, Denver, Colorado, USA.
Copyright 2009 ACM 978-1-60558-567-3/09/10 ...$10.00.

mission and that are developed from a common set of core
assets in a prescribed way [12].

SPLE, however, is not only about products in the strict
sense, which are usually created according to market needs
before being offered to the customer. It covers the realm of
software solutions as well, meaning that the customer has
high influence on the requirements of the software product
to develop, which is then created in context of a customer-
specific project leveraging reuse.

Feature modeling can guide the whole process of solution-
driven product line engineering. In fact, Siemens already
uses feature modeling to describe the problem space vari-
ability of possible products [18]. It supports scoping of the
product line, tendering, cost planning, supports communica-
tion between sales&marketing and development, and helps
scheduling development releases, testing, and evolution. For
documentation purposes, requirements trace into features
which in turn trace to the solution space assets. We de-
scribe this in further detail in [18].

Although this is far more than using feature models “as a
sketch” only, there still remains a gap between the problem
space, modeled with features, and the solution space. Sev-
eral causes currently still hinder using the feature model for
product configuration and support partly-automated prod-
uct generation from the configuration. In particular for
solution-driven product lines, where addressing customer-
specific requirements and manual implementaion play a cen-
tral role, an integrated concept for combining automated
and manual product derivation is missing.

In this paper, we will (1) describe the characteristics of
solution-driven product line engineering and then what we
see as state-of-the-art of problem space feature modeling in
industry. We (2) derive the challenges for using this feature
model for product derivation (i.e., product configuration and
generation) in a solution-driven context. We (3) propose and
discuss the PLiC approach to tackle the challenges.

2. SOLUTION BUSINESS
Solution-driven business is a project business where re-

sults are created for individual customers and their specific
problems. It is not the products fitting into a market seg-
ment or the optimized production process that is sold to
customers. The result, this is the solution or “product” of
such projects, is typically only sold once in this form. Ex-
amples of solution business are engineering of power plants,
production lines, smart homes, hospitals and their building
automation, and railway control centers.

35

Product Business Solution Business

n defined products, some explicitly excluded project business
configuration of fixed set of functions no product is used twice
foreseeable variability unanticipated variability
facilitate maintainability of PL platform and products facilitate/replace copy & paste
“closed world” open collection of artifacts
example: digital camera example: power plant, smart home

Table 1: Product vs. Solution Business

Solution business does not mean that every single feature
of the result is crafted from scratch. In fact, an efficient so-
lution business is urged to reuse and reapply existing know-
how and results to stay competitive. In product business
the scope of the product line is fixed by the variability the
feature model describes. In solution business, in contrast,
each new project reshapes the scope of the product line.

Table 1 compares product and solution business to char-
acterize their differences. The scope of a product line in
product business is well defined. It comprises a number of
products with a set of common and individual functions.
The core asset base is managed, even when application en-
gineering adds functions or when extending the scope of the
product line. In solution business, “products” are not clearly
defined and show a high variability.

Results in solution business projects share certain charac-
teristics that are determined by the domain. It is therefore
useful to manage them together in a software product line.
However the different sub-domains of the product line may
be rather heterogeneous. They may be covered by standard
software products, or products derived from other company-
internal product lines, while others in turn might be devel-
oped from scratch.

Solution-driven product line engineering basically means
that the primary focus is on application engineering, while
domain engineering diminishes. In such a scenario, not only
the reuse of existing results, but also product-specific adapta-
tions and reactive product line evolution, that is, when that
the concrete applications drive the development of the core
product line assets, play very important roles.

3. PROBLEM SPACE
FEATURE MODELING

Feature modeling was introduced in [11] as part of the do-
main analysis and domain modeling phase to systematically
describe the common and variable features shared among
the products of a product line. A feature model represents
the features of a family of systems in the domain and the re-
lationships between them [11]. A valid selection of features
from a feature model is called a configuration. Usually, a fea-
ture model is considered to be located in the problem space;
that is the scope of the analyst who does not care about
solution details. This means that the concepts and relations
described there are condensed so that they can be under-
stood without detailed implementation knowledge. The ac-
tual architectural models and the implementation assets, in
contrast, reside in the solution space.

Scoping, in turn, is an analysis activity in domain engi-
neering to find the boundaries of the whole product line, its
reusable sub-domains, and its assets [3, 16, 17]. Because
there is no agreed definition, we define a sub-domain of a

product line as a subpart of the overall product line do-
main, whereas there is a high cohesion in its problem space,
solution space, and in company-internal organization. A
sub-domain may be, for example, the operating system, data
storage, middleware, GUI frameworks, user management, or
domain-specific services. Scoping requires being able to as-
sign business value to decisions on what should be in/out
of the product line and carry those decisions on when de-
ciding on what functionality should be built within reusable
sub-domains and assets.

Rescoping is necessary to keep the scope of the product
line optimized during its evolution. In solution business,
rescoping is triggered (at least) for every new project to
decide, if a necessary adaptation shall be developed reusable
in the context of the overall product line. In this case it
must be assigned to an appropriate sub-domain; else it is
developed product-specific without following measures for
later reuse.

Feature modeling and scoping is a good match. Features
are a natural way to describe a domain in terms of problem
space concepts [17]. They can be refined and related to so-
lution space assets, and so can carry on business value infor-
mation. A feature model can, hence, serve as scoping model
and define the overall product portfolio and a strategic vision
of the variability of the product line. The model is succes-
sively refined to map features to concrete sub-domains, and,
finally, draw trace links into implementation components of
a system. The scoping model includes all common and vari-
able features of a product. The product line architect uses
the scoping model to design the reference architecture for
all the products.

Once feature modeling is established, it can support var-
ious other planning and management tasks. In [18] we de-
scribe how it has been used within Siemens to support project
and iteration planning and controlling. In general, various
task for bridging the “communication gap” between prod-
uct management, sales&marketing, requirements manage-
ment, architecting, and development may be supported by
the data, like tendering, cost planning, and product line evo-
lution.

In our view, the essential requirement on a problem space
variability modeling language—and maybe the key success
factor of feature modeling—lies in its easy understandability.
Involved stakeholders from various backgrounds can imme-
diately grasp the concepts and understand the semantics of
feature diagrams, and, at least from the high-level point of
view, the expressiveness of (cardinality-based) feature mod-
els [6] is sufficient.

However, the downside follows when the real-world solu-
tion is to be derived from the asset base. The problem space
feature model is far from complete; it only contains high-

36

level concepts that are not sufficient for complete product
configuration. Although there may exist traces from fea-
tures to the sub-systems and components it affects, how to
include, exclude, connect, or parameterize a component, in
especially, how to generate the actual product, is not part
of a problem space model.

Last but not least, variability modeling by only using fea-
ture models is quite limited. Constructive variability (in-
stantiation, references) is better expressed in languages that
support this concepts directly, and domain experts, for ex-
ample for business processes, will prefer doing certain config-
uration tasks using domain-specific languages (DSLs) such
as BPEL instead of (mis-)using feature modeling.

4. EXAMPLE SOLUTION-DRIVEN
PRODUCT LINE

To illustrate the general problem and the solution pro-
posed in this paper, let us consider the software for a medi-
cal digital assistant (MDA) product line for medical hospital
personnel. A MDA is basically a personal digital assistant
(PDA) with custom software connecting to the hospital in-
formation system. For simplification, we will consider two
sub-domains: the embedded operating system including the
middleware (OS), and the domain-specific business logic in-
cluding the graphical front-end (GUI). The OS sub-domain
is also used in other product lines (e.g., intelligent displays),
whereas the GUI sub-domain is only of use in MDAs. The
latter needs considerable configuration and manual imple-
mentation effort for each hospital, depending on the medical
services and workflows it disposes of; equipping a hospital
with MDAs is therefore solution business. Both sub-domains
have a problem space feature model describing their high-
level features. For planning purposes, the MDA product line
itself is regarded as a sub-domain and comprises a problem
space feature model, which is tied to the two other ones. The
OS sub-domain implementation mostly reuses standard soft-
ware and can be configured via separate text files, whereas
the reusable parts of the GUI sub-domain have data and
workfow models as configuration input.

5. CHALLENGES OF PRODUCT
DERIVATION SUPPORT

Connecting the problem space variability model formally
to solution space artifacts for product configuration and gen-
eration support is challenging. It requires an unambiguous
translation of the concepts of both realms. We identified the
following challenges, which, even though they also appear in
a product-driven context to a certain extent, are of major
importance for efficient product derivation for large-scale,
solution-driven product line engineering:

1. Distributed Configuration
The high-level feature model would become unman-
ageable if it contained all variability information for all
sub-domains. Instead, there should be several variabil-
ity models to divide and conquer the problem, similar
to the hierarchical decomposition of sub-domains of
the product line. Constraints between the variability
models are necessary to enforce sub-domain–crossing
dependencies. This distributed structure also goes in
line with staged and multi-level configuration [7], where

different stakeholders at different times are responsible
for configuring different sub-domains.

2. Heterogeneous Configuration
The high-level feature model constitutes our link from
problem to solution space, and the detailed variabil-
ity of some sub-domains might be described with fea-
ture models as well. However, there are also sub-
domains where other forms of configuration are much
more suited. Workflow or state machine models de-
scribe system behavior, other domain-specific (model-
ing) languages may describe deployment or replication.
Finally, the basic infrastructure often bases on plain
text configuration files. Constraints spanning different
types of configuration must be possible.

3. Solution Generation Support
Automating solution creation for those sub-domains
that are mature enough to support generation requires
connecting the configuration to implementation assets.
Heterogeneous types of product generation (e.g., based
on models and code generation, compilation, descrip-
tor files, etc.) must be supported as well as a hier-
archical mechanism to delegate generation call to all
sub-domains.

4. Handling Application Engineering
A new solution may require considerable effort for im-
plementing new features. It is crucial that product-
specific features are not neglected, but integrate neatly
into the overall configuration and generation process.

Referring to the example in Section 4, the configuration
of the MDA sub-domain is hierarchically distributed over
the two sub-domains OS and GUI, which have heterogenous
types of configuration (text files, models). Generative sup-
port only refers to separate sub-parts, and does not allow
generating an overall MDA, and the problem space feature
models are not used for actual product configuration. There
is no sub-domain spanning constraint-checking for validat-
ing a configuration, and application engineering is not in-
tegrated into the sub-domain configuration and generation
process.

6. APPROACHING THE CHALLENGES
In the following, we propose an approach to address the

mentioned challenges. We will discuss it in Section 7.

6.1 Product Line Components
In practice, the domain of a product line is divided into

sub-domains according to system boundaries and develop-
ment responsibilities. Our approach encapsulates all arti-
facts related to a sub-domain—these are configuration arti-
facts, generation artifacts, and implementation artifacts—
into one conceptual entity, a product line component (PLiC)
(see Figure 1).

Since sub-domains can be hierarchically composed, this is
also possible for PLiCs. A PLiC is a development and build-
level entity, so interfacing of PLiCs works on the upper two
layers: configuration and generation layer. PLiCs are a hi-
erarchical concept, so each PLiC delegates requests for con-
figuration and generation also to child PLiCs. It provides
two interfaces: the configuration interface and the genera-
tion interface:

37

Configuration

Generation

Implementation

Figure 1: Product Line Component

• Configuration Interface

– Configure PLiC
Configuration is a manual task and the interface
therefore a human-machine interface. As, in prac-
tice, feature modeling alone is often not suited for
overall product configuration, we expect that var-
ious domain-specific kinds of models or textual
configuration languages become necessary. The
top level PLiC will be configurable according to
the problem space feature model, while the PLiCs
for the sub-domains may have arbitrary domain-
specific types of models for configuration. Note,
that, as PLiCs are hierarchical, this provides sup-
port for hierarchical product lines [5], so that a
whole (sub-)product line may be a part of the
overall solution-driven product line.

– Check Configuration
Checking a configuration requires evaluating con-
straints over all involved options. As these may
spread multiple kinds of configuration models and
textual files and also may cross sub-domains we
need a suitable checking mechanism. Current mod-
eling frameworks, such as EMF [10], fulfill this
purpose. All domain-specific meta models devel-
oped with EMF correspond to the meta modeling
infrastructure ECore. XText [22] facilitates rapid
development of parsers for arbitrary textual lan-
guages. It outputs a corresponding EMF model
for a file written in the language. For other types
of models there already exist ECore converters
(pure::variants [2] feature models, UML [14]) or
can be developed as well. EMF’s validation lan-
guages (OCL, oAW Check [13]) make building up
a constraint checking infrastructure over several
models and model types feasible.

• Generation Interface

– Generate Solution
During application generation the configuration is
evaluated and the product is built according to it.
For stable sub-domains, the corresponding PLiC
may encapsulate a so-called configurable product
base [4] so that the product may be derived com-
pletely by using generative techniques. For the
moment, we regard the generation facilities as a
black box, so that arbitrary types of compilation
and text and model-based generation and trans-
formation techniques may be used internally.

By bundling configuration and generation facilities directly
with the implementation assets, PLiCs approach Challenges
1 to 3. The configuration can be distributed over an ar-
bitrary number of models and heterogeneous model types
and generation is carried out hierarchically according to the
PLiC hierarchy.

To sum up, our approach implies a hierarchy, where the
root PLiC basically contains the problem space feature model
to describe variability and global constraints. Referring to
our example from Section 4 this would be the MDA prob-
lem space feature model and additional constraints. Enforc-
ing correct configuration of the sub-domains conformant to
this “abstract” feature model configuration is done via the
constraint checking infrastructure. This ensures the config-
uration of all PLiCs (e.g., the sub-domains OS and GUI)
to be valid. Finally, each PLiC generates a sub-product
corresponding to its sub-domain, which makes product gen-
eration transparent regarding the concrete generation type
(e.g., based on model transformations and code generation,
pre-processors, etc.). In our example the OS PLiC gener-
ates the operating system and the middleware that specifi-
cally suite the needs of the domain-specific services and the
graphical front-end generated by the GUI PLiC.

6.2 Supporting Solution-driven PLE
To approach Challenge 4, we have to distinguish differ-

ent types of sub-domains. For solution-driven PLE, certain
sub-domains of the solution may be derived from company-
internal sub–product-lines, while others are covered by stan-
dard software, and others need manual implementation.

6.2.1 Sub–product-lines
Company-internal sub–product-lines fit very nicely into

the overall concept. PLiCs have a hierarchical structure, so
a hierarchical product line can be built. A sub–product-
line PLiC exposes its feature model to the overall feature
model. The constraint checking infrastructure ensures a
globally valid configuration.

6.2.2 Standard Software
Incorporating standard software (e.g., for infrastructure)

into the overall product line is also straight-forward. This
means to encapsulate the standard software into a PLiC as
well, using the same mechanisms as for sub–product-lines.
This way, the detailed configuration of the standard soft-
ware can be performed in the same manner as for company-
internal sub–product-lines, and configuration constraints can
be expressed and enforced.

6.2.3 Manual Implementation
In a solution-driven PLE context, manual implementation

of assets plays a crucial role. This has both an organizational
and a technical facet. The problem space feature model
covers the former, the PLiC approach the latter.

Organizational business considerations determine how to
implement a new feature’s assets. This is where the strength
of problem space feature modeling lays. As we indicate in
Section 3 and further describe in [18], the decision on how to
implement a new feature depends on its attached business
values (implementation costs, worth for customer, strategi-
cal value, etc.). This technique can both be applied directly
to the overall solution feature model as well as be delegated
into the feature-models of certain sub–product-lines.

38

After the organizational decision, if a feature shall be
reusable or if not, technical considerations come into play.
Independently of the decision, the feature may be developed
within a PLiC. Each time, it may comprise detailed configu-
ration languages, generation facilities, and the actual imple-
mentation. Note, that, although a feature is implemented
solution-specific, it will usually still have configuration op-
tions for fine-tuning, multiple solution instances, etc. Only
its reusability is constrained, as the PLiC makes rigid as-
sumptions about its context, this is the features selected in
other sub-domains.

For the actual implementation of variability in a reusable
or product-specific way, there exist various possibilities (cf.
Table 2). On the one side it is possible to add, change, and
delete new artifacts within the reusable asset base. Adding,
changing, and deleting is possible on common core assets
(C), variation points (VP), and variants (V). On the other
side it is possible to add new solution-specific variations, to
override reusable assets, or even to conceal common core
asset functionality.

Reusable impl. Product-specific impl.

Add Add C, VP, V Add V
Change Change C, VP, V (Override C, VP, V)
Delete Delete C, VP, V (Conceal C)

Table 2: Manual Implementation of Assets

Overriding and concealing emerge when there is no suit-
able variation point in the reusable assets base at a certain
location, although one would be needed to perform an adap-
tation. Usually this is referred to as “patching” and is dis-
couraged; adding an explicit, additional variation point into
the reusable asset base and write a variant for it is prefer-
able. This means that, even if a feature shall be implemented
product-specific, it still might require adapting the reusable
asset base for adding a variation point.

7. DISCUSSION
The PLiC approach is currently in stage of prototypical

implementation and evaluation. The interfaces of PLiCs as
described above are simple and we have to see if hierarchical
composition and black box behavior is sufficient for both
configuration and generation. In the following, we discuss
the notion of sub-domain, configuration model consistency,
scalability, and binding times.

7.1 The Notion of a Sub-domain
The notion of sub-domains is of high relevance in indus-

trial practice of large-scale systems and is used to (hierar-
chically) structure the overall product line domain. How-
ever, there is no generally agreed definition. So, it depends
on the context if it refers to problem space, solution space,
or organization. In Section 3, we define a sub-domain of a
product line as a subpart of the overall product line domain,
whereas there is a high cohesion in problem space, solution
space, and in company-internal organization. Of course, this
does not mean there is no interfacing between sub-domains,
but that they are relatively stable and clear, in contrast to
sub-domain–internal interfacing. This enables us to bundle
all artifacts relevant to one sub-domain into a conceptual
entity with quite clear interfaces, the PLiC. The problem of

partitioning into sub-domains stems from practice and we
are convinced that problem space, solution space, and orga-
nization have to be considered together to tackle large-scale
product line engineering.

7.2 Configuration Model Consistency
From a technical point of view, evaluating the consistency

of configuration models is easiest on demand, for example
by triggering the evaluation of consistency rules in OCL ex-
plicitly. There also exists research about high performance
on access/edit constraint checking [9]. The more challeng-
ing question is how to manage creation and maintenance of
the consistency rules in order to keep the models of heteroge-
neous types valid. At the moment, we consider using general
purpose constraint checking languages, such as OCL, and to
assign rule sets to each sub-domain, whereas rules may only
access models in their own or in child sub-domains. Check-
ing the consistency of a solution then corresponds to check-
ing the rule set of the root solution-driven product line and
all sub-domain rule sets recursively.

7.3 Scalability
The question remains, if such a generic checking infras-

tructure scales when it comes to large-scale product lines.
Next to hard dependencies (requires, excludes), there may
be weak ones, for example regarding the influence on execu-
tion time or memory usage. These may be covered similar
to COVAMOF [19], where weak constraints have attached
textual information indicating the impact of a configuration
on certain system qualities.

7.4 Binding Times
Having different binding times within the product line

could be done via dividing the Check Configuration service
(see Section 6.1) into several services. Each service would
represent a binding stage and could introduce stricter con-
straints. However, we have not elaborated on that issue yet.

8. RELATED WORK
We resemble staged and multi-level configuration of fea-

ture models [7] to some extent, as we have a hierarchical
model structure that refines from abstract feature to a more
and more concrete configuration. However, staged configu-
ration only supports one type of variability model, a feature
model. This is the case for many other reported applications,
like decision modeling [8], COVAMOF [19], or OVM [15].
In contrast, our approach is free in using various domain-
specific modeling languages; we only expect the top level
model to be a feature model to link to the problem space.

In contrast to our feature notion, which is rather abstract
and driven from problem space considerations, feature-ori-
ented software development (FOSD, [1]) operationalizes a
feature as an increment in program functionality that im-
plements a requirement. A sub-domain, as we define it,
consists of a set of increments and rules specifying valid com-
binations (similar to the feature-oriented view on a product
line). Ideally, in FOSD, each feature is implemented sepa-
rately in a so-called feature module to separate the concerns
(SoC) of the features. Our approach requires SoC on sub-
domain level, while we currently do not explicitly consider
SoC within a sub-domain. This means features may be im-
plemented applying strict SoC or not. We aim at imple-
menting SoC on sub-domain-level by classical means, in es-

39

pecially, providing variation points (e.g., by design patterns)
in one sub-domain, while other sub-domains may provide
corresponding variants.

Product derivation systems based on version management
software [20, 21], manage the reusable asset base (the prod-
uct line platform) and the reused assets in the actual prod-
ucts separately and preserve dependencies between reusable
and reused asset. It follows the assumption that the devel-
opment of platform and products generally happens inde-
pendent of each other, but that at some points (e.g., secu-
rity updates) merges from platform to product assets or vice
versa become necessary. In our approach, we try to avoid
solution-specific overrides or concealing of assets. Instead,
we would prefer to add a variation point to the reusable as-
set base whenever possible. As, in our application context,
the number of concurrent solutions is rather limited (3 to
10) this still seems feasible to us.

9. SUMMARY AND FUTURE WORK
In this paper, we have elaborated and approached the

challenges when doing product configuration and generation
in a large-scale product line context in solution business. We
identified the following four challenges: the need for decen-
tralized configuration, for heterogeneous configuration, for
explicit product generation support, and for supporting ap-
plication engineering as extensive task. We tackle the chal-
lenges with the PLiC approach. It resembles the fact that
the domain of a large-scale product line is divided into sub-
domains. A PLiC (product line component) encapsulates
all configuration, generation, and implementation artifacts
of a sub-domain. A hierarchical composition of PLiCs then
constitutes the overall solution-driven product line. Our ap-
proach facilitates decentralized and heterogeneous configu-
ration by allowing multiple models, arbitrary model types,
and constraints that may span sub-domains. It gives prod-
uct generation support by hierarchical delegation of gen-
eration calls, and, by integrating a problem space feature
model into the derivation process on solution space side, we
can give explicit support for application engineering as an
extensive development process.

Before applying the approach in a real-world context still
a lot of research remains to be done. Our next step will be
to set up a prototype satisfying the identified characteristics
and elaborate on the more technical details of sub-domain–
spanning product configuration, consistency checking, and
product generation.

Acknowledgments
We thank Christa Schwanninger and Ludger Fiege for their
valuable feedback on earlier versions of this paper.

10. REFERENCES
[1] D. Batory. Feature-oriented programming and the

AHEAD tool suite. In Proceedings of the 26th
International Conference on Software Engineering
(ICSE ’04), pages 702–703. IEEE Computer Society
Press, 2004.

[2] D. Beuche. Variant management with pure::variants.
Technical report, pure-systems GmbH, 2006.
http://www.pure-systems.com/fileadmin/

downloads/pv-whitepaper-en-04.pdf, visited
2009-03-26.

[3] J. Bosch. Design and Use of Software Architectures,
Adopting and Evolving a Product Line Approach.
Addison-Wesley, 2000.

[4] J. Bosch. Maturity and evolution in software product
lines: Approaches, artefacts and organization. In
Proceedings of the 2nd Software Product Line
Conference (SPLC ’02), pages 257–271, Heidelberg,
Germany, 2002. Springer-Verlag.

[5] J. Bosch. Expanding the scope of software product
families: Problems and alternative approaches. In
C. Hofmeister, I. Crnkovic, and R. Reussner, editors,
Quality of Software Architectures, Lecture Notes in
Computer Science. Springer-Verlag, 2006.

[6] K. Czarnecki, S. Helsen, and U. W. Eisenecker.
Formalizing cardinality-based feature models and their
specialization. Software Process: Improvement and
Practice, 10(1):7–29, 2005.

[7] K. Czarnecki, S. Helsen, and U. W. Eisenecker. Staged
configuration through specialization and multilevel
configuration of feature models. Software Process:
Improvement and Practice, 10(2):143–169, 2005.

[8] D. Dhungana, R. Rabiser, P. Grünbacher, and
T. Neumayer. Integrated tool support for software
product line engineering. In Proceedings of the 22th
IEEE International Conference on Automated
Software Engineering (ASE ’07), pages 533–534, New
York, NY, USA, 2007. ACM Press.

[9] A. Egyed. Scalable consistency checking between
diagrams-the viewintegra approach. In Proceedings of
the 16th IEEE International Conference on Automated
Software Engineering (ASE ’03), Washington, DC,
USA, 2001. IEEE Control Systems Magazine.

[10] Eclipse modeling framework homepage.
http://www.eclipse.org/emf/.

[11] K. Kang, S. Cohen, J. Hess, W. Novak, and
S. Peterson. Feature-oriented domain analysis (FODA)
feasibility study. Technical report, Carnegie Mellon
University, Software Engineering Institute, Pittsburgh,
PA, Nov. 1990.

[12] L. Northrop and P. Clements. Software Product Lines:
Practices and Patterns. Addison-Wesley, 2001.

[13] OpenArchitectureWare homepage.
http://www.openarchitectureware.org/.

[14] Object Management Group (OMG). Unified modeling
language (UML) 2.1.2 superstructure specification.
formal/2007-11-02, November 2007.

[15] K. Pohl, G. Böckle, and F. J. van der Linden.
Software Product Line Engineering: Foundations,
Principles and Techniques. Springer-Verlag, 2005.

[16] K. Schmid. A comprehensive product line scoping
approach and its validation. In Proceedings of the 24th
International Conference on Software Engineering
(ICSE ’02), New York, NY, USA, 2002. ACM Press.

[17] K. Schmid. Planning Software Reuse - A Disciplined
Scoping Approach for Software Product Lines. PhD
thesis, Stuttgart, 2003.

[18] C. Schwanninger, I. Groher, C. Elsner, and
M. Lehofer. Variability modelling throughout the
product line lifecycle. In Proceedings of the
ACM/IEEE 12th International Conference on Model
Driven Engineering Languages and Systems, to
appear. Springer-Verlag, 2009.

40

[19] M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch.
COVAMOF: A framework for modeling variability in
software product families. In Proceedings of the 11th
Software Product Line Conference (SPLC ’07),
Heidelberg, Germany, 2007. Springer-Verlag.

[20] C. Thao, E. V. Munson, and T. N. Nguyen. Software
configuration management for product derivation in
software product families. In Proceedings of the 15th
Annual IEEE International Conference and Workshop
on the Engineering of Computer Based Systems, pages

265–274, Washington, DC, USA, 2008. IEEE Control
Systems Magazine.

[21] J. van Gurp and C. Prehofer. Version management
tools as a basis for integrating product derivation and
software product families. In Proceedings of the
Workshop on Variability Management - Working with
Variability Mechanisms at SPLC 2006, pages 48–58.
Fraunhofer IESE, 2006.

[22] Eclipse XText homepage.
http://www.eclipse.org/Xtext/.

41

42

A Model-Based Representation of Configuration

Knowledge

Jorge Barreiros
1,2

1
Inst. Superior de Eng.de Coimbra;

Inst. Politécnico de Coimbra
Coimbra, Portugal

jmsousa@isec.pt

Ana Moreira
2

2
Departamento de Informática

Faculdade de Ciência e Tecnologia
Univ. Nova de Lisboa

amm@di.fct.unl.pt

ABSTRACT

Implementation of feature-oriented systems is typically made by

creating an admissible configuration, according to a specified

feature diagram, that dictates what artifacts are to be composed to

create the desired solution. These artefacts are typically grouped

according to the feature they concern. However, some artefacts

may be related not to a specific feature, but to a combination of

them. Also, multiple alternate implementations of a single feature

may exist, and the preferred one may be dependent on the specific

configuration that is being composed. We propose a graphic

model to represent configuration knowledge that is able to address

such concerns.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]

General Terms
Design, Languages

Keywords
Feature Modeling, Knowledge Representation Modeling, Feature

Interaction, Feature Dependency

1 INTRODUCTION
Techniques for deriving low level design models or

implementation from a feature diagram usually assume a more or

less direct correspondence from a feature into a single design

artifact or implementation (we use the term “feature

implementation” loosely, referring to either low level design

models or other development artifacts, such as source code files)..

This is unfortunate, because multiple candidate implementations

may compete to implement a given feature. In this scenario, the

selection of the actual implementation to be used for a feature is

based on context specific rules, restrictions and optimization

criteria. Rather than requiring the developer to expand the feature

diagram with unnecessary detail, Software Product Line tools

such as Pure::Variants [1] handle this problem by allowing the

developer to specify configuration rules that determine what

composition artifacts are to be generated. This promotes a clear

domain separation, that is, the representation of concepts deriving

from domain analysis is not unnecessarily tangled with concepts

concerned with the implementation of the system.

We propose to explicitly represent this configuration knowledge.

using a graphic model technique that is suited to represent design

and implementation knowledge in a combined diagram.

The remaining of this paper is organized four sections. In Section

2, we will discuss the background and motivation for our work. In

Section 3, we present our model with the help of a mobile media

application case study. In Section 4, we discuss related work and

we conclude this paper in Section 5.

2 BACKGROUND AND MOTIVATION
Techniques such as the ones described in [2-4] have been

proposed to address the mapping from feature to its

implementation. In all these cases, a one-to-one mapping from

feature to implementation is generally assumed to exist, even

though the adoption of aspect-oriented techniques may be used to

create feature implementations or designs that crosscut the entire

implementation space. But even in this last case, a single aspect is

assumed to implement the feature. Significant flexibility could be

gained by allowing the dynamic selection of one among multiple

implementation alternatives.

A related problem is that it can be hard to cleanly distribute

implementation artefacts among isolated features. In fact, some of

these may be of relevance only when two or more individual

features are selected, making no sense to assign them to a single,

isolated feature.

Finally, in some cases, implementation artefacts may need to be

customized according to the desired configuration. For example,

if aspectual model components such as the ones described in [5,

6] are used, then it is necessary to provide the proper instantiation

parameters required according to the specific configuration. Some

source file transformation might also be necessary, driven by the

specific needs of the selected configuration.

By creating a model to represent specifically this configuration

knowledge (and relevant dependencies and interactions between

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

FOSD'09, October 6, 2009 Denver, Colorado, USA

Copyright © 2009 ACM 978-1-60558-567-3/09/10... $10.00

43

features), we are able to properly represent and address all these

issues. Our model can be added to existing tools as an alternate

view for displaying and editing the configuration knowledge of a

Software Product Line .

3 A MODEL FOR CONFIGURATION

KNOWLEDGE REPRESENTATION

3.1. Multimedia Application Case Study
The feature model in Fig. 1, describing a family of multimedia

applications for mobile devices, will be used to illustrate our

approach. This example is partially based on work presented in [7,

8]. The following restrictions and dependencies apply:

• The “Send Photo” feature is dependent on the inclusion

of the “Photo” feature.

• If both “Photo” and “Video” media options are selected

then an additional menu must be included to allow for

the user to switch between both media types. If only one

media is present, no such functionality is required.

• For achieving acceptable performance, a 3rd party video

decoder must be used in systems with higher resolution.

In lower resolution systems, an in-house solution was

found to be acceptable and is to be used instead, to

reduce royalty costs.

These configuration restrictions, as we will show, are easily

represented in our configuration knowledge graphical model.

Fig. 1 - Mobile media application case study

3.2. Configuration Modules
Feature implementations are described using configuration

modules. A generic configuration module is shown in Fig. 2.

Fig. 2-Configuration Module

Name is an optional tag that names the configuration module. It

will typically match the feature name if the configuration module,

describing the configuration of a specific feature, but that may not

always be the case. An optional list of parameters is also present.

Each parameter will be used to tailor the described configuration.

Lastly, the configuration description itself will be presented. The

specific details of this description depend on the desired type of

implementation artefacts we are dealing with. A typical

application will use aspectual model components if the output of a

detailed design model is desired. Alternatively, if a makefile or

similar project description is the desired output, the names of the

relevant source files can be used instead. We will adopt the later

approach for the examples given in this text.

The configuration module in Fig. 3 describes the configuration

properties for the mobile media feature in our case study. As we

can see, the configuration parameters are those necessary to

completely specify a mobile multimedia application. Our model

will describe how this information is to be propagated to other

configuration modules to properly create the system. The file

mobileMedia.java is referred to in the configuration description.

This file will be included in every multimedia application project

that is created by configuring the Mobile Media feature.

Fig. 3 - Configuration Module Example

44

From the perspective of the developer, all that is required to create

a new mobile media family member will be to properly configure

the “Mobile Media” feature by supplying the requested

parameters. The configuration knowledge diagram may then be

processed to take care of the additional configurations required to

implement all relevant features.

3.3. Associations and Configuration

Propagation
Configuration modules can be associated to represent feature and

configuration dependencies. Dependencies can be checked and

validated using a cardinality based approach [9] (cardinality 0 can

be used to represent exclusion). These associations can also be

used to describe how configuration information is to be

propagated across the configuration modules.

As an example, consider Fig. 4, where an association is

represented between the “Mobile Media” and “Media”

configuration modules. This association describes two important

properties:

• 1 or 2 distinct configurations of “Media” are required

per each configuration of “Mobile Media”,

• The |MediaType parameter of the Media configuration

module is to be initialized by using information

supplied in the “|Media” parameter of the “Mobile

Media”.

The |Media parameter of the “Mobile Media” configuration

module may be set to a list of multiple values. Rather than

propagating this list itself, the asterisk in the |Media* reference in

the association indicates that we are referring to each and every

one of the list values. So, if |Media={Photo, Video}, for example,

then two distinct configurations of the “Media” configuration

module are created with |MediaType=”Photo” and |MediaType

=”Video”, rather than a single configuration with |MediaType =

{Photo,Video}.

Fig. 4 - Association between configuration modules

Composition can be used as a shorthand notation for indicating

that similarly named parameters on either side of the association

should be set to the same value. A guard can also be used to

indicate under what circumstances an associated configuration

module should also be instanced. These applications of

associations are represented in Fig. 5

3.4. Configuration Module Specialization
No configuration description is represented in the Media

configuration module in Fig. 4. This is deliberated, as the

mechanism of configuration knowledge specialization is used

instead to represent the alternative implementations of the photo

and video sub-features. This mechanism will also be used to select

from codec implementations, according to the stated restrictions

of this product family.

A specialization of a configuration module is a specific

implementation of that configuration module that is to be used

whenever a specific value or set of values is used in the

parameters.

Fig. 5 - Composition and dependencies

Fig. 6 - Configuration Module Specialization

45

In the example of Fig. 6, specific variants of the “Media”

configuration module are provided for each one of the special

cases represented by having the |MediaType parameter set to

either “Photo” or “Video”. Further specializations of the “Video”

configuration module are used to handle the alternative codec

implementations, depending on the value of the |Resolution

parameter. This value can be propagated from the “Mobile

Media” configuration module in a similar manner as described in

Section 3.3.

It should be noted that since the photo media configuration is

reified, it is possible to cleanly represent the dependency between

the “Photo” and “Send Photo” features using an association, as

shown in Fig. 7 .

Fig. 7 – Representation of the dependency between SendPhoto

and Photo.

3.5. Multiple Feature Interactions
According to the case study description in Section 3.1, a menu

should be included to allow the user to switch media types if both

the “Video” and “Photo” features are selected. This does not map

cleanly to any isolated feature of our diagram, since it is not

actually depending on either the “Photo” or “Video” features

when considered in isolation. We represent this in our model by

allowing N-ary associations among multiple configuration units.

For the situation described in our case study, the diagram in Fig. 8

is adequate. This diagram should be interpreted as follows: if

either the “Photo” or “Video” are included, and if they are

included in number greater than 1, then apply the configuration

module that adds the option menu (we have chosen to deliberately

represent it as an anonymous configuration module to emphasize

it does not relate specifically to any feature).

This configuration could be easily extended to support additional

configurations like illustrated in Fig. 9 and Fig. 10.

In Fig. 9, we represent alternate configuration choices between a

toggle menu (if only two media options are selected) and a list

menu (if more than two media options are selected), in a

hypothetical scenario where a third Media option was considered

(“Audio” in this example).

Fig. 8 - Using an N-ary association to include an option menu.

Fig. 9 – Handling multiple menu options, depending on

number of selected features.

In Fig. 10, the following situation is described: if the “Edit”

feature is selected (notice the cardinality 1) and at least one of

“Audio” or “Video” are selected, then a menu for audio pitch

control should be created. A similar pattern is used for the “Edit”,

“Photo” and “Video” features, where a Color edition menu is

selected instead. This example shows how multiple, complex

dependencies can be efficiently represented in our model.

3.6. Wrapping up
For the sake of completeness, we present the remaining

configuration knowledge diagram for our case study, even though

we reuse the mechanisms already described. The different screen

46

Fig. 10 – Another example of multiple configuration options

depending on feature selection

sizes are considered to be implemented by two AspectJ modules

that will be responsible for making the necessary adjustments

across all implementation artefacts that somehow depend directly

on screen size resolution to function properly.

Fig. 11 – Screen size configuration model

In Fig. 11, the “Screen Size” configuration module is initialized

with the propagated homonymous parameter from the “Mobile

Media “ configuration module. The two available resolutions are

implemented by two appropriate specializations.

4 RELATED WORK
Many different works address issues related to configuration

knowledge management, feature interaction, variability modeling

and feature implementation. Our work is able to address

representation of design or implementation variability, while

offering constructs for representing feature dependencies (N-ary

associations), interactions (through cardinality restrictions) and

variable implementations (through specializations).

Several techniques have been proposed for implementing features.

These techniques differ on the kind of generated artefacts (source,

design models, etc) and on the specific approach to compose these

assets. As representative examples, we can consider [2-4]. Mixins

are used in the AHEAD framework [2] to compose classes based

on selected features. In [3], a template-based model of all

superimposed variants is used to create a design model of the

configured product. In [4], Jayaraman et. al. propose the use of

the MATA framework for creating aspectual model slices for each

feature that are subsequently composed into an appropriate design

model according to the selected configuration. Our model

approach is more generic in the sense that it is used to describe

what assets are to be composed, but makes no specific restriction

on the kind of artefacts and composition method that is

subsequently employed. Also, variable feature implementations

are not directly supported in any one of these approaches: a single

correspondence from a feature to an implementation artifact

(mixin, model slice or a single superimposed design model) is

assumed. Software Product Lines tools such as Pure::Variants [1]

superimpose additional configuration management over such

feature implementation techniques to achieve variable feature

implementation. Our work allows such information to be

represented and edited through a model that represents

configurable variability both in solution and problem space..

The orthogonal variability model described in [10] is able to

partially achieve a similar effect, by using feature diagrams to

externally represent variability across different views. However,

only dependencies and interactions between single features are

considered, which is problematic for representing cases such as

the one in Fig. 10..

Configuration modules are customizable by use of generic

parameters. Depending on the specific composition method that is

used, these parameters may be used to allow for additional

configuration of the selected artefacts. For example, if RAM or

RMS aspectual model components [5, 6] are used, then the

parameters of each aspectual component may be initialized from

values supplied through the configuration module parameters.

5 CONCLUSIONS AND FUTURE WORK
We have shown an example application of our modeling

technique to describe the configuration details for a mobile

multimedia application. Our configuration knowledge model has

managed to capture the relevant details necessary for successfully

configuring a family member according to the presented feature

restrictions and interactions.

Although in our example we have used our model to select the

correct files that should be selected for building the configured

application, our work is easily generalized to other

implementation options such as mixin selection or detailed design

modeling composition through aspectual modeling techniques.

As future work, implementation and automated integration in tool

chains should be conducted. Definition of an appropriate meta-

model should be conducted, and the technique should be

combined with aspectual modeling techniques to offer a concrete

solution, applicable in Model Driven Development scenarios.

Applicability to large scale real life scenarios should also warrant

further consideration.

47

ACKNOWLEDGMENTS
This work has been partially supported by FCT grant

SFRH/BD/38808/2007 and by the European FP7 STREP project

AMPLE [11]

REFERENCES

[1] "Pure::Variants (http://www.pure-systems.com) ".

[2] D. Batory, "Feature-Oriented Programming and the

AHEAD Tool Suite," in 26th International Conference

on Software Engineering, 2004.

[3] K. Czarnecki and M. Antkiewicz, "Mapping Features to

Models: A Template Approach Based on Superimposed

Variants," in 4th International Conference on

Generative Programming and Component Engineering

(GPCE) Tallin, Estonia, 2005.

[4] P. Jayaraman, J. Whittle, A. M. Elkhodary, and H.

Gomaa, "Model Composition in Product Lines and

Feature Interaction Detection using Critical Pair

Analysis " in 10th International Conf. on Model Driven

Engineering Languages and Systems (MoDELS 2007)

Nashville, 2007.

[5] J. Kienzle, W. A. Abed, and J. Klein, "Aspect-Oriented

Multi-View Modeling," in AOSD'09 Charlottesville,

Virginia, USA, 2009.

[6] J. Barreiros and A. Moreira, "Reusable Model Slices,"

in 14th International Workshop on Aspect-Oriented

Modeling Denver, 2009.

[7] P. Borba, "Software Product Line Refactoring tutorial,"

in GTTSE'09 Summer School Braga, Portugal, 2009.

[8] E. Figueiredo, N. Cacho, C. SantíAnna, M. Monteiro,

U. Kulesza, A. Garcia, S. Soares, F. Ferrari, S. Kan, and

F. Filho, "Evolving software product lines with aspects:

An empirical study on design stability," in ICSE New

York, USA, 2008.

[9] K. Czarnecki and U. Eisenecker, Generative

Programming: Methods, Tools, and Applications:

Addison-Wesley Professional, 2000.

[10] K. Pohl, G. Böckle, and F. v. d. Linden, Software

Product Line Engineering: Springer, 2005.

[11] "AMPLE Project Webpage (www.ample-project.net),"

2009.

48

Domain analysis on an Electronic Health Records System

Xiaocheng Ge
Department of Computer

Science
University of York

York, United Kingdom
xchge@cs.york.ac.uk

Richard F. Paige
Department of Computer

Science
University of York

York, United Kingdom
paige@cs.york.ac.uk

John A. McDermid
Department of Computer

Science
University of York

York, United Kingdom
jam@cs.york.ac.uk

ABSTRACT
Electronic Health Records (EHR) have been proposed as a
means for managing the technical and organisational com-
plexity that arises in modern healthcare. Different EHR sys-
tems are being developed around the world, and within in-
dividual countries, different services, such as electronic pre-
scriptions, are being deployed that exploit EHR. We report
on a domain analysis of England’s developing EHR, as is
being implemented in the NHS’s National Programme for
IT. The analysis, supported by the Feature-Oriented Do-
main Analysis (FODA) process, ultimately aims to identify
commonality and variability across services that use EHR.
We summarise the analysis, and describe challenges that we
encountered when using FODA to support the analysis.

Categories and Subject Descriptors
H.2 [Database Management]: Systems; D.2.1 [Software
Engineering]: Requirements/Specification—Methodologies

General Terms
Design, Experimentation

Keywords
Feature Oriented Domain Analysis, Healthcare Domain, Elec-
tronic Health Record

1. INTRODUCTION
The demand for high-quality healthcare continues to rise.

The care provided today is much more complex, both tech-
nically and organisationally, than ever before. One area
in which technical complexity has increased is in record-
ing and storing patient health records. Paper-based health
records have been in existence for centuries; their grad-
ual replacement by electronic records has been proceeding
for the last twenty years, in many different countries [8,
12]. Governments in Australia, Canada, Denmark, Finland,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOSD’09, October 6, 2009, Denver, Colorado, USA.
Copyright 2009 ACM 978-1-60558-567-3/09/10 ...$5.00.

France, New Zealand, England and the United States have
announced and are implementing plans to build integrated
computer-based national healthcare infrastructures, based
around the deployment of interoperable electronic health
record (EHR) systems. Compared with paper-based sys-
tems, EHR-based systems are supposed to improve the safety
and quality of patients’ healthcare. However it has been
demonstrated that implementing such large-scale healthcare
IT programmes can be extremely difficult and costly [1, 5,
13, 14].

England’s National Programme for IT (NPfIT) was initi-
ated in 2003 to deliver a number of major initiatives that will
enable an EHR system. The system is to be based on new
network infrastructure, as well as national (standardised)
services that will be based on the EHR (e.g., for supporting
electronic transfer of prescriptions, and electronic booking
of appointments). NPfIT is the largest outsourced public-
sector IT project [10], and its size and complexity has led
to substantial concerns being raised over progress towards
deployment [1].

The national implementation of EHR in England is con-
tinuing, and the requirements for EHR and applications of
EHR are continually changing. In parallel, we are investi-
gating the challenges of implementing parts of the NPfIT
programme from a software engineering point of view. In
particular, there are other substantial EHR programmes
throughout the world, and understanding similarities and
differences between these programmes may provide benefits
to England’s programme, through improved understanding
of technical challenges and solutions. Additionally, as men-
tioned above, there are a number of services that are making
use of, or are intending to make use of, EHR, and the re-
quirements for these services is changing. There is likely to
be substantial commonality, as well as points of variation,
amongst the functionality provided by these services, and in
how the services make use of EHR.

The overall aim of our recent research has been to at-
tempt to understand these commonalities and variations
across services and EHR programmes, and to use this to
help improve existing EHR infrastructure.

Our basis for this work has been the application of feature-
based software engineering, particularly techniques devel-
oped for software product lines and software architecture.
In this, we effectively treat EHR-based software systems as
software product lines. The key idea that we take from
these areas is the development of products from reusable
core assets [3, 7, 9]. To develop core assets, understanding
the commonality and variability (C&V) between the prod-

49

ucts in the domain is essential [11, 15, 16]; feature-based
approaches have been used extensively to support this [7,
15, 16].

The first stage of our ongoing research is to use feature-
based approaches to analyse the commonality and variabil-
ity of the domain of EHR systems in England, focusing on
existing NHS NPfIT services (including the EHR system
in England, electronic appointment booking, and electronic
prescriptions). Our view is that an analysis of C&V may
help in promoting understanding of shared requirements,
simplifications to software architecture and database archi-
tecture, and may help to accelerate implementation and de-
ployment. Ultimately, we are aiming to compare existing
architectures of EHR systems with those that can be de-
signed using feature-based approaches, in order to help to
identify improvements that may be made to these existing
EHR systems.

This paper presents a domain analysis of NPfIT’s EHR,
based on an application of Feature-Oriented Domain Anal-
ysis (FODA) [17], and as a result makes two contributions.
Firstly, we summarise the results of a FODA analysis that
takes into account a number of sources of domain informa-
tion, including relevant standards for EHR, service speci-
fications, and NPfIT policy documents. This is the first
step towards a more detailed FODA-based C&V analysis of
designs and implementations of EHR systems around the
world, which will ultimately help to derive improvements to
existing EHR architectures. Secondly, we will describe open
problems and challenges that we identified during the appli-
cation of FODA to this domain, with the intent of proposing
changes to the analysis approach.

In the next two sections, we will briefly introduce EHR
and EHR systems, and will then describe the architecture
of existing EHR systems within the NPfIT. Then, we will
briefly describe the FODA process we applied, and the out-
comes of the analysis, as applied to the NPfIT EHR systems.
Finally, we will summarise open questions and problems that
were identified as a result of the analysis.

2. EHR AND EHR SYSTEMS
The phrase ‘electronic health record’ is generally used

to describe any digital representation of health informa-
tion, with little or no concern about how this information
is to be stored or retrieved. Terms used approximately syn-
onymously include electronic medical record (EMR), elec-
tronic patient record (EPR), electronic health record (EHR),
and computer-based patient record (CPR). In general, these
terms can be used interchangeably, but some specific differ-
ences can be identified. For example, an Electronic Health
Record typically refers to a longitudinal record of a patient’s
care carried out across different institutions and sectors,
whereas an Electronic Patient Record has been defined as
encapsulating a record of care provided at a single site (e.g.,
by a single health trust). In England, the NHS uses the
term EHR to describe the concept of a longitudinal record
of patient’s health and health care, from cradle to grave. It
combines both information about patient contacts with pri-
mary health care (such as a doctor or a hospital), as well
as subsets of information associated with the outcomes of
periodic care, which are also held in EPRs.

Different organisations define and structure EHRs in dif-
ferent ways, illustrating different intended applications of
use. For example, the definitions from HINA (Australia)

and OHIH (Canada) emphasise the characteristics (or prop-
erties) obeyed by EHR; the definitions from ASTM (USA)
and CPRI (USA) highlight the contents of EHR, and IOM’s
(USA) definition focused on the objectives of EHR. There
is no agreement or standard definition for EHR, nor is there
a suitable definition of what constitutes a necessary or suf-
ficient EHR. For the purposes of our research, it is useful to
de-emphasise the focus on what systems are required in a
given care context (e.g., primary care, community care, or
mental health). Instead, it is helpful to look generically at
the information that arises during management of patient
health, regardless of the systems that generate or contain
it, and to generically view the systems that create, manage
and store EHRs in the context of jurisdictional information
sharing [4].

For these reasons, we have adopted the ISO definition of
EHR. In [2], EHR is defined thusly: “The basic generic def-
inition for the EHR is a repository of information regarding
the health status of a subject of care, in computer process-
able form.” The IS definition further acknowledges that the
sharing of EHR information can take place at three levels:

Level 1 - between different clinical disciplines or other users,
all of whom may be using the same application, requir-
ing different or ad-hoc organisation of EHRs,

Level 2 - between different applications at a single EHR
node - i.e., at a particular location where the EHR is
stored and maintained, and

Level 3 - across different EHR nodes - i.e., across different
EHR locations and/or different EHR systems. And
when level 3 is achieved and the object of the EHR is
to support the integrated care of patients across and
between health enterprises, it is called an Integrated
Care EHR (ICEHR).

More generically, Level 1 involves sharing within one or-
ganisation and application, but by different users; Level 2
involves sharing within one organisation, but across differ-
ent applications and users; finally, Level 3 involves sharing
across different organisations, applications and users.

In addition, the ISO definition of EHR distinguishes be-
tween clinical information and the systems that support its
provision. What we are interested in is the analysis, design
and implementation of a national EHR and the applications
that surround it. Thus, the term ‘EHR system’ in this pa-
per refers to the information systems that stores and pro-
cesses the data of EHRs; in its simplest form, this could be
a database application.

3. ARCHITECTURE OF NHS EHR
In this section, we give an overview of the current ar-

chitecture of the NPfIT’s EHR systems for England. This
architecture has evolved over a number of years, as described
in [1].

There is some compatibility between the ISO definition
of EHR [2] and the architecture used in England, e.g., the
separation of EHR systems into local EHR systems (used
by one care provider) and shared systems. In England,
the EHR system was created at two levels: a Summary
Care Record (SCR) accessible across England; and a De-
tailed Care Record (DCR) accessible within a locally deter-
mined health community which could encompass primary

50

and secondary care providers within a specified geographi-
cal area, e.g., London. In both cases, access to the EHRs
will be subject to stringent confidentiality and security con-
trols. The SCR primarily supports ‘out-of-hours’ and acci-
dent and emergency care and will eventually provide a ‘cra-
dle to grave’ record of significant health information. The
DCR supports more routine health interventions and will
(eventually) replace organisationally based record systems
such as those of hospitals and GP practices.

...

NHS Care Record Service

NHSmail

National Network Service (N3)

National procurement

"Cluster" Level Procurement

PAS PACS ...

Spine eBooking ePrescripting

(a) The Spine in the Architecture of NPfIT

CSA

myHealth
Space

LRS
SDS

PDS

NCR

TMS

Common
Applications/Services

Local Systems

Healthcare
Worker Portal

Patient Portal

Legitimate
Relationship
Service

Spine Directory
Services

Personal Demopgraphics
Server

NHS Care Record

e.g.
eBooking
EPS

e.g. Community Care, GP, Acute Care,
Mental Health, Social Care

The Spine
(shown in yellow)

(b) Architecture of the Spine

Figure 1: The Scope and Structure of EHR in Eng-
land

Figure 1(a) shows the national care record service in the
architecture of entire NPfIT programme. The key features
of this programme are new national data and IT standards,
procured and paid for nationally. Implementation in acute
trusts will be through one of five geographic partnerships
with industry, called“clusters”. The foundational infrastruc-
ture is a New National Networking service (N3). Based on
this N3 service, there are several national services, e.g., elec-
tronic booking (called “choose and book”); electronic trans-
fer of prescriptions; and a nationally accessible, life-long
summary patient record called “the spine”. The provision
of electronic functions at local level form part of the NHS
care record service, a collective term for all aspects of clin-
ical IT support applications, from clinical decision making
tools to digital X rays. The output of those applications is
intended to be a health record that can be shared. Figure
1(b) is the architecture of the Spine. The spine consists of
the following major components:

• TMS: transaction and messaging spine; the master
“router” of all messages between systems. All mes-

saging via the TMS is based on the HL7 version 31

Clinical Data Architecture (CDA).

• SDS: Spine Directory Services; provides various Direc-
tory Services (e.g., organisational details of GP prac-
tices). SDS excludes patient related demographics.

• PDS: Personal Demographics Services; provides a na-
tional service holding all personal, demographic and
related information for each patient.

• NCR: National Care Record; holding a summary of
clinical and associated information.

• LRS: Legitimate Relationship Service; controls what
access a healthcare professional has to a person’s clin-
ical data.

4. A DOMAIN ANALYSIS OF AN EHR SYS-
TEM

In the previous section we described the existing EHR sys-
tems for England’s NPfIT. In this section we summarise a
domain analysis for an idealised EHR System in the con-
text of the NPfIT, based on a feature model. We ultimately
intend to use the results of the domain analysis to help de-
velop an architecture for an idealised EHR system, which
can thereafter be compared with the existing EHR systems
presented in the previous section. However, the purpose of
this paper is to describe some of the challenges we encoun-
tered in applying FODA to this domain.

To set about this, we must first more carefully scope what
is in context, and what is not. Conceptually, an EHR system
can be treated as a database application which stores and
manages the data of patient health records. More concretely,
an EHR system, according to key reports such as [6], pro-
vides eight core functions: storing health information and
data; managing results; managing orders (e.g., for prescrip-
tions); supporting decision making; improving connectivity;
raising patient involvement; managing administrative pro-
cesses; and reporting.

Additionally, other information constraints, requirements
and functions can be identified from key literature related to
NPfIT. In particular, the report on the NHS logical health
record architecture (LHRA) [18] indicates that the LHRA
programme is intended to provide a basis for clinical and
informatics communities to achieve widespread sharing and
use of clinical information via EHRs. This document cap-
tures overall requirements for a NHS LHRA in terms of cur-
rent and future needs; however, these requirements may not
be the same as those for NHS EHRs. Nevertheless, the fu-
ture requirements for the LHRA help us to identify addi-
tional features that may be of use in the EHR programme.

Based on the description of LHRA and the report in [6],
we produced a feature model that captures these additional
features. A more detailed description of the features is in
the appendix.

In the list, the top level features are F1 store the clinical
data, F2 process the data, F3 decision support, F4 adminis-
trative management and F5 patient support. These are the
key features listed in [6] and they are implemented in almost
every EHS system around the world. Considering England,
the requirements which are not supported by current system

1http://www.hl7.org/

51

and desired by future needs are documented in [18]. In the
feature model (Figure ??), the existing features are omit-
ted. In the diagram, they are new features under the key
features. The description of these new features can be found
in Appendix.

We used the results of applying FODA to produce a pro-
totypical architecture for an EHR, shown in Figure 2, which
we aimed to use as a basis for comparison with existing
EHR systems. The FODA results led us to choose between
a service-oriented architecture and model-view-controller ar-
chitecture. More specifically, we determined that there would
need the following components:

• Interface to the public, which is a portal to the public.
Its function will be to provide educational meterials
to the public so that it will increase the awareness of
national health.

• Interface to patients, which is a portal to the patients.
It achieves the feature of patient support — feature F5
and its sub-features in Appendix.

• Authentication and access control, which are basic se-
curity mechanisms of the system. Its function is to
provide an authentication service and control access
from outside of system.

• Medical data processing service, which is the“model”of
a MVC architecture. It processes the patient’s medical
data, which corresponds to feature F2.

• Patient summary and historical data services, which
are data storing services. The patient summary data
service stores the summary and the data regarding the
patient’s current health status, while the patient his-
torical data service stores a summary of the patient’s
health history. These two services are the kernel of en-
tire system, which support most of the features listed
in the appendix.

• NHS service directory, which provides a directory ser-
vice. Because the NHS EHR system is a distributed
system with a service-oriented architecture, this ser-
vice provides information which links to other NHS
services or local systems when they are needed by the
service of data processing or local healthcare system.

• Interface to other NHS services and local healthcare
system, which will provide an interface to other sys-
tems. Together with data storing services, they sup-
port the features of data sharing and processing, e.g.,
F21, F31 and F53a.

The intention of this exercise was to be able to compare
the results of FODA and a prototypical architecture with an
existing architecture. In the next section we outline some
key open questions that result from comparing it with our
results.

5. OPEN QUESTIONS
We followed the process of FODA, as described in [17] -

content analysis, domain modelling, and architecture mod-
elling - to analyse the domain of EHR systems in the NPfIT.
During the process, we identified several challenges and open
questions related to FODA. We briefly describe these here.

NHS Service
Directory

Patient Historical
Data

Interface
to public

Interface
to patients
(Patient
Portal)

Patient Summary Data
NHS Care Record

Other NHS National
Applications/Services

e.g.
eBooking
EPS

Interface to Local Systems

e.g. Community Care, GP, Acute Care,
Mental Health, Social Care

Authentication
and
Access Control

Medical
Data
Processing
Service

Figure 2: Prototypical Architecture of NHS EHR in
England

5.1 Architectural Concerns when Analysing Con-
tent of System

Most applications of domain analysis techniques, includ-
ing FODA, focus on non-distributed systems; our domain of
interest is large-scale distributed systems. There are many
difficulties and challenges related to applying FODA (and
similar techniques) to such systems. One such challenge is
that it can be complicated to precisely identify the boundary
of such a system, particularly large-scale distributed sys-
tems based on a loosely coupled service-oriented architec-
ture. There are other challenges as well, particularly related
to the extent to which system architecture should be consid-
ered with the FODA process, as we now explain.

Shared
Patient Data

Local
Patient Data

Current
Care Provider

Physician Office

Hospital

Social Care

Community Clinic

Laboratory

Figure 3: Deployment Architecture of NPfIT Spine

There are many architectural styles that have been used
for large-scale distributed systems; [12] summarises four pop-
ular ones. For example, the EHR system in England has a
centralised architecture, illustrated in Figure 3. In the case
of EHR systems (and other, similar systems), the choice of
architectural style directly dictates the feature set. Hence,
the architectural style should be considered when the con-
text of the EHR system is analysed. More specifically, the
system architecture for EHR systems is both a result of
domain analysis and (at least partly) a prerequisite of do-
main analysis. Consider the example of Feature 1 in List
6: storing clinical data. This feature needs additional fea-
tures in order to synchronise the database operation, in the
case where the data is stored in a distributed manner. In
practice, it is likely that only a partial view of the architec-
ture will be needed to help control the process of domain

52

analysis.
Our perspective is that the domain analysis for distributed

system should be carried out iteratively, e.g., via a loop
added to the domain analysis process suggested in [17]. Our
suggested process is shown in Figure 5.1.

Content Analysis

Feature Modelling

Domain Architecture

Figure 4: Iterative Domain Analysis

In practice, it is not difficult (and sometime it is necessary)
to refine the understanding of the system, its scale and scope.
The question is to which degree the details of the system
architecture should be considered in order to maintain a
cost-effective analysis process. This question seems to be
open because the answers of this question may depend on the
domain of the application. In the domain of EHR systems,
a generic domain model may not be as useful as expected
because variations between individual EHR system and the
generic model may be too substantial.

5.2 Organisational Goals vs. Feature Model
Political objectives and policy are often one of driving

forces behind the implementation of EHR systems. In initial
proposals and requests for expressions of interest for imple-
menting EHR systems, organisational goals may be the only
requirements that are stated explicitly, as these are essential
for making the political case for the systems. For example,
with respect to England’s NPfIT, the NHS Connecting for
Health web site 2 says: “The NHS Care Records Service will
make caring for you across organisational boundaries safer
and more efficient. It will also give you access to your record
that covers your care across different organisations, such
as the GP practice and the hospital. The purpose of NHS
CRS is to allow information about you to be accessed more
quickly, and gradually to phase out paper and film records
which can be more difficult to access.”

Such goals and objectives are generally easily understood
and accepted by the public and other stakeholders. How-
ever, there is a disconnect between these objectives and goals
and what is delivered by feature modelling approaches like
FODA: it is difficult to demonstrate how the features in the
feature model satisfy organisational business goals. As a
result, it can be difficult to demonstrate the system to be
developed at early stage to major stakeholders.

There approaches in the field of requirements engineer-
ing, such as goal-driven and scenario-based requirement en-
gineering, which may be helpful to integrate with approaches
such as FODA, in order to show connections between organi-
sational and business goals and features. This is particularly
important for EHR systems, which may be controversial in
the minds of certain stakeholders, where concrete arguments
and evidence as to how goals are to be achieved is important
to capture.

2http://www.nhscarerecords.nhs.uk/
what-is-the-nhs-crs

6. CONCLUSIONS
In this paper, we briefly introduced EHR systems in Eng-

land, under the auspices of the NPfIT. Healthcare informa-
tion systems are amongst the most complex IT system in
the world. We took a domain analysis approach to anal-
yse the commonalities and variations of EHR systems, with
the ultimate aim of identifying ways in which to improve
existing implementations. In the process, we reported on
challenges associated with using domain analysis, particu-
larly FODA, for such systems. We are continuing our work
in describing a prototypical architecture for EHR systems
in England and are using this to propose improvements to
existing architectures. At the same time, we are investigat-
ing alternative EHR systems, particularly those that take a
transformative approach to EHR (i.e., where multiple dif-
ferent types of EHR are used, rather than standardising on
a single type of record), and the impact that this approach
has on both the FODA approach and the architecture that
can be derived.

7. REFERENCES
[1] The national programme for IT in the NHS: progress

since 2006. Public Accounts Committee.
http://www.publications.parliament.uk/pa/

cm200809/cmselect/cmpubacc/153/153.pdf, January
2009.

[2] I. 20514:2005. Health informatics - electronic health
record - definition, scope and context. Technical
report, International Organization for Standardization
(ISO), 2005.

[3] J. Bosch. Design and Use of Software Architectures:
Adopting and Evolving a Product-line Approach.
Addison-Wesley, 2000.

[4] H. Chen, H. Atabakhsh, S. Kaza, B. Marshall, J. Xu,
G. Wang, T. Petersen, and C. Violette. Bordersafe:
cross-jurisdictional information sharing, analysis, and
visualization. In dg.o 2005: Proceedings of the 2005
national conference on Digital government research,
pages 241–242. Digital Government Society of North
America, 2005.

[5] S. Clamp and J. Keen. The value of electronic health
records: A literature review. Technical report,
Yorkshire Centre for Health Informatics, University of
Leeds, 2005.

[6] C. Clancy. Key capabilities of an electronic health
record system: Letter report. Technical report,
Institute of Medicine, 2003.

[7] P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley Longman,
2001.

[8] M. Corporation. Electronic health records overview.
Technical report, National Institues of Health,
National Center for Research Resources, April 2006.

[9] P. Donohoe, editor. Software Product Lines:
Experience and Research Directions. Kluwer Academic
Publishers, 2000.

[10] P. Dyke. Healthy connections? Public Finance,
September:24–26, 2003.

[11] D. Fey, R. Fajta, and A. Boros. Feature modeling: a
meta-model to enhance usability and usefulness. In
G. Chastek, editor, Proceedings of the Second Software

53

Product Line Conference, pages 198–216. Springer,
2002.

[12] G. E. T. Force. Electronic health records: A global
perspective. Technical report, HIMSS Enterprise
Systems Steering Committee, 2008.

[13] M. Herbert. Professional and organizational impact of
using patient care information systems. Medinfo,
9:849–853, 1998.

[14] K. Herbst, P. Littlejohns, J. Rawlinson, M. Collinson,
and J. Wyatt. Evaluating computerised health
information systems: Hardware, software and human
ware: Experiences form the northern province, south
africa. J Public Health Med, 21:305–310, 1992.

[15] K. Kang, J. Lee, and P. Donohoe. Feature-oriented
product line engineering. IEEE Software, 9(4):58–65,
2002.

[16] K. Kang, K. Lee, and J. Lee. Domain Oriented
Systems Development:: Practices and Perspectives,
chapter Feature Oriented Product Line Engineering:
Principles and Guidelines, pages 19–36. C&C, 2002.

[17] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak,
and A. S. Person. Feature-oriented domain analysis
(FODA) feasibility study. Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute
(SEI), Carnegie Mellon University, 1990.

[18] L. Sato. A NHS logical health record architecture:
Vision, objectives and success criteria. Technical
report, National Program for IT,
NPFIT-FNT-TO-SCG-0019.04, 2008.

APPENDIX
The extra features (derived from [18]) for the future needs of
England’s EHR programme are summarised in the following
list.

F1 Storing the clinical data.

1. Capturing data that fulfils medico-legal require-
ments for patient records.

2. Capturing data that will be re-used for high-quality
clinical communications within and between organ-
isations.

3. Storing data for clinical research or central returns
where appropriate.

F2 Processing the data.

1. Supporting Aggregation, integration and/or selec-
tively viewing of current and historical patient data
from a variety of sources, in a timely, reliable, safe
and meaningful way.

F3 Supporting decisions.

1. Assisting with decision support that is based on the
particular requirements of an individual patient.

F4 Administrative management.

1. Auditing practices and their service or service provider
with a view to provide comparisons with peers us-
ing data that is clinically meaningful, and that sup-
ports the objective of improving care outcomes.

(a) Recording patient data that can be compared
against pathway expectations.

(b) Recording patient data that can be compared
against ‘markers’ for desired (or undesired) clin-
ical outcomes.

F5 Supporting Patient involvement.

1. Using applications to personalise pathways or jour-
neys that meet the individual needs of a presenting
patient.

2. Supporting automated personal pathways, which
will help generate information to share with the
patient.

3. Storing the history appropriately for the patient’s
care.

(a) Sharing the historical data across clinicians and
other carers.

54

How to Compare Program Comprehension in FOSD
Empirically – An Experience Report

Janet Feigenspan
Metop Research Center
Magdeburg, Germany

janet.feigenspan@metop.de

Christian Kästner
University of Magdeburg
Magdeburg, Germany
ckaestne@ovgu.de

Sven Apel
University of Passau
Passau, Germany

apel@uni-passau.de
Thomas Leich

Metop Research Center
Magdeburg, Germany

thomas.leich@metop.de

ABSTRACT
There are many different implementation approaches to realize the
vision of feature-oriented software development, ranging from sim-
ple preprocessors, over feature-oriented programming, to sophisti-
cated aspect-oriented mechanisms. Their impact on readability and
maintainability (or program comprehension in general) has caused
a debate among researchers, but sound empirical results are miss-
ing. We report experience from our endeavor to conduct experi-
ments to measure the influence of different implementation mecha-
nisms on program comprehension. We describe how to design such
experiments and report from possibilities and pitfalls we encoun-
tered. Finally, we present some early results of our first experiment
on comparing the CPP tool with the CIDE tool.

Categories and Subject Descriptors: D.2.2 [Software]: Software
Engineering—Design Tools and Techniques; D.3.3 [Software]: Pro-
gramming Languages—Language Constructs and Features

General Terms: Experimentation, Human Factors, Languages

Keywords: Program Comprehension, Empirical Software Engi-
neering, FOSD, Preprocessors, CIDE

1. INTRODUCTION
In software development, a large amount of money is spent on

software maintenance [29]. One major part of maintaining soft-
ware is understanding code [42]. Therefore, one important goal in
software engineering is to develop concepts, languages, and tools
that aid understanding in order to reduce maintenance costs.

One paradigm that aims at increasing understandability is feature-
oriented software development (FOSD) [4]. The key abstraction of
FOSD is a feature, which represents a product characteristic or do-
main abstraction relevant to stakeholders. FOSD aims at separation
of concerns in terms of features, even for crosscutting and inter-
acting features, and provides corresponding abstraction and imple-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOSD’09, October 6, 2009, Denver, Colorado, USA.
Copyright 2009 ACM 978-1-60558-567-3/09/10 ...$10.00.

mentation mechanisms [4, 8, 36]. Modularizing software in terms
of features promises improved understandability, because concerns
can be traced directly from the problem space (domain description)
to the solution space (implementation) [4, 30].

There are numerous implementation approaches for FOSD. Ex-
amples are preprocessor-based implementations with the C prepro-
cessor [20], XVCL [21], or CIDE [24]; aspect-oriented program-
ming (AOP) [26] with languages such as AspectJ [27]; and feature-
oriented programming (FOP) [36] with languages or tools such as
Jak/AHEAD [8] or FeatureC++ [3]. Although all approaches aim
at the common goal of separation of concerns, they use very dif-
ferent mechanisms, ranging from annotations with #ifdef direc-
tives, over superimposition, to sophisticated weaving mechanisms.
Which of the FOSD approaches has the best effect on understand-
ability? Due to the immense differences between all these ap-
proaches, this cannot be answered easily. If we asked developers,
we would get very different opinions [5]. Is there a way to evalu-
ate understandability of different FOSD approaches in a sound way
that is not just based on subjective opinions?

Recently, we naively set out to conduct an experiment to com-
pare FOSD approaches empirically. Initially, we wanted to measure
understandability, from here on referred to as program comprehen-
sion, for all common FOSD approaches and provide a ranking or re-
sults like “developers are able to understand an AspectJ-based im-
plementation by 35 % faster than an equivalent preprocessor-based
implementation” [5]. We soon realized that this would not be so
simple: (a) comparing complete FOSD approaches to derive a rank-
ing, e.g., AOP vs. FOP, is nearly impossible, because of the number
of parameters that would have to be considered, and thus (b) only
few aspects of program comprehension can be measured feasibly.

In this paper, we report from our experience of designing such
experiment and from possibilities and pitfalls we encountered. We
present some early results of our first experiment on comparing
CPP with CIDE. This way, we want to convey some intuition on the
boundaries of measuring program comprehension and show what
can be evaluated empirically and what requires an unrealistically
high amount of effort. We hope that other researchers pick up em-
pirical evaluations, so that we can eventually combine the results to
a larger picture on program comprehension in FOSD approaches.

2. BACKGROUND
In this section, we give a brief overview of different implemen-

tation mechanisms. We selected four mechanisms: (1) aspect-
oriented programming with AspectJ, (2) feature-oriented program-

55

1 p u b l i c c l a s s Stack {
2 LinkedList items = new LinkedList();
3 p u b l i c vo id push(Object i) { items.addFirst(i); }
4 p u b l i c Object pop () { re turn items.removeFirst(); }
5 }

Figure 1: Base implementation of a stack.

1 p u b l i c a s p e c t Safe {
2 p o i n t c u t safePop(Stack stack):
3 e x e c u t i o n(Object pop()) && t h i s(stack);
4 Object around(Stack stack): safePop(stack) {
5 i f (stack.items.size() > 0) re turn proceed();
6 re turn n u l l;
7 }
8 }

Figure 2: Aspect-oriented implementation of Safe.

ming with Jak, (3) annotating feature code with CPP’s #ifdef di-
rective, and (4) annotating features in CIDE. We selected AspectJ,
Jak, and CPP because their influence of program comprehension
is controversially discussed [5, 13, 30, 31, 41]. CIDE was selected
because it is part of our own research.

We use the running example of a class Stack in Figure 1, which
we subsequently extend with a feature Safe to ensure that no ele-
ments can be popped of an empty stack.1

Aspect-oriented programming with AspectJ.
AOP was developed to modularize otherwise scattered and tan-

gled code of crosscutting concerns in aspects [26]. An aspect can
alter the structure of the base program by means of inter-type dec-
larations and can alter the behavior of the base program by means
of advice, which is executed at certain join points selected by point-
cuts. AspectJ is a popular aspect-oriented language based on Java
that implements these concepts and provides a compiler to weave
aspects into Java code [27]. Several researchers have shown that
AOP is suitable to implement features, e.g., Figueiredo et al. [15].

To illustrate AOP, we show one possible AspectJ implementa-
tion of feature Safe in Figure 2. The extension to the base stack
is encapsulated in an aspect called Safe that defines the pointcut
safePop. The pointcut captures the execution of the method pop.
Advice, declared with around, ensures that the method pop is ex-
ecuted only if the stack is not empty; otherwise, it returns null.

Feature-oriented programming with Jak.
FOP has a similar goal to modularize crosscutting concerns, but

uses a different implementation strategy: Classes are split into class
fragments according to features and all class fragments of a feature
are encapsulated in a feature module [8, 36]. Each class fragment
contains only the part of the class that is necessary to implement the
corresponding feature. To generate a program, all class fragments
of a class are composed during compilation.

In Figure 3, we show the implementation of the feature Safe with
Jak, an FOP dialect of Java implemented as part of the AHEAD
tool suite [8]. The keyword refines is used to indicate that the
declaration specifies not a full class but only a fragment (called
class refinement) and the keyword Super is used to specify how
to methods can be merged. To compile a program that includes the
feature Safe, the class fragments of Figures 1 and 3 are composed.
During composition, members are merged into a single class and
methods with identical names are merged (the original method is
inlined at the Super call)).
1We omit the usual method top for brevity.

1 r e f i n e s c l a s s Stack {
2 Object pop () {
3 i f (items.getSize() > 0) re turn Super.pop();
4 re turn n u l l;
5 }
6 }

Figure 3: Feature-oriented implementation of Safe.

1 p u b l i c c l a s s Stack { //...
2 p u b l i c Object pop() {
3 # i f d e f SAFE
4 i f (items.size == 0) re turn n u l l;
5 # e n d i f
6 re turn items.removeFirst();
7 }
8 }

Figure 4: CPP implementation of the stack.

Annotations with the C preprocessor (CPP).
A different way to implement features comes from textual pre-

processors like CPP [20] or those used in various product line tools
like XVCL [21], pure::variants2, or Gears3. Instead of separating
features into distinct files (physical separation of concerns), they
are only annotated in a common tangled implementation. With
these annotations, we can trace each feature from the problem space
to its scattered implementation.

With CPP, developers use #ifdef and #endif directives to
annotate code. Since the CPP is a text-based processor, it can also
be applied to other programming languages than C. Furthermore,
everything can be annotated, even just an opening bracket, which is
very flexible but leaves creating reasonably annotated source code
to the discipline of the programmer. Academics often criticize pre-
processor annotations for negative effects on readability and main-
tainability [13, 41], but due to their simplicity they are common in
industry.

In Figure 4, we show the implementation of Safe using CPP.
Lines 7–9 assure that elements can only be popped from a non-
empty stack.

Annotations with CIDE.
CIDE was developed at the University of Magdeburg [24]. In-

stead of textual annotations like with CPP, in CIDE, features are
annotated in a tool infrastructure and are represented with back-
ground colors, one color per feature. Additionally, modularity is
emulated by providing views on the source code (e.g., show only
the code of feature X) [25]. A further difference to CPP is the kind
of allowed annotations: While CPP works on plain text, thus allow-
ing us to annotate everything, CIDE uses the underlying structure
of the according source code file to enforce disciplined annotations,
assuring that not arbitrary text, but only classes, methods, or state-
ments can be annotated [24].

In Figure 5, we show our stack example a last time, this time
with a gray background color to denote the feature Safe.

Which approach is the most understandable?.
So, which of the presented FOSD approaches provides most ben-

efit on program comprehension? As the examples demonstrate, the
approaches differ considerably, so this question cannot be answered
easily. For example, AOP uses a sophisticated join point model,
whereas FOP creates class fragments inside feature modules. CPP

2http://www.pure-systems.com
3http://www.biglever.com/

56

1 p u b l i c c l a s s Stack { //...
2 p u b l i c Object pop() {

3 if (elements.size == 0) return null;
4 re turn elements.removeFirst();
5 }
6 }

Figure 5: CIDE implementation of the stack.

and CIDE even use very simple mechanisms and do not separate
feature code at all. The syntax of AspectJ has a large number of
new concepts and keywords, whereas in Jak and CPP, two new key-
words suffice. On the other hand, compared to Jak, AspectJ is more
expressive to extend a base program, and CPP allows almost every
kind of changes. Do these constructs provide a benefit on program
comprehension or a drawback? Do circumstances exist in which
AspectJ is more comprehensible than Jak and vice versa? What
about CPP and CIDE? In the remainder of the paper, we show our
experience in determining this empirically and present first results.

3. DESIGNING EXPERIMENTS ON PRO-
GRAM COMPREHENSION

There is an overwhelming body of literature on how to conduct
experiments in such a way that they are sound. If we are not careful
how to conduct the experiments, we can easily get biased results.
For example, when asking subjects (the individuals that participate
in our experiment) how well they understand an implementation
in each of our four languages, we may get subjective results that
are heavily influenced by their background and personal opinion
(some may have learned to use AspectJ, others may be experienced
with C++ development and preprocessor usage). Therefore, we
must be very careful how to design and conduct experiments. We
started by briefly reviewing the literature on controlled experiments
in general and give a very short overview of the most important
concepts4. Readers already familiar with conducting experiments
may skip this section.

An experiment is a systematic research study in which the in-
vestigator directly and intentionally varies one or more factors (in-
dependent variables) while holding everything else constant and
observes the results (dependent variables) of the systematic varia-
tion [16]. From this definition, three criteria for experiments can be
deduced. Firstly, an experiment must be designed such that other
researchers can replicate it (replication). This is an important con-
trol technique in empirical research. Secondly, the variations of
the factors must be intended by the investigator (intention). Ran-
dom variations should be avoided because they prevent replication.
Thirdly, it is important that factors can be varied (variability). Oth-
erwise, an effect on the result cannot be observed depending on the
variations of the factors.

The process of experimental research can be divided into five
stages. In the first two stages, objective definition and design, the
experiment is prepared. During execution, we run the experiment
and collect data, which we analyze during analysis. Finally, we in-
terpret our results during interpretation. We introduce these stages
and relevant terms next [22].

3.1 Objective Definition
The first two steps when starting an experiment is to define the

variables of the experiment and to specify hypotheses that should
be tested. In our case, we have one independent variable: the FOSD

4A comprehensive discussion can be found in [14, 39].

approach. Since we want to assess the understandability of As-
pectJ, Jak, CPP, and CIDE, our independent variable has four lev-
els. Our dependent variable is program comprehension, because
we want to assess whether and how different FOSD approaches in-
fluence program comprehension.

A hypothesis is an educated guess about what should happen
under certain circumstances [16]. One important criterion is that
hypotheses are falsifiable, i.e., that we can reject them [34]. Hy-
potheses that are continually resistant to be falsified are assumed to
be true, yet it is not proven that they are. The only claim we can
make is that we found no evidence to reject our hypotheses.

Program comprehension is ’the process of understanding a pro-
gram code unfamiliar to the programmer’ [28]. Depending on the
amount of domain knowledge, there are different models for how
program code is understood. In bottom up models, a program is
analyzed by examining statements and grouping them to chunks,
which are iteratively abstracted to a high level understanding of
source code. A programmer uses a bottom up approach when he
has no knowledge of the program’s domain (e.g., [33]). Otherwise,
he can use his domain knowledge to create hypotheses about a pro-
gram’s purpose and verifies or rejects them by examining the code
(top down or integrated models) (e.g., [9]).

So, how can we measure program comprehension? Several tech-
niques and measures exist in the literature with differing reliability
and effort in applying them (see [11] for a comprehensive survey).
Typical techniques include maintenance tasks, mental simulation
(e.g., pen-and-paper execution of the source code) and think-aloud
protocols (i.e., subjects verbalize their thoughts during compre-
hending a program [1]). Usually, correctness, completeness, and
time to solve a task are used as measure for program comprehen-
sion. Which measure to chose depends on the experiment, we will
discuss our choice later.

So, how could our hypotheses look like? An example could be
‘The number of errors of a maintenance task is lower for Jak than
for AspectJ with bottom up program comprehension’, which ex-
actly defines the technique, measure, and program comprehension
model to which our hypothesis is applicable.

Finally, it is imperative that we define our hypotheses before de-
signing or actually executing the experiment, because decisions in
subsequent stages depend on the hypotheses (e.g., the subjects we
include or the analysis methods we apply) [16]. In addition, it pre-
vents us from the bad practice of ‘fishing for results’ in our data
and thus discovering random relationships between variables [12].

3.2 Design
The next step is to design our experiment so that we are able to

evaluate our hypotheses. During this stage, internal and external
validity as well as confounding variables have to be considered.

• A confounding variable is a parameter that influences the de-
pendent variable besides variations of an independent vari-
able [16]. In order to soundly measure the influence of FOSD
approaches on program comprehension, we need to iden-
tify and control the influence of confounding variables. For
example, programming experience could influence program
comprehension more than using different FOSD approaches.
If we accidentally distribute all the experienced programmers
in one group and all the novices in another, this could over-
shadow our measures and cause biased results.

• Internal validity describes the degree to which the value of
the dependent variable can be assigned to the manipulation
of the independent variable [39]. This means that we have
to control the influence of all confounding parameters (e.g.,
noise level or programming experience).

57

• External validity is the degree to which the results gained in
one experiment can be generalized to other subjects and set-
tings [39]. The more realistic an experimental setting is, the
higher is its external validity. Hence, we could conduct our
experiment in a company under real working conditions with
employees of the company. Now, however, our internal va-
lidity is threatened, because we cannot control the influence
of confounding variables like programming experience.

When designing experiments, we have to find a compromise be-
tween both kinds of validity. For example, if we do not know how
our variables interact or our resources are rather limited, we can
start with experiments that maximize internal validity (e.g., by us-
ing only unpaid students of the same programming course). This is
also the path we take in our experiments. Once we have established
a hypothesis, we can design experiments that are more realistic.

A first step in controlling confounding variables is to identify
them. Since the number of confounding parameters on program
comprehension is large, we discuss them separately in Section 4.
When identified, we need to control them. In literature there are a
number of approaches to control confounding variables: random-
ized sampling, keeping the parameter constant, including parame-
ter as independent variable, ex post analysis of the parameter, or
experimental designs [2, 16]. In our experiments, we use a sim-
ple experimental design and usually randomization, assuming that
statistical errors even out with a large enough sample.

3.3 Execution and Analysis
If we carefully design our experiment, running it usually the eas-

ier part. In this stage, we recruit subjects, let them complete our
tasks, and collect our data as planned.

Having collected the data, we need to describe and analyze them.
For describing our sample and data, we can compute some descrip-
tive statistics, e.g., frequencies, means, or standard deviation. This
information is necessary for replicating our experiment [2].

After describing the data, we can apply significance tests to eval-
uate our hypotheses [2]. Those tests are necessary in order to de-
termine whether a difference we encountered is significant or just
appeared randomly. Depending on the data, we can apply differ-
ent tests. For example, if we want to check whether frequencies
of correct answers differ between Jak and AspectJ, we use a χ2-
test [2]. If we want the check whether measured times to complete
a task differ between Jak and AspectJ, we can use a t-test or Mann-
Whitney-U-test, depending on how our data are distributed [2]. For
analyzing two independent variables, e.g., programming experi-
ence and FOSD approach, there are further tests like ANOVA [2].
An overview of significance test and their requirements and appli-
cation can be found in [2]. Statistical tools like SPSS or R help to
analyze the data.5

4. CONFOUNDING VARIABLES ON PRO-
GRAM COMPREHENSION

After our brief overview of controlled experiments in general,
we discuss confounding variables (also called confounding param-
eters) on program comprehension. Identifying and controlling con-
founding parameters is necessary to allow us to draw sound conclu-
sions from our result and avoid bias. During our design, we found
a high number of confounding parameters (by literature review and
consulting experts). Due to space limitations, we group the param-
eters into three categories and pick one parameter per category to
explain its influence and how it can be controlled. The remaining
parameters are discussed in detail in [14].

5see www.spss.com and www.r-project.org

Personal parameters.
Personal parameters are related to the subjects of an experiment.

As example parameter, we discuss programming experience.
Consider an expert and a novice programmer, who both solve

a task in an experiment. The chance that the expert programmer
has dealt with a program similar to the task at hand is considerably
higher than for a novice programmer. In the case an expert knows
the kind of problem, but a novice does not, the cognitive processes
for understanding the source code of the task are not the same.
Whereas the expert uses his knowledge to solve a task, the novice
acquires knowledge. Hence, to avoid biased results (we would not
solely measure whether one program is more understandable than
another, but additionally the effect of programming experience on
program comprehension), we control the influence of programming
experience in our experiment. Of the control strategies discussed
in Section 3.2, we use pseudo randomization, because of the high
influence of programming experience on program comprehension.

To control the influence of programming experience, we need to
measure it. In the literature, programming experience is diversely
understood. We found several aspects that were used, for example
years of practical programming or number of programming courses
at college. Since there is no common definition or questionnaire,
we need to consider relevant aspects of programming experience
depending on the hypotheses of an experiment. For our experiment,
we used Java code and asked in how many Java projects the subjects
have participated in a preliminary survey. Details of this survey can
be found in [14]. Based on the measured experience, we divided the
subjects into two even groups.

Besides programming experience, we identified domain knowl-
edge, intelligence, and education as confounding parameters. Ex-
cept for domain knowledge, measuring personal parameters is hard,
because either no common understanding exists (programming ex-
perience, intelligence) or the measurement is difficult (intelligence,
education). Depending on the hypotheses as well as human and
financial resources, according means to control the influence need
to be defined. We kept domain knowledge and education constant
and randomized intelligence in our experiment.

Environmental parameters.
The second group of confounding parameters is specific to ex-

perimental situations that assess program comprehension as well
as experiments in general. We discuss tool support in more detail.

Software development is supported by tools that foster program
comprehension. However, before functionalities of a tool can be
used, persons need to familiarize with it. Even after an equal
amount of time, persons can use different sets of features of the
same integrated development environment (IDE). Hence, letting
persons use the same IDE does not control the influence of tool sup-
port sufficiently: Some subjects need to familiarize with it, whereas
others may not know how to use a certain functionality. Letting
subjects use their preferred IDE prevents that they have to familiar-
ize with an unknown tool, but introduces variations in tool support.

Depending on our hypotheses, we need to control tool support:
If the comprehensibility of two languages should be compared, tool
support would confound the result, because not the comprehensi-
bility of the language alone, but also how the language is supported
by the tool is measured. On the other hand, if skills of subjects
should be measured, letting them use their preferred tool is more
advisable, because they do not have to familiarize with a new one.
In our experiment, we eliminated tool support.

Other environmental parameters beyond tool support include
training and motivation of subjects, noise level, position effects,
ordering effects, test effects, the Hawthorne effect [37], and the

58

Rosenthal effect [38]. All of them can be more or less easily con-
trolled. For example, we could pay our subjects for good perfor-
mance in our experiment, if we have according financial resources.
In our experiment, we used a warming up task to let subjects fa-
miliarize with the experimental setting and tried to keep all other
parameters constant.

Task-related parameters.
Task-related parameters are caused by the experimental tasks and

source code. As an example, we discuss comments.
As shown by Prechelt et al. [35], commented code is significantly

easier to understand than uncommented code. Hence, for control-
ling the influence of comments in our experiments, comments must
be comparable in different versions and must have the intended ef-
fect (e.g., support subjects in comprehension, not confusing them).
We can conduct pretests, consult experts, or assess the opinion of
subjects to control the influence of comments.

Further parameters include structure of source code, coding con-
ventions, difficulty of the task, syntax highlighting and documenta-
tion. We can control the influence of most of them like the influence
of comments (i.e., conduct pretests, consult experts, or assess the
opinion of subjects).

5. COMPARING FOSD APPROACHES
Now, we come back to our initial goal to compare FOSD ap-

proaches. We show that, due to the sheer number of confounding
parameters discussed in the previous section, the scope of experi-
ments that soundly and feasibly assess the influence of FOSD on
program comprehension is very small. We started by naively de-
signing an experiment to assess the understandability of AspectJ,
Jak, CPP, and CIDE in one experiment, but soon found out that we
could not realistically conduct it. Then, we tried a more narrow
approach by comparing AspectJ and Jak, which also turned our as
unrealistic. Finally, we found that we have to proceed in small
steps, as we will show.

5.1 Four Approaches
Initially, we naively wanted to compare AOP vs. FOP vs. prepro-

cessors in general [5]. However, we found that the programming
language is an important confounding parameter. Are the results
the same whether we use AspectJ [27] or CaesarJ [6]? Is there a
difference when we use Java, C, or some other language as host
language? To explore these effects, we need to consider program-
ming languages as independent variables as well, and there can eas-
ily be dozens of languages for AOP and FOP and even preproces-
sors. Optimistically assuming just five programming languages per
approach, we already have to create 5 · 3 = 15 versions of a pro-
gram, which all must be comparable regarding difficulty, comment-
ing style, structuring, etc. (i.e., confounding task-related parame-
ters). Besides creating 15 comparable programs, we must recruit
subjects for 15 groups. Alternatively, we could ’re-use’ our sub-
jects such that one subject works with all programming languages
of one FOSD approach, but this way each subject needs consider-
ably longer to complete our task (five programs instead of one) and
we need to control several test effects.

At this point, we have not even started with other confounding
parameters like programming experience (maybe Jak is easier for
novices and AspectJ is faster to understand for experts) or tool sup-
port (maybe without tool support Jak is better than AspectJ but with
tool support it is the other way around), and can already show that
the experiment will become extremely complex and require many
subjects. If we also include the effect of programming experience,
tool support or other parameters, we easily reach designs where we

need thousands of subjects or tasks that take several days. Hence,
we cannot feasibly compare FOSD approaches as general as AOP
vs. FOP in one experiment.

5.2 Two Approaches
If we restrict our comparison to AspectJ and Jak, we restrict our-

selves to just two approaches with one language each. We reduce
external validity, because we can only provide results about these
two languages but not about AOP or FOP in general.

Still, there are many confounding variables left. In order to be
able to generalize our result, we need to include several levels of
programming experience, tool support, comments, etc. as indepen-
dent variables. If we include only experts and novices, IDE and
text editor versions, as well as commented and uncommented ver-
sions, our required number of subjects would be too large again
(2 · 2 · 2 · 2 = 16 groups).

Even if we fix all this, we need two comparable programs, one
written in AspectJ and one in Jak. How can we make sure that
they are comparable regarding their structure, comments, difficulty,
etc., despite the significant differences between both languages?
AspectJ and Jak differ considerably, for example, regarding the
keywords, structure of source code, composition mechanism, etc.
There are numerous ways of implementing the same problem in
AspectJ (of course, the same is true for Jak). So, is the AspectJ
program just difficult to understand due to the given implemen-
tation, or due to AspectJ’s mechanisms in general? How can we
eliminate the effect of different implementations of the same prob-
lem? Furthermore, we only would compare the implementation of
one problem. Maybe for some other problems, the outcome would
be reversed?

Hence, even comparing two programming languages, is nearly
impossible. We can only derive results for specific implementations
of specific problems. So, what aspects of an FOSD approach and
its effect on program comprehension can we feasibly measure?

5.3 Realistic Comparison
In order to feasibly design experiments, we need to restrict our

external validity even more. This means that we cannot test ev-
erything with one experiment in which we analyze the effect of all
levels of our independent variable and all confounding parameters
on program comprehension. Instead, we have to choose the scope
of our experiment so small that we can reliably measure program
comprehension and do not exceed our available resources.

Hence, a first step is to keep most confounding parameters con-
stant. This way, our experiment has a low degree of external valid-
ity, but it can be feasibly conducted and we can draw sound con-
clusions. Second, we restrict our experimental design to the sim-
plest comparison: one independent variable with two levels. This
reduces the number of subjects we need. Furthermore, we can com-
pare two levels that are rather similar. This helps us to create com-
parable conditions in our experiment (e.g., two versions of source
code that differ only in few aspects).

Examples of feasible comparisons are the effect of a few key-
words on understandability (e.g., does it make a difference to have
or not have cflow in AspectJ, does it make a different whether Jak
uses the keyword refines or layer?) or comparing programs in the
same programming language, but with different annotations (CIDE
vs. CPP). Furthermore, we could only use male students as subjects
that have completed the same programming courses at the same
university, are familiar with the same programming languages and
domains and have an average IQ. In this case, we can only gener-
alize our results to individuals with the same characteristics. The
challenge is to find the right balance.

59

6. DEMONSTRATION EXPERIMENT
In this section, we describe an experiment comparing the effect

of CPP and CIDE on program comprehension. The purpose of this
description is not provide all necessary information to replicate our
experiment (which is described in [14]), but to illustrate the small
scope of feasible and sound experiments, which we derived in the
previous section.

Our goal is to measure whether using colors in CIDE instead of
textual annotations à la CPP has an effect on program comprehen-
sion. As shown in Section 2, both approaches are quite similar, and
we expected that, when ignoring all tool support like views, the
kind of annotation has no effect on program comprehension.

6.1 Objective Definition
Our independent variable has two levels: textual annotations à

la CPP and annotations using background colors à la CIDE. Our
dependent variable, program comprehension, was measured with
four maintenance tasks (given a bug description, subjects had to
find the cause in the source code and fix it). We assessed the time
to solve a task and whether a task was completed successfully.

Our hypotheses are:
• There are no differences in solving time between Java-CPP-

annotated and Java-CIDE-annotated source code with bot-
tom up program comprehension.

• There are no differences in the number of completed tasks
between Java-CPP-annotated and Java-CIDE-annotated
source code with bottom up program comprehension.

We expect no differences, because for all tasks, subjects need to an-
alyze source code on a textual basis. Hence, it should be irrelevant
how the according source code statements are annotated.

6.2 Controlling Confounding Variables
In order to control the influence of personal parameters, we mea-

sured programming experience in a pre-test and used matching to
create homogeneous groups according to programming experience
(and gender). Since our sample was large enough (about 50 sub-
jects), we assume that both groups are homogeneous according to
intelligence, too.

We chose the domain of software for mobile devices, which was
unfamiliar to all subjects (ensured in pre-test), thus enforcing bot-
tom up program comprehension. Regarding education, we selected
subjects that took an advanced programming course at the Univer-
sity of Passau, which required several basic programming courses.

In order to control environmental parameters, we conducted the
experiment in a browser, not in an IDE, thus excluded an influence
of tool support. We created a HTML file for every source code file.
A link to every file was displayed at the left side of the screen (sim-
ilar to the package explorer of Eclipse). Subjects were not allowed
to use the search function of the browser.

As training, we gave one neutral introduction in one room for all
subjects to CPP and CIDE with familiar source code examples. The
experiment was also conducted in one room (i.e., same noise level,
etc.). For controlling the influence of motivation, subjects were re-
quired to participate in our experiment to complete their course and
could enter a raffle for an Amazon gift card. All subjects knew that
they participated in an experiment. Due to our limited resources,
we did not conduct a repeated measure (hence: excluded test
effects) or switched the order of the task. To control position and
ordering effect, we used a warming up task, which took about ten
minutes and should subjects familiarize with the source code. Fur-
thermore, the tasks were arranged with increasing difficulty, so that,
with each task, subjects were more familiar with the source code.

In order to control task-related parameters, we used a code-

Figure 6: Response times with CPP and CIDE for all four tasks.

reviewed Java source code for an application for mobile devices,
developed by others [15]. The code has about 3800 lines of code,
37 classes, and 4 features were already annotated using textual
#ifdef statements. For creating the CIDE version, we deleted all
lines that contained preprocessor statements and colored the back-
ground of all feature source code with the same colors as CIDE
uses (see [14] for details). Since we used a code-reviewed version,
structure, coding conventions, comments, documentation was al-
ready approved by experts, and our changes for CIDE did not affect
them. For syntax highlighting, we used the same style as Eclipse,
because all of our subjects were familiar with it.

Since we had the same source code, we could use the same tasks
for both versions. All four maintenance tasks we created by in-
troducing bugs that occurred during runtime (forcing the subjects
to examine the control flow of the program) in the source code of
a specific feature. Du to space limitations we have to defer the
interested reader to [14] for details on these tasks. Before the ex-
periment, we confirmed that the bugs we produced can be found by
subjects in a reasonable amount of time (within two hours) with a
pre-test with some students from the University of Magdeburg.

6.3 Results
We report our results, before we interpret them. This separation

is standard practice [7] to ensure that readers can distinguish results
from interpretation, which helps to understand the consequences
we draw from our result.

For testing our first hypothesis (no difference in solving time),
we conducted a Mann-Whitney-U-test [2] to compare the mean
solving time of both versions. For the first three maintenance tasks,
we found no differences in solving time. For the last task, CPP sub-
jects were significantly faster, which means that we have to reject
our hypothesis. For visualization, we show box plots6 of the times
for all four maintenance tasks for each CPP and CIDE in Figure 6.

We tested our second hypothesis (no difference in number of
completed task) with a χ2 test, which checks whether observed fre-
quencies significantly differ from expected frequencies. We found
no significant differences in the number of completed task, which
confirms our hypothesis.

How can those results be interpreted? Since we found a differ-
ence in response times for one task, we must reject our according
hypothesis. Now, we have to interpret what this means. Why did a
difference for the last task occur? The bug in the last task was lo-
cated in a class that was entirely annotated with red as background
color. We suspect that this color was the main reason for the per-
formance difference in the task. To confirm this suspicion, we look
through the comments subjects were encouraged to give us after

6A box plot is a common form to depict groups of numerical data
and their dispersion. It plots the median as thick line and the quar-
tiles as thin line, so that 50 % of all measurements are inside the
box. Values that strongly deviate from the median are outliers and
drawn as separate dots.

60

the experiment. Some subjects indeed marked this as problem and
wished they could have adjusted the intensity of the background
color to their needs.

Note that although we did not observe significant differences in
our data (except for the last maintenance task), this does not mean
that there are none. Instead, what our results show is that we have
found no evidence of differences. It is possible that there are indeed
effects on response time or number of correctly solved tasks, yet
the effect could be too small for our sample to reveal or that other
confounding variables we did not think of eliminated the effect.
This is one reason why replication is crucial to empirical research:
Only if a hypothesis is continually resistant to be rejected, we can
assume that the relationship it describes indeed exists.

Next steps in assessing the understandability of CIDE and CPP
are to replicate our experiment and confirm our second hypothesis
(i.e., the kind of annotation has no effect on the number of com-
pleted tasks). Furthermore, we will explore whether the reason for
the performance difference in the last maintenance task was influ-
enced by the background color or something else.

To summarize, we learned from this experiment that, yes, it is
possible to measure program comprehension given a sufficiently
small scope. This encouraged us to keep on evaluating program
comprehension regarding further factors, e.g., tool support in IDEs
or disciplined annotations. In this experiment, we found that col-
oring code does not significantly increase program comprehension
(at least not when searching for a bug in a feature), but, on the con-
trary, can even hinder it. This gave us a new perspective on our tool
and encouraged us to search for other visualizations or make them
adjustable by the user.

7. FURTHER WORK
So, what are next steps in measuring program comprehension?

If we think of the demonstration experiment, we can extend our in-
dependent variable to other programming languages or create other
programs with other degrees of complexity. We can use program-
ming experts as subjects instead of novices. However, we cannot
vary all parameters at once, but have choose very few (otherwise,
we would exceed our resources).

For annotations with CPP and CIDE, it was relatively easy to
create comparable programs, because we ignored tool support and
the underlying programming languages are identical, so that the
kind of annotation is the only difference between the versions. In a
next step we will evaluate tool support.

But how can we start to compare AOP and FOP, which differ
so much? The answer is, that we have to start even smaller, for
example, compare two programs that only differ in their extension
(refines in Jak vs. an inter-type declaration in AspectJ). When
we have collected enough data to explain small differences between
Jak and AspectJ, we can incrementally increase complexity and dif-
ferences of programs and integrate the knowledge into a theory of
understandability of Jak and AspectJ. In order to assess the under-
standability of AOP vs. FOP, we have to generalize our knowledge
to other programming languages.

Since the steps in comparing AOP and FOP are rather small,
it may take a decade until we have a sound body of knowledge
concerning program comprehension of AOP and FOP, let alone all
FOSD approaches. Nobody knows whether there is still interest in
FOSD in ten years or whether other programming paradigms have
emerged by then. It is impossible for one research group to assess
the understandability of FOSD approach in a reasonable amount
of time with a reasonable amount of financial resources. Hence,
with this work, we want to encourage others to take up empirical
research and establish a community for measuring program com-

prehension of FOSD approaches. This way, we have more people
working on creating a body of knowledge, which speeds up the
process and reduces the errors we make along the process.

8. RELATED WORK
We are not aware of empirical research on program comprehen-

sion in the context of FOSD. However, empirical results can be
found in other domains, from which we can learn. For example,
with the development of the object-oriented paradigm, researchers
were curious about the benefit of object orientation compared to
procedural languages. Daly et al. [10] assessed the effect of inheri-
tance on understandability. They found performance differences in
favor of object-oriented source code (although the opinion of sub-
jects was that maintainability of procedural source code was better).
A similar result was found by Henry et al. [18], who compared C
and Objective C source code.

Also modeling and aspect-oriented languages have been ana-
lyzed in the past. Patig proposed a set of guidelines and a tool for
testing the understandability of modeling notations [32]. This work
has inspired our attempts to empirically measure program compre-
hension in the context of FOSD. Hanenberg et al. explored empiri-
cally whether aspect-oriented programming increases the develop-
ment speed for crosscutting code [17]. They compared different
kinds of tasks (different kinds of crosscutting concerns) and differ-
ent kinds of languages (object-oriented and aspect-oriented).

Recently, several systematic reviews of the status of empirical
software engineering were published [19,23,40]. Although they do
not focus on program comprehension, they provide useful advice
for empirical research in general (e.g., include experts in experi-
ments to ensure external validity or refer to disciplines like cog-
nitive psychology, because comparable problems occurred there
along with solutions due to the age of this discipline).

9. CONCLUSION
We reported how we set out to compare FOSD approaches like

AOP, FOP, or preprocessor-based implementations empirically
regarding program comprehension. We learned that, in order to
be able to draw sound conclusions from an experiment (internal
validity), it is important to control confounding parameters on
program comprehension. However, their sheer number makes
large-scoped experiments difficult. It is practically impossible
to compare all FOSD approaches at once. Instead, a hypothesis
should focus on few aspects of FOSD approaches, because this
allows us to feasibly test it. With a small experiment comparing
different forms of preprocessors, we demonstrated the feasibility
of small-scale experiments.

The next steps in assessing the understandability of FOSD ap-
proaches are to define small hypothesis and evaluate them empir-
ically. Once results for those small hypotheses are clear, we can
work on more complex hypotheses. In order to speed up this te-
dious process, it is necessary to establish a research community for
empirically assessing the understandability of FOSD approaches.
With our work, we hope to motivate some researches to join us.
Acknowledgments. We thank Jörg Liebig for his help on organiz-
ing the experiment in Passau. We thank METOP GmbH for the
Amazon gift card for our subjects. Feigenspan’s work is supported
in part by BMBF project 01IM08003C (ViERforES). Apel’s work
is supported in part by DFG project #AP 206/2-1.

10. REFERENCES
[1] J. R. Anderson. Cognitive Psychology and its Implications.

Worth Publishers, 2000.

61

[2] T. W. Anderson and J. D. Finn. The New Statistical Analysis
of Data. Springer, 1996.

[3] S. Apel et al. FeatureC++: On the Symbiosis of
Feature-Oriented and Aspect-Oriented Programming. In
Proc. Int’l Conf. Generative Programming and Component
Engineering, pages 125–140, 2005.

[4] S. Apel and C. Kästner. An Overview of Feature-Oriented
Software Development. Journal of Object Technology (JOT),
8(5):49–84, 2009.

[5] S. Apel, C. Kästner, and S. Trujillo. On the Necessity of
Empirical Studies in the Assessment of Modularization
Mechanisms for Crosscutting Concerns. In Proc. Int’l
Workshop on Assessment of Contemporary Modularization
Techniques, pages 1–7. 2007.

[6] I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann. An
Overview of CaesarJ. Transactions on Aspect-Oriented
Software Development I, pages 135–173, 2006.

[7] A. P. Association. Publication Manual of the American
Psychological Association. American Psychological
Association, 2001.

[8] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
Step-Wise Refinement. IEEE Trans. Softw. Eng.,
30(6):355–371, 2004.

[9] R. E. Brooks. Using a Behavioral Theory of Program
Comprehension in Software Engineering. In Proc. Int’l Conf.
Software Engineering, pages 196–201. 1978.

[10] J. Daly et al. The Effect of Inheritance on the Maintainability
of Object-Oriented Software: An Empirical Study. In Proc.
Int’l Conf. Software Maintenance, pages 20–29. 1995.

[11] A. Dunsmore and M. Roper. A Comparative Evaluation of
Program Comprehension Measures. Technical Report
EFoCS-35-2000, University of Strathclyde, 2000.

[12] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian.
Guide to Advanced Empirical Software Engineering, pages
285–311. Springer, 2008.

[13] J. Favre. Understanding-In-The-Large. In Proc. Int’l
Workshop on Program Comprehension, page 29. 1997.

[14] J. Feigenspan. Empirical Comparison of FOSD Approaches
Regarding Program Comprehension – A Feasibility Study.
Master’s thesis, University of Magdeburg, 2009.

[15] E. Figueiredo et al. Evolving Software Product Lines with
Aspects: An Empirical Study on Design Stability. In Proc.
Int’l Conf. Software Engineering, pages 261–270. 2008.

[16] C. J. Goodwin. Research In Psychology: Methods and
Design. Wiley Publishing, Inc., 1998.

[17] S. Hanenberg, S. Kleinschmager, and M. Josupeit-Walter.
Does Aspect-Oriented Programming Increase The
Development Speed for Crosscutting Code? An Empirical
Study. In Proc. Int’l Symp. Empirical Software Engineering
and Measurement, 2009.

[18] S. Henry, M. Humphrey, and J. Lewis. Evaluation of the
Maintainability of Object-Oriented Software. In Proc.
TENCON, pages 404–409. 1990.

[19] A. Höfer and W. Tichy. Empirical Software Engineering
Issues. Critical Assessment and Future Directions, chapter
Status of Empirical Research in Software Engineering, pages
10–19. Springer, 2007.

[20] International Organization for Standardization.
ISO/IEC 9899-1999: Programming Languages—C, 1999.

[21] S. Jarzabek, P. Bassett, H. Zhang, and W. Zhang. XVCL:
XML-based Variant Configuration Language. In Proc. Int’l

Conf. Software Engineering, pages 810–811. 2003.
[22] N. Juristo and A. M. Moreno. Basics of Software

Engineering Experimentation. Kluwer, 2001.
[23] V. B. Kampenes et al. A Systematic Review of

Quasi-Experiments in Software Engineering. Information
and Software Technology, 51(1):71–82, 2009.

[24] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in
Software Product Lines. In Proc. Int’l Conf. Software
Engineering, pages 311–320. 2008.

[25] C. Kästner, S. Trujillo, and S. Apel. Visualizing Software
Product Line Variabilities in Source Code. In Proc. Workshop
Visualization in Software Product Line Engineering, 2008.

[26] G. Kiczales et al. Aspect-Oriented Programming. In Proc.
Europ. Conf. Object-Oriented Programming, pages 220–242.
1997.

[27] G. Kiczales et al. An Overview of AspectJ. In Proc. Europ.
Conf. Object-Oriented Programming, pages 327–353. 2001.

[28] J. Koenemann and S. P. Robertson. Expert Problem Solving
Strategies for Program Comprehension. In Proc. Conf.
Human Factors in Computing Systems, pages 125–130. 1991.

[29] B. P. Lientz and E. B. Swanson. Software Maintenance
Management. Addison-Wesley, 1980.

[30] R. Lopez-Herrejon, D. Batory, and W. Cook. Evaluating
Support for Features in Advanced Modularization
Technologies. In Proc. Europ. Conf. Object-Oriented
Programming, pages 169–194. 2005.

[31] M. Mezini and K. Ostermann. Variability Management with
Feature-Oriented Programming and Aspects. In Proc. Int’l
Symp. Foundations of Software Engineering, pages 127–136.
2004.

[32] S. Patig. A Practical Guide to Testing the Understandability
of Notations. In Proc. Asia-Pacific Conf. Conceptual
Modelling, pages 49–58, 2008.

[33] N. Pennington. Stimulus Structures and Mental
Representations in Expert Comprehension of Computer
Programs. Cognitive Psychologys, 19(3):295–341, 1987.

[34] K. Popper. The Logic of Scientic Discovery. Routledge, 1959.
[35] L. Prechelt et al. Two Controlled Experiments Assessing the

Usefulness of Design Pattern Documentation in Program
Maintenance. IEEE Trans. Softw. Eng., 28(6):595–606, 2002.

[36] C. Prehofer. Feature-Oriented Programming: A Fresh Look
at Objects. In Proc. Europ. Conf. Object-Oriented
Programming, pages 419–443. 1997.

[37] F. J. Roethlisberger. Management and the Worker. Harvard
University Press, 1939.

[38] R. Rosenthal and L. Jacobson. Teachers’ Expectancies:
Determinants of Pupils’ IQ Gains. Psychological Reports,
19(1):115–118, 1966.

[39] W. R. Shadish, T. D. Cook, and D. T. Campbell.
Experimental and Quasi-Experimental Designs for
Generalized Causal Inference. Houghton Mifflin, 2002.

[40] D. I. K. Sjoberg et al. A Survey of Controlled Experiments in
Software Engineering. IEEE Trans. Softw. Eng.,
31(9):733–753, 2005.

[41] H. Spencer and G. Collyer. #ifdef Considered Harmful or
Portability Experience With C News. In Proc. USENIX
Conf., pages 185–198, 1992.

[42] A. von Mayrhauser and A. M. Vans. Program
Comprehension During Software Maintenance and
Evolution. Computer, 28(8):44–55, 1995.

62

RobbyDBMS – A Case Study on Hardware/Software
Product Line Engineering

Jörg Liebig and Sven Apel and Christian Lengauer
Department of Informatics and Mathematics

University of Passau, Germany
{joliebig,apel,lengauer}@fim.uni-passau.de

Thomas Leich
Metop Research Center
Magdeburg, Germany

thomas.leich@metop.de

ABSTRACT
The development of a highly configurable data management
system is a challenging task, especially if it is to be imple-
mented on an embedded system that provides limited re-
sources. We present a case study of such a data management
system, called RobbyDBMS, and give it a feature-oriented
design. In our case study, we evaluate the system’s efficiency
and variability. We pay particular attention to the interac-
tion between the features of the data management system
and the components of the underlying embedded platform.
We also propose an integrated development process covering
both hardware and software.

Categories and Subject Descriptors
D.2.10 [Software]: Design—Methodologies;
D.2.11 [Software]: Software Engineering—Domain-specific
architectures

General Terms
Design

Keywords
Hardware Product Lines, Software Product Lines, Domain
Engineering, Feature Oriented Software Development, Fea-
tureC++

1. INTRODUCTION
Current statistics reveal that 98 % of all microprocessors

sold worldwide are part of embedded systems [18, 12]. Em-
bedded systems play an important role in domains such
as automotive, industrial automation, and control systems.
Carrying out tasks in these domains involves the gathering,
processing, and storage of data. Embedded systems handle
data collected from several sources such as sensor data, tech-
nical service specifications, configuration, or protocol data.
Although the amount of data is usually small, an efficient

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOSD’09, October 6, 2009, Denver, Colorado, USA.
Copyright 2009 ACM 978-1-60558-567-3/09/10 ...$10.00.

data management plays a crucial role, since most embedded
systems come with very low computational power and only
a small amount of memory.

The need for an efficient data management system in
the embedded systems domain has been observed before.
Researchers and engineers proposed various systems, such
as IBM DB2 Everyplace [10], LGeDBMS [11], Smart Card
DBMS [1], TinyDB [14], and Stones DB [8]. Each system has
been developed from scratch to serve a specific application
that the developers had in mind. To this end, a fixed set of
data management functionalities is sufficient and, therefore,
each system contains no or few variabilities. This results in a
specialized software and is the reason why so many different
systems have been proposed. Moreover, each of these systems
is designed for a specific embedded platform, and, to this end,
existing hardware variabilities are not taken into account.

A way to overcome such limited hardware and software vari-
ability is product line engineering (PLE). PLE has already
been applied successfully in hardware engineering such as of
cars or mobile phones, and is gaining increasing attention in
software engineering [6, 15]. Since more and more products
consist of hardware and software variants, the combined PLE
application for hardware and software engineering is promis-
ing. However, very little is known about the impact that
PLE has on products that consist of hardware and software.

To investigate the impact of PLE, we use feature-oriented
programming (FOP), one implementation approach for PLE,
and develop the case study RobbyDBMS: an efficient data
management system for various embedded systems. We
evaluate RobbyDBMS regarding efficiency and variability.
Based on the results obtained, we discuss the benefits of the
PLE approach. PLE has been applied successfully earlier for
the development of efficient data management systems [17].1

Although Fame-DBMS aimed at a database family for embed-
ded systems, it did not meet our hardware requirements in
terms of computational power and size of available memory.

During the implementation of RobbyDBMS, we observed
that the data management system and the underlying embed-
ded platform exhibit functional interactions. For example, for
permanent data storage, a non-volatile memory or storage fa-
cility is necessary. We explain these interactions and propose
an integrated development process for hardware/software
PLE. Additionally, we highlight the benefits of our approach.

Specifically, we make the following contributions:
• We present our case study RobbyDBMS: an efficient

data management system for embedded systems.
• We evaluate and discuss FOP as one implementation

1Project Fame-DBMS – http://fame-dbms.org/

63

technique for PLE. The evaluation covers the efficiency
and the variability of the feature-oriented design.

• We highlight interactions between RobbyDBMS and
the underlying embedded platform.

• We propose and discuss the feasibility of an integrated
development process for systems like RobbyDBMS
based on domain/application engineering exhibiting
both hardware and software variability.

2. BACKGROUND

Product Line Engineering
Product line engineering is a concept comprising methods,
tools, and techniques for the development of product lines [2].
A product line is a set of mutually related products that are
tailored to a specific domain or market segment and that
share a common set of features [9]. A feature represents a
commonality or a variability among the set of products [19].
By selecting varying sets of features, different products (a.k.a.
variants), fulfilling the requirements of a specific application,
can be generated. Product lines are being developed in both
hardware and software engineering, and we refer to them
as hardware product lines (HPL) and software product lines
(SPL), resp. Furthermore, we refer to features of the HPL
and the SPL as hardware features resp. software features.

The process behind PLE is domain and application en-
gineering (Figure 4) [7]. It comprises the development of
reusable features in domain engineering that are used in appli-
cation engineering to derive a specific product. Domain and
application engineering both consist of three phases (domain
engineering: domain analysis, domain modeling, and do-
main implementation; application engineering: requirements
analysis, design analysis, and integration/test).

Feature-Oriented Programming
One approach to the implementation of SPLs is feature-
oriented programming, which aims at the modularization of
software systems using features [16, 5]. The idea is to modu-
larize features in feature modules and, consequently, to obtain
a 1-to-1 mapping between features as a domain abstraction
and feature modules as an implementation abstraction.

In particular, we use FeatureC++ [4, 3], an extension of the
programming language C++, which enables programmers
to encapsulate the functionality of a feature in a feature
module. A feature module represents program functionality
and is composed with the base system (feature composition)
via declarative expressions. With FeatureC++, one can add
variables and methods to existing classes or one can even add
new classes. Furthermore, FeatureC++ provides capabilities
for extending existing methods using method refinement [4].

3. CASE STUDY ROBBYDBMS
In this section, we describe our case study of RobbyDBMS.

Furthermore, we evaluate RobbyDBMS regarding efficiency
and variability, and discuss the benefits of using FOP for the
implementation of RobbyDBMS.

3.1 Overview

AVR HPL
The AVR HPL is a product line of 8-bit microprocessors
used in the embedded systems domain. Using the AVR

HPL

AVR

8-Bit
Timer
(1-8)

16-Bit
Timer
(1-8)

Flash
(1-256KB)

RAM
(32B-32KB)

DMA
Channel

(4)

Event
Channel

(8)

I/O Pins

(4-86)

10-Bit
A/D
(1-16)

12-Bit
A/D
(5-16)

12-Bit
D/A
(2-4)

analog
Comp.

(1-4)

Ext. In-
terrupt
(1-32)

Inter-
rupt
(5-57)

Hard-
ware
Mult.

In
System
Prog.

On Chip
Oscil-
lator

PWM
Channel

(1-24)

Brown
Out De-
tector

(1-4KB)
EEPROM

I2C
(1-4)

Serial
Per. Inf.

(1-4)

UART

(1-8)

CPU
(1-32MHz)

opt. man. and

Figure 1: AVR HPL; feature diagram

HPL, programmers face a number of resource constraints,
such as the low performance of the CPU (1 - 32 MHz), the
small supply of program storage (1 - 256 KB), and the small
main memory (32 B - 32 KB). Furthermore, different variants
of the AVR series have up to 4 KB of EEPROM storage,
which can be used as a permanent storage for data. These
resource constraints result in cost and energy savings. AVR
microprocessors are integrated in embedded systems, which
have additional hardware features like sensors or actuators.
Figure 1 contains a feature diagram, which is an excerpt of
the AVR HPL feature model [7], representing hierarchical
relationships of features in the AVR HPL. For example,
feature RAM is optional and, in case this feature is available,
different variants can have memory from 32 B to 32 KB.

The resource constraints mentioned before oblige to create
a data management systems that is both: (1) highly config-
urable in terms of the features that the data management
provides and (2) tailorable to a specific variant of the HPL
that is being selected.

RobbyDBMS SPL
RobbyDBMS is an embedded data management system aim-
ing at high configurability and the support of low-performance
embedded systems. To increase configurability, we model
most features, which are usually an integral part of data man-
agement systems, as optional (e.g., Indexing, Checksums,
Buffering, and Transaction). This reduces the amount
of program storage and main memory so as to leave as much
of the system resources as possible to the programmer who
makes use of the data management system. Figure 2 shows
an excerpt of a feature diagram representing the feature
model for RobbyDBMS.

Overall, RobbyDBMS consists of 33 feature modules with
46 classes and 37 class refinements. These refinements involve
33 method refinements, 39 additions of a function, and 15
additions of a field. The number of feature modules exceeds
the number of features because of functional dependencies
between different features that necessitated the split of a

64

RobbyDBMS

Storage-
Device

Storage-
Manager

DataAnd-

AccessMan.

Read Write

static dynamic

Storage-
Entity

Robby Bobby

Trans-
action

Backup
Buffer-
Manager

Check-
sum

Indexing

API

Record

opt. man. and or
(excl.)

or
(incl.)

SPL

Figure 2: RobbyDBMS SPL; feature diagram

module. One example is feature Checksums that relies on
Read and Write. Since feature Write is optional, we
had to split feature Checksums for both variants (with and
without write support).

3.2 Evaluation
The usage of FeatureC++ for developing SPLs has been

evaluated before [13, 17]. Our results coincide with these
evaluations and exhibit further insights on the efficiency and
variability.

Efficiency
To evaluate the efficiency of FeatureC++, we developed
several test programs that record the overhead in program
storage (program size) and main memory caused by the use
of FeatureC++. Table 1 displays the results of our analysis.
The numbers reveal that, starting from a minimal variant
of RobbyDBMS (only feature Read is selected), different
variants with very little consumption of program storage
and main memory can be generated. Furthermore, the table
shows that the consumption of program storage and main
memory increases almost linearly with the number of fea-
tures selected. The overall deviation between the increase in
program size caused by each feature separately and by the
composition of all features is less than 2 %. To this end, the
composition mechanisms of FeatureC++ do not introduce
an overhead. Beside the generation of RobbyDBMS variants
and the measurement of their memory footprints, we also
investigated two optimization strategies for the composition.

First, we investigated whether the order of features has an
impact on the program size. We expected that the order in-
fluences the program size, since a different order may activate
different optimizations of the compiler during program com-
pilation. To this end, we selected two features (Checksums
and Index), that are independent but that address partially
the same classes, and measured the memory footprint. We
observed that the order of the two features has a small,

v
a
ri

a
n
t

R
e
a
d

W
ri

te

B
u

ff
e
ri

n
g

T
ra

n
sa

c
ti

o
n

C
h

e
ck

su
m

s

In
d

e
x

p
ro

g
ra

m
si

z
e

m
a
in

m
e
m

o
ry

1 X o o o o o 658 0
2 X X o o o o 996 0
3 X X o o X o 1278 0
4 X X o o o X 1686 0
5 X X o o X X 2002 0
6 X X X o o o 2294 10
7 X X X o X X 3330 10
8 X X X X X X 3734 12

Xfeature selected; o feature not selected

Table 1: Different RobbyDBMS variants with the
used program storage and main memory (in bytes)

but measurable impact (∼ 0,53 %), on the program size. A
deeper analysis of the savings revealed that the resorting
affected multiple places in the binary and a clear relation to
the resorting was not possible. Thus, we were not able to
draw any conclusions; the savings might have occurred only
by chance. However, we suspect that the order of features
has only a very little effect on the program size. Usually,
a C++ compiler applies several optimizations during the
program compilation. These optimizations also involve the
resorting of source code pieces, which exceeds FeatureC++’s
resorting capabilities.

Second, we investigated whether the program size could
benefit from the application of optimization directives. For
example, an optimization directive forces a compiler to ap-
ply methods for reducing the program size. FeatureC++’s
compostion mechanisms rely on function inlining, which
can be controlled by such directives.2 We observed that,
when several features refine a function, function inlining
is not applied automatically by the C++ compiler. How-
ever, inlining can be enforced by the optimization directive
__attribute__((always_inline)).3 We measured that the
application of this directive reduces the program size by 6.3 %.
Although the reduction seems to be small, a different variant
of the underlying HPL may be applicable. Furthermore,
the C++ compiler used provides additional optimization
directives that may further reduce the program size.

Our analysis reveals that FeatureC++ is appropriate in
our case study. However, further research is necessary to
show that our observations also hold in different domains
and case studies.

Variability
Using PLE, we were able to model and implement a data
management system that can be configured to a large extent
based on features, such as Buffering, Indexing, or Trans-
action. The overall number of features is 19: 7 mandatory
features that subdivide the base system and 12 optional

2Function inlining instructs the compiler to replace a function
call with the body of the called function.
3This optimization directive is limited to the GCC com-
piler (http://gcc.gnu.org). However, other compilers have
similar method modifiers, such as __forceinline in Visual
C++.

65

features, which can be added via feature selection. How-
ever, a software feature like Transaction represents only
the variability of the SPL in terms of data management
functionality.

The tailoring of the data management to a specific em-
bedded systems platform is handled in the RobbyDBMS
SPL, too. This includes the development and use of device
drivers. Since hardware features are also variable (Figure 1;
the EEPROM storage ranges from 1 KB to 4 KB) we used
PLE for the development of these device drivers.

While implementing RobbyDBMS, we observed that a
software feature requires one ore more hardware features.
This requirement arises from functional interactions between
hardware and software features. In the next section, we
address this issue and discuss the influence of interactions
between hardware and software features on the PLE process.

4. INTERACTIONS BETWEEN THE
HPL AND THE SPL

In Figure 3, we give an example of possible interactions
between the HPL and the SPL. Hardware feature EEPROM
interacts with software features Read and Write, which
can be traced back to the activity of the EEPROM as a
data storage. Furthermore, feature Backup, which triggers
write-backs to the EEPROM in case the data is held par-
tially in main memory, either relies on feature 16-Bit Timer
or feature 8-Bit Timer. Each hardware feature, such as
EEPROM or 8-Bit Timer, can be used by software features.
We denote interactions between features on either side of
the figure with bidirectional, dashed arrows. Although the
necessity for a hardware feature arises on the SPL side, we
show next that the interaction actually goes both ways and
both sides influence each other.

Interactions between hardware and software features are
bidirectional. As stated before, a software feature interacts
functionally with hardware features. For example, software
feature Backup relies on two different hardware features.
From the product developer’s point of view, the opposite
direction, i.e., the dependence from the HPL to the SPL,
becomes useful. This way, a hardware feature determines all
possible variants of the SPL, which can be deployed on the
HPL variant chosen. For example, hardware feature 8-Bit
implies that 8 different variants of the SPL can be generated.
The interactions observed allow to create a restricted feature
model for the HPL and the SPL.

The treatment of interactions between HPLs and SPLs
complicates the development of product lines. We believe
that an integrated analysis and development process is neces-
sary to face this complexity. In the following, we propose and
discuss such an integrated process and highlight its benefits.

HPL and SPL Codesign.
In Figure 4, we depict our proposal of an integrated de-

velopment process covering both hardware and software. It
is based on domain engineering, where reusable features
are being developed, and application engineering, where the
reusable features developed are being used to generate a
specific product. The figure illustrates that both domain and
application engineering constitute chains of processes, such as
analysis, design, and implementation, and that both chains
are linked. We propose to extend this process with another
ingredient covering the development of the HPL. While the

Domain Engineering (HPL)

Domain Im-
plementation

Domain
Analysis

Domain
Design

Application Engineering

Integration
and Test

Requirements
Analysis

Design
Analysis

Custom Custom

Domain Engineering (SPL)

Domain Im-
plementation

Domain
Analysis

Domain
Design

features product
configuration

product

domain
knowledge

domain
model

domain
knowledge

domain
model

new
requirements

customer
needs

architecture

architecture

Figure 4: Integrated HPL and SPL development

output of each phase of HPL domain engineering is linked to
its corresponding phase in application engineering, all phases
of both domain engineering processes are linked mutually as
well.

The links between the domain engineering phases cover
the results of each phase (domain model, architecture, and
implementation). We have already highlighted the inter-
action between domain models, looking at feature models,
which constitute one form of representation of domain mod-
els (Figure 3). An interaction between both domain design
phases covers architectural design decisions based on pat-
terns used to describe a generic structure to achieve a highly
configurable system. Finally, an interaction between domain
implementations can be traced back to the software develop-
ment. We have highlighted this interaction, too, as hardware
features and their corresponding device drivers interact with
software features.

We are aware that a full hardware/software codesign is not
possible when dealing with a fixed HPL that a manufacturer
supplies. However, we highlighted that PLE can benefit from
taking the HPL in the process of domain engineering into
account. The benefit arises from choosing among variants of
an HPL.

5. PERSPECTIVE
In future work, we will investigate whether the observa-

tions we made and our proposed concept of an integrated
development process also apply to other domains like oper-
ating systems for embedded system platforms. To this end,
we plan to conduct further case studies. We will also study
domains other than embedded systems. An interesting case
study might be the Linux kernel, which consists of a huge
number of features, which also relies on many capabilities

66

AVR

EEPROM

Robby
DBMS

API
Storage-
Manager

Read Write

Check-
sum

Backup

and or
(incl.)

or
(excl.)opt. man. inter-

action

HPL SPL

8-Bit
Timer
(1-8)

16-Bit
Timer
(1-8)

Figure 3: Example interactions between the HPL and the SPL

that different supported hardware platforms provide.
Besides conducting further case studies, we will also study

each link between both domain engineering phases in more
detail. The HPL used for this case study comprises a defined
set of variants. An interaction between an HPL and an SPL
might even be stronger than the ones we have observed so
far. One reason for a stronger interaction is the existence of
two technologies: (1) FPGAs4 and (2) hardware description
languages, such as VHDL5 or Verilog. An FPGA is a com-
puter chip, which contains programmable logic components
that can be configured by customers. FPGAs are being
programmed in hardware description languages. This way,
changing requirements of customers regarding the hardware
can also be handled. Furthermore, FPGAs add a further
degree of freedom to PLE, since a feature, such as decod-
ing a data stream, can be realized either in hardware with
programmable logic or in software with a program running
on a general purpose computer. Using both technologies to-
gether, the border between HPLs and SPLs becomes blurred
and we expect that domain engineering for HPLs and SPLs
consolidates.

6. CONCLUSION
We have reported on the development of an efficient data

management system, RobbyDBMS, using product line en-
gineering and employing the paradigm of feature orienta-
tion. We found that a feature-oriented design is suitable
for modularizing variability in software like a data manage-
ment system. We have achieved great variability in terms of
data management functionalities and support for different
embedded platforms. While implementing RobbyDBMS, we
observed that the data management system and the under-
lying embedded platform interact and both the hardware
and the software variability have to be taken into account.
Consequently, we proposed a unified development process
based on application and domain engineering, which com-
bines hardware and software variabilities enabling an easier

4field programmable gate arrays
5very high speed integrated circuit hardware description
language

development of product lines that consist of hardware and
software.

Acknowledgments
This work is being supported in part by the German Research
Foundation (DFG), project number AP 206/2-1 and by the
Metop Research Center.

7. REFERENCES
[1] N. Anciaux, L. Bouganim, and P. Pucheral. Smart

Card DBMS: where are we now? Technical Report
80840, Institut National de Recherche en Informatique
et Automatique (INRIA), Juni 2006.

[2] S. Apel and C. Kästner. An overview of
feature-oriented software development. Journal of
Object Technology (JOT), 8(5):49–84, 2009.

[3] S. Apel, T. Leich, M. Rosenmüller, and G. Saake.
FeatureC++: Feature-Oriented and Aspect-Oriented
Programming in C++. Technical Report 3, Fakultät
für Informatik, Universität Magdeburg, April 2005.

[4] S. Apel, T. Leich, M. Rosenmüller, and G. Saake.
FeatureC++: On the Symbiosis of Feature-Oriented
and Aspect-Oriented Programming. In Proceedings of
the International Conference on Generative
Programming and Component Engineering (GPCE),
volume 3676 of Lecture Notes in Computer Science,
pages 125–140. Springer-Verlag, 2005.

[5] D. Batory, J. Sarvela, and A. Rauschmayer. Scaling
Step-Wise Refinement. IEEE Transactions on Software
Engineering (TSE), 30(6):355–371, 2004.

[6] P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley, 2002.

[7] K. Czarnecki and U. Eisenecker. Generative
Programming: Methods, Tools, and Applications.
Addison-Wesley, 2000.

[8] Y. Diao, D. Ganesan, G. Mathur, and P. Shenoy.
Rethinking Data Management for Storage-centric
Sensor Networks. In Proceedings of the Conference on
Innovative Data Systems Research (CIDR), pages
22–31, 2007.

67

[9] K. Kang, S. Cohen, J. Hess, W. Novak, and
A. Peterson. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-21, Carnegie-Mellon University
Software Engineering Institute, November 1990.

[10] J. Karlsson, A. Lal, C. Leung, and T. Pham. IBM DB2
Everyplace: A Small Footprint Relational Database
System. In Proceedings of the International Conference
on Data Engineering (ICDE), pages 230–232. IEEE
Computer Society, 2001.

[11] G.-J. Kim, S.-C. Baek, H.-S. Lee, H.-D. Lee, and
M. Joe. LGeDBMS: a Small DBMS for Embedded
System with Flash Memory. In Proceedings of the
International Conference on Very Large Data Bases
(VLDB), pages 1255–1258. ACM Press, 2006.

[12] R. Krishnan. Future of Embedded Systems Technology.
Technical Report GB-IFT016B, BCC Research, Juni
2005.

[13] M. Kuhlemann, S. Apel, and T. Leich. Streamlining
Feature-Oriented Designs. In Proceedings of
International Symposium on Software Composition
(SC), volume 4829 of Lecture Notes in Computer
Science, pages 168–175. Springer-Verlag, 2007.

[14] S. Madden, M. Franklin, J. Hellerstein, and W. Hong.
TinyDB: An Acquisitional Query Processing System for
Sensor Networks. ACM Transactions on Database
Systems (TODS), 30(1):122–173, 2005.

[15] K. Pohl, G. Böckle, and F. van der Linden. Software
Product Line Engineering: Foundations, Principles and
Techniques. Springer-Verlag, 2005.

[16] C. Prehofer. Feature-Oriented Programming: A Fresh
Look at Objects. In Proceedings of the European
Conference on Object-Oriented Programming
(ECOOP), volume 1241 of Lecture Notes in Computer
Science, pages 419–443. Springer-Verlag, 1997.

[17] M. Rosenmüller, S. Apel, T. Leich, and G. Saake.
Tailor-Made Data Management for Embedded Systems:
A Case Study on Berkeley DB. Data and Knowledge
Engineering (DKE), 2009.

[18] D. Tennenhouse. Proactive Computing.
Communications of the ACM, 43(5):43–50, 2000.

[19] P. Zave. An Experiment in Feature Engineering. In
Programming Methodology, pages 353–377.
Springer-Verlag, 2003.

68

Towards Systematic Ensuring Well-Formedness of
Software Product Lines

Florian Heidenreich
Lehrstuhl Softwaretechnologie

Fakultät Informatik
Technische Universität Dresden, Germany
florian.heidenreich@tu-dresden.de

ABSTRACT
Variability modelling with feature models is one key tech-
nique for specifying the problem space of software product
lines (SPLs). To allow for the automatic derivation of a
concrete product based on a given variant configuration, a
mapping between features in the problem space and their
realisations in the solution space is required. Ensuring the
correctness of all participating models of an SPL (i.e., fea-
ture models, mapping models, and solution-space models)
is a crucial task to create correct products of an SPL. In
this paper we discuss different possibilities for checking well-
formedness of SPLs and relate them to their implementation
in the FeatureMapper SPL tool.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—Computer-aided software engineering, Object-orien-
ted design methods; D.2.2 [Software Engineering]: Soft-
ware/Program Verification—Validation; D.2.13 [Software
Engineering]: Reusable Software

General Terms
Design, Languages

Keywords
Software product lines, separation of concerns, variability
modelling, well-formedness rules, FeatureMapper

1. INTRODUCTION
A software product line (SPL) is a set of software-intensive

systems sharing a common, managed set of features that
satisfy the specific needs of a particular market segment or
mission and that are developed from a common set of core
assets in a prescribed way [4]. In addition to the shared core
assets, every system of a SPL has features that are specific

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOSD’09, October 6, 2009, Denver, Colorado, USA.
Copyright 2009 ACM 978-1-60558-567-3/09/10 ...$10.00.

to the system and that are not shared by all other systems
(often called products) of the SPL. To express this variabil-
ity, variability modelling is used to describe the different
features available in an SPL and their interdependencies. In
the Feature-Oriented Software Development (FOSD) com-
munity [2], a widely used approach for variability modelling
are feature models [13, 5].

Feature-based variability modelling resides in the problem
space whereas the realisation of features is part of the solu-
tion space [6]. To instantiate products from an SPL, feature
realisations in the solution space have to be configured ac-
cording to the presence of the features in a variant model ;
that is, a concrete selection of features from a feature model
that describes a product of the SPL. This requires a map-
ping between features from a feature model and solution-
space models or modelling artefacts that realise features (or
combinations of those). We focus on model-driven devel-
opment of SPLs in this paper and refer to solution-space
models that are expressed by means of Ecore-based meta-
models. To achieve the required mappings, a number of dif-
ferent approaches have been proposed [5, 9, 12] which allow
for creating mappings between features from feature models
and solution-space models.

While all of the approaches provide means for creating and
maintaining required mappings, ensuring the well-formed-
ness of all input models (i.e., feature models, mapping mod-
els, and solution-space models) and all possible output mod-
els (i.e., solution-space models transformed based on feature
selection) is a challenging task often neglected in the afore-
mentioned approaches. In this context, by well-formedness
is meant the conformance of a given model with constraints
of the underlying metamodel. Note, that well-formedness
goes beyond syntactical correctness in the sense that it also
takes additional constraints into account that are not di-
rectly expressed in the language’s metamodel. Also, creating
syntax errors in modelling languages is usually not directly
possible, since modelling editors work on a different level of
abstraction, where it is impossible to create model elements
that do not conform to the concrete syntax of the modelling
language. To give examples of models, which do not respect
well-formedness rules and are, hence, invalid:

• A feature model can become invalid because of con-
tradicting cardinalities, that is, if cardinalities of child
features do not comply with the cardinality of their
parent feature (e.g., an alternative feature where child
features are mandatory).

• A mapping can reference invalid or non-existing model

69

elements, e.g., model elements that were removed or
changed due to refactoring of the problem space or the
solution space.

• An output model can be ill-formed due to mappings
that do not take into account the constraints of the
language used for modelling the solution space.

We argue, that for creating valid products of an SPL,
the well-formedness of input and output models needs to be
ensured in a systematic way and, possibly, (automatically)
validated during modelling the SPL.

In this paper we discuss well-formedness of the different
participating models in an SPL and present possibilities for
ensuring the well-formedness of those models. Furthermore,
we want to foster discussion of open and not yet addressed
issues in well-formedness of SPLs motivating the FOSD com-
munity to address them in their research and development.
During discussion of the identified possibilities for validation
we refer to their realisation in the FeatureMapper [12, 21]
SPL tool.

The rest of the paper is structured as follows: We intro-
duce our tool FeatureMapper in Sect. 2 and provide neces-
sary context. In Sect. 3 we discuss various possibilities for
validating and enforcing well-formedness in SPLs and re-
late them to their implementation in FeatureMapper. We
present open issues and possibilities for further research and
development in Sect. 4 and refer to related work in the FOSD
community in Sect. 5. Section 6 concludes the paper.

2. BACKGROUND
FeatureMapper [12, 10, 21] is an Eclipse-based tool that

allows for mapping features from feature models to arbitrary
modelling artefacts that are expressed by means of an Ecore-
based language [19]. These languages include UML2 [15],
domain-specific modelling languages (DSLs) defined using
the Eclipse Modelling Framework (EMF) [19], and textual
languages that are described using EMFText [11]. The map-
pings can be used to steer the product-instantiation process
by allowing the automatic removal from the final product
being generated of modelling artefacts that are not part of
a selected variant.

An overview of defining an SPL and deriving a concrete
product in FeatureMapper is shown in Fig. 1. To associate
features or logical combinations of features (feature expres-
sions) with modelling artefacts, the developer first selects
the feature expression in the FeatureMapper and the mod-
elling artefacts in her favourite modelling editor (e.g., TOP-
CASED [22]). Next, she applies the feature expression to
the modelling artefacts via the FeatureMapper user inter-
face (Step 1). During product derivation, this mapping is
interpreted by a FeatureMapper transformation component.
Depending on the result of evaluating the feature expression
against the set of features selected in the variant (Step 2),
the modelling elements are preserved or removed from the
model (Step 3). Model elements that are not mapped to
a specific feature expression are considered to be part of
the core of the product line and are always preserved. In
addition to product derivation, the mappings are used for
visualisation purposes [10].

FeatureMapper uses cardinality-based feature models [7].
These models are instances of an Ecore-based feature meta-
model. Features from these feature models are related to

Figure 1: Workflow of defining an SPL and deriving
a concrete product with FeatureMapper.

solution-space models through a dedicated Ecore-based map-
ping model. As depicted in Fig. 2, a mapping in this map-
ping model basically consists of a feature expression (Ex-
pression, which directly references features from the fea-
ture model or logical combinations of those) and a reference
to a solution-space artefact (EObject).

������������

�������

�������������� ����������

���

��

���

�������

�������

�
�

�

�

� �
�

�
�

��
�

Figure 2: Simplified overview of FeatureMapper’s
internal mapping metamodel.

3. WELL-FORMEDNESS IN SPLS
As motivated in Sect. 1, ensuring well-formedness of all

participating models is crucial in SPL to ensure the valid-
ity of the resulting products. Thus, validation of all models
used for creating an SPL is needed. This includes validation
of problem-space models, validation of mapping models, and
validation of all possible solution-space models. In this sec-
tion we give an overview of various possibilities for validation
and relate them to their implementation in FeatureMapper.
Our enumeration of possible validation tasks is by no means
exhaustive; rather, it is expected to be extended as a result
of future discussions.

3.1 Well-formed problem-space models
Cardinality-based feature models and variant models [7]

include a set of well-formedness rules that need to be en-
sured for producing valid feature models. These rules are
normally enforced by the feature-modelling tool used for
producing the feature models and the variants. While Fea-
tureMapper supports feature models and variant models of
the feature-modelling tools pure::variants [3] and fmp [1], it
also provides basic means to create those models, and thus,
needs to ensure their validity.

FeatureMapper currently imposes the following constraints
on feature models:

70

FM-Mandatory-Root The root feature must be manda-
tory. This constraint prohibits the creation of empty
products by enforcing the inclusion of the root feature
in any possible variant.

FM-Cardinality-Match Cardinalities of child features must
comply with the cardinality of their parent feature.
This constraint ensures that no contradicting cardi-
nalities exist between child features and their parent
features (e.g., an alternative feature that has manda-
tory child features).

FM-Sound-Reference References such as requires or con-
flicts must be non-contradicting. This constraint
also includes the parent-child relationship between fea-
tures during validation.

FM-Existing-Reference Referenced features must exist.
This constraint ensures that any of the referenced fea-
tures in requires or conflicts references are features
in the feature model.

Variant models are seen as a subset of feature models in
FeatureMapper. For ensuring valid variant models, the fol-
lowing constraints are enforced:

VM-Mandatory-Parent If a child feature is selected, the
parent feature must be selected too.

VM-Mandatory-Child If a feature is selected, all its man-
datory child features must be selected too.

VM-Alternative If an alternative feature (a parent fea-
ture with a cardinality [0..1]) is selected, at most
one of its child features must be selected.

VM-Or If an Or feature (a parent feature with a cardinality
[n..m]) is selected, at least n and at most m of its child
features must be selected.

VM-Requires If the selection of a feature requires the se-
lection of another feature, the latter feature must be
selected too.

VM-Conflicts If the selection of a feature excludes the se-
lection of another feature, the former feature cannot
be selected.

Due to the added complexity involved when validating fea-
ture references (cf. constraints FM-Sound-Reference, VM-
Requires, VM-Conflicts listed above), we enhanced our ini-
tial OCL-based approach for validating feature models and
variant models in FeatureMapper to an Web Ontology Lan-
guage (OWL) based approach similarly to what is described
in [23]. This validation is exposed as a validator to the EMF
Validation Framework. Additionally, FeatureMapper checks
for invalid feature combinations while creating feature ex-
pressions and reports possible violations of the constraints
listed above to the user.

3.2 Well-formed mapping models
Mapping models are models that relate features from fea-

ture models to their realisation in solution-space models.
This mapping works directly on the referenced objects and
not only on symbolic representations. Since FeatureMapper
intentionally uses a generic mapping model to be indepen-
dent of the modelling languages used, there exist basically
two well-formedness rules that need to be ensured while cre-
ating and managing a mapping model:

MM-Existing-Feature Referenced features of a mapping
must exist.

MM-Existing-ModelElement Referenced solution-space
artefacts of a mapping must exist.

FeatureMapper ensures these constraints automatically dur-
ing loading and saving of mapping models. If a constraint vi-
olation is detected, FeatureMapper informs the modeller and
provides interactive means for correcting the model. Thus,
FeatureMapper prohibits the creation of invalid mapping
models. Note, that this does not imply the well-formedness
of the solution-space models which will be addressed in the
next subsection.

3.3 Well-formed solution-space models
The most challenging task in creating model-based SPLs

is to ensure that all output models conform to the well-
formedness rules of the language used for creating the solu-
tion-space models. In FeatureMapper, model elements are
removed from the model during product derivation if the
corresponding feature expression in the mapping does not
evaluate to true against a given variant model. Checking
the well-formedness of a output model is usually done by
evaluating OCL constraints on the output model. For an
SPL this would imply that any possible variant needs to be
created to ensure the well-formedness of the complete SPL.
This is not feasible because of the large amount of possible
variants that can be created out of an SPL [16]. We focus on
checking the well-formedness of an SPL, not its individual
products. This includes the following constraint classes:

SM-Multiplicity Multiplicities of modelling artefacts must
match the multiplicities of the respective constructs
described in the metamodel of the language used for
modelling the solution-space models.

SM-Typing Solution-space models must conform to the
modelling language’s type system.

SM-Semantics Solution-space models must conform to spe-
cific semantic constraints exposed by the used mod-
elling languages which do not fall in any of the afore-
mentioned classes. This also applies to domain-specific
languages, which can imply constraints on solution-
space models that are intrinsic to a specific domain.

To our knowledge, there currently exists no approach that
allows for ensuring constraints of all three constraint classes
for models created in arbitrary Ecore-based modelling lan-
guages. In [8], Czarnecki and Pietroszek presented an ap-
proach for verifying feature-based model templates against
well-formedness OCL constraints. In their work, they de-
scribed how the well-formedness of UML models annotated
with stereotypes containing feature expressions (so-called
presence conditions) can be ensured for all possible variants
of an SPL without creating any of those variants. They de-
scribed how OCL well-formedness rules can be interpreted
in a way that takes the feature expressions into account and
provided a set of evaluation patterns for various OCL con-
structs in form of propositional formulas.

While this approach and its implementation only addresses
well-formedness rules of UML, well-formedness rules differ
significantly depending on the modelling languages used.
E.g., in UML each DecisionNode in an activity model must

71

at least have one outgoing edge whereby the guards on the
outgoing edges need to be unambiguous—otherwise a race
condition may occur (cf. constraint-class SM-Semantics).
Figure 3 depicts a part of an example activity diagram from
a recent case study we performed in FeatureMapper, where
modelling elements are coloured according to the feature ex-
pression assigned to them. The outgoing edge coloured in
red is removed whenever the respective features are not part
of the given variant. The same applies to the outgoing edge
coloured in blue.

Figure 3: Example of an ambiguous activity model
with two outgoing edges with the same guard con-
dition.

Another example is, that an Association must have at
least two memberEnds (cf. constraint-class SM-Multiplicity).1

The detail of the class model depicted in Fig. 4 shows an
Association where this constraint is not fulfilled in case the
class Blanket is removed from the model. Of course, fixing
those errors can be fairly easy (in this case the association
needs to be removed too) but detecting those errors is a
task that is not easy to perform, especially when considering
cross-model constraints (e.g., each method called in a UML
activity model must exist in a related UML class model;
cf. constraint-class SM-Typing).

Figure 4: Example of a possible violation of the well-
formedness rules of the UML Association concept.

Similarly to the Association in UML, the eReference-

Type of an Ecore EReference must exist. The specifica-
tions [15, 19] contain numerous well-formedness rules based
on multiplicities and OCL constraints. Presenting all of
those is beyond the scope of this paper. In addition to es-
tablished and widely-used modelling-languages, the trend
towards defining and using DSLs in model-driven develop-
ment results in numerous new languages, where each of those
languages has their own set of well-formedness rules. For ex-
ample, a language for creating forms can include the concept
of depending questions (i.e., a question only has to be an-
swered if a specific other question has been answered). This
again involves the concept of references, where each of the
referenced questions in a form description must exist.

1This is the running example of Czarnecki and Pietroszek
in [8].

We are currently investigating possible extensions to Fea-
tureMapper for a modelling-language independent realisa-
tion of checking the entire SPL. Since FeatuerMapper is in-
tentionally agnostic to the modelling-languages used, any
existing Ecore-based modelling-language can be used for cre-
ating solution-space models. This also means that the well-
formedness rules of these different languages need to be en-
sured for each particular language to be supported. Our aim
is at creating a generic framework that can be parameter-
ized with those language-specific rules. To this end, ensur-
ing well-formedness of SPLs built of arbitrary Ecore-based
modelling languages becomes possible.

4. DISCUSSION
An open issue in ensuring well-formedness of SPLs is the

lack of completeness of formally described well-formedness
rules. The UML specification contains a lot of explicitly de-
scribed multiplicities, well-formedness rules, and additional
constraints but also contains implicit information (e.g., the
need for unambiguousness of multiple outgoing edges on De-

cisionNodes as described in Sect. 3). To our knowledge,
no catalogue of formalised descriptions (e.g., described us-
ing OCL) of those well-formedness rules exists at the mo-
ment. Even current modelling tools have a fairly relaxed
interpretation of those rules and effectively allow for cre-
ating ill-formed models. Creating a complete catalogue of
those well-formedness rules seems to be a complex but also
very profitable task, because to this end, checking the well-
formedness of all participating models of a given language
is possible. To extend this idea, having such catalogues
for different languages can foster reusing certain rules that
are shared across languages whenever language semantics
are appropriate. This is especially promising for model-
driven development including multiple DSLs, where certain
domain-specific constraints need to be ensured across lan-
guage boundaries.

There exist a whole range of opportunities for performing
additional checks on SPLs that go beyond well-formedness
rules. Possible checks include detection of bad smells, i.e.,
violations of modelling conventions. Examples of those are
direct communication between components instead of using
dedicated interfaces in component models, huge inheritance
hierarchies, or strong coupling of classes in class models.
Possible extended checks on problem-space models can in-
clude ensuring that all features of a given feature model
are actually mapped to solution-space artefacts (i.e., ensur-
ing that there exists a realisation of a given feature in the
solution-space models).

An open issue of ensuring the validity of an SPL based on
different interpretation of OCL well-formedness rules is the
performance of checking all propositional formulas. As de-
scribed by Czarnecki and Pietroszek [8], checking those rules
cannot be instantly performed due to the processing time
of creating and checking those rules (in their experience,
checking is performed in terms of seconds rather than mil-
liseconds). Possible enhancements are incremental checks,
where the engine detects which constraints and which parts
of a model need to be verified in case of changes in the par-
ticipating models. Another implication of the approach is
the semantics of the mapping. It seems that this approach
is feasible for mappings that relate to modelling artefacts
and remove those depending on a given feature selection.
Approaches that apply complex transformations based on

72

feature selection actually change the model in ways that are
not easily verified using propositional formulas. Further re-
search in this direction is needed.

Another widely unexplored field—which is not addressed
in this paper—is detecting semantic errors for all products
of an SPL. Since it is already difficult to ensure the seman-
tic correctness of a single product, checking the semantic
correctness of all possible products on an SPL is an open
issue.

5. RELATED WORK
There is a whole body of work that addresses quality and

safety of product lines. Some of the existing works in this
field do not check the SPL itself but the distinct products
that can be created out of an SPL [17]. The problem with
testing all products is a large number of different products
that are possible with already a fair amount of independent
optional features (for n optional features, 2n distinct vari-
ants are possible). This implies that in those cases not all
possible variants are checked. Instead, only products that
are actually created out of the SPL or combinatorial samples
are considered which again means that a lot of repetitive in-
spection is needed compared to ensuring the well-formedness
of the SPL itself.

As already mentioned in Sect. 3, some approaches check
the SPL itself. Czarnecki and Pietroszek [8] address the
problem of ensuring the validity of any possible solution-
space models by checking those models against well-formedness
OCL constraints. Their solution describes how well-formedness
OCL constraints can be interpreted based on propositional
formulas by taking into account feature expressions mapped
to modelling elements. Similarly, Thaker et al. [20] use
propositional formulas and SAT solvers to ensure safe com-
position of feature modules in the AHEAD system. In this
paper we proposed extending those existing solutions to mod-
els defined in arbitrary Ecore-based languages.

In [14], Kästner et al. present an approach for guarantee-
ing syntactic correctness of all possible variants of an SPL.
In contrast to what we discussed in this paper, their work is
based on programming languages where syntax errors (such
as omitting a necessary closing bracket) can easily occur.
This is not the case for modelling languages since modelling
editors work on a different level of abstraction where it is
not possible to create model elements that do not conform
to the concrete syntax of the modelling language.

In [18], Seifert and Samlaus present an approach for static
analysis of source code using OCL. They present RestrictED,
an extensible editor for textual modelling languages based
on EMFText [11] that can be parametrized with language-
specific constraints for checking source code modelled with
EMFText languages. Our idea of creating a generic frame-
work that can be parameterized with modelling-language
specific well-formedness rules is an extension this idea, tak-
ing into account mapping information between feature mod-
els and solution-space models. Furthermore, we aim at cre-
ating a framework that abstracts from the concerte-syntax
representation of the specific modelling languages (i.e., graph-
ical or textual concrete syntax) and handles them in a uni-
form way.

6. CONCLUSION
In this paper we discussed various possibilities to check

all participating models of an SPL against well-formedness
rules defined on the metamodels that are used to create those
models. We discussed existing approaches for ensuring the
validity of models for all the concrete products that can be
created out of an SPL as well as open issues and future work.
Throughout the paper, we related the identified possibilities
for ensuring well-formedness to their implementation in the
FeatureMapper SPL tool and outlined our plans to integrate
existing work to uniformly check well-formedness of SPLs
with this tool.

Acknowledgements
We thank Ilie Şavga and Christian Wende for their valuable
comments on earlier drafts of this paper. This research has
been partly co-funded by the German Ministry of Education
and Research (BMBF) within the project feasiPLe.

7. REFERENCES
[1] M. Antkiewicz and K. Czarnecki. FeaturePlugin:

Feature Modeling Plug-In for Eclipse. In Proceedings
of the OOPSLA workshop on Eclipse technology
eXchange (ETX), pages 67–72, New York, NY, USA,
2004. ACM.

[2] S. Apel and C. Kästner. An Overview of
Feature-Oriented Software Development. Journal of
Object Technology (JOT), 8(5):49–84, July/August
2009.

[3] D. Beuche, H. Papajewski, and
W. Schröder-Preikschat. Variability Management with
Feature Models. Science of Computer Programming,
53(3):333–352, 2004.

[4] P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley, 2002.

[5] K. Czarnecki and M. Antkiewicz. Mapping Features to
Models: A Template Approach Based on
Superimposed Variants. In Proceedings of the 4th
International Conference on Generative Programming
and Component Engineering (GPCE’05), pages
422–437, 2005.

[6] K. Czarnecki and U. W. Eisenecker. Generative
Programming – Methods, Tools, and Applications.
Addison-Wesley, June 2000.

[7] K. Czarnecki and C. H. P. Kim. Cardinality-Based
Feature Modeling and Constraints: A Progress
Report. In Proceedings of the OOPSLA’05
International Workshop on Software Factories, 2005.

[8] K. Czarnecki and K. Pietroszek. Verifying
Feature-Based Model Templates Against
Well-Formedness OCL Constraints. In S. Jarzabek,
D. C. Schmidt, and T. L. Veldhuizen, editors,
Proceedings of the 5th International Conference on
Generative Programming and Component Engineering
(GPCE’06), pages 211–220. ACM, 2006.

[9] Ø. Haugen, B. Møller-Pedersen, J. Oldevik, G. Olsen,
and A. Svendsen. Adding Standardized Variability to
Domain Specific Languages. In Proceedings of the 12th
International Software Product Line Conference
(SPLC’08), pages 139–148. IEEE, 2008.

[10] F. Heidenreich, I. Şavga, and C. Wende. On
Controlled Visualisations in Software Product Line
Engineering. In Proceedings of the 2nd International

73

Workshop on Visualisation in Software Product Line
Engineering (ViSPLE’08), collocated with the 12th
International Software Product Line Conference
(SPLC’08), Sept. 2008.

[11] F. Heidenreich, J. Johannes, S. Karol, M. Seifert, and
C. Wende. Derivation and Refinement of Textual
Syntax for Models. In R. F. Paige, A. Hartman, and
A. Rensink, editors, Proceedings of the 5th European
Conference on Model Driven Architecture -
Foundations and Applications (ECMDA-FA’09),
volume 5562 of LNCS, pages 114–129. Springer, 2009.

[12] F. Heidenreich, J. Kopcsek, and C. Wende.
FeatureMapper: Mapping Features to Models. In
Companion Proceedings of the 30th International
Conference on Software Engineering (ICSE’08), pages
943–944, New York, NY, USA, May 2008. ACM.

[13] K. Kang, S. Cohen, J. Hess, W. Novak, and
S. Peterson. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-0211990, Software Engineering
Institute, 1990.

[14] C. Kästner, S. Apel, S. Trujillo, M. Kuhlemann, and
D. Batory. Guaranteeing Syntactic Correctness for all
Product Line Variants: A Language-Independent
Approach. In Proceedings of the 47th International
Conference Objects, Models, Components, Patterns
(TOOLS EUROPE’09), volume 33 of Lecture Notes in
Business Information Processing, pages 175–194.
Springer Berlin Heidelberg, June 2009.

[15] Object Management Group. UML 2.2 infrastructure
specification. OMG Document, Feb. 2009. URL
http://www.omg.org/spec/UML/2.2/.

[16] K. Pohl, G. Böckle, and F. van der Linden. Software
Product Line Engineering: Foundations, Principles,
and Techniques. Springer, 2005.

[17] K. Pohl and A. Metzger. Software Product Line
Testing. Communications of the ACM, 49(12):78–81,
2006.

[18] M. Seifert and R. Samlaus. Static Source Code
Analysis using OCL. In J. Cabot and P. Van Gorp,
editors, Proceedings of the Workshop OCL Tools:
From Implementation to Evaluation and Comparison
(OCL’08), co-located with the 11th International
Conference on Model Driven Engineering Languages
and Systems (MoDELS’08).

[19] D. Steinberg, F. Budinsky, M. Paternostro, and
E. Merks. Eclipse Modeling Framework, 2nd Edition.
Pearson Education, 2008.

[20] S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe
Composition of Product Lines. In Proceedings of the
6th International Conference on Generative
Programming and Component Engineering
(GPCE’07), pages 95–104, New York, NY, USA, 2007.
ACM.

[21] The FeatureMapper Project Team. FeatureMapper,
July 2009. URL http://www.featuremapper.org.

[22] The Topcased Project Team. TOPCASED, July 2009.
URL http://www.topcased.org.

[23] H. H. Wang, Y. F. Li, J. Sun, H. Zhang, and J. Pan.
Verifying feature models using OWL. Web Semantics,
5(2):117–129, 2007.

74

An Extension for Feature Algebra

[Extended Abstract]

Peter Höfner
Institut für Informatik
Universität Augsburg

86135 Augsburg, Germany

hoefner@informatik.uni-augsburg.de

Bernhard Möller
Institut für Informatik
Universität Augsburg

86135 Augsburg, Germany

moeller@informatik.uni-augsburg.de

ABSTRACT

Feature algebra was introduced as an abstract framework for
feature oriented software development. One goal is to pro-
vide a common, clearly de�ned basis for the key ideas of
feature orientation. We �rst present concrete models for the
original axioms of feature algebra which represent the main
features of feature oriented programs. However, these mod-
els show that the axioms of the feature algebra do not re-

ect some aspects of feature orientation properly. Hence we
modify the axioms and introduce the concept of an extended
feature algebra. Since the extension is also a generalisation,
the original algebra can be retrieved by a single additional
axiom. Last but not least we introduce more operators to
cover concepts like overriding in the abstract setting.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Tech-
niques|Object-oriented design methods; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and
Reasoning about Programs|Logics of programs,Mechanical
veri�cation,Speci�cation techniques

General Terms

Design, Languages, Veri�cation

Keywords

feature oriented software development, feature algebra, al-
gebraic characterisation of FOSD

1. INTRODUCTION
Over the last few years Feature-Oriented Software Devel-

opment (FOSD) (e.g. [7]) has been established in computer
science as a general programming paradigm that provides
formalisms, methods, languages, and tools for building vari-
able, customisable, and extensible software.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

FOSD’09, October 6, 2009, Denver, Colorado, USA.

Copyright 2009 ACM 978-1-60558-567-3/09/10 ...$10.00.

Feature algebra [3] is a formal framework that captures
many of the common ideas of FOSD such as introductions,
re�nements, or quanti�cation and hides di�erences of mi-
nor importance. It abstracts from the details of di�erent
programming languages and environments used in FOSD.
Moreover, alternative design decisions in the algebra re
ect
variants and alternatives in concrete programming language
mechanisms; for example, certain kinds of feature composi-
tion may be allowed or disallowed.
In one of the standard models of feature algebra, the struc-

ture of a feature is represented as a tree, called a feature
structure tree (FST) [2]. An FST captures the essential, hi-
erarchical module structure of a given program. Based on
that, feature combination can be modelled as superimposi-
tion of FSTs, i.e., as recursively merging their corresponding
substructures.
Feature algebra serves as a formal foundation of archi-

tectural metaprogramming [6] and automatic feature-based
program synthesis [10]. Both paradigms emerged from FOSD
and facilitate the treatment of programs as values manipu-
lated by metaprograms, e.g., in order to add a feature to
a program system. This requires a formal theory that pre-
cisely describes which manipulations are allowed.
In the present extended abstract we �rst derive a concrete

model for feature algebra that is based on FSTs. It was
already sketched in [3]; however we de�ne it in a precise way.
After introducing the abstract notion of a feature algebra,
we present another concrete model. Next we show that the
models are �ne as long as one does not consider feature
oriented programming on code level. If manipulation of code
and not only of the overall program structure is explicitly
included in the model some aspects of feature orientation
cannot be re
ected properly. In particular, we show that
merging, overriding or extending bodies of methods yields
problems. To overcome this de�ciency, we relax the axioms
and introduce the concept of an extended feature algebra.
To clarify the idea and to underpin the relaxation we also
extend the introduced model which can then handle code
explicitly. Finally we discuss how additional operators can
be introduced to capture even more properties of feature
oriented programming formally. In particular, we present
operators for merging, overriding and updating as they arise
in code modi�cation.

2. A STANDARD MODEL
Based on feature structure trees (FSTs), we give a �rst

concrete model for feature algebra. The formal de�nition
of feature algebras will be given in the next section. Fea-

75

ture structure trees capture the essential hierarchical mod-
ule structure of a given program system (e.g. [3]). An ex-
ample is given in Figure 1, where a simple Java class Base
is described. For the present extended abstract we restrict
ourselves to Java; examples of other feature oriented pro-
gramming languages can easily described in a similar way.

class

enterclear

top

Base

method field

Calc

e1

e0

e2

packageUtil

Figure 1: A simple JAVA-class as FST ([6, 3])

It is well known that certain labelled forests can be en-
coded using strings of node labels (e.g., [5]). We use forests
rather than single trees in our description, since, in general,
we deal with several classes.
Let � be an alphabet of node labels and, as usual, �+

the set of all nonempty �nite strings over �. Every such
word can be thought of as the sequence of node labels along
the unique path from a root in the forest to a particular
node. In the sequel we will just write \path" instead of
the lengthy \string of labels along a path". Note that this
approach does not allow di�erent roots with identical labels
and no identical labels on the immediate descendants of a
node. However, this is not a restriction.
A �rst model now represents a forest by all possible paths

from roots to nodes. Since every pre�x of the path leading
to a node x corresponds to a path from the respective root to
an ancestor of x, with a path also all its non-empty pre�xes
are paths in the forest. Therefore the set of all possible paths
is pre�x-closed. Note, however, that a set of paths forgets
about the relative order of child nodes of a node, i.e., this
model is suitable only for unordered trees.

Example 2.1. The FST of Figure 1 is encoded as the fol-
lowing pre�x-closed set:

Base =def f Util; Util :: Calc; Util :: Calc :: top;
Util :: Calc :: clear; Util :: Calc :: enter;
Util :: Calc :: e0; Util :: Calc :: e1;
Util :: Calc :: e2 g ;

where :: is used to separate the elements of �. Of course all
occurring names must be elements of the underlying alpha-
bet, i.e., Util, Calc, top, clear, enter, e0, e1, e2 2 �. ut

Conversely, one can (uniquely up to the order of branches)
reconstruct a forest from the pre�x-closed set of its paths.
We de�ne P� as the set of all pre�x-closed subsets of

�+. Note that P� is closed under set union. Based on this,
feature tree superimposition can simply be de�ned as set
union. Hence the order of combination does not matter and
therefore addition is commutative and idempotent.

It is easy to show that (P�;[; ;) forms a monoid, i.e.,
[is associative with ; as its neutral element, and, because
of commutativity and idempotence of its addition operator
[, also satis�es the axiom of distant idempotence, namely
A [B [A = B [A for A;B 2 P�.
In addition to feature superimposition, feature algebra

also comprises modi�cations which in the concrete model
are tree rewriting functions.
It is easy to see that such functions can be used to model

many di�erent aspects of feature oriented programming and
development. With respect to FSTs a modi�cation might
be the action of adding a new child node (adding a method
to a class), of deleting a node (removing a method) or of
renaming a node (renaming a class). As we will see, alter-
ing the contents of a leaf node (overriding and extending a
method body) may lead to a problem.
A concrete tool for performing the operations of a feature

algebra is FeatureHouse [1, 2]. It allows composing features
written in various languages such as Java, C#, C, Haskell,
and JavaCC. With the help of this tool we will show in Sec-
tion 5 that the implementation and the axioms of feature
algebra given below do not coincide when modi�cations are
allowed to touch the code level. As long as the code is ig-
nored, i.e., only the method interfaces or the like are con-
sidered to be modi�able things works �ne.
This observation implies that, to achieve full congruence,

either the theory has to be adapted or the implementation of
FeatureHouse has to be changed. In Section 6 we introduce
an extension of feature algebra that is designed to cover also
features at code level.

3. FEATURE ALGEBRA
We now abstract from the concrete model of FSTs and

introduce the structure of feature algebra. It was �rst pre-
sented by Apel, Lengauer, M�oller and K�astner in [3]. There
a number of axioms is selected that have to be satis�ed
by languages suitable for feature oriented software devel-
opment. For the present paper we compact them and come
up with the following de�nition. To focus on the main as-
pects we omit a discussion of the variants and alternatives
described in the same paper.
A feature algebra comprises a set I of introductions that

abstractly represent feature trees and a set M of modi�ca-
tions that allow changing the introductions. The central op-
erations are the summation + that abstractly models feature
tree superimposition, the operator � that allows application
of a modi�cation to an introduction and the modi�cation
composition operator �.
Formally, a feature algebra is a tuple (M; I;+; �; �; 0; 1)

such that

� (I;+; 0) is a monoid satisfying the additional axiom of
distant idempotence, i.e., i+ j + i = j + i.

� (M; �; 1) is a groupoid operating via � on I, i.e., � is a
binary inner operation on M and 1 is an element of M
such that furthermore

{ � is an external binary operation from M � I to I

{ (m � n) � i = m � (n � i)

{ 1 � i = i

� 0 is a right-annihilator for � , i.e., m � 0 = 0

76

� � distributes over +, i.e., m � (i+ j) = (m � i) + (m � j)

for all m;n 2M and all i; j 2 I.
On the introductions of a feature algebra, the natural pre-

order or subsumption preorder is de�ned by i � j ,def

i + j = j; it is closely related to the subtyping relation
<: in the Deep calculus of [15]. The introduction equiva-
lence by i � j ,def i � j ^ j � i. Finally, we de�ne
the application equivalence � of two modi�cations m;n by
m � n ,def 8 i : m � i = n � i. This is clearly an equivalence
relation.
The model introduced in the previous section forms a fea-

ture algebra if a suitable set of tree rewriting functions is
chosen as the set of modi�cations. The set has to be cho-
sen carefully, since otherwise the functions might, e.g., vi-
olate the uniqueness conditions imposed on forests. The
axiom (m � n) � i = m � (n � i) is satis�ed by the usual de�ni-
tion of function composition: applying a composed function
is equivalent to applying the single functions in sequence.
Then the operator � coincides with function application and
� with function composition. Because of commutativity and
idempotence of [(which instantiates + in that model), the
natural preorder there actually is an order and coincides
with the subset relation �.
An advantage of this particular abstract algebraic de�ni-

tion is that it contains only �rst-order equational axioms,
i.e., it is predestined for automatic theorem proving. Since
we have encoded feature algebra in Waldmeister [9]1, we skip
the proofs. They can be found at a website [14].

Lemma 3.1. Assume i; j to be introduction sums and as-
sume m;n; o to be modi�cations of a feature algebra.

1. 0 � i and i � 0) i = 0.

2. + is idempotent; i.e., i+ i = i.

3. � is a preorder, i.e., i � i and i � j ^ j � k) i � k.

4. i � i+ j and j � i+ j.

5. i � k ^ j � k) i+ j � k.

6. + is quasi-commutative w.r.t. �, i.e., i+ j � j + i.

7. (m � (n � o)) � i = ((m � n) � o) � i.

8. (m � 1) � i = (1 �m) � i = m � i.

Meanings and relevance of Parts (1){(3) are straightfor-
ward. Part (4) says that addition determines an upper
bound with respect to the natural preorder. Part (5) shows
that the sum is even a least upper bound. Parts (7) and
(8) show that, up to application equivalence, � is associative
and 1 is its neutral element, i.e., (m � (n � o)) � ((m �n) � o)
and (m � 1) � (1 �m) � m.

4. ANOTHER STANDARD EXAMPLE
Since in certain applications the relative order of the im-

mediate successor nodes in a tree matters, we now present a
second model that re
ects forests of ordered labelled trees.
It uses the fact that all paths in a tree can be recovered from
the maximal ones that lead from roots to leaves by forming

1In contrast to [4], we use Waldmeister instead of Prover9
since it can handle multiple sorts. For feature algebra we
use the two sorts M and I.

their pre�x closure. It should be noted here that the maxi-
mal paths can be viewed as atomic introductions in the sense
of [3]. This could have been exploited already in the previ-
ous model, but would have led to a much more complicated
de�nition of tree superimposition. While an unordered for-
est can be represented as the �nite set of its maximal paths,
for an ordered one we use �nite lists of such paths. To make
the representation unique, we have to restrict ourselves to
lists that are pre�x-free, i.e., lists l that with a path p do
not contain a proper or improper pre�x of p elsewhere in l.
In particular, such lists are repetition-free. Like the previ-
ous model, this does not admit di�erent roots with identical
labels and no identical labels on immediate descendants of
a node.

Example 4.1. The FST of Figure 1 is encoded as the fol-
lowing pre�x-free list:

Base =def [Util :: Calc :: top; Util :: Calc :: clear;
Util :: Calc :: enter; Util :: Calc :: e2;
Util :: Calc :: e1; Util :: Calc :: e0] :

ut

Superimposition + is now de�ned inductively over the
length of the �rst list:

� The empty list does not e�ect another list of paths:

[] + [q1; : : : ; qn] =def [q1; : : : ; qn]

� A singleton list [p] is added to an existing list by re-
placing existing pre�xes of it:

[p]+[q1; : : : ; qn] =def

8>>>>>><
>>>>>>:

[q1; : : : ; qn]
if p is a pre�x of some qi

[q1; : : : qi�1; p; qi+1; : : : ; qn]
if qi is a pre�x of p

[p; q1; : : : ; qn]
otherwise

� For longer lists we set

[p1; : : : ; pm; pm+1] + [q1; : : : ; qn] =def

[p1; : : : ; pm] + ([pm+1] + [q1; : : : ; qn])

We de�ne L� as the set of all pre�x-free lists of elements
of �+. It is easy to show that (L�;+; []) forms a (non-
commutative) monoid that additionally satis�es the axiom
of distant idempotence; its natural preorder re
ects list in-
clusion and the associated equivalence relation is permuta-
tion equivalence, i.e., equality up to a permutation of the list
elements. Also in this model, modi�cations are just rewrit-
ing functions with the same operations as before.
In both algebras P� and L� distant idempotence models

the fact that duplicating a feature has no e�ect. Hence idem-
potence seems of central interest in feature algebra. How-
ever, in the next section we will show that the axiom of dis-
tant idempotence yields problems in a model that considers
more details.

5. THE LOST IDEMPOTENCE
As mentioned in the previous sections, distant idempo-

tence (and hence idempotence), i.e., the fact that duplicat-
ing a feature has no e�ect, was of central interest in feature

77

algebra. In [4], it is stated that languages and tools for fea-
ture combination usually have the idempotence property.
This works �ne as long as a feature only contains the name

and not its implementation. At the code level this property
does not hold any longer. We illustrate this behaviour by a
Java program.

Example 5.1. Consider a Java method foo given by

void foo(int a) {
a++;
original(a);

}

When used in a feature superimposition, it updates a pre-
vious de�nition of foo; the pseudo-statement original(a)
inserts the original body. We assume further that foo is a
method of the class Bar. ut

To integrate code into an FST, each terminal node has to
be extended. According to this, we have also to extend the
pre�x-closed elements of the set P�. This is done as follows:
Each letter (element of �) at the end of a maximal path is
extended with code. This extension preserves that pre�xes
of paths are legal paths again. The following example should
clarify the main idea; an abstract and more precise de�nition
will be given below.

Example 5.2. With this explanation, the code of the pre-
vious example can be written as

Bar::foo
void foo(int a) {
a++;
original(a);

}

To shorten the notation we write Bar :: foo[A] where A is
an abbreviation for the complete code contained in the box.

ut

As mentioned before, feature algebra was introduced as
a formal treatment of FOSD and is intended to model Fea-
tureHouse at an abstract level. If, however, two occurrences
of the same feature appear in one program the code parts
have to be merged and hence the order of combination does
matter, since code parts of the are overwritten and/or up-
dated. We skip the details how FeatureHouse merges code
and applies overriding. Instead we illustrate the situation
by an example.

Example 5.3. Using FeatureHouse leads to the following
result:

Bar :: foo[A]� Bar :: foo[A]

=

Bar::foo
void foo(int a) {
a++;
a++;
original(a);

}

6= Bar :: foo[A]

where � is the feature combination of FeatureHouse. In par-
ticular, � is not idempotent and therefore the axiom of dis-
tant idempotence does not hold. ut

This short example and this short application of Feature-
House show that idempotence is not satis�ed in general in
the setting of FOSD. Moreover, either feature algebra is not
the formal model for FeatureHouse or FeatureHouse does
not follow the theoretical foundations introduced by the al-
gebraic structure.
This section provided only a brief description and focussed

on some parts of FeatureHouse and feature algebra which
lead to discrepancies. It was not the intention to explain
every fact of FeatureHouse and feature algebra in detail. The
interested reader is referred to the references [1, 3].

6. EXTENDED FEATURE ALGEBRA
We have shown that the axioms of distant idempotence

and hence also standard idempotence do not hold when ar-
guing at code level. The remainder of the paper presents
some ideas how to solve the described problems.
To model code-level behaviour at an abstract level we ex-

tend feature algebra by a third type C of code fragments.
We de�ne the structure of an extended feature algebra as

a tuple (M; I;C;+; �; �; j; 0; 1) with the following properties
for all m;n 2M , i; j 2 I and a; b; c 2 C:

� We consider pairs (i; c) where i is an introduction cor-
responding to a maximal path in the forest under con-
sideration and c is the code fragment contained in the
leaf at the tip of that path. We denote (i; c) by i[c].2

The set of all these pairs is denoted by I[C].

� (C; j) is a semigroup in which j is an update or override
operation (see below),

� (I[C];+; 0) is a monoid satisfying i[a] + j[c] + i[b] =
j[c] + i[ajb],

� (M; �; 1) is a groupoid operating via � on I[C],

� 0 is a right-annihilator for � and

� � distributes over +.

The original de�nition of a feature algebra can be retrieved
by choosing C as a set containing only one single element
(the empty code fragment).
The operation j can be seen as an update. In the previous

section, j merged code fragments. In the next section we will
discuss this operation in our concrete models. Note that we
have modi�ed the axiom of distant idempotence: adding a
feature a second time updates the earlier instance of that
feature rather than just ignoring it.
Unfortunately, we cannot de�ne a natural preorder on an

extended feature algebra. This is due to the lack of idem-
potence. Hence the counterpart of Lemma 3.1 reduces to

Lemma 6.1. Assume i; j to be introductions, m;n; o to
be modi�cations and assume c to be a code fragment of an
extended feature algebra. Then

1. (m � (n � o)) � i[c] = ((m � n) � o) � i[c] ,

2. (m � 1) � i[c] = (1 �m) � i[c] = m � i[c] .

2This �ts well with the notation of the example of the pre-
vious section.

78

To overcome the de�ciency of the missing preorder we can
de�ne two di�erent relations:

i[a] �r j[b] =def 9 k[c] 2 I[C] : i[a] + k[c] = j[b] ;

i[a] �l j[b] =def 9 k[c] 2 I[C] : k[c] + i[a] = j[b] :

This implies immediately the following

Lemma 6.2.

1. �l, �r are preorders

2. 0 �l i, 0 �r i

Up to now we do not know which of the orders should
be preferred. A further investigation of properties as well
as the interaction of both preorders will be part of future
research (cf. Section 8).

7. EXTENDING THE MODELS
In Section 5 we pointed out that FeatureHouse merges and

updates code. Therefore a formal model should also re
ect
this behaviour. Unfortunately this does not hold for the
models presented in Section 2, which led to our extension
by code fragments.
In this section, we show how to de�ne the update opera-

tor j in our concrete models.
In particular, we will identify the \common part" of two

given implementations of the same feature oriented program.
Based on the common part one can determine which part of
a method body has to be overridden and which part has to be
preserved. Of course these calculations highly depend on the
respective language and have to follow exact rules. In Java,
for example, FeatureHouse simply overrides declarations and
functions as long as the keyword original does not occur
in the code.3 For a detailed description we refer again to [1].
To model such behaviour we de�ne abstract interfaces for

each Java method. Whereas a general Java element may
contain arbitrary (legal) programming constructs, abstract
interfaces may contain only the types of the corresponding
Java parts and\forgets" the remaining bodies, initialisations
etc. We illustrate this behaviour by an example.

Example 7.1. On the left hand side there is a simple
Java method while its abstract interface appears on the right
hand side.

int min5(int a) {
int b=5;
if(a<b) return a;
else return b;

}

int min5(int a) {
int b;

}

The typing of the local variable b appears, since its declara-
tion may be overwritten during a feature combination. ut

A precise de�nition of the abstract interface will need to
re
ect also nested scopes etc. The use of abstract interfaces
may yield invalid Java code (e.g., return statements are
omitted). This does not matter, though, since it will only
be employed to identify the \common part".
Let again C be the set of possible code fragments and

T � C the set of the corresponding abstract interfaces. The
function that determines the abstract interface for a given

3There are some exceptions.

Java code is denoted by ai : C ! T . Next we de�ne two
functions

z ;� : P(C)� P(T)! P(C)

X z U = fx 2 X j ai(x) 2 Ug

X � U = fx 2 X j ai(x) 62 Ug :

The restriction operator z determines for a set X of code
fragments the ones whose corresponding abstract interfaces
lie in the given subset U � T , while the operator � selects
its relative complement.
To de�ne the update function j we need to lift the function

ai to sets of code fragments by

ai(X) =def fai(x) jx 2 Xg :

Then

XjY =def (Y � ai(X)) [X :

This means that all \old" de�nitions of elements in Y that
are rede�ned in X are discarded and replaced by the ones
in X; moreover, all elements of X not mentioned in Y are
added. It should be noted that ai and j are closely related
to the interface operator " and the asymmetric composition
&� in the Deep calculus of [15].
It turns out that this rather concrete de�nition can be

lifted to the same level of abstraction as that of our feature
algebra, which again opens the possibility for automated ver-
i�cation. The key is the observation that ai(X) is the least
set that leaves X unchanged under the selection operation z:

X = X z U , ai(X) � U

In fact, since X z U � U holds anyway by de�nition, this
can be relaxed to

X � X z U , ai(X) � U :

Mathematically, this is known as aGalois connection (e.g. [8,
11]). Also, ai behaves in many respects like the abstract
codomain operator of [12]. The de�nition of j is similar
to the ones based on relations or semirings with domain
(e.g. [16, 13]). These correspondences allow us to re-use a
large body of well-known theory | another advantage of an
abstract algebraic view.
Let us detail this a bit more. We may abstract the set C

of code fragments to a Boolean algebra L and the set T
of abstract interfaces to a subalgebra N of L. Then the
above functions can be characterised and generalised using
the following axioms:

(a+ b) z p = a z p+ b z p
a z 0 = 0

a z (p+ q) = a z p+ a z q

0 z p = 0

���������

(a+ b)� p = (a� p) + (b� p)
a� 0 = a

a� (p+ q) = (a� p)� q
= (a� q)� p

0� p = 0
a � a z p , aq � p

ajb = (b� aq) + a

where a; b 2 L, p; q 2 N and + denotes the supremum of
L, � its order, 0 the least element and aq is the abstract
counterpart of ai(a).
Note that this section only gives the main ideas how to

model the update operation in the abstract setting of an
extended feature algebra. The work presented is part of
ongoing work and will be investigated in much more detail
(see the next section).

79

8. CONCLUSION AND OUTLOOK
The present paper is based on earlier work by Apel, Len-

gauer, M�oller and K�astner [3]. They introduced a formal
model to capture the commonalities of feature oriented soft-
ware development such as introductions, re�nements and
quanti�cation. We have de�ned a concrete model for fea-
ture algebra and have illustrated that the axioms of feature
algebra are �ne as long as one does not consider feature ori-
ented programming at code level. Otherwise not all aspects
of feature orientation can be modelled. To remedy this, we
have introduced the structure of an extended feature algebra
which generalises the original de�nition. To clarify the idea
we have also extended the introduced models correspond-
ingly. Finally we sketched how additional operators can be
introduced to capture even more properties of feature ori-
ented programming like updating or overriding.
This extended abstract is a further step towards an alge-

braic theory that covers all aspects of FOSD. Of course, all
introduced operators like update need further investigation;
in particular Section 7 reports about ongoing work. On the
one hand more properties need to be derived; on the other
hand it has to be checked whether the extension adequately
covers the essential properties of FOSD, in particular, the
merging of code fragments. If this turns out not to be the
case, the extended feature algebra will need further modi�-
cation.

Acknowledgement.
We are grateful to Han-Hing Dang, Roland Gl�uck and the
anonymous referees for fruitful comments.

9. REFERENCES
[1] S. Apel, C. K�astner, and C. Lengauer. FeatureHouse:

Language-independent, automated software
composition. In 31th International Conerence on
Software Engineering(ICSE), pages 221{231. IEEE
Press, 2009.

[2] S. Apel and C. Lengauer. Superimposition: A
language-independent approach to software
composition. In C. Pautasso and �E. Tanter, editors,
Software Composition, volume 4954 of Lecture Notes
in Computer Science, pages 20{35. Springer, 2008.

[3] S. Apel, C. Lengauer, B. M�oller, and C. K�astner. An
algebra for features and feature composition. In
AMAST 2008: Proceedings of the 12th international
conference on Algebraic Methodology and Software
Technology, volume 5140 of Lecture Notes in
Computer Science, pages 36{50. Springer, 2008.

[4] S. Apel, C. Lengauer, B. M�oller, and C. K�astner. An
algebraic foundation for automatic feature-based
program synthesis and architectural
metaprogramming. Science of Computer
Programming, 2009. (to appear).

[5] F. Baader and T. Nipkow. Term Rewriting and All
That. Cambridge University Press, 1999.

[6] D. Batory. From implementation to theory in product
synthesis. ACM SIGPLAN Notices, 42(1):135{136,
2007.

[7] D. Batory and S. O'Malley. The design and
implementation of hierarchical software systems with
reusable components. ACM Transactions Software
Engineering and Methodology, 1(4):355{398, 1992.

[8] G. Birkho�. Lattice Theory. American Mathematical
Society, 3rd edition, 1967.

[9] A. Buch, T. Hillenbrand, and R. Fettig. Waldmeister:
High Performance Equational Theorem Proving. In
J. Calmet and C. Limongelli, editors, Proceedings of
the International Symposium on Design and
Implementation of Symbolic Computation Systems,
number 1128 in Lecture Notes in Computer Science,
pages 63{64. Springer, 1996.

[10] K. Czarnecki and U. Eisenecker. Generative
Programming: Methods, Tools, and Applications. 2000.

[11] B. A. Davey and H. A. Priestley. Introduction to
lattices and order,. Cambridge University Press, 2nd
edition, 2002.

[12] J. Desharnais, B. M�oller, and G. Struth. Kleene
algebra with domain. ACM Transactions on
Computational Logic, 7(4):798{833, 2006.

[13] T. Ehm. Pointer Kleene algebra. In R. Berghammer,
B. M�oller, and G. Struth, editors, RelMiCS, volume
3051 of Lecture Notes in Computer Science, pages
99{111. Springer, 2004.

[14] P. H�ofner. Database for automated proofs of Kleene
algebra. http://www.dcs.shef.ac.uk/�georg/ka
(accessed September 25, 2009).

[15] D. Hutchins. Eliminating distinctions of class: Using
prototypes to model virtual classes. In P. L. Tarr and
W. R. Cook, editors, Proceedings of the 21th Annual
ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
OOPSLA 2006, pages 1{20. ACM Press, 2006.

[16] B. M�oller. Towards pointer algebra. Science of
Computer Programming, 21(1):57{90, 1993.

80

Dead or Alive: Finding Zombie Features in the
Linux Kernel∗

Reinhard Tartler, Julio Sincero, Wolfgang Schröder-Preikschat, Daniel Lohmann
{tartler, sincero, wosch, lohmann}@cs.fau.de

Friedrich-Alexander-University Erlangen-Nuremberg

ABSTRACT
Variability management in operating systems is an error-
prone and tedious task. This is especially true for the Linux
operating system, which provides a specialized tool called
Kconfig for users to customize kernels from an impressive
amount of selectable features. However, the lack of a ded-
icated tool for kernel developers leads to inconsistencies
between the implementation and the variant model described
by Kconfig. This results in real bugs like features that can-
not be either enabled or disabled at all; the so called zombie
features.

For both in the implementation and the variant model,
these inconsistencies can be categorized in referential and
semantic problems. We therefore propose a tool approach to
check the variability described by conditional compilation in
the implementation with the variant model for both kinds of
consistency. Our analysis of the variation points show that
our approach is feasible for the amount of variability found
in the Linux kernel.

Categories and Subject Descriptors
D.4 [Operating Systems]: Organization and Design; D.2.16
[Software Engineering]: Configuration Management; D.3.4
[Programming Languages]: Preprocessors

General Terms
Design, Language, Tool Support

Keywords
Software Product Lines, Features, Preprocessor, Linux

1. INTRODUCTION
∗This work was partly supported by the German Research
Council (DFG) under grants no. SCHR 603/7-1 and SCHR
603/4

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOSD’09, October 6, 2009, Denver, Colorado, USA.
Copyright 2009 ACM 978-1-60558-567-3/09/10 ...$10.00.

Operating systems provide no business value of their own.
Their sole purpose is to ease the development and execution
of applications on some hardware platform, that is, to serve
application developers and application users with a virtual
machine layer that provides the “right” set of features for
their particular problem domain. Of course, this pays off only
if the operating-system itself is reusable for many different
applications and hardware platforms. Historically, this led
to the idea of configurable system families, in which each
family member subsumes a particular set of features. In
fact, much of the work of the software-engineering pioneer’s
from the 70s was motivated by practical problems that stem
from the feature variability of configurable operating-system
families [5, 15, 6].

Today, the number of configurable features offered by many
operating systems is still an order of magnitude higher than
the variability we typically find in software product lines and
software families from other domains: The feature model
of the (very small) PURE embedded operating system, for
instance, already offers more than 250 configurable features
[2]; eCos [13], which targets the same domain, provides more
than 750 features. However, the Linux kernel, which is the
subject of this paper, can be configured by even more than
8000 (!) configuration options [17].

It should be clear that both, kernel hackers and end users,
have to be supported by extra means and tools for variability
management to handle this impressive amount of features.
With the graphical configuration editors build around the
Kconfig tool, end-user support is already very reasonable.
For kernel hackers, however, variability management is an
error-prone and tedious task. The result are bugs and zombie-
features that are still presented in Kconfig, but not in the
code or vice versa.

1.1 Variability Management in Linux
The variability management techniques employed in the

Linux kernel can be divided into three levels:

Model Level. The Kconfig tool set was especially written
to support the modeling of features and interdepen-
dencies of the Linux kernel. It provides a language to
describe a variant model consisting of features (referred
to as config options) together with their constraints
and dependencies. Modularization of the variant model
is supported by an inclusion mechanism. In Linux
kernel version 2.6.30, a total of 534 Kconfig files are
employed, consisting of 88, 112 lines of code that de-
scribe 8063 features and their dependencies. In many
respects, the resulting variant model can be compared

81

to feature models known by the software product-line
community [18].
The user configures a Linux kernel by selecting fea-
tures from this model. During the selection process,
the Kconfig configuration utility implicitly enforces all
dependencies and constraints, so that the outcome is
always the description of a valid variant. Technically,
this description is given as a C-style header file that de-
fines a CONFIG_xxx preprocessor macro for every selected
feature.

Generation Level. Coarse-grained variability is implemen-
ted on the generation level. The compilation process
in Linux is controlled by a set of custom scripts called
Kbuild that interpret a subset of the CONFIG_xxx flags
and drive the compilation process by selecting which
compilation units should be compiled into the kernel,
compiled as a loadable module, or not compiled at all.

Source Code Level. Fine-grained variability is implemen-
ted by conditional compilation using the C preprocessor.
The source code is annotated with preprocessor direc-
tives (like #ifdef CONFIG_xxx or #if(CONFIG_xxx ...)),
which are evaluated in the compilation process. This
is the major variability mechanism used in the Linux
kernel.

Whereas in other domains the set of features is usually
the outcome of a top-down domain analysis (requirement-
motivated features), the majority of features we find in
configurable operating systems are usually the result of a
bottom-up design and implementation process, beginning
on the level of hardware-abstractions up to the kernel APIs
(implementation-motivated features). This is particularly
true in Linux, which is a very source-code–centric project.
New or improved features are implemented first; later on
they are assigned a CONFIG_xxx symbol which is, together
with their dependencies, integrated into or updated in the
Kconfig model. This, however, is a manual and tedious task
that nevertheless requires the skills of an experienced kernel
hacker.

1.2 Problem Statement
It is not difficult to imagine that this process leads to

inconsistencies between the Kconfig representation of features
and their dependencies as seen by the user who configures a
Linux kernel, and the implementation.

It is clear that the Kconfig tool cannot solve variability
management problems satisfactorily for kernel developers,
as it has no access to the use of its config options in the
code base. Likewise, the C Preprocessor is not able to detect
inconsistencies of config options during parsing because it
has no capabilities for interpreting the Kconfig model.

Undoubtedly, the variability described in the Kconfig files
and in the source code are conceptually interconnected and
have to be kept consistent. However, there is a gap between
the various tools that are involved during the configuration
and compilation phase of the Linux kernel. This gap has
to be closed in order to detect existing bugs and avoid new
ones when new features are added or existing features are
refactored. This is especially important because changes
(new additions or refactoring) at both sides (Kconfig model
or code base) may potentially break consistency.

1.3 Our Contribution
In this paper we introduce a set of conditions that have

to be asserted between code base and the Kconfig model in
order to preserve consistency. We also confirm that this is
a real problem by analyzing the current code base of the
Linux kernel and show real bugs. We also expound that
such bugs are introduced due to inadequate tool support.
Moreover, we sketch the requirements of a tool to detect
such inconsistencies, and, therefore, is able to close the gap
between the variability at model level and source code level.

2. PROBLEM ANALYSIS
While analyzing the Linux family model we discovered that

the implementation in form of C source code and the family
model described in Kconfig show obvious inconsistencies. In
summary, we identify two dimensions of consistency.

Referential consistency is categorized by:

1. every reference to a configuration item in the source
code is referenced in the Kconfig variant model

2. every Kconfig option from the variant model is refer-
enced from the implementation in the source code

Furthermore, semantic consistency can be accounted by:

3. every single configuration item in the source code is
selectable in the Kconfig variant model

4. the Kconfig variant model covers all #if branches for all
conditional blocks that use more than one configuration
item

Fragments in the source code or in Kconfig that violate
one or more of these consistency conditions result in features
that can never be enabled or disabled. We therefore call
features, which are implemented by fragments that are either
always dead or alive zombie features.

In this paper, we focus on variation points that are imple-
mented by configuration-controlled conditional compilation.
Configuration controlled means that only conditional blocks
that are affected by the configuration selection are considered.
In Linux that means preprocessor macros beginning with the
string CONFIG_. In theory, these macros should only be set in
generated, configuration-derived files. In practice, this rule
is not strictly enforced, so that estimations need to be made
carefully.

As of version 2.6.23, the Linux source tree contains a script
scripts/checkkconfigsymbols.sh that is intended to test the
source code against the Kconfig model with respect to refer-
ential integrity regarding CONFIG_xxx symbols. However, this
script is obviously not employed by the Linux maintainers,
as a simple test run reports over 760 unresolvable references
in kernel version 2.6.30. We modified the script to avoid
false positives by only considering unresolvable references
that appear in preprocessor directives (i.e., only in lines that
start with #if or #elif). Even though this is most probably
too strict and we thereby miss some legitimate problems, the
number of unresolvable references only went down to 360.
Further inspection of the Linux code base shows that 206
macros, which start with the CONFIG_ prefix, are being defined
or undefined with the preprocessor. From these macros, only
39 are defined within Kconfig, this means that we estimate
at least 321 real issues that need to be investigated!

82

This number is still calculated conservatively. A first anal-
ysis of the findings reveal several obvious bugs, such as the
misspelling of CONFIG_CPUMASKS_OFFSTACK in the file include/-

linux/irq.h (most probably CONFIG_CPUMASK_OFFSTACK was
meant), or the item CONFIG_CPU_HOTPLUG in the file kernel/-

smp.c, which should probably read CONFIG_HOTPLUG_CPU.1

Even though these number of inconsistencies already sounds
pretty alarmingly, they most probably cover only the tip of
the iceberg. Besides additional inconsistencies with respect
to referential integrity that arise from Kconfig items that are
not present in the source code, we can also expect inconsis-
tencies between the encoding of feature dependencies and
feature interactions in Kconfig and in the source code.

3. SOLUTION OUTLINE
It is obvious that the simple approach taken by the scripts/-

checkkconfigsymbols.sh does only cover checking for refer-
ential consistency from the implementation to the variant
model. However, we require detecting violations of all four
conditions (i.e. both referential and semantic consistency),
with satisfying accuracy.

Conditional compilation is implemented by preprocessor
directives that order conditional blocks in a defined order,
and is straightforward to analyze. However quantifying
configuration-controlled variability is more challenging. Con-
sider the following source code excerpt taken from the file
include/linux/init.h:

#ifndef _LINUX_INIT_H

#define _LINUX_INIT_H

[...]

#if defined(MODULE) || defined(CONFIG_HOTPLUG)

#define __devexit_p(x) x

#else

#define __devexit_p(x) NULL

#endif

[...]

#endif /* _LINUX_INIT_H */

This source code snippet shows a typical C header. The
very first preprocessor statement in this file is a technique
known as ”#include-guard”, so that multiple inclusions of this
file do not cause the actual contents to be evaluated multiple
times by the compiler. In any case, these kinds of blocks are
clearly not configuration controlled and therefore, must not be
counted. Next, this header defines a qualifier __devexit_p(x)

whose exact definition depends on both a configuration de-
pendent variable CONFIG_HOTPLUG as well as another macro
named MODULE. This macro can be totally unrelated to the
Kconfig selection. Therefore, our tool does consider this
conditional block as such, but for analyzing the variability
of the compilation unit, only the macro CONFIG_HOTPLUG is
considered.

However, not all conditional blocks contribute to confi-
guration-controlled variability. Consider the following code
snipped taken from the file kernel/printk.c:

1We have reported these inconsistencies as potential bugs to
the Linux community and are awaiting a confirmation.

static int __init console_setup(char *str)

{

[...]

#ifdef __sparc__

if (!strcmp(str, "ttya"))

strcpy(buf, "ttyS0");

if (!strcmp(str, "ttyb"))

strcpy(buf, "ttyS1");

#endif

[...]

}

The purpose of this conditional block is portability of the
file to the Sparc architecture. While this is an important
concern, it is not handled by the means of Kconfig and
therefore cannot be controlled by the user.

The preprocessor is used in this source file to include
the previously shown header textually before passing the
composed text to the compiler. In order to calculate the
variability of the expanded compilation unit, the #include

directive needs to be expanded. This allows us to consider
both cases: The variability of the source file – the developer’s
view – and the variability of the compilation unit – the view
of the compiler.

Interestingly, in Linux the configuration selection is not
referenced explicitly in any source file. Instead, the configura-
tion is implicitly present with a forced -#include technique as
implemented by the -include compiler command-line option
of GCC. This technique is used in all compilation units used
during the compilation phase of the Linux kernel. Tools for
evaluating the Linux source code therefore have to adopt
this technique as well.

In this example we identified two #ifdef-blocks that are
configuration dependent. The #ifdef-statement in the main
source file does reference an identifier with the substring
CONFIG_. However, it does not follow the convention that
configuration items in Linux must begin with that prefix.
Moreover the #if-statement in the header also contains an
#else-block, which we count as an extra block.

A tool that reliably detects these inconsistencies requires a
global view on all variation points in both the source code (the
declarations of conditional blocks) and the Kconfig family
model. As a first step, our framework therefore builds an
Implementation Variability Database by scanning the source
code. After scanning the complete kernel tree, the database
contains all configuration-dependent conditional-blocks from
the implementation of Linux. This is depicted in the lower
part of Figure 1.

This database is essentially a fact database. In order to
query such a database efficiently, first-order logic provides
an appropriate language to create queries that allow drawing
further conclusions. We therefore use the crocopat tool for re-
lational programming [3] for this task. crocopat uses the rigi
standard format from the rigi [20] reverse-engineering suite as
input format. With crocopat, we can trivially do prolog-like
queries on the Implementation Variability Database of any
sort.

From the Kconfig files we extract the dependencies and con-
straints into a second database, the Family Model Variability
Database. For this we need to parse the existing Kconfig files
in Linux and analyze the dependencies and constraints. In
order to be able to do queries and selections, we use the rigi
standard format again so that crocopat can be reused. This
is sketched in the upper part of figure 1.

83

Implementation Variability
Database

Family Model
Variability Database

Queries for each
feature

Kconfig

.h .h .h .h .h

.c .c .c

Figure 1: Our tool approach

In order to build the Implementation Variability Database
we will calculate the variability of individual expanded com-
pilation units. In this context variability means all possible
different token streams (the input for syntactic parsing) that
can be generated by the C Preprocessor (CPP) when prepro-
cessing a compilation unit. When the expression of a CPP

directive evaluates to true, the corresponding code will be
read and inserted into the resulting token stream. If the
expression evaluates to false, this code block is skipped and
not included in the token stream. It means that in theory, a
file with n different conditional directives (#if, #elif, etc.)
might consist of 2n different combinations.

Fortunately, many of these configurations cannot be com-
posed in practice. For example, the conditional blocks
defined by an #if directive and its corresponding #else

will never be enabled at the same time, because of the
exclusive semantic of #if-#else blocks. In order to cal-
culate the exact variability of each compilation unit, our
tool generates a formula like f : (x1, . . . , xn)→ {0, 1} where
x1, x2, . . . , xn are the Kconfig symbols used in CPP state-
ments. This formula is basically the conjunction of the
condition of each conditional block. These conditions are
in fact the conjunction of the expression where the Kcon-
fig symbols are used (e.g. CONFIG_SMT && CONFIG_X86) with
the structural constraints like nested blocks (implications of
the form (child ⇒ parent)). Another type of constraint is
imposed by the semantics of #if-#elif-#else block groups,
where for each block (B1, B2, . . . , Bn) of such group a depen-
dency of the form B1 ⇒ ¬(B2 ∨B3 ∨ . . . ∨Bn) is required.

After constructing such a boolean function, it can be trans-
lated into a binary decision diagram (BDD) so that further
analysis, like the calculation of the truth table, can be per-
formed very efficiently. The lines in the truth table of such a
boolean function that evaluate to true provide the set of valid
configurations of a compilation unit. We can then use this
set of valid configurations and crosscheck with the Kconfig
dependencies in order to discover combinations of features
that are allowed in the code base but not in the variant
model, the so called, zombie features.

Having both databases available will allow us to check
referential integrity of configuration items. In order to check
semantic integrity, we transform the feature dependencies
of the Family Model Variability Databases into BDDs that

can be queried for satisfiability very efficiently. This way,
checking satisfiability for each single configuration option is
just a query against the BDD.

Checking semantic integrity with #ifdef-blocks that de-
pend on more than one configuration option is more challeng-
ing. In a first step, we use the Implementation Variability
Database to identify all conditional blocks with more than
one configuration item and obtain the exact expression used
in the conditional block. The challenge here is that condi-
tional blocks may be influenced by configuration items both
explicitly and implicitly. With explicit influence we mean
that the Kconfig symbol appears literally in the expression
of the preprocessor directive. Implicit influence happens
either by nested #ifdef directives or when the #define pre-
processor directive is used in a conditional block to define
another configuration item. The framework must consider
all configuration items (both implicit and explicit) for each
conditional block and calculate on this basis the conditional-
compilation path-coverage. Blocks that cannot be reached
in any configuration are then in violation with the semantic
consistency condition.

4. DISCUSSION
In the previous section, we have outlined our proposed tool

that will be part of a greater framework to assist managing
and verifying the variability in the Linux kernel. We hope
that our tool will be adopted by the various Linux commu-
nities involved with variability management and issues that
arise from it.

Especially targeted for driver developers, our framework
would be able to show what configuration derived variability
is actually used by a device driver. This would highlight the
variability points introduced for example by driver develop-
ers, but also indicate interaction with other features that
might have not been considered (yet) during the implemen-
tation of the driver. Depending on these additional variation
points, this can indicate that additional test cases need to
be considered.

Similarly, subsystem maintainers could use our tool during
reviews and integrations. While inspecting the Linux Guide-
lines for patch submission and review2 it turns out that 9 out
of 24 points deal with Kconfig related issues. These issues
are very hard to test and review; our framework can assist
here with visualizing and verifying the additional variation
points.

While we are convinced that our framework will be useful
for kernel maintainers, we need to consider if our approach
scales with the amount of variability in Linux. With Linux,
we are facing a variant model of about 8000 features. It
is well known that the size of BDDs is very sensitive to
the number and order of its variables, which may lead to
insufficient memory problems. However, our preliminary
results clearly show that the variability is not uniformly
distributed across the Linux source code, but variability hot
spots can be identified easily. Therefore, we will work on a per
compilation-unit basis in order to keep the BDDs reasonably
sized.

A first analysis with a self written tool based on sparse [10],
a framework for static analysis written for the Linux kernel,
shows that less than 10% of all files of the Linux kernel use
more then 2 different Kconfig symbols. When considering

2as found in the file Documentation/SubmittingPatches

84

expanded compilation units, we see that more than 85% of
all compilation units have at most 350 different symbols in
them. It is clear that we must also consider Kconfig symbols
that are not only explicitly named in a compilation unit but
come into effect indirectly. This can happen for example
when a compilation unit overrides a configuration item with
the #define preprocessor statement. Moreover, we need to
compute a global variable order so that partial computation
results can be reused. According to Mendonca et. al. [14], the
largest feature models that can be handled today have about
2000 features and 400 extra constraints. Still, we expect that
most compilation units in Linux will not exceed these limits,
if any.

Is this a language problem?
Could the problem have been avoided in the first place? In
many cases the usage of the C-Preprocessor is held responsi-
ble for maintenance problems in large software projects [19].
Would it be feasible to avoid the preprocessor in Linux? For
Linux, the answer is no. Operating systems need modular-
ization that is finer grained than provided by the plain C
language. This fact was already known during the design
and implementation of the C programming language [9], so
the C Preprocessor became part of every implementation
of C. With the conditional compilation feature, fragments
of a program can be modularized at a sub-statement level.
However, we identify two main issues with the approach
taken by the preprocessor: a) conditional blocks cannot take
any context into account, and b) the blocks are declared
anonymously and cannot be referenced from anywhere.

The first point is necessary for any form of generic im-
plementation. While conditional blocks cannot handle this
directly, the common workaround for this limitation is to de-
clare a preprocessor macro that takes parameters and declare
multiple, alternate implementations of the macro. Later, in
the C implementation, the macro is called like a function –
however parameters are bound by name to the macro code.
This workaround has limitations: First, the macro needs
to be declared in a single line, although line continuations
with the backslash (\) character are allowed. Second, most
implementations do not allow common debugging facilities
like setting a breakpoint or stepping through the macro code.
Third and most importantly, no type checking is done at all
during macro expansion. The lack of type support prevents
the C compiler from printing helpful diagnostic messages in
many cases of problems and thus leads to code that is hard
to maintain.

Modularisation of program fragments
So in the end, the decision to use the C Preprocessor for mod-
ularizing these fragments is based on technical circumstances.
While we envision compositional language approaches for
their technical handling like feature oriented programming
(FOP) [1], aspect oriented programming (AOP) [4] or compa-
rable languages, we should also consider the motivation for
introducing these parts in form of function fragments in the
first place. Linux is a very implementation driven project for
mainly two reasons. As indicated before, operating systems
are inherently implementation driven. Moreover, Linux is a
high traffic free-software project with a very active develop-
ment community. For these reasons, many optional features
of various kinds have been proposed and integrated into the
Linux code base.

However, there are many cases where two or more optional
features behave differently when they are selected at the same
time, compared to the case that only a single one is selected.
This problem has already been discussed by Batory et. al
as the optional feature problem [8, 11]. The proposed so-
lution is to modularize the features as derivatives, so that
the variant management system can select these derivative
modules according to the needs of the implementation in a
given configuration.

In Linux these derivatives are not modularized at all, but
scattered across the Linux source base using the C Preproces-
sor. Because nothing tracks the consistency of these modules
to the family models, unused derivatives become easily or-
phaned but still end up in the resulting product (the bootable
Linux kernel image). This can result in modules that can
be identified by preprocessor statements but can never be
enabled or disabled. For this reason, we call these undead
modules zombies.

5. RELATED WORK
Lotufo [12] analyzes the complexity of maintaining the

Kconfig files. An investigation of 29 stable versions of the
Linux kernel configuration options is presented. He concludes
that the complexity of the code for the configuration options
increases consistently, as well as the complexity of the result-
ing model. Interestingly, as we point out in this work, he
also suggests that reasoning capabilities should be added to
Kconfig.

Post and Sinz [16] present a technique called lifting that
converts all variants of a SPL into a meta program in order to
facilitate the application of verification techniques like static
analysis, or model checking. They evaluate their approach by
applying it into to the Kconfig files of the Linux kernel: The
Kconfig files were converted into C-code for analysis with a
source code checker, which reveals two new bugs attached to
uncommon configuration. This fact also supports the idea
that the Linux kernel should introduce reasoning capabilities
for its variant model.

Kästner et. al. [7] present an approach to check the syn-
tactic correctness of all variants of a software product line.
They present the tool CIDE which is able to analyze CPP-
based code among other languages. The concept of finding
bugs introduced by the use of CPP directives is similar to our
work, however, while CIDE focuses on syntactic errors, our
approach finds inconsistencies between the source code and
the variant model directly.

6. CONCLUSIONS
The mapping between the implementation of the variability

points in the source code and the family model is incomplete
and inaccurate. Our investigation of the Linux kernel shows
that the mapping between the implementation of the vari-
ability points in the source code and the family model shows
obvious inconsistencies. Our first probably inaccurate, but
conservative checks indicate over 300 real bugs that arise
from conditional compilation blocks which use configuration
options that are never defined in the Kconfig variant model.

We believe that this number is only the tip of the iceberg
and expect that additional bugs from defined Kconfig items
that are never used in the source code remain undetected.
Besides these violations of referential integrity, we also believe
that more inconsistencies can be detected by checking for

85

semantic integrity, that is if the condition of a conditional
block can be satisfied in the Kconfig variant model for all
branches that is defined by the condition in the #if or #ifdef

preprocessor statement.
It is clear that the impressive amount of variability cannot

be checked by kernel developers manually in the source code.
We therefore propose a tool that accompanies Kconfig, but
represents the counterpart for kernel developers. This tool
will help kernel developers to check all consistency condi-
tions reliably. According to our estimations we are confident
that our approach is feasible for the impressive amount of
variability points in the Linux code base.

7. REFERENCES
[1] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling

step-wise refinement. In Proceedings of the 25th
International Conference on Software Engineering
(ICSE ’03), pages 187–197, Washington, DC, USA,
2003. IEEE Computer Society Press.

[2] D. Beuche, A. Guerrouat, H. Papajewski,
W. Schröder-Preikschat, O. Spinczyk, and U. Spinczyk.
The PURE family of object-oriented operating systems
for deeply embedded systems. In Proceedings of the 2nd
IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC ’99), pages
45–53, St Malo, France, May 1999.

[3] D. Beyer. Relational programming with crocopat, 2006.

[4] K. Czarnecki and U. W. Eisenecker. Generative
Programming. Methods, Tools and Applications.
Addison-Wesley, May 2000.

[5] E. W. Dijkstra. The structure of the
THE-multiprogramming system. Communications of
the ACM, 11(5):341–346, May 1968.

[6] A. N. Habermann, L. Flon, and L. W. Cooprider.
Modularization and hierarchy in a family of operating
systems. Communications of the ACM, 19(5):266–272,
1976.

[7] C. Kästner, S. Apel, S. Trujillo, M. Kuhlemann, and
D. Batory. Guaranteeing syntactic correctness for all
product line variants: A language-independent
approach. In Proceedings of the 47th International
Conference Objects, Models, Components, Patterns
(TOOLS EUROPE), volume 33 of Lecture Notes in
Business Information Processing, pages 175–194.
Springer Berlin Heidelberg, June 2009.

[8] C. Kästner, S. Apel, S. S. ur Rahman, M. Rosenmüller,
D. Batory, , and G. Saake. On the impact of the
optional feature problem: Analysis and case studies. In
Proceedings of the 13th Software Product Line
Conference (SPLC ’09), Washington, DC, USA, 2009.
IEEE Computer Society Press.

[9] B. W. Kernighan and D. M. Ritchie. The C
Programming Language. Prentice Hall PTR, Englewood
Cliffs, NJ, USA, 1978.

[10] Linus Torvalds. Sparse - a semantic parser for C.
http://www.kernel.org/pub/software/devel/sparse/,
2003.

[11] J. Liu, D. Batory, and C. Lengauer. Feature oriented
refactoring of legacy applications. In Proceedings of the
28th International Conference on Software Engineering
(ICSE ’06), pages 112–121, New York, NY, USA, 2006.
ACM Press.

[12] R. Lotufo. On the complexity of maintaining the linux
kernel configuration. Technical report, Electrical and
Computer Engineering University of Waterloo, 2009.

[13] A. Massa. Embedded Software Development with eCos.
New Riders, 2002.

[14] M. Mendonça, A. Wasowski, K. Czarnecki, and D. D.
Cowan. Efficient compilation techniques for large scale
feature models. In Proceedings of the 5th International
Conference on Generative Programming and
Component Engineering (GPCE ’08), pages 13–22,
2008.

[15] D. L. Parnas. On the design and development of
program families. IEEE Transactions on Software
Engineering, SE-2(1):1–9, Mar. 1976.

[16] H. Post and C. Sinz. Configuration lifting: Verification
meets software configuration. In Proceedings of the 23th
IEEE International Conference on Automated Software
Engineering (ASE ’08), pages 347–350, 2008.

[17] J. Sincero, H. Schirmeier, W. Schröder-Preikschat, and
O. Spinczyk. Is the linux kernel a software product
line? In F. van der Linden and B. Lundell, editors,
Proceedings of the International Workshop on Open
Source Software and Product Lines (SPLC-OSSPL
2007), Kyoto, Japan, 2007.

[18] J. Sincero and W. Schröder-Preikschat. The linux
kernel configurator as a feature modeling tool. In
S. Thiel and K. Pohl, editors, SPLC (2), pages 257–260.
Lero Int. Science Centre, University of Limerick,
Ireland, 2008.

[19] H. Spencer and G. Collyer. #ifdef considered harmful,
or portability experience with C News. In Proceedings
of the 1992 USENIX Technical Conference. USENIX
Association, June 1992.

[20] M.-A. D. Storey, K. Wong, P. Fong, D. Hooper,
K. Hopkins, and H. A. Müller. On designing an
experiment to evaluate a reverse engineering tool. In
Proceedings of the 3rd Working Conference on Reverse
Engineering, (WCRE’96), Monterey, California, USA,
November 8-10, 1996, pages 31–, Washington, DC,
USA, November 1996. IEEE Computer Society Press.

86

Feature-Oriented Refinement of Models,
Metamodels and Model Transformations

Salvador Trujillo Ander Zubizarreta Xabier Mendialdua Josune de Sosa
IKERLAN Research Centre, Spain

{strujillo, ander.zubizarreta, xmendialdua, jdesosa}@ikerlan.es

Abstract
Done well, the blend of Model Driven Development (MDD) and
Software Product Lines (SPL) offers a promising approach, mixing
abstraction from MDD and variability from SPL. Although Model
Driven Product Lines have flourished recently, the focus so far has
been mostly on how to cope with the variability of models. This
focus on model variability has limited however the extension of
variability to further artifacts apart from models such as metamod-
els and model transformations, that may cope with variability too
in a product line setting. In this paper, we address the application
of feature-oriented refinement to models, metamodels and model
transformations. We illustrate our work with a case study of an em-
bedded system.

Categories and Subject Descriptors D.2.2 [Software Engineer-
ing]: Design tools and techniques; D.2.13 [Software Engineering]:
Reusable Software

General Terms Design, Modeling
Keywords models, metamodels, model transformations, refine-

ments, AHEAD, XAK

1. Introduction
Modeling is essential to cope with the complexity of current soft-
ware systems during their entire life cycle. Models allow develop-
ers to precisely capture and represent relevant aspects of a system
from a given perspective and at an appropriate level of abstraction.
Initially, modeling aimed at the representation of individual soft-
ware systems where a collection of models typically describe their
static structure, dynamic behavior, interaction with the user, and so
on.

Model-Driven Development aims at the automation of repetitive
code. The key to get this benefit is the use of abstraction, which
enables to raise the abstraction level. Doing so, it is possible to
focus on the domain details and separate from the implementa-
tion details. Specific benefits from MDD are productivity, reduced
cost, portability, drops in time-to-market, and improved quality [9].
Overall, the main economic reason behind following such approach
is the productivity gain achieved, which is reported by some studies
[7, 11].

Researchers and practitioners have recently realized the neces-
sity for modeling variability of software systems where software

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
FOSD’09, October 6, 2009, Denver,Colorado, USA.
Copyright c© 2009 ACM 978-1-60558-567-3/09/10. . . $5.00

product line engineering poses major challenges on contemporary
modeling techniques. A software product line is a set of software
intensive systems that are tailored to a specific domain or market
segment and that share a common set of features [5, 13]. A feature
is an end-user visible behavior of software systems, and features
are used to distinguish different software systems, a.k.a. variants,
of a software product line [8].

In embedded systems, there is typically a family of control
systems sharing commonality and distinguished by variability. The
latter happens when one system needs to control different types
of elements (e.g., exclusive subsystems from different providers or
different target hardware platforms with distinct operative systems)
implies that each needs to be controlled in a variable way. This has
been often achieved by introducing the notion of features that are
not necessarily present in all possible variants. This impacts not
only on the implementation, but on the modeling level too.

So far, two main facets of modeling have been used in contem-
porary software product lines [2]. First, there are approaches for
describing the variability of a software product line (e.g, there are
feature models that specify which feature combinations produce
valid variants [8]). Second, all variants in the product line may
have models that describe their structure, behavior, etc. More to
the point, such models may account for variability. Indeed, there is
an increasing wealth of work on model variability where feature-
oriented model refinement is just another approach [16].

Although when dealing with variability in an MDD scenario,
there are further artifacts apart from models that need to cope
with variability, the wealth of work on model variability has not
a counterpart with other MDD artifacts. This paper takes a step
back to study such impact into a broader perspective. We shift
our attention from the variability of models to the variability of
model transformations, that define the mappings between models
and models and code. Since model transformations are typically
defined at the metamodel level, we also analyze the impact of
variability on metamodels. This perspective shift provides a bigger
picture on the application of feature-oriented software development
by also including metamodels and model transformations.

In this paper, we cope with the variability of models, metamod-
els and model transformations by applying the notion of step-wise
refinement to them [3]. Thus, a realization of a feature consists of
refinements of models, metamodels and model transformations. To
illustrate our ideas, we introduced a simplified case study. We begin
by reviewing the background.

2. Background
2.1 Model-Driven Development
Model Driven Development is a paradigm where models are used
to develop software. This process is driven by model specifications
and by transformations among models or models and code. It is

87

the ability to transform among different model representations that
differentiates the use of models for sketching out a design from a
more extensive model-driven software engineering process where
models yield implementation artifacts. This paradigm eases cum-
bersome and repetitive tasks, and paves the way for productivity
gains.

The main artifacts involved in MDD are models, metamodels
and model transformations.

2.1.1 Models
Model is a term widely used in several fields with slightly different
meanings. A model represents a part of the reality called the object
system and is expressed in a modeling language. A model provides
knowledge for a certain purpose that can be interpreted in terms
of the object system [10]. Typical examples of models involve
statecharts that represents the behavior of some functionality or
class diagrams that show the structure of some code.

We illustrate our ideas with a family of embedded systems de-
veloped following MDD and SPL. RainCreek is a flooding system
that controls a set of subsystems, typically with behavior, inputs,
outputs, etc. There is a cooling subsystem that is open/closed based
on data gathered from temperature sensors. Figure 1a shows a sim-
plified model representing a part of such subsystem where inputs
are defined based on a metamodel explained next. Figure 1b is the
textual representation of Figure 1a where RainCreek <System> is
defined as a set of <System.subsystems>. Cooling is one sub-
system. Each <Subsystem> has a set of <Subsystem.inputs>
defined by <Input>. The files used in this example are available
online1.

2.1.2 Metamodels
A model is frequently considered an instance conforming to a meta-
model. A metamodel is a model of a modeling language where the
language is specified [10]. In other words, the metamodel describes
the elements of the domain and their relationships.

In our case study, the metamodel is defined using Ecore, show-
ing the elements, relationships, data-types, operations and basic
constraints that a model can have. Figure 2 shows a simplified meta-
model for the model introduced earlier for RainCreek. Note that the
model in Figure 1 conforms to this metamodel. This metamodel
introduces not only the types of elements that can be used within
the model, but also their hierarchical relationships. More important,
the metamodel states also some constraints among those types. An
Ecore class has been defined for each element type that the model
can have. Containment relationships have been used to define the
hierarchy of the metamodel elements. Every subsystem must have
at least one input, while there is no maximum value.

The mappings between metamodels are typically represented by
model transformations.

2.1.3 Model Transformations
Model transformations play a pivotal role in MDD because they
turn the use of models for drawing into a more extensive model-
driven usage where implementations can be directly obtained [14].
A model transformation is the process of converting one model
to another model [12]. In general, a model transformation is the
process of automatic generation from a source to a target model,
according to a transformation definition, which is expressed in a
model transformation language [10].

Depending on the target, model transformations can be model-
to-model or model-to-text transformations. The former takes as
input one or more models conforming to given metamodels and
produces one or more models conforming to the same or other

1 http://www.ikerlan.es/softwareproductline/fosd2009examples.zip

metamodels. The latter produces text as its output, that can be
implementation code, documentation, or any other textual form.

Model-to-model transformations usually make use of rules that
are defined as mappings between input and output metamodels.
Model-to-text transformations combine rules with text templates
that define the form of the output text. There is a variety of open-
source and commercial tools and languages for model transforma-
tions such as ATL [4], RubyTL [6], ATC [15], and MOFScript
(http://www.eclipse.org/gmt/mofscript/).

Our case study focuses on model-to-text transformations de-
fined using MOFScript transformation language. MOFScript lan-
guage is a metamodel-independent language that allows to use any
kind of metamodel and its instances for text generation. MOFScript
tool is based on EMF and it is available as an Eclipse plugin.

The definition of a MOFScript transformation consists of
rules. Figure 3 shows a base transformation definition for trans-
forming the RainCreek model shown earlier into C++ code.
Implementation-wise, a transformation module called rc2code is
defined. Such module is composed by several rules. They can have
a context type scoping to which metamodel elements can such rules
be applied.

Different rules have been defined to generate different parts of
the output code. Each rule defines the appearance of part of the
output text and introduces model elements in it. The main() rule
defines the name of the output file and calls to all the other rules.

2.2 On the Refinement of Models
The refinement of models allows to extend a model adding ele-
ments, in order to enable their customization for different variabil-
ity needs. This way when working with a family of products a base
model with the common elements can be reused [16].

2.2.1 Base of a Model
The representation of models is typically done as instances of
metamodels represented in Ecore. Hence, it is common to find
models represented in textual form with an XML syntax.

Figure 1 shows our example RainCreek model, whose repre-
sentation is XML. This model is an instance of the source meta-
model defined with Ecore, and so can have elements defined in such
metamodel (see Figure 2). The model shows a flooding system of
RainCreek whose Cooling subsystem has two inputs: Temp and
Flow. The data type for each input is defined with the Input.type
element.

In a product-line setting, a model may demand to be extended,
so model refinement is used to add new elements[16].

2.2.2 Refinement of a Model
In general, a refinement can be deemed of as a function that takes
an artifact as an input, and returns another similar artifact which
has been leveraged to support a given feature [3]. The refinement
of models is done addressing the units of refinement in the base
model, while deltas are defined as refinements.

XAK is a language for defining refinements in XML documents
and it is accompanied by a validator and a composer tool [1].
Using XAK is possible to specify which elements in a base XML
document can be refined and also to define the refinements. We
used XAK for the refinement and composition of models.

Any traditional XML document can be a base document, but
some additional annotations are needed (see Figure 1). The at-
tributes @xak:artifact and @xak:feature are added to the doc-
ument element (i.e. the root). The first one specifies the name of
the document that is being incrementally defined, while the sec-
ond one specifies the name of the feature being supported (“base”
for base documents). To specify which elements are modularizable,
@xak:module is used. That is, it indicates those elements that play

88

(a)

1 <System name=" RainCreek " xak : a r t i f a c t =" baseModel . r c "
xak : f e a t u r e =" base ">

2 <System . subsys t ems >
3 <Subsystem xak : module =" mCooling " name=" Coo l ing ">
4 <Subsystem . i n p u t s >
5 < I n p u t xak : module ="mTemp" i d ="Temp"

d e s c r i p t i o n ="Temp . . . " >
6 < I n p u t . t y p e v a l u e =" i n t " / >
7 </ I n p u t >
8 < I n p u t xak : module ="mFlow" i d =" Flow "

d e s c r i p t i o n =" Flow . . . " >
9 < I n p u t . t y p e v a l u e =" i n t " / >

10 </ I n p u t >
11 </ Subsystem . i n p u t s >
12 </ Subsystem >
13 </ System . subsys t ems >
14 </ System >

(b)

Figure 1. A RainCreek Model (simplified)

(a)

1 < e c o r e : E P a c k a g e xak :module =" mPackage " . . . >
2 < !−− C o n t e n t o m i t t e d −−>
3 < e C l a s s i f i e r s xak :module =" mSubsys " x s i : t y p e ="

e c o r e : E C l a s s " name=" SubsystemType ">
4 < e S t r u c t u r a l F e a t u r e s x s i : t y p e =" e c o r e : E R e f e r e n c e "

name=" s u b s y s t e m I n p u t s " lowerBound=" 1 " eType="
/ / Su bsy s t emInp u t sTy pe " c o n t a i n m e n t =" t r u e "
r e s o l v e P r o x i e s =" f a l s e ">

5 < !−− C o n t e n t o m i t t e d −−>
6 < / e S t r u c t u r a l F e a t u r e s >
7 < e S t r u c t u r a l F e a t u r e s x s i : t y p e =" e c o r e : E A t t r i b u t e "

name=" name " lowerBound=" 1 " eType="
e co r e :EDa ta T ype h t t p : / /www. e c l i p s e . o rg / emf
/ 2 0 0 3 / XMLType # / / S t r i n g ">

8 < !−− C o n t e n t o m i t t e d −−>
9 < / e S t r u c t u r a l F e a t u r e s >

10 < / e C l a s s i f i e r s >
11 < !−− C o n t e n t o m i t t e d −−>
12 < / e c o r e : E P a c k a g e >

(b)

Figure 2. RainCreek Metamodel

the role of modules, and henceforth can be refined. In general, a
XAK module has a unique name.

Refinement documents refine base documents and they have
<xak:refines> element as root (see Figure 4). Its content de-
scribes a set of module refinements (i.e. elements annotated with
the xak:module attribute) over a given base document (i.e. the
xak:artifact attribute). The xak:super node is a marker that
indicates the place where the original module body is to be sub-
stituted. In general, a XAK refinement document can contain any
number of xak:module refinements.

Those elements of the model that can be refined must be defined
before refining such model. In our example the refinement units
are the <Subsystem> element and <Input> elements. That is,
we can add new elements to the subsystem, or we can add new
elements to the inputs. (Figure 1 showed the base model.) A base is
designated as an xak:artifact to denote its ability to be refined.
Each artifact may expose its refinable parts beforehand. We add
xak:module attribute to <Subsystem> and all <Input> elements

to specify that they are refinables. Note that not all elements are
refinable, but only those we annotate beforehand by xak:module.

Many refinements can be applied to our base RainCreekmodel.
For example the Cooling subsystem of our model could have
parameters, in addition to inputs. Alternatively, the input size could
be defined apart from its data type, to make our model compatible
with a specific platform.

To give an example, we show how we can add parameters to
a subsystem. Figure 4 shows the refinement that has been de-
fined to add two parameters to the Cooling subsystem. This re-
finement refines the base model adding parameters defined with
a ParamType element, within a Subsystem.params element,
similarly to the definition of inputs. We define the base model
that is to be refined using xak:artifact="baseModel.rc".
The use of <xak:extends xak:module="mCooling"> desig-
nates the module that is to be refined. The use of <xak:super
xak:module="mCooling"/> indicates that the body of the orig-
inal mCooling module will be placed there (i.e., a form of reuse).

89

1 t e x t t r a n s f o r m a t i o n Rc2code (i n mdl : . . .) {
2 mdl . SubsystemType : : main () {
3 f i l e (s e l f . name + " . cpp ")
4 /∗ C o n t e n t o m i t t e d ∗ /
5 s e l f . g e n e r a t e S t a r t ()
6 s e l f . g e n e r a t e E x e c ()
7 }
8 mdl . SubsystemType : : g e n e r a t e S t a r t () {
9 ’

10 /∗ C o n t e n t o m i t t e d ∗ /
11 boo l ’ s e l f . name ’ Impl : : s t a r t () {
12 / / I n i t i a l i z a t i o n o f t h e v a r i a b l e s / /
13 ’ s e l f . i n i t A l l () ’
14 }
15 ’
16 }
17 mdl . SubsystemType : : i n i t A l l () {
18 s e l f . i n i t I n p u t s ()
19 }
20 mdl . SubsystemType : : i n i t I n p u t s () {
21 ’
22 /∗ i n p u t s ∗ /
23 ’ s e l f . s u b s y s t e m I n p u t s . i n p u t−>f o r E a c h (i n p u t : mdl .

Inpu tType) {
24 ’ in ’ i n p u t . id ’ = new I n p u t (" ’ i n p u t . id ’ " , " ’

i n p u t . d e s c r i p t i o n ’ ") ;
25 ’
26 }
27 }
28 /∗ C o n t e n t o m i t t e d ∗ /
29 }

(a)

1 < M O F S c r i p t M o d e l : M O F S c r i p t S p e c i f i c a t i o n x a k : a r t i f a c t ="
base . m2t . model . m o f s c r i p t " x a k : f e a t u r e =" base " . . . >

2 < t r a n s f o r m a t i o n xak :module =" mRc2Code " name=" Rc2code
" . . . >

3 < p a r a m e t e r s name=" mdl " t y p e = . . . / >
4 < t r a n s f o r m a t i o n r u l e s i s E n t r y P o i n t =" t r u e " name="

main " . . . >
5 < s t a t e m e n t s x s i : t y p e ="

M O F S c r i p t M o d e l : F i l e S t a t e m e n t " . . . >
6 < !−− C o n t e n t o m i t t e d −−>
7 < / t r a n s f o r m a t i o n r u l e s >
8 < !−− C o n t e n t o m i t t e d −−>
9 < t r a n s f o r m a t i o n r u l e s xak :module =" m I n i t A l l " name="

i n i t A l l ">
10 < s t a t e m e n t s x s i : t y p e ="

M O F S c r i p t M o d e l : F u n c t i o n C a l l S t a t e m e n t ">
11 < f u n c t i o n name=" s e l f . i n i t I n p u t s " . . . / >
12 < / s t a t e m e n t s >
13 < !−− C o n t e n t o m i t t e d −−>
14 < / t r a n s f o r m a t i o n r u l e s >
15 < t r a n s f o r m a t i o n r u l e s name=" i n i t I n p u t s ">
16 < !−− C o n t e n t o m i t t e d −−>
17 < s t a t e m e n t s xak :module =" m I n p u t I t " t y p e =" mdl .

Inpu tType " v a r i a b l e =" i n p u t " . . . >
18 < !−− C o n t e n t o m i t t e d −−>
19 < s o u r c e name=" s e l f . s u b s y s t e m I n p u t s . i n p u t "

. . . / >
20 < / s t a t e m e n t s >
21 < / t r a n s f o r m a t i o n r u l e s >
22 < / t r a n s f o r m a t i o n >
23 < / M O F S c r i p t M o d e l : M O F S c r i p t S p e c i f i c a t i o n >

(b)

Figure 3. Example of a Model Transformation

1 < x a k : r e f i n e s x a k : a r t i f a c t =" base . r c "
x a k : f e a t u r e =" pa ramDel t a " . . . >

2 < x a k : e x t e n d s xak :module =" mCooling "
>

3 < x a k : s u p e r xak :module =" mCooling "
/ >

4 <Subsystem . params>
5 <Param i d =" P1 " d e s c r i p t i o n ="

Param f o r . . . ">
6 <Param . t y p e v a l u e =" i n t " / >
7 < / Param>
8 <Param i d =" P2 " d e s c r i p t i o n ="

Param f o r . . . ">
9 <Param . t y p e v a l u e =" i n t " / >

10 < / Param>
11 < / Subsystem . params>
12 < / x a k : e x t e n d s >
13 < / x a k : r e f i n e s >

(a)

1 <System name=" RainCreek " . . . >
2 <System . s u b s y s t e m s >
3 <Subsystem . . . >
4 <Subsystem . i n p u t s >
5 < !−− C o n t e n t o m i t t e d >
6 < / Subsystem . i n p u t s >
7 <Subsystem . params>
8 <Param d e s c r i p t i o n =" Param

f o r . . . " i d =" P1 ">
9 <Param . t y p e v a l u e =" i n t " / >

10 < / Param>
11 <Param d e s c r i p t i o n =" Param

f o r . . . " i d =" P2 ">
12 <Param . t y p e v a l u e =" i n t " / >
13 < / Param>
14 < / Subsystem . params>
15 < / Subsystem >
16 < / System . s u b s y s t e m s >
17 < / System>

(b)

(c)

Figure 4. Composition of models: (a) Refinement; (b) Composed model (textual); (c) Composed model

90

Finally, the new elements to be introduced are defined after the
<xak:super> element.

A distinguishing characteristic of our approach is that a sep-
arated and independent refinement is defined for each additional
feature we would like to add to the base model. To synthesize a
resulting model, the base model and the refinements are composed.

2.2.3 Composition of Base and Refinement Models
The composition of the base model and the refinement is achieved
using XAK composer tool [1]. In our example, to extend the Rain-
Creek base with the refinement model, the following composition
is needed:

> xak -xak2 -c baseModel.rc paramModelDelta.xak -o comp-
ParamModel.rc

The execution of the above command invokes the XAK com-
poser tool2.

Figure 4b shows the resulting model, which results from
the synthesis of a base model with refinements (Figure 1b
and Figure 4a, respectively). Note that in this model a new
<Subsystem.params>, <Param> and <Param.type> are defined.
This refines the Cooling subsystem with P1 and P2 parameters.
Although our example is restricted to the composition of a model
refinement with a base model, typically more than one model
refinements can be composed.

However, the resulting composed model does not conform to
the metamodel introduced earlier. This is because param-related
elements were not defined in the metamodel. This conformance
relationship between the model and the metamodel implies that the
metamodel may need to be refined together with the model, which
we call as Lock-Step Refinement.

3. Beyond Model Refinement
This section elaborates on the refinement of metamodels and model
transformations.

3.1 Scenario
A Model-Driven Development scenario for individual programs
typically involves artifacts such as models, metamodels and model
transformations. In a software product line setting with a family
of programs, there is a need for their customization. Thus, we
elaborate on the need for the refinement of models, metamodels,
and model transformations.

There are different scenarios when using models in software
product lines. Consider the differences on the modeling language
used: it is not the same to use UML or a Domain Specific Language
(DSL).

There are scenarios where model variability may be enough
and the variability of metamodels or model transformations may
not be needed. This may happen in situations where the used
metamodel is standard and so it is not subject to variability. For
instance, when using a UML class diagram, it seems unlikely to
make its metamodel variable since it is somehow standardized.
This may apply generally to the metamodels within the UML.
A similar situation occurs when the model transformations come
from a common library of model transformations that are shared.
As a case in point, consider the dozens of model transformations
expressed in ATL that are available online3.

2 The detail of the command is as follows. xak is the executable, -xak2 is
an option to use xak2 syntax of XAK, -c option introduces the artifacts to
be composed (first base, and so forth), -o option specifies the synthesized
result.
3 http://www.eclipse.org/m2m/atl/atlTransformations/

Therefore, in scenarios with standard metamodels and/or shared
transformations, the use of model variability seems enough and
thus variability of model transformations may not be needed. How-
ever, there exist other scenarios where, in addition to the variability
of models, the variability of metamodels and model transforma-
tions may be needed as well.

Consider the case in which different models, metamodels and
model transformations may need to be customized for different tar-
gets. Model transformations share a significant common part while
differing in some variable parts. In our case study, different im-
plementation code shall be generated from the same source model.
The target code is expected to be executed in different platforms
(e.g. Windows CE or VxWorks). This situation could be well han-
dled by defining features of the software product line that impact
on the model transformation. There is a large proportion of shared
code and some particularities are bound to each programming lan-
guage. For instance, the way real-time code is implemented differs
among platforms, while keeping a significant common part.

In such situation, the application of variability to model trans-
formations may enable to centralize those differences in a unique
model transformation. This may impact as well on the metamodel,
since model transformations are typically mappings between meta-
models. In the case for different platforms explained above, there
is a need to cope with metamodel variability as well. Instead of
different metamodel targets from different model transformations,
there is a model transformation with variability and so its asso-
ciated metamodels may cope with such variability. Note that this
variability in time is not the variability in space imposed by the
metamodel’s evolution.

Our motivating case study is an scenario that demands to cope
with such variability.

3.2 Overview
The artifacts involved in a Model-Driven Development scenario are
related each other. Models conform to metamodels. Model transfor-
mations define the mappings between metamodels. The execution
of a model transformation produces an output model from an input
model (or a set of models). Those models conform to the source
and target metamodel, respectively. Indeed, the relationship among
those elements is well-known.

The notion of Lock-Step Refinement does not refer to the com-
mon understanding of that relationship explained above. Con-
versely, it refers to the relationships among increments or refine-
ments of those elements.

Consider a model refinement ∆m1 as an extension of model
m1. The model m1 conforms to the metamodel MMA. In general,
this mechanism realizes the variability of a feature where ∆m1

is a part of. There appears two situations depending whether the
content of ∆m1 conforms to MMA or not. When ∆m1 conforms
to the existing metamodel MMA, there is no need to trigger a
refinement of such metamodel. Conversely, if ∆m1 introduces
newer content that does not conform to the existing metamodel,
there is a need to refine the metamodel MMA with a metamodel
refinement ∆MMA.

In the situation where a model refinement triggers a metamodel
refinement, we introduce the notion of lock-step refinement to
capture such relationship. More to the point, when the model ∆m1

is refined, it depends on a refinement of its metamodel ∆MMA.
Doing so, the compound model may conform to the compound
metamodel.

The lock-step relationship explained between a model and a
metamodel also occurs between a metamodel and a model trans-
formation. More generally, it may include additionally a refinement
of model transformations such as ∆MT 1→2 (a mapping between
∆m1 and ∆m2).

91

A Lock-Step Refinement is defined in this work as a set encom-
passing the refinements of models, metamodels and model transfor-
mations. For instance, a lock-step refinement ∆LSRI may consist
of ∆m1, ∆m2, ∆MMA, ∆MMB and ∆MT 1→2.

Next, the refinement of metamodels and model transformations
is described.

3.3 On the Refinement of Metamodels
In some of the scenarios presented above, there is a need to refine
metamodels. To attain this, we followed an approach similar to the
introduced earlier for models.

3.3.1 Base of a Metamodel
Metamodels are defined as instances of meta-metamodels. Ecore is
the meta-metamodel used for representing our case study.

Figure 2 shows a simplified Ecore metamodel used in Rain-
Creek. Ecore metamodels are serialized using XML Meta-
data Interchange (XMI). The metamodel is defined under the
<ecore:EPackage> element. Classes and data-types are defined
using <eClassifiers> element, while relationships and attributes
are defined with the nested <eStructuralFeatures> element.

Figure 2b shows part of the XMI representation of the Ecore
metamodel (Figure 2a), where the inputs/outputs of RainCreek and
their relationships are defined. Such XML-based representation
enables XAK to be used for the refinement.

3.3.2 Refinement of an Ecore-based Metamodel
The refinement of a metamodel may enable to extend it adding new
element types, relationships, etc.

Similarly to model refinements, the first is to decide which of
the elements in our base metamodel can be refined. By adding the
xak:module attribute to an element, it is defined those elements
that are modularizables. In our case, we designate EPackage and
EClass as the modularizable elements. This allows us to add new
classes to our metamodel or to extend the existing ones. Figure
2b shows how the xak:module attribute has been added to such
elements.

Hence, for our metamodel to conform to the model shown
earlier, a refinement to add the definition of Subsystem.params,
Param, and Param.type elements to the metamodel is needed.
SubsystemParamsType, ParamType and ParamTypeType
classes and their relationships are defined in a refinement, in
order to be added to the EPackage element. A new relation-
ship between SubsystemType class and SubsystemParamsType
is added to the SubsystemType class, already annotated with
xak:module=�mSubsys� attribute. Figure 5a shows part of such
refinements for the base metamodel.

To obtain the metamodel where the Subsystem has parameters
apart from inputs, base metamodel and the refinement shown in
Figure 5a need to be composed.

3.3.3 Composition of Base and Refinement Metamodels
Similarly to the composition of models, the base and the refinement
metamodel definitions can be composed using XAK composer tool:

> xak -xak2 -c baseRC.ecore paramMMDelta.xak -o compPa-
ramMM.ecore

The output of the above command is the compParamMM.ecore
metamodel that is shown in Figure 5b. The graphical representation
of the composed Ecore metamodel is shown in Figure 5c. This
metamodel defines the elements and relationships that a model
may conform to. Since the metamodel has been refined adding
classes and relationships to define parameters, the refined model

now conforms to the refined metamodel. That is, the model shown
in Figure 4 is now an instance of the metamodel shown in Figure 5.

3.4 On the Refinement of Model Transformations
A model transformation defines typically the mappings between
metamodels. When a metamodel is refined to account for some
feature as shown earlier, the mappings of the model transformation
may be needed to be refined too for that feature.

3.4.1 Base of a Model Transformation
A base transformation definition has been defined with MOFScript
(see Figure 3a). This definition takes a RainCreek model as input,
and has the rules to generate C++ code as output.

In our example, the base transformation defines some rules to
generate different parts of the output code, such as declaration
of variables, implementation of the constructors and destructors,
initializations, etc. These rules combine text with the elements
defined in the metamodel.

MOFScript allows to represent a transformation definition as a
model, conforming to the MOFScript metamodel. Figure 3b shows
the model representation of the transformation using XMI. (Note
that this figure is equivalent to the textual representation of the
transformation in Figure 3a). The transformation module is defined
with the <transformation> element. Nested to this element, vari-
ables, parameters and rules are defined using the <variables>,
<parameters> and <transformationrules> elements, respec-
tively.

This base transformation can be executed, giving as input the
base model shown in Figure 1. The application of this transforma-
tion gives as output a class definition for the Cooling subsystem.
However, if the input model is the refined one, the declaration and
initialization of params will not be handled by the output code. This
is because the model transformation does not consider the handling
or even the existence of params. Thus, the transformation needs to
be refined to generate the declaration and initialization of params
in the output code.

3.4.2 Refinement of a MOFScript-based Transformation
Having the XMI representation of the transformation definition, it
is possible to achieve its refinement using XAK.

The model of our transformation shown in 3b is the base
transformation which needs to be refined. Those elements of the
transformation that can be refined must be defined before refin-
ing such transformation. In our example, the refinement units are
the transformation definition and their rules. That is, we can add
new rules to the transformation definition or we can extend exist-
ing rules with new statements. We add xak:module attribute to
<transformation> and <transformationrules> elements to
specify that they are modularizables (see Figure 3b). In our ex-
ample the rules that need to be refined are generateLocals()
and initAll(), so it is possible to add the xak:module at-
tribute only to their definitions. If we add xak:module to all
<transformationrules> elements, all the rules can be refined.

Figure 6a shows a refinement for the base transformation. It re-
fines the base transformation definition to introduce the declaration
and initialization of params in the generated C++ code. The rules
generateLocals() and initAll() are extended and a new rule
called initParams() is added. The rule generateLocals() is
extended to print the declaration of params after the declaration of
inputs. The initAll() rule is extended to call the newly added
initParams() rule, which prints the initializations of params in
the output file.

In order to get a transformation definition dealing with params,
this refinement needs to be composed with the base transformation
definition.

92

1 < x a k : r e f i n e s x a k : a r t i f a c t =" baseRC .
e c o r e " x a k : f e a t u r e =" pa ramDel t a "

. . . >
2 < x a k : e x t e n d s xak :module =" mSubsys ">
3 < x a k : s u p e r xak :module =" mSubsys " /

>
4 < e S t r u c t u r a l F e a t u r e s x s i : t y p e ="

e c o r e : E R e f e r e n c e " eType="
/ / SubsystemParamsType " . . .
>

5 < !−− C o n t e n t o m i t t e d −−>
6 < / e S t r u c t u r a l F e a t u r e s >
7 < / x a k : e x t e n d s >
8 < x a k : e x t e n d s xak :module =" mPackage "

>
9 < x a k : s u p e r xak :module =" mPackage "

/ >
10 < !−− C o n t e n t o m i t t e d −−>
11 < e C l a s s i f i e r s x s i : t y p e ="

e c o r e : E C l a s s " name="
ParamType ">

12 < !−− C o n t e n t o m i t t e d −−>
13 < / e C l a s s i f i e r s >
14 < e C l a s s i f i e r s x s i : t y p e ="

e c o r e : E C l a s s " name="
ParamTypeType ">

15 < !−− C o n t e n t o m i t t e d −−>
16 < / e C l a s s i f i e r s >
17 < / x a k : e x t e n d s >
18 < / x a k : r e f i n e s >

(a)

1 < e c o r e : E P a c k a g e name="RC" . . . >
2 < !−− C o n t e n t o m i t t e d −−>
3 < e C l a s s i f i e r s name=" SubsystemType "

. . . >
4 < !−− C o n t e n t o m i t t e d −−>
5 < e S t r u c t u r a l F e a t u r e s name="

subsys temParams " . . . >
6 < !−− C o n t e n t o m i t t e d −−>
7 < / e S t r u c t u r a l F e a t u r e s >
8 < / e C l a s s i f i e r s >
9 < e C l a s s i f i e r s name="

SubsystemParamsType " . . . >
10 < !−− C o n t e n t o m i t t e d −−>
11 < e S t r u c t u r a l F e a t u r e s name=" param

" . . . >
12 < !−− C o n t e n t o m i t t e d −−>
13 < / e S t r u c t u r a l F e a t u r e s >
14 < / e C l a s s i f i e r s >
15 < e C l a s s i f i e r s name=" ParamType " . . .

>
16 < !−− C o n t e n t o m i t t e d −−>
17 < / e C l a s s i f i e r s >
18 < e C l a s s i f i e r s name=" ParamTypeType "

. . . >
19 < !−− C o n t e n t o m i t t e d −−>
20 < / e C l a s s i f i e r s >
21 < / e c o r e : E P a c k a g e >

(b) (c)

Figure 5. Composition of metamodels: (a) Refinement; (b) Composed metamodel (XMI); (c) Composed metamodel (Ecore diagram)

1 < x a k : r e f i n e s x a k : a r t i f a c t =" base . m2t .
model . m o f s c r i p t " x a k : f e a t u r e ="
pa ramDel t a " . . . >

2 < x a k : e x t e n d s xak :module =" m I n i t A l l "
>

3 < x a k : s u p e r xak :module =" m I n i t A l l "
/ >

4 < s t a t e m e n t s x s i : t y p e ="
F u n c t i o n C a l l S t a t e m e n t ">

5 < f u n c t i o n name=" s e l f .
i n i t P a r a m s " . . . / >

6 < / s t a t e m e n t s >
7 < b l o c k s . . . / >
8 < / x a k : e x t e n d s >
9 < x a k : e x t e n d s xak :module =" mRc2Code "

>
10 < x a k : s u p e r xak :module =" mRc2Code "

/ >
11 < t r a n s f o r m a t i o n r u l e s name="

i n i t P a r a m s ">
12 < !−− C o n t e n t o m i t t e d −−>
13 < / t r a n s f o r m a t i o n r u l e s >
14 < / x a k : e x t e n d s >
15 < !−− C o n t e n t o m i t t e d −−>
16 < / x a k : r e f i n e s >

(a)

1 < M O F S c r i p t S p e c i f i c a t i o n . . . >
2 < t r a n s f o r m a t i o n . . . >
3 < !−− C o n t e n t o m i t t e d −−>
4 < t r a n s f o r m a t i o n r u l e s name="

i n i t A l l " . . . >
5 < !−− C o n t e n t o m i t t e d −−>
6 < s t a t e m e n t s x s i : t y p e ="

F u n c t i o n C a l l S t a t e m e n t ">
7 < f u n c t i o n name=" s e l f .

i n i t P a r a m s " . . . / >
8 < / s t a t e m e n t s >
9 < / t r a n s f o r m a t i o n r u l e s >

10 < !−− C o n t e n t o m i t t e d −−>
11 < t r a n s f o r m a t i o n r u l e s name="

i n i t P a r a m s ">
12 < !−− C o n t e n t o m i t t e d −−>
13 < / t r a n s f o r m a t i o n r u l e s >
14 < / t r a n s f o r m a t i o n >
15 < / M O F S c r i p t S p e c i f i c a t i o n >

(b)

1 /∗ C o n t e n t o m i t t e d ∗ /
2 mdl . SubsystemType : : i n i t A l l () {
3 s e l f . i n i t I n p u t s ()
4 s e l f . i n i t P a r a m s ()
5 }
6 /∗ C o n t e n t o m i t t e d ∗ /
7 mdl . SubsystemType : : i n i t P a r a m s () {
8 " /∗ params ∗ / \ n "
9 s e l f . subsys temParams . param−>

f o r E a c h (param : mdl . ParamType
) {

10 " p "
11 param . i d
12 ’ = new Param (" ’
13 param . i d
14 ’ " , " ’
15 param . d e s c r i p t i o n + ’ ") ; \ n ’
16 }
17 }

(c)

Figure 6. Composition of transformations: (a) Refinement; (b) Composed transformation (model); (c) Composed transformation (MOF-
Script)

93

3.4.3 Composition of Base and Refinement Transformations
Again, using XAK composer tool a new transformation definition
can be synthesized by composing the base transformation definition
and the refinement.

> xak -xak2 -c base.m2t.model.mofscript paramTransDelta.xak
-o compParam.mofscript

The result of the composition is a composed transformation
model (Figure 6b), which can be executed directly giving as in-
put the refined RainCreek model or can be converted to a MOF-
Script transformation definition file (Figure 6c) using that option in
MOFScript tool, and then executed. The output of the transforma-
tion is the Cooling.cpp file which defines the implementation of
the methods for the Cooling class.

The use of step-wise refinement enables the refinement of mod-
els, metamodels and model transformations. The nature of the re-
finement may trigger lock-step refinements among models, meta-
models and model transformations.

4. Conclusions
This paper presented an approach to apply step-wise refinement be-
yond models. Specifically, we focused on the refinement of meta-
models and model transformations in a model-driven product line
scenario. We observed lock-step relationships among some of those
refinements that are closely inter-related by features. We believe
that this work provides a step forward in the field of Feature-
Oriented Software Development by pushing variability beyond
models and embracing metamodels and model transformations into
the field.

The contribution of this paper is to provide a broader perspective
on the application of FOSD into MDD by extending the refinement
to further artifacts apart of models. We applied our ideas with a case
study of an embedded system.

In our case, we observed lock-step relationships among differ-
ent elements. In the future, we plan to explore them in further detail.
Specifically, we aim at analyzing the conformance relationships
among a model refinement and its lock-step metamodel refinement.
This conformance may impact on the transformations ultimately.

Acknowledgments
This work was co-supported by the Spanish Ministry of Science
& Innovation under contract TIN2008-06507-C02-02. We thank
Maider Azanza for her comments on earlier versions of this draft.

References
[1] F. I. Anfurrutia, O. Díaz, and S. Trujillo. On Refining XML Artifacts.

In ICWE, pages 473–478, 2007.

[2] S. Apel, F. Janda, S. Trujillo, and C. Kaestner. Model Superimposition
in Software Product Lines. In 2nd International Conference on Model
Transformations (ICMT 2009), Zurich, Switzerland, June, 2009.

[3] D. Batory, J.Neal Sarvela, and A. Rauschmayer. Scaling Step-Wise
Refinement. IEEE Transactions on Software Engineering (TSE),
30(6):355–371, June 2004.

[4] J. Bézivin, G. Dupe, F. Jouault, G. Pitette, and J. E. Rougui.
First Experiments with the ATL Model Transformation Language:
Transforming XSLT into XQuery. In 2nd OOPSLA Workshop on
Generative Techniques in the context of MDA, Anaheim, California,
USA, Oct 27, 2003.

[5] P. Clements and L.M. Northrop. Software Product Lines - Practices
and Patterns. Addison-Wesley, 2001.

[6] J. Sánchez Cuadrado, J. García Molina, and M. Menárguez Tortosa.
RubyTL: A Practical, Extensible Transformation Language. In 2nd

European Conference on Model Driven Architecture - Foundations
and Applications (ECMDA-FA 2006), Bilbao, Spain, Jul 10-13, pages
158–172, 2006.

[7] D. Herst and E. Roman. Model Driven Development for J2EE
Utilizing a Model Driven Architecture (MDA) - Approach: A
Productivity Analysis. Technical report, TMC Research Report,
2003.

[8] K. C. Kang and et al. Feature Oriented Domain Analysis Feasability
Study. Technical Report CMU/SEI-90-TR-21, Software Engineering
Institute, November 1990.

[9] Mikko Kontio. Architectural Manifesto: The MDA Adoption Man-
ual. http://www-128.ibm.com/developerworks/wireless/library/wi-
arch17.html.

[10] I. Kurtev. Adaptability of Model Transformations. PhD thesis,
University of Twente, 2005.

[11] OMG. MDA Success Stories. http://www.omg.org/mda/products_success.htm.

[12] OMG. MDA Guide version 1.0.1. OMG document 2003-06-01, 2003.

[13] K. Pohl, G. Bockle, and F. van der Linden. Software Product Line
Engineering - Foundations, Principles and Techniques. Springer,
2006.

[14] S. Sendall and W. Kozaczynski. Model Transformation: The Heart
and Soul of Model-Driven Software Development. IEEE Software,
20(5):42–45, 2003.

[15] A. Sánchez-Barbudo, E. V. Sánchez, V. Roldán, A. Estévez,
and J.L. Roda. Providing an Open Virtual-Machine-based QVT
Implementation. In Proceedings of the V Workshop on Model-Driven
Software Development. MDA and Applications (DSDM’08 - XIII
JISBD), 2008.

[16] S. Trujillo, D. Batory, and O. Díaz. Feature Oriented Model Driven
Development: A Case Study for Portlets. In 29th International
Conference on Software Engineering (ICSE 2007), Minneapolis, MN,
USA, May, 2007.

94

Model-Driven Development of Families of
Service-Oriented Architectures

 Mohsen Asadi

1
, Bardia Mohabbati

1
 , Nima Kaviani

2
, Dragan Gašević

3
, Marko Bošković

3
, Marek Hatala

1

1
Simon Fraser University,

 2
University of British Columbia,

3
Athabasca University, Canada

 {masadi,mohabbati,mhatala}@sfu.ca, nimak@ece.ubc.ca, dgaseavic@acm.org, marko.boskovic@athabascau.ca

ABSTRACT

The paradigms of Service Oriented Architecture (SOA) and

Software Product Line Engineering (SPLE) facilitate the

development of families of software-intensive products. Software

Product Line practices can be leveraged to support the

development of service-oriented applications to promote the

reusability of assets throughout the iterative and incremental

development of software product families. Such an approach

enables various service oriented business processes and software

products of the same family to be systematically created and

integrated. In this paper, we advocate integration of software

product line engineering with model driven engineering to enable

a model driven specification of software services, capable of

creating software products from a family of software services.

Using the proposed method, we aim to provide a consistent view

of a composed software system from a higher business

administration perspective to lower levels of service

implementation and deployment. We demonstrate how Model

Driven Engineering (MDE) can help with injecting the set of

required commonalities and variabilities of a software product

from a high level business process design to the lower levels of

service use.

Categories and Subject Descriptors
D.2.10 [Design]: Methodologies, D.2.13 [Reusable Software]:

Domain Engineering, K.6.1 [Project and People Management]:

Systems development

General Terms

Management, Design, Languages

Keywords

Software Product Lines, Business Process Management, Service-

Oriented Architectures, Semantic Web.

1. Introduction
The growing opportunities for automated collaboration and

communication offered by Internet technologies and the World

Wide Web force a change in software development from self-

contained and isolated software development towards enterprise

level collaborative exchange of services and components. Such a

change in software system use mandates the invention of methods,

tools, and technologies for providing efficient and flexible ways

for integration of distributed software services. Service Oriented

Architecture (SOA) is appearing as the most promising paradigm

for distributed computing application design, development, and

deployment. In SOAs, software services are regarded as

autonomous, platform-independent, computational elements that

can be described, published, discovered, orchestrated, and

programmed using standard protocols for building interoperating

applications [1]. Success stories from industry (e.g. Amazon and

Google) show high acceptance potentials in using SOA for

distributed system development.

An ideal solution for addressing the newly emerged requirements

and needs for current integration of distributed services in a SOA

architecture demands for a coherent development process across

various levels of development and integration. Achieving this

cohesion starts by defining business processes and by specifying

the set of coordinated activities realizing the goals of the business

processes. Then, the software elements required to achieve these

goals (i.e., the unit services) are identified, and for each unit

service, the set of service interfaces realizing the specification of

the unit service, as well as their corresponding service

implementations, get identified and developed [2]. Going down

the stages of the development lifecycle for SOA, there might be

alternative choices on the set of business activities to accomplish

business processes; there might be several unit services offering

identical functionalities to business activities; and there may exist

a diverse set of service interfaces and their corresponding

implementations falling under a unit service. The noticeable

variability in selecting business activities, unit services, service

interfaces, and their implementations, opens room for employing

Software Product Line Engineering (SPLE) as a methodological

approach to address variability in these different layers of SOA

development. A Software Product Line represents a set of

software intensive systems that share a common managed set of

features satisfying the specific needs of a particular market

segment [3]. Applying SPLE to SOA development helps with

providing a proper conceptualization of how alternatives for

business processes and services in a distributed environment can

be managed in order to achieve a valid software product at the end

of the process. Bringing the benefits of Model Driven Engineering

(MDE) into the process, we can abstract away the low-level

technical specificities of development and pay more attention to a

systematic development of business activities, their corresponding

unit services, and service interfaces and components that

materialize the unit services.

In this paper, we advocate a methodology combining the SPLE

with MDE in order to bridge the gap between business process

management and software engineering. Chang and Kim described

layered variability modeling in SOA by providing a taxonomy of

variability types which are derived from four layers specified as

Business Processes, Unit Services, Service Interfaces, and Service

Implementations [2]. We demonstrate how domain engineering

can be consistently conducted across all four layers mentioned

above, in order to decide about the families of SOA from their

business process specification at the topmost layer to their

concrete implementation at the lowest layer. We also show how

employing model driven engineering principles enables the high

level requirements at the business process layer to be combined

with the technical requirements of software engineers to provide

95

implementation of service interfaces for the already defined

business activities and unit services.

The rest of the paper is organized as follows. Section 2 provides

background and concepts definition. Method overview is

described in section 3. Detailed definition of artifacts created by

methods is presented in section 4. Section 5 includes related

works. Conclusion remarks and future works finally discussed in

Section 6.

2. Background
The Software Product Line Engineering (SPLE) discipline

provides methods for managing variabilities and commonalities of

core software assets in order to facilitate the development of

families of software-intensive products. The methodology

presented in this paper serves for development of families of

SOAs for implementing business processes. Feature modeling as

one distinguished technique to model variability is employed for

capturing variabilities in business processes and supporting

software systems. For this reason, two additional underpinnings of

this methodology, i.e., Model-Driven Engineering and Business

Process Modeling, are explained in the next two subsections.

2.1 Model-Driven Engineering
Model-Driven Engineering (MDE) is a software engineering

approach in software development which moves the focus of

software development from implementation to the problem

domain by raising the abstraction in software artifact development

and automating implementation with means of transformation..

One of the realizations of MDE is the Model Driven Architecture

(MDA) introduced by the Object Management Group (OMG).

The MDA, additionally to abstraction and automation suggests the

reliance on OMG standards like MOF, XMI, and UML in order to

improve reusability and portability of designed software artifacts

[25]. The abstraction is in MDA managed inin three

layers::system requirements are specified in the Computation-

Independent Model (CIM); the Platform Independent Model

(PIM) abstracts away concerns regarding the implementation

platforms from the system design; finally the Platform Specific

Model (PSM) augments the PIM with platform specific concerns.

The final code is generated from a PSM which corresponds to a

specific implementation platform of choice. Producing PIM from

CIM and PSM from PIM, as the heart of MDA, enables the

concepts of each of the upper layers to be realized in the lower

layers, bringing the model closer to the desired final deployment

model. Nowadays, many model transformation approaches have

been developed which cope with problems in this domain, (e.g.,

ATL[4]).

2.2 Business Process Modeling
According to [5], “a business process consists of a set of activities

that are performed in coordination in an organizational and

technical environment. These activities jointly realize business

goals. Each business process is enacted by a single organization,

but it may interact with business processes performed by other

organizations”. Business process management is defined as a set

of management activities, and techniques to design, implement,

evaluate, and execute business processes [5][6]. Main parts of

business process management are the lifecycle and the business

process modeling language (BPML). Various types of lifecycles

have been defined to elaborate on steps and tasks which should be

performed to design, implement, evaluate and enact business

processes [6]. This diversity also applies to BPMLs, where there

have been many different proposals [23][24].

BPMLs are used to represent artifacts produced by performing

activities of lifecycle. Some of these modeling languages such as

UML2.0 Activity Diagram, Business Process Definition Meta-

model, Business Process Notation, etc. were evaluated with a

framework provided by List & Korhert [7]. Business Process

Modeling Notation (BPMN) is One of the prominent BPMLs

which is used in the design phase of a lifecycle. BPMN represents

processes as activities where the primary concern is the flow of

control. However, recent research also proposes specializations of

BPMN to model also business processes from the perspective of

interactions of collaborating parties (e.g., iBPMN). Regarding

selected platforms for running business processes in the

implementation phase of a lifecycle, such as SOA or workflow

management systems, other languages are used. For instance

Business Process Executing Language (BPEL) is used for

implementation and execution of business processes through

composition (i.e., orchestration) of software services.

Nowadays, most of business process management approaches

emphasize on the development of a single business process. There

are many variants of the same business process, which are

specialized according to various organizational needs. Business

processes can have some parts common for a group (i.e., family)

of different application cases, where involves some variability in

selecting activities of a business process. A common functionality

can be developed as a reusable asset to be utilized for creating

new variants of business processes in a domain. Recognizing

these phenomena and connecting the business process modeling

problems with the principles of SPLs, a new term was coined:

Business Process Family Engineering (BPFE) [19]. BPFE applies

concepts of SPLE in business process management to the

development of families of business processes. BPFE uses the

same dual-lifecycle development as software product line

engineering, i.e., domain engineering and application engineering.

Therefore, the first lifecycle develops families of business

processes by applying modified lifecycle of business process

management which can identify common and variable features in

a family and create reusable assets and reference models. Then,

application engineering creates specific business processes for the

target organization. Similar to the application engineering phase

in Software Product Lines Engineering, here, application

engineering is performed by choosing the desired features of the

feature model.

2.3 Sample Case Scenario
To elucidate the proposed method and its activities in next

sections, we use a “Supply Chain Management Application”

(SCMA) exemplified as follows: We assume that in a typical

shopping scenario, a customer pays the price of goods by one of

the following payment methods: debit card, credit card, cash, or

cheque. Then purchased goods get delivered to the customer.

Every business process in our scenario presumably should support

at least two methods of payment with one payment method always

selected as cash payment. Some business processes support fraud

detection for more security. For the process of delivery, first

quality of goods should be verified, and then goods are packed

and delivered to the customer by one of the delivery methods

selected according to some criteria such as cost of delivery, time

to arrive, etc.

96

As the paper proceeds, in order to explain outcomes of this

method’s activities, different models specifying SCMA business

process family. and produced in different activities of this method,

are demonstrated.

Figure 1. Domain engineering lifecycle for developing business family process

3. Method Overview
This section provides process-centered overview of our

proposed method. We describe the main phases of the process

with artifacts either used and or produced. This method has two

main lifecycles: domain and application engineering. During the

development process of these parts, we follow MDE principles.

3.1 Domain Engineering
Domain engineering aims at investigating a family of business

processes and producing reusable assets and reference

architectures of families of software. It also is responsible for

scoping the product line and describing variability models of

product lines. The main phases of domain engineering lifecycle

are as follows (see Figure 1Error! Reference source not

found.):

The Domain Scoping phase deals with the scoping of a business

process product line and its market strategy [9]. That is, it

identifies business functions which belong to a current product

line (i.e. business process family). For this purpose, first a set of

criteria such as number of potential business functions, range of

variability, etc. are developed, and then used for scoping the

business process product line [10]. This phase also produces

business process product-line road-map as the output.

The Family Requirement Analysis phase aims at defining a

model of requirements, where each requirement has a unique

and unambiguous definition. Knowledge of existing business

processes, customer viewpoints, project vision and documents,

and the business cases serve as the inputs to this phase. Main

activities performed in this phase are: capturing user

requirements (which includes analyzing needs of users and

stakeholders and then documenting them); refining requirements

(which includes aggregating, decomposing, and alternating the

requirements); developing requirements model (which uses

requirements documents to define a model of the requirements,

depicting the business functions and the non functional

requirements of the business process family); validation and

verification (that is making sure which requirements are valid

and consistent); and finally Developing the Feature Model

(which manages commonalities and variability within the

product line and represent them in a feature model).

The Business Process Family Design phase takes the

requirements model and the feature model and produces

business process family model. This phase encompasses

following activities: business process activity identification

(which identifies, groups, and describes activities compelling

satisfaction of some requirements [11]); activities refinement,

(which decomposes activities into sub-activities); dependency

definition (which describes conditions of each activity and

relation between them, for instance, some activities might be

performed, if some conditions are met); and Developing

Business Process Family Model (which produces a business

process model in one of the modeling languages such as

BPMN).

The Business Process Family Annotation Phase aims at mapping

the solution domain, the business process family model, to the

feature model. It receives the feature model and the business

process family model and produces a feature-business process

mapping. Activities of this phase consist of: tracing business

sub-processes and requirements (which identifies what parts of

the business model realize the specific requirements); binding

business sub-processes (which maps business sub-processes to

the features encompassing corresponding requirements); and

Business Process
Family Requirement

Specifications

Platform Independent Model

(PIM)

Business Process
Families Model

Feature-Business
Process Mapping

Family Requirement Analysis
Feature and

Variability Model

Business Process Family Design

Business Process Family

Annotation

Business Process Family
Realization

Service
Interfaces

Business Process
Unit Service

Mapping

Service Implementation

Service
Implementation

Service
Composition

Unit Service Model

Platform Specific Model (PSM)

Implementation Model

(IMM)

Computational-Independent Model

(CIM)

97

Developing Unit Service Model (which defines unit services

from business process models and specifies the type of activities

as human-tasks and automated tasks [2][8][2]). The business

process family annotation and business process family design

phases can be performed in an iterative and incremental fashion.

For instance, when a business sub-process related to

requirements that belong to each feature is created, activities of

this phase are performed and mappings between features and

corresponding business process models are defined.

The Business Process Family Realization phase aims at

implementing the business process model. It receives the

business process family and unit service models and according

to the type of activities, different implementations are

developed. For each unit service, if it is a human-task, execution

steps are defined, and if it is an automated task, the system tries

to discover and compose service interfaces which implement

that unit service with respect to requested non-functionalities.

The Service Interface Implementation phase is about the

implementation of service interfaces, which provides the

functionality of Unit Services accomplishing the activity defined

in a business process. The service interface implementation is

performed by means of service component development.

3.2 Application Engineering
Application engineering creates final products by adapting the

reference architecture and by utilizing reused artifacts, created in

domain engineering, with regards to the requirements of users of

a specific product. It is a process of selecting a right set of

business processes and their activities, software artifacts, and

deployments in accordance with the requirements of the target

business organization. During this lifecycle, requirements of

specific applications are analyzed and the reference architecture

is adapted and enriched with reusable artifacts to produce final

products. The process of application engineering is illustrated in

Figure 2. The main phases of application engineering are

described below.

Figure 2. Application engineering lifecycle

The Application Requirement Analysis phase aims at collecting

the requirements of the target business organization. It receives

the project definition of the target business process and produces

the requirements which will be used for choosing features from

the business process family feature model. Activities of this

phase are similar to activities of the family requirements

analysis, but with the focus on a single application.

The Application Design phase receives application requirements

and starts by selecting a configuration from the feature model

and creating an initial business process model from the model

describing the business process family. The initial business

process model is selected according to the chosen features from

the requirements analysis. At this point, we plan the use of

different feature model specialization methods, which might be

assumed as Staged Specialization. Our initial work on this

matter is described in [17]. Furthermore, the selected feature

configuration drives the selection of software artifacts, which

implement the business process activities connected with the

selected features. Software artifacts are software components

implementing local services and external services. The business

processes and the supporting software artifacts are represented

through a BPML model. Software artifacts can be presented

either with explicit naming, with the usage of text annotations,

or as BPML artifacts. Herewith, the business process model can

be verified from the perspective of stakeholders (e.g. business

process engineers and designers), business process participants

(e.g. knowledge workers, employees performing business

activities) and software system engineers.

The Application Implementation phase is the final phase of

service-oriented product development. The outcome of this

phase is deployed and tested as a business process, and new

business processes get implemented in the target application.

This phase can be divided into two sub-phases. The first sub-

phase is the Application Deployment Design sub-phase. During

the deployment design, supporting software artifacts chosen in

the previous phase and the deployment environment get

integrated into the business process model. This model also has

to be verified by the stakeholders, business process participants,

and software system engineers, because it is the most accurate

model of the business processes execution in the organization.

The Application Deployment and Testing sub-phase, as the

second sub-phase, begins after the approval of previously

mentioned models. In this phase the business process is

deployed and, the specified business process eventually is

implemented in the organization. The three phases of application

engineering are in their nature iterative and incremental. In the

Application Design sub-phase, the features are being chosen

according to requirements. In parallel to choosing features,

business process models are automatically configured. During

verification of configured business process models by

stakeholders, business process participants, and software

engineers; features can be selected and deselected. The selecting

and deselecting of features may roll the process back to the

Application Requirement Analysis phase, where these additional

considerations affect the requirements of the business

organization. Similarly, the iterative and incremental relations

exist between the Application Deployment Design phase, and the

Application Design phase. An example of changing the

application design according to the results of the verification of

business process models with integrated deployment information

could be dissatisfaction of performance goals. Often there are

cases where performance goals cannot be satisfied due to the

deployment constraints.

Application
Implementation

Application
Requirement
Specifications

Application Business
Process Model

Application
Requirement Analysis

Application Design

Application Deployment
Design

Application
Business Process

Model with
Deployment Details

Application
Deployment and

Testing

PSM

CIM

PIM

BPEL
WSDL

Web Services
Java,.Net

OSGi Bundles

IMM

98

4. Detailed Definition of Artifacts
This section describes detailed definition of main artifacts

created within our methods. Artifacts, separated in different

levels of abstraction, are created in domain engineering and

application engineering lifecycles of the proposed method. In

this section because of limited space we just introduce the

domain engineering artifacts. These artifacts are categorized in

three levels of PIM, PSM, and Implementation Models.

4.1 High-Level Design and Abstraction

Model
The Platform Independent Model (PIM) contains models which

are independent from a specific platform. A platform in a

business process is an environment used to run business

processes such as workflow management systems and SOA.

This model encompasses features and variability models,

families of business process models, unit service models,

feature-business process mappings, and business process-unit

service mappings. We provide brief descriptions for each of

these models.

4.1.1 Feature and Variability Model
Feature modeling is the activity of identifying distinctive and

prominent characteristics of software products in product lines.

Features may be any distinguishable concepts or characteristics

visible and exposed to various stakeholders (analysis, designer,

developer, and users) [13]. Accordingly, in a business process

family, a process can be represented as a visible characteristic

which provides business functionality. Furthermore, a family of

business process shares common features which provide and

encapsulate business functionalities. Hence, modeling of

variability of features in a business process family promisingly

elevates software reuse through systematic exploitation of

commonality and variability between processes.

Figure 3. The feature diagram for configuration of a family

of business process

Since, the notion of development software product families

encompasses development of products sharing a significant

amount of features based on common characteristics; variability

modeling is used in all phases of the development process,

particularly for business process management.

The effects of product family variability modeling are

characterized and discussed at different levels in

[16][14][15][16]. The development of a family of business

processes embodies variability as a required concept which

enables the derivation of distinct processes defined in a business

process family. The ability to derive and configure business

processes is achieved through using the variation points which

generally define the decision points in sub-processes. Feature

models are employed to represent the variability and describe

the permissible configurations of a business process family.

Common features among various sub-processes are modeled by

mandatory features. Mandatory features are features which must

be included in the final configuration and presented for the final

product to function as intended. To exemplify this, let us

consider a feature diagram for the Section 2.3, depicted in

Figure 3. The feature model diagram contains features

corresponding to sub-processes of the family of business

processes. Each business process configured from this family

must have the Payment and Shipment sub-processes. For

example, Payment of the application with respect to annotation

cardinality must include 2 to 4 methods of payment as

mandatory features represented in feature diagram. Optional

sub-processes may or may not be included for a family of

business processes to function. For example, Fraud Detection is

demonstrated as an optional sub-process in a business process

family in order to support versatile security functionalities in

different levels.

4.1.2 Business Process Family Model
After performing the requirement analysis for the business

process family, a suitable business process should be

implemented to fulfill these requirements. The business process

family model is the bridge between requirements and

implementation transforming the requirements to the

implementation phase smoother. The business process family

model is the result of the business process family design phase.

A business process family model is the output of formalizing the

informal description business process by using a concrete

business process modeling language such as BPMN. This model

encompasses all aspects of the target organization. Therefore,

the modeling language should provide constructs and

mechanisms to support aspects such as activity, sequence flow,

dataflow, and events. Since, the information related to the target

platform is not embedded in this business process family model,

it can be considered as part of the PIM. Figure 4 depicts a

business process consisting of two sub-processes denoted as

Payment and Shipment. The business process starts when an

Order Request message arrives at the business organization.

After receiving the Order Request message, the payment is

performed. The business process proceeds to Shipment when the

request item is paid. After the completion of the Shipment the

business process ends.

Figure 4. Process of supply chain family consisting of two

sub-processes

Figure 5 shows the details of each sub-process from Figure 4.

The Payment sub-process specifies how the payment for the

required artifacts can be carried out. It can be carried out by

using Cash, Credit Card, Cheque, or a Debit Card, represented

as sub-processes in this model. Different alternatives of payment

are mutually exclusive, that is, only one method of payment can

be chosen at run time for this application, whilst the Fraud

Detection process is under way. Fraud detection is responsible

for checking and managing the fraud in payment.

The Shipment sub-process starts by acquiring goods in order to

check whether goods are available and to verify the quality of

goods. Then goods are packed and delivered to customers. If

SCMA

Payment Shipment

Fraud
Detection

Cash
Debit
Card

Credit
Card

Cheque

Quality
Verification Packing

Delivery
System

Delivery
Verification

[2-4]

Payment
Method

99

there is problem in delivering goods, it will be managed by

invoking the reclamation handling sub-process.

Figure 5. Detailed sub-processes of supply chain business

process. (a) Payment sub-process. (b) Shipment sub-process

4.1.3 Unit Service
A family of business processes comprise of a coarse-grained

sequence for flows of activities as conceptual units expressing

the functions of business processes. In the SOA paradigm, in

which a business process is composed of services, activities can

be implemented by services or delegated to users. We consider a

unit service as a formal definition of an activity in a business

process. Thereby, by considering an individual activity as an

atomic unit in a business process, an activity is performed by

one or more unit services by following the principles of SOA.

For each activity in a business process family, there might be

one or more unit services which can perform and complete an

activity in a business process. Moreover, unit services may be

common and reused among business processes. Different unit

services may provide business functionality with support for

different technological requirements, such as communication

over different transport mediums. Furthermore, they can provide

business functionality with different non-functional properties

such as security and performance, exposed by different

implementations of service interfaces and composed services.

The variation points, derived from non-functional and

technological properties of service units, provide business

functionality with different non-functional and technological

properties. Such variability facilitates flexible quality-driven

business process family configuration. For instance, the Debit

Card sub-process includes an activity represented as Receive

PIN in Figure 6. Different unit services might be discovered and

mapped to an activity so as to provide secure transaction when a

PIN is used (e.g. card reader, ATM keypad operating device,

and etc.).

Figure 6. Activities defined in Debit Card sub-process

4.1.4 Feature-Business Process Mapping
The final software product is a software system having features

selected in the final feature model configuration. The realizing

software artefacts are selected from the solution model

automatically with the feature selection.. The solution model

consists of design and implementation models. In order to

facilitate such production of the final software product,the

relation between artefacts in the solution model (i.e. class

diagrams, state diagrams, code, and etc.) and features in the

feature model which they implement, must be defined. Different

SPLE approaches adopt different policies for defining mappings

between features and solution models. For instance, Gomaa [11]

sets this mapping at the first stages of domain engineering (i.e.

requirement engineering) and models features as groups of use-

cases that are reused together. Consequently, since other

artefacts, created in the following stages of development, are

traceable to use-cases, this mapping propagates to other

artefacts. On the other hand, another policy specification

approach is used in FeatureMapper [18]. This approach provides

separate stages and tools to map features in a feature model, as

the problem space elements, to software artefacts, as solution

model modules. This mapping should be maintained with

structure to produce concrete products from configuration.

Since, business processes define our solution space, we need to

have proper mapping between features and business processes,

representing each feature realised by corresponding sub-business

processes. We consider a mapping policy similar to the one used

in the FeatureMapper [18] and also aim at developing a mapping

tool to assist developers in creating this mapping for their family

of products. Furthermore, feature-business artefact in our

method is structured for maintaining mappings between features

and sub-business processes. For instance, the Debit Card

feature in feature model is mapped to the debit card sub-process

of business process family (See Figure 6).

4.2 Platform Specific Model
The Platform Specific Model (PSM) comprises models which

rely on specific platforms conforming to most common SOA

platforms, enabling assembly and orchestration of loosely

coupled services. During a domain engineering stage, Business

Process Family Realization consists of implementing the

business process model through unit services, as reusable assets

in a domain, including different service interface

implementation and composition.

In business process family development, either in domain or

application engineering stages, the discovery and selection of

available unit services is not automatic and requires intensive

human efforts. Hence, to gain high level of reuse in a specific

target platform, the identification and discovery of unit services

approaching the distinct goals of activities in a business process

is a significant task. As a possible solution, we aim at

developing semantic service discovery to provide seamless and

flexible discovery of unit services which provide the business

(b)

(a)

100

functionality required in a business process family. The

discovery engine can retrieve a set of available unit services

annotated by semantic descriptions in a specific platform,

matching with activity goals in a business process. For this

purpose, we would employ the Web Service Modeling Ontology

(WSMO) [22] aiming at describing all pertained aspects related

to general services and goals..

4.3 Implementation Model
Upon creation of the platform specific model, the constructional

elements identified as requirements for the final software system

need to be addressed by assigning proper technological pieces to

each constructional element. In our implementation model, the

required and existing technology for each of the artifacts from

the PSM are identified and mapped to elements that guarantee a

sound deployment of the technology elements on a low-level

programming language platform. The implementation model

enables the derived model to be easily compiled to the target

programming language platform so that the final outcome

complies with the requirements of the software system identified

in the earlier steps of design and development.

There might be several implementation models that correspond

to one service interface model. This stems from the fact that the

implementation model represents a more concrete

implementation of a service and thus requires to be closely

bound to the underlying platform on which the final set of

services will be deployed. The variety of deployment platforms

requires more concrete concepts to be considered at the level of

service implementation compared to service interface, which in

turn may lead to various instances of implementation model for

the service interface model. Finally, the service implementation

model gets compiled to a set of services and components in a

target programming language, which once compiled, can

generate the final software system. It is important to note that

the problem of composing services and components into a

software system is addressed at the upper layers of PIM and

PSM software design.

Provoking SOA as the main principal in our model driven

software engineering design, we map the final elements and

artifacts of our implementation model to software entities

representing self-contained services or components that deliver

the desired functionality corresponding to the required artifacts

in the implementation model. These software artifacts range

from service descriptions (e.g., WSDLs) and their corresponding

concrete implementation for Web services to service component

modules (e.g., SCM components) to lower level self-contained

components encompassing the desired functionalities (e.g.,

OSGi bundles). The selection of the target implementation

platform is very much influenced by the directives and decisions

enforced at the higher levels of modeling and designing of the

software system, i.e., when deciding about the business process

representation of the system under design, or identifying its

commonalities and variabilities.

5. Related Work
 The PESOA methodology for the development of process

families [19] is the most related work to our work. The PESOA

approach aims at ameliorating the development of variant-rich

processes models by representing variability in a BPMN based

process family architecture. In the analysis phase of the

established methodology, the requirements of an e-business

system to be developed as well as the stakeholder’s needs are

captured, and variabilities are presented by feature models. A

business process model is derived manually from a feature

model which represents the variability in business processes.

The authors’ approach for capturing variability in process

models relies on extending UML Activity Diagrams and BMPN

models by stereotype annotation. Accordingly, the variability is

accommodated in the process model in a so-called variant-rich

process model. The variability points captured are associated to

features in order to achieve feature configuration. In other

words, features in the generated feature model are actually direct

representations of the variants among processes. The

implementation phase in the proposed methodology focuses on

development of product family implementation artifacts and

deploying business process specifications into the process

execution engine The PESOA approach captures only design-

time variability and there is no possibility to modify the variants

during run-time.

Montero et al. [20] also introduce an approach for the

development of families of business processes. The intention of

their approach is to make consistency between the business

process model and the corresponding feature model and to

introduce runtime variability. With respect to this idea they have

recognized the feature model such that parent features, or

variability points are considered as complex processes, and child

features, are their sub-processes. They produce the basic

business process from the feature model and complete the

created business process manually. Since there are many

relations in a business process, such as sequence, deferred

choices and etc.; feature models cannot be employed for this

purpose without appropriate declaration of semantic relations.

Nonetheless, our work differs from theirs. We demonstrate the

relations and integrity constraints among sub-processes in a

family of business processes through feature modeling, and the

implementation and behavior of sub-process are performed by

business process models. Furthermore, in our approach, the

proper requisite mapping between feature models and business

process models is also defined.

Bae et al. [21] introduce the FMBP, a methodology for

developing a feature model out of families of business

processes. The FMBP approach adopts a top-down divide-and-

conquer method for the development of feature models. This

methodology argues for the development of a feature model

from a business process model by identifying use cases from

business process models and aligning features in accordance

with them. This method is resembled to the method proposed by

Montero et al. [20], yet, Bae et al. focus only on business

process modeling. They also have the problem of difference of

semantic relation in feature model and business process due to

converting business process to feature model.

6. Conclusion and Future Work
In this paper we presented a novel methodology for the

development of business process families by exploiting SPLE

and SOA. In our methodology we introduce variability modeling

derived from different levels of SOA development to support a

high level of reuse and to facilitate the development of variant-

rich business process models. We have described how a family

of business processes can be modeled and variability can be

captured in different development stages to approach the flexible

and cost-effective development and deployment of a family of

software products. Furthermore, with the comparison of current

approaches for model-driven development of semantically rich

101

business processes and supporting SOAs, we described how we

improve the state of the art in model-driven development of

families of SOAs. We have also made the initial steps towards

realization of supporting tools for our vision.

In our future work, we will empower different stages of

development phases by taking advantages of emerging semantic

web technologies. We employ ontologies to define semantic

relations between different software artifacts and models. We

will exploit ontologies as an underlying formalism for the

representation of feature models of families of business

processes to incorporate semantic annotation of features in order

to approach semi-automatic configuration of a family of

software services. As part of our future work, we will devise to

develop semantic service discovery supporting tool to identify

and discover unit services in which we perform activities based

on defined business goals and requirements imposed by

activities in a business process model.

7. Reference
[1]Tsai.W., 2005. Service-oriented system engineering: a new

paradigm, IEEE International Workshop on Service-Oriented

System Engineering, SOSE 2005. pp. 3-6.

[2]Chang, S. H, and Kim, S. D., 2007. A Variability Modeling

Method for Adaptable Services in Service-Oriented

Computing, In Proceedings of the 11th International

Software Product Line Conference, SPLC 2007., pp.261-268.

[3]Clements, P., Northrop, L., 2001. Software product lines,

Addison-Wesley Reading MA.

[4]Bezivin, J., Dupe´, G., Jouault, F., Pitette, G., and Rougui, J.

E.. First Experiments with the ATL Model Transformati on

Language: Transforming XSLT into XQuery, In Proc of the

Workshop on Generative Techniques in the Context of Model

Driven Architecture, Anaheim, CA.

[5]Weske, M.. Business Process Management, Springer, 2007.

[6] Mendling, J.. 2008. Business process management, Lecture

Notes in Business Information Processing, Springer.

[7]List, B., and Korherr, B., 2006. An evaluation of conceptual

business process modelling languages. In Proceedings of the

2006 ACM Symposium on Applied Computing (Dijon,

France, April 23 - 27, 2006). SAC '06. ACM, New York,

NY, 1532-1539.

[8]Sasa, A., Matjaz, B. J., Krisper, M., 2008. Service-oriented

framework for human task support and automation. IEEE

Transactions on Industrial Informatics. Nov. 2008, vol. 4,

no. 4, p. 292–302.
[9]Linden, F. J., Schmid, K., and Rommes, E., 2007. Software

Product Lines in Action , Springer,

[10]Kim, S., Min, H. G., Her, J. S., Chang, S. H., 2005.

DREAM: A practical product line engineering using model

driven architecture. In Proceedings of the International

Conference on Information Technology and Application.

2005b, Australia, pp.70-75.

[11]Gomaa, H., 2004. Designing Software Product Lines with

Uml: from Use Cases to Pattern-Based Software

Architectures. Addison Wesley Longman Publishing Co.,

Inc

[12]Papazoglou, M. P., and Yang, J., 2002. Design Methodology

for Web Services and Business Processes. In Proceedings of

the Third international Workshop on Technologies For E-

Services (August 23 - 24, 2002). A. P. Buchmann, F. Casati,

L. Fiege, M. Hsu, and M. Shan, Eds. Lecture Notes In

Computer Science, vol. 2444. Springer-Verlag, London,

pp.54-64.

[13]Jaejoon Lee, D. Muthig, and M. Naab, 2008. An Approach

for Developing Service Oriented Product Lines, In 12th

International Software Product Line Conference, SPLC '08.

pp. 275-284.

[14]Halmans, G., Pohl, K., 2003. Communicating the variability

of a software-product family to customers, Software and

Systems Modeling, vol. 2, pp. 15-36.

[15]van Gurp, J., Bosch, J., and Svahnberg, M, 2001. On the

notion of variability in software product lines”. In

proceedings of the IEEE/IFIP Conference on Software

Architecture, pp. 45-54.

[16]Bachmann, F., Bass, L., 2001. Managing Variability in

Software Architecture. ACM Press, NY, USA, 2001

[17]Mohabbati, B., Kaviani, N., Gašević, D., 2009. Semantic

Variability Modeling for Multi-staged Service Composition,

In Proceedings of the 13th Software Product Lines

Conference, Vol. 2 (3rd International Workshop on Service-

Oriented Architectures and Software Product Lines), 2009

(in press).

[18]Heidenreich, F., Kopcsek, J., and Wende, C.,

2008.FeatureMapper: mapping features to models, In

Companion of the 30th international Conference on

Software Engineering (Leipzig, Germany, May 10 - 18,

2008). ICSE Companion '08. ACM, New York, NY, 943-

944.

[19]Schnieders A, and Puhlmann F, 2006. Variability

mechanisms in e-business process families, 9th International

Conference on Business Information Systems (BIS 2006),

2006.

[20]Montero, I., Pena, J., Ruiz-Cortes, A,, 2008. From Feature

Models to Business Processes, In Proceedings of the IEEE

International Conference on Services Computing Vol. 2,

pp.605-608.

[21]Bae, J. and Kang, S. A, 2007. Method to Generate a Feature

Model from a Business Process Model for Business

Applications, In Proceedings of the 7th IEEE international

Conference on Computer and information Technology

(October 16 - 19, 2007). CIT. IEEE Computer Society,

Washington, DC,. 2007, pp. 879-884.

[22] Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R.,

Stollberg, M., Polleres, A., FeierC,Bussler, C., Fensel,D.

,2005. Web service modeling ontology. Appl Ontol 1(1):77–

106.

[23]OMG, Business Process Modeling Notation

specification2.0,http://www.omg.org/technology/documents/

bms_spec_catalog.htm.

[24]van der Aalst, W., Ter Hofstede, A., Weske, M., 2003.

Business Process Management: A Survey. International

Conference on Business Process Management (BPM 2003),

Lecture Notes in Computer Science volume 2678, pages 1-

12. Springer-Verlag, Berlin.

[25]Booch, G., Brown, A., Iyengar, S., and Selic, B.: An MDA

Manifesto. MDA Journal (2004)

102

Interaction-based Feature-Driven
Model-Transformations
for Generating E-Forms

Bedir Tekinerdoğan
Bilkent University

Dept. of Computer Engineering
06800 Bilkent, Ankara, Turkey

bedir@cs.bilkent.edu.tr

Namik Aktekin
eMaxx B.V. Hengelo,

P.O. Box 768,
7550 AT, Hengelo, The Netherlands

n.aktekin@exxellence.nl

ABSTRACT
One of the basic pillars in Model-Driven Software Development
(MDSD) is defined by model transformations and likewise several
useful approaches have been proposed in this context. In parallel,
domain modeling plays an essential role in MDSD to support the
definition of concepts in the domain, and support the model
transformation process. In this paper, we will discuss the results of
an e-government project for the generation of e-forms from
feature models. Very often existing model transformation
practices seem to largely adopt a closed world assumption
whereby the transformation definitions of models are defined
beforehand and interaction with the user at run-time is largely
omitted. Our study shows the need for a more interactive
approach in model transformations in which e-forms are generated
after interaction with the end-user. To show the case we illustrate
three different approaches for generation in increasing
complexity: (1) offline model transformation without interaction
(2) model transformation with initial interaction (3) model-
transformation with run-time interaction.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques.

General Terms
Design, Documentation, Performance, Verification

Keywords
Model-driven software development, Feature-oriented modeling,
e-government

1. INTRODUCTION
One of the basic pillars in Model-Driven Development is defined
by model transformations and likewise several useful approaches
have been proposed in this context [6] [1]. In addition it should be
noted that the goals of model-driven development also depend on
the identification and modeling of the right domain concepts. As
such domain analysis plays an essential role in MDSD to support
the definition of concepts in the domain. Domain analysis is a
systematic approach for analyzing and modeling the domain
concepts that are relevant for the stakeholders [2]. One of the
common techniques for domain modeling is feature modeling,
which has been extensively used in domain engineering [2].
Hereby, a feature model is a result of a domain analysis process in
which the common and variant properties of a domain are elicited
and modeled. In addition, the feature model identifies the
constraints on the legal combinations of features. A feature model
can thus be considered as a specification of the family.

In this paper, we report on our experiences of applying feature
modeling to model-driven development. The context of the case is
an e-government project which aims to use information and
communication technology to provide and improve government
services. E-government includes different models including
government-to-government and government-to-citizen. We have
focused on the model of local government-to-citizen which aims
to support the interaction between local and central government
and private individuals. Part of the e-government solutions are
the generation of e-forms (electronic forms) for local
governments. An e-form is the electronic version of its
corresponding paper form. We have applied model-driven
engineering techniques for the automatic generation of e-forms
(electronic forms) from feature models.

This project has shown that feature modeling is an effective
means not only to model the domain of e-forms but also to
support the automatic generation in a model-driven engineering
process. Besides of this observation the results of our study also
presents an additional insight and lessons learned regarding model
transformation practices in general. In particular it appeared that
for defining e-forms offline static single generation is less
suitable. This is because the specific e-forms depend on the user
input and the retrieved data from the data administration services.
In this paper we show three different approaches for generation
with increasing complexity: (1) off line model transformation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. FOSD'09, October 6,
2009 Denver, Colorado, USA Copyright © 2009 ACM 978-1-60558-567-
3/09/10... $10.00

103

without interaction (2) model transformation with initial
interaction (3) model transformation with run-time interaction.
We report on our experiences and lessons learned and propose a
systematic approach for defining model transformations that is
based on an interactive paradigm.

The outline of the paper is structured as follows: In section 2 we
provide the case study on e-form generators for local
governments. In section 3 we show the automatic transformation
process for generating e-forms from feature models. In section 4
we present an interaction-based model transformation. Finally
section 5 presents the conclusions.

2. CASE STUDY – E-FORM GENERATION

2.1 Description
The research has been carried out together with eMAXX which is
a medium-size ICT company in Enschede, The Netherlands [5].
One of the objectives of eMAXX is to produce solutions for e-
government (electronic government). Figure 1 shows an example
interface of e-government gateway of the city Enschede, which
the citizens can access to request services.

Figure 1. Example interface of a local government interface for
supporting e-services

An e-form is simply the electronic version of its corresponding
paper form. E-forms have some benefits over paper forms
including eliminating the cost of printing, storing, and distributing
pre-printed forms. In addition e-forms can be filled out faster
because the programming associated with them can automatically
format, calculate, look up, and validate information for the user.
With digital signatures and routing via e-mail, approval cycle
times can be significantly reduced. Compared to paper forms, e-
forms allow more focus on the business process or underlying
problem for which they are designed (for example, expense
reporting, purchasing, or time reporting). They can understand the
roles and responsibilities of the different participants of the
process and, in turn, automate routing and much of the decision
making necessary to process the form.

Using e-forms on the internet site of the local governments,
citizens can perform requests such as making an appointment,
informing about a movement, requesting a build license, etc.
These services are defined on e-forms that are implemented by
eMAXX. The deployment view is depicted in Figure 2.

Local Government

E-form

government

clerk

Web

Browsers Webserver

E-Form

Template

E-form

Filled out

get citizen

info

MidOffice

Data

Administration

get citizen

info

uses

send

request

Figure 2. E-form generation –manual case

E-forms remain at a web server of a local government. Citizens
can access these web pages through the internet browsers. E-
forms are usually defined over multiple web pages. Once a user
logs in to the system the user can select a number of services
offered by the local government, such as for example notification
of movement. A middleware layer, defined by the MidOffice
server includes functions to access personal data of the registered
users in the local government, which is stored in one or more back
office systems, Data Administration. Based on the selected
product and the user, the information about the user is requested
from the common administration through MidOffice. The
unknown fields are filled out by the user. After the citizen enters
the last field the system needs to generate a report and submit the
request to the government clerk. An important advantage of the
MidOffice is the loose coupling between the interfaces
(presentation) and the back offices (data). Different back office
system can be accessed by different web browsers. The
communication of the client web pages only communicate
through the MidOffice which is responsible for the communication
and distribution logic.

2.2 Problem Statement
In the initial version of the system, e-forms were manually
implemented and deployed on the webserver of local
governments. Moreover, e-forms are statically defined without
taking into account the interaction with the user. A number of
problems with this manual, static development solution can be
identified.

• Lack of reuse of e-forms

First of all, even when we are dealing with the same kind of
service, such as notification of movement, different local
governments might require different kind of e-forms. The
differences might be in the required type of data, the presentation
form or the control flow i.e. the order in which the data is
presented to the citizen. Although the e-forms share much
commonality, the lack of systematic variability management
requires that for each different local government an e-form needs
to be implemented from scratch.

• Maintenance of e-forms

Even after deployment of the e-forms on the web servers, based
on earlier practical experiences, updates might required to the
implemented e-forms in due time. Unfortunately, the maintenance
of the web pages including the e-forms is not trivial and again
requires changes to the requested data, the presentation form or
the control flow.

104

• Need for run-time generation of e-forms

Since the generation of some fields can only be known when a
particular citizen is filling out the e-form, the specific required e-
form can actually only be known at run-time. Because of this
limitation usually the complete e-form is provided to the user,
which complicates the process of filling out the form by the
citizen. The e-form would be easier if only the required
information is presented at the right time.

• Need for interaction by user

Finally, related to the previous third issue, when filling out the e-
form, interaction with the Data Administration might be required
to retrieve data to speed up the process or to complete the e-form.
Unfortunately, in the initial version the interaction is only defined
in the beginning during the authentication step of the citizen.

Regarding the above issues the manual implementation of e-forms
with only weak interaction with citizen and/or back offices is to
some extent doable but certainly not cost effective. To optimize
the development, maintenance and usage of e-forms automated
support is necessary. The main objective here is to increase the
reuse and productivity while developing and maintaining e-forms.
For this, two basic issues need to be addressed. First of all, a
domain model is required for defining e-forms. This domain
model should be easy to understand and to be developed.
Secondly, based on the domain model the target artifacts, that is,
e-forms need to be automatically generated. To address these
issues we have defined three different types of generators in
increasing complexity:

- Generator without interaction. This generator transforms a
feature model to an e-form in which all the required fields
are presented to the end-user. The end-user needs to fill out
all the requested data and the e-form can only be completed
if all the information is entered. Once the e-form is complete
a report is generated and the service request is submitted for
handling.

- Generator with single, initial interaction. This generator is
similar to the previous generator but allows for initial
interaction with the data administration server to retrieve the
values for the fields that can already be defined in the e-form

- Generator with multiple, run-time interaction. This generator
complements the second generator by allowing interaction
with user and data administration during run-time. For this a
number of functions of data administration can be invoked to
speed up the e-form completion process. Because of the
multiple options for invoking functions the generator defines
the related workflow for optimizing the function calls.

Obviously, explicitly addressing interaction in model
transformations is here a key issue. Unfortunately, current model-
driven development practices tend to adopt a more closed-view
approach in which interaction is not explicitly addressed. Our
experiences in this industrial context aim to show both the
necessity for interaction in model-transformations and the role of
feature modeling. In the following sections we elaborate on the
above generators.

3. FEATURE-BASED MODEL
TRANSFORMATION
To address the requirements in the previous section we (1) define
feature models of local governments, and (2) use these to generate
e-forms and reports. Feature models have thus a dual role of
modeling the data and as an intermediate form of e-forms. In the
following we will discuss the first generator process which
automates the e-form generation process but does not include
interaction. In section 3.1 we will first focus on feature modeling
of the services, and in section 3.2 we will discuss how we adopt
and integrate feature models in the model-transformation process.

3.1 Feature Modeling of Services
Different e-forms are implemented for different local
governments but besides of the variations one can easily observe
commonality of requested data. To model the domain for a given
service we define a family feature model. Figure 3 shows, for
example, a feature diagram for a service of a local government,
which is the notification of moving. In fact this feature model
defines the space of requested data that can be implemented on
different e-forms. To put it differently, the feature diagram
represents an intermediate representation for the space of e-forms.

The feature model is already useful for supporting the
implementation of e-forms. Different instantiations of the feature
diagram indicate different definitions of e-forms. An example
instantiation of the family feature diagram in Figure 3 is given in
Figure 4.

Based on the application feature model the corresponding e-form
can be implemented. Herewith, all the mandatory features will
need to be mapped to fields. Optional and alternative features will
be for example realized using check box fields, or radio buttons.
We have defined a set of transformation rules and implemented
these in the transformation definition. A possible corresponding e-
form is depicted in Figure 5.

Figure 3. Family feature diagram of service notification of
movement

Figure 4. Application feature model of service notification of
movement

105

Figure 5. Example E-form based on instantiated feature diagram

3.2 Model Transformations
In principle, feature models can be used for manually
implementing e-forms. However, to support reuse and
productivity, we will aim for automatic generation of e-forms. For
this a generator needs to be defined that takes as input an
instantiation of the feature model and provides as output the
corresponding e-form. As defined in Figure 2, after the citizen
fills out the e-form a report needs to be generated and the request
should be handled. Obviously, here we can easily apply model-
driven techniques to support the reuse and automation goals.

For the given case, at least three different transformations are
required as defined in Figure 6:

 Defining feature model – The domain modeler defines a
feature model of the required services. This is a manual process.

 Application feature model to UI model – The instantiated
feature model of the service, the application feature model, will be
used to generate the UI model representing the e-form.

 UI model to feature model – once the user fills out the required
fields in the form the UI model will be generated to the feature
model.

Feature model to Report model – After all the fields in the e-
form are filled out, and the final feature model is generated, a
report will be generated.

Figure 6. Required transformations for automatic e-form
generations

Figure 7 shows the transformation pattern for generating e-forms
based on feature models. For defining the model transformation
we need to define the source metamodel, the target metamodel
and the transformation definition. In fact, both the source model
and target models are known. The source model, FM1 in Figure 7,
is a feature model, that conforms to a feature metamodel MMFM,
which defines the common concepts for feature models. We have
adopted the metamodel as defined in [3]. The target model UI
defines e-forms, and conforms to a metamodel MMUI. All the
models are represented using XML. The transformation applies
XSLT which is a language for transforming XML documents to
other XML documents. All the models in Figure 7 conform to the
metametamodel MOF.

Figure 7. Transformation pattern for transforming feature model
to UI model (e-form)

Once the citizen has filled out all the fields the final instance of
the feature diagram will be defined, requiring a transformation
from UI model to feature model. This is in principle similar to the
transformation pattern as shown in Figure 7, only the source
model will now be the UI model and the model the feature model.

Figure 8 shows the transformation pattern for generating reports
based on e-forms. Since the e-form is represented as a feature
model the source metamodel is a feature metamodel MMFM, and
the target metamodel is a metamodel for describing reports,
MMR.

Figure 8. Transformation pattern for transforming feature model

to Report

To sum up, this generation process automates the e-form
development process by using feature models. The complete e-

3

2

1

o

106

form is generated and presented to the citizen. Once the citizen
has completed the e-form the report can be generated.

4. MODEL TRANSFORMATION WITH
INTERACTION
In fact the overall model-driven process in section 3 largely
supports the goals for automated development of e-forms.
However, the transformation process in section 3 does not take
into account interaction with the user and the data administration.
The generated e-form is actually statically defined in one step, one
web page is generated, and no interaction is possible with the end-
user or data administration. In fact all the transformation steps in
Figure 6 are executed once. In the following sections we will
define generators that include interactions with the user and data
administration.

4.1 Initial Interaction
The second more refined generator makes use of the calls to the
data administration. After the authentication process and selection
of a particular service the system can already retrieve some
information about the citizen and the selected product and
instantiate part of the feature diagram. As such, the time to fill out
the form, as well as the chance for incomplete forms will be
partially reduced.

Compared to the generation process of the previous section this
generation process includes one more transformation pattern. This
is the transformation from a source feature model to another target
feature model. As such the process of e-form generation requires
the following order of steps:

1. Authentication of user
2. Selecting product service
3. Loading family feature model
4. Call to data administration to retrieve personal details
5. Definition of application feature model based on retrieved

data in step 4
6. Generation of e-form based on application feature model
7. Entering data by user in the e-form of step 6
8. Transformation of e-form to feature model

4.2 Run-time Interaction
The first generator without interaction solves the automation
problem of e-forms. By defining transformations e-forms can be
automatically generated. The second generator allowed initial
interaction with data administration to retrieve data that could be
filled out. As such the e-form completion process time is reduced.
However, both generators generate one complete web page in
which all the fields are shown. Unfortunately, this is not always
suitable since the generation of the specific fields in the e-form
also depends on the data that is entered by the user, or the data is
retrieved from the data administration, at run-time. As such, the
third generator allows run-time interaction with the user and data
administration. In this way, the e-form is generated incrementally
dependent on the input of the end-user. This means that the
instantiation of the family feature diagram is not done after
authentication process but at any time during completing the e-
form. Also multiple web pages including part of the e-form are
generated.

The interaction process is shown in Figure 9. After the
authentication process, the family feature model is retrieved and
the first fields are defined. Then follows a cycle of interaction
with user and data administration in which the application feature
model and likewise the corresponding e-form is specialized. Once
the e-form is complete a report is generated and the request is
submitted. In essence the transformation process is similar to the
alternative without interaction. The main difference is that now
the feature model is specialized multiple times and during the e-
form completion process. Obviously, multiple model
transformations are required to complete the process. In fact, this
process also follows the idea of staged configuration of feature
models as explained in [3].

Figure 9. Transformation pattern for transforming feature model

to UI model (e-form)

4.3 Optimizing Workflow
When interaction with the data administration is supported
functions for data administration are accessed. Many different
functions might be accessed given an application feature model.
For example, the invocation of the function getPersonDetails can
define the values for name, address, and id of the citizen. Further,
each invocation of a function might result in the definition of the
values of different fields.

In essence the aim is to optimize the e-form completion process
and therefore the functions need to be preferably invoked in the
order in which the maximum set of values in the e-form can be
determined. The latter means that the number of fields that the
citizen needs to enter is optimally reduced.

It appears thus that we need to address the workflow explicitly to
optimize the generation process. In the first generator no data
administration function was called at all. In the second generator
only initial call was made to the data administration. As such the
workflow concern was not considered in these two generators. In
the third generator the workflow concern is explicitly considered
by (1) defining the functions that can be invoked (2) defining the
order in which they need to be processed. As such based on the
state of the e-form (and the application feature model) a decision
needs to be made which functions of the data administration need

107

to be called. Different strategies can be adopted for this. We have
adopted a simple fixed, strategy which aims to optimize the
number of model transformations needed. The workflow
definition is defined as depicted in Figure 10.

 Figure 10. Adopted workflow in the interaction-based e-form

generator

Hereby we first check whether mandatory features have been
defined in the feature model. These are then first processed, that is
an e-form is generated with these fields, and data input from the
user is processed resulting in a new feature diagram. The
following step is to select features that are related to functions in
the data administration. The final step is the generation of optional
features. Once all the fields have been entered the report is
generated. In fact this is quite a simple workflow strategy and can
be optimized in different ways. For example, we could prioritize
the functions that result in more input from data administration;
we could define the optimal path of these functions, etc. The full
integration of strategy selection and optimization has been
reserved for the future work.

5. CONCLUSIONS
In this paper we have discussed our experiences with using feature
models for generating e-forms using model driven engineering
techniques. The basic conclusion of this work is that an
appropriate domain model represented as feature diagrams
provides a solid basis for the space of alternative target models. In
our case the target models were basically e-forms. Using the
conventional model transformation pattern we have defined four
different kinds of model transformations: feature model to feature
model, feature model to e-form, e-form to feature model, feature
model to report. All these transformations supported the
automation process of e-forms and as such improved reuse and
productivity. In addition we have pinpointed the necessity for
interaction in generating e-forms. This is because the e-form is not
only defined by the selected service but also defined by the
entered answers in the e-form or the retrieved information from
the data administration. To cope with this issue, model
transformations could not remain static and/or offline but had to
be integrated in the run-time e-form completion process. Based on

the input at important steps in the e-form completion process the
application feature model was regenerated and in accordance with
this the e-form updated. It also appeared that hereby the order in
which the functions of the data administration are accessed, i.e.
the workflow, have an impact on the e-form completion process.
In alignment with this issue, we have shortly discussed the notion
of workflow concern. Our future work will focus on the
interaction aspects in model transformations in general. We think
that the lessons that we have derived from the considered project
should be considered from a general and broader perspective. In
particular the issue of interaction in the model-transformation
process is a topic that needs further investigation.

ACKNOWLEDGMENTS
We would like to thank Mehmet Aksit, Anton Boerma and
Richard Scholten for earlier support and discussions about this
work.

REFERENCES
[1] J. Bézivin, F. Büttner, M. Gogolla, F. Jouault, I. Kurtev, A.

Lindow. Model Transformations? Transformation Models!,
MoDELS2006, Springer LNCS, Vol. 4199, pp. 440-452,
2006.

[2] K. Czarnecki and U. Eisenecker. Generative Programming:
Methods, Tools, and Applications, Addison Wesley, 2000.

[3] K. Czarnecki, S. Helsen and U. Eisenecker, Staged
Configuration Through Specialization and Multi-Level
Configuration of Feature Models, Software Process
Improvement and Practice, special issue on Software
Variability: Process and Management", vol. 10, pp. 143-169,
2005.

[4] Eclipse Modeling Framework Web Site,
http://www.eclipse.org/emf/

[5] eMaxx B.V. Hengelo, P.O. Box 768, 7550 AT, Hengelo,
The Netherlands. http://exxellence.nl/

[6] D.S. Frankel. Model-Driven Architecture, Wiley Publishing
Inc., 2003.

108

Towards Feature-driven Planning of
Product-Line Evolution

Goetz Botterweck
Lero, University of Limerick

Limerick, Ireland
goetz.botterweck@lero.ie

Andreas Pleuss
Lero, University of Limerick

Limerick, Ireland
andreas.pleuss@lero.ie

Andreas Polzer
Embedded Software Laboratory

RWTH Aachen University
Aachen, Germany

polzer@embedded.rwth-
aachen.de

Stefan Kowalewski
Embedded Software Laboratory

RWTH Aachen University
Aachen, Germany

kowalewski@embedded.rwth-
aachen.de

ABSTRACT
Industries that successfully apply product line approaches
often operate in markets that are well established and have
a strategic perspective. Consequently, such organizations
have a tendency towards long-term planning of products and
product lines. Although there are numerous approaches for
efficient product line engineering, there is surprisingly little
support for a long-term, strategic perspective and an evolu-
tion of product lines. To address these challenges, we aim
to integrate evolution into model-driven product line engi-
neering. In particular, we explore how feature models can
be applied to describe the evolution of product lines. The
paper contributes (i) concepts for describing the evolution
of product lines with feature models, (ii) a corresponding
framework, which puts this into a bigger context and (iii)
three scenarios that show how this framework can be ap-
plied. The concepts are motivated with examples from au-
tomotive software engineering and embedded systems, which
are industries with a strong affinity to product lines, where
long term planning of the product portfolio are common
strategies.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software; D.2.2
[Software Engineering]: Design Tools and Techniques

General Terms
Design, Algorithms, Management

Keywords
Product line engineering, Evolution, Feature modeling

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOSD’09, October 6, 2009, Denver, Colorado, USA.
Copyright 2009 ACM 978-1-60558-567-3/09/10 ...$10.00.

1. INTRODUCTION
Since the first concepts on program families [17], software

product lines [23, 4], and generative programming [5], ap-
proaches for the systematic engineering of families of soft-
ware systems have come a long way and are successfully
applied in many industries [20]. In recent years, we have
seen an increase in efficiency in product line engineering
(PLE), e.g., by using model-driven techniques [22] and im-
proved techniques for the implementation and composition
of features [3, 2, 12].

Industries that successfully apply product lines ap-
proaches often operate in markets that are well established
and have a strategic perspective. Consequently, such orga-
nizations have a tendency towards long-term planning and
evolution of their product portfolios. A typical example is
the usage of embedded systems in the automotive industry,
where a Systems Engineering approach with an integrated
design of hardware and software (“co-design”) is applied and
requires careful synchronization of the involved processes.
This strategic perspective is reflected by a long-term plan-
ning of product portfolios on feature-level over several years.
For instance, it is common to have decisions by upper man-
agement like “in 3 years we will introduce the next genera-
tion of our hybrid compact car” and “in 7 years we will offer
hybrid drive for all cars in our portfolio”.

Some PLE approaches acknowledge the importance of
such an long-term perspective on the motivational level (e.g.,
by discussing the activity of scoping or by motivating PLE
with strategic reuse [4]) but leave out tool-support. Other
PLE approaches deal with evolution on the detailed techni-
cal level, e.g., to evolve feature implementations (see related
work in Section 6), but leave out the long-term perspective
and proactive planning of this evolution.

There is little support for evolution on a model level, which
(1) provides an appropriate abstraction level to afford proac-
tive planning and handling of complexity and (2) is precise
and expressive enough to serve as a foundation for inter-
active and automated tools. In particular, to the best of
our knowledge, there is no model-based support for evo-
lution planning that allows capture evolution requirements
(“In 5 years introduce feature x”) in terms of models. Be-
sides other drawbacks this prevents to feed such information

109

Pr
od

uc
t L

in
e

Im
pl

em
en

ta
ti

on
St

ru
ct

ur
e

M
od

el
Fe

at
ur

e
M

od
el

2009
Evolution State

2010
Evolution State

2011
Evolution State

2008
Evolution State

Car Body

Multimedia
Devices

Radio

Monochrome
Display

Color
Display

Other
Features

Car Body

Multimedia
Devices

Navigation

Mono.
Display

Color
Display

Other
Features

Data Storage
Navigation
Display

Hard Disk
Drive

DVD
Drive

Monochrome
Navi. Display

Color
Navi. Display

Radio
DVD Enter‐
tainment

requires

requires

Car Body

Multimedia
Devices

Navigation

Monochrome
Display

Other
Features

Monochrome
Navi. Display

Color
Navi. Display

Radio

Car Body

Multimedia
Devices

Navigation

Monochrome
Display

Color Radio
Display

Other
Features

Radio
requires

Figure 1: Example product line evolving over time.

into a model-driven workflow for PLE, such that future gen-
erations of the product line can be planned and derived.

Consequently, these existing approaches lack efficiency
(because they do not support interactive and automated
techniques) or fall short when it comes to handling the evo-
lution of complex product lines (because they do not support
the abstraction from details).

We intend to use feature models to handle the evolution of
product lines. In this paper, we take first steps towards this
goal by analyzing the research problem and defining our ap-
proach on a conceptual level: We motivate our research by
examples from automotive embedded systems (Section 2).
The paper contributes (i) concepts for describing the evo-
lution of product lines with feature models (Section 3), (ii)
a corresponding framework which puts this into a bigger
context (Section 4) and (iii) three scenarios that apply this
framework (Section 5). We conclude with a brief overview
of related work (Section 6).

2. RESEARCH PROBLEM

2.1 An Example of an Evolving SPL
Figure 1 shows an example product line of automotive

embedded systems, which provide entertainment and navi-
gation features. This product line is evolving over four years
from 2008 to 2011 (horizontal dimension).

In each evolution step the product line consists of various
artefacts (vertical dimension). The Feature Model (upper
layer) describes available configuration choices for a multi-
media system for the core body of a car. In 2008 there is
just an optional radio which can be configured. In 2009 a
navigation system is added, which uses the user interface of
the radio. Due to a management decision the navigation is
separated from the radio system in 2010. As a consequence,
navigation can be ordered separately and offered with the
feature Color Display. In 2011 the navigation system is up-
dated with the possibility to store more maps and DVD
Entertainment is introduced, which requires a DVD Drive.

The bottom layer represents the implementation in an
domain-specific language, here a Matlab/Simulink model.

When products are derived from such a product line, nega-
tive variability [22] (i.e., the selective removal of elements in
these models) can be used to automatically derive the im-
plementation from a product-specific feature configuration.

2.2 Requirements for Modeling SPL Evolu-
tion

In the introduction and by providing the example we have
motivated the need for a systematic handling of product
line evolution. In the approach presented in this paper we
strive to address this challenge by modeling product line
evolution. If we consider the discussion so far, we can derive
some requirements for such models of product line evolution:

The model should be able to support evolution planning
on feature level. For instance, it should be possible to de-
scribe (i) the addition or deletion of features, (ii) structural
changes (e.g., moving a feature) and (iii) changes to rela-
tionships between features.

In planning the evolution of product lines, it is also im-
portant that partial decisions and incomplete constraints are
supported. Often, although the strategy for the next years
is given to a certain degree, not all decisions are already de-
fined. So it is only partially known how the feature tree of
the next generation will look like. Hence, it should be pos-
sible to take the known facts into account while assuming
that more changes are possible.

When planning future changes of product lines it is desir-
able to analyze and gather the resulting consequences, even
if the underlying models are large and complex. In real
life projects, feature models can become very complicated
with large numbers of interrelated features. Hence, evolu-
tion decisions and their potential consequences should be
presented with means that support cognition and increase
usability, e.g., by providing interactive access to the relevant
information and abstracting away unnecessary details.

Because of the overall complexity of evolution, it is neces-
sary to support the engineer with automated analyses, which
summarize information or detect relevant constellations of
particular interest. For instance, violated constraints should
be detected and resolved.

110

3. EVOFM: A FEATURE MODEL FOR
EVOLUTION PLANNING

In this chapter we take first steps towards a solution which
satisfies the requirements described earlier. In Section 3.1
we consider different solution alternatives and argue why we
select a feature-driven approach. Then, in Section 3.2 we
present the basic principles for EvoFM, a feature model for
evolution planning. Finally, we illustrate these ideas by a
first example in Section 3.3.

3.1 Analysis of Solution Alternatives
In our view of the problem, we assume that the planning

of proactive evolution (as described above) is performed on
feature level. This section discusses, how to provide an ap-
propriate representation to handle the complexity.

We interpret the evolution of a product lines as a sequence
of feature models – where each model is an evolution of the
one before. As argued above, in real practice such models
can become very complex. Moreover, they contain a high
amount of information that is not affected by the evolution
(i.e., elements that remain stable) and, hence, has less rele-
vance for the planning. In addition, the evolution decisions
are gathered incrementally over several planning sessions,
such that initially it is impossible to define complete models
for all relevant future steps. Hence, specifying the evolution
just in terms of a sequence of feature models seems to be an
insufficient solution.

An alternative is to focus only on the differences between
models. For instance, starting from historic versions of
the feature model (e.g., in year 2009 considering the ver-
sions from 2008 and 2009), the developers might define the
changes planned for future versions (e.g., for 2010 and 2011).

This solution solves many of the problems above: The
complexity is reduced, as only the changes have to be con-
sidered. These differences could be handled and represented,
e.g., with concepts from model comparison. However, sim-
ple model comparison techniques only cover comparison be-
tween two or three models and, hence, are not sufficient for
our purposes.

Due to these drawbacks, an alternative is required, which
provides a better overview on the changes between multiple
feature models. We argue that feature models themselves
are such a tool as they provide support to specify configura-
tion choices and variabilities on a certain abstraction level.
Moreover, the developers in context of (feature-based) prod-
uct lines are already familiar with feature models. Thus we
argue, that it is a logical consequence to leverage feature
models as a tool for product line evolution planning: Fea-
tures can be used to show the commonalities and, in partic-
ular, the variabilities between the different evolution steps.
Each evolution step then corresponds to a feature configu-
ration, i.e., a concrete set of features describing the prod-
uct line under evolution at a concrete point of time. These
feature configurations can be visualized, e.g., in form of a
feature matrix, to provide a compact and intuitive overview
on the product line evolution.

3.2 Basic Principles
We use a basic feature model based on FODA [13] con-

sisting of a hierarchy of features and cross-tree constraints
between them. For the further discussion, we will call this
feature model EvoFM (Evolution Feature Model). As elab-
orated above (Section 3.1), the main idea of EvoFM is to

Car Body

Multimedia
Devices

Navigation

Other
Features

Radio
DVD Enter-
tainment

Color
Display

Requires:
Radio

Requires:
DVD Drive

Requires:
Color Navi Dis.

DVD Drive
Hard Disk

Drive

Data
Storage

Monochr.
Navi Display

Color
Navi Display

Navigation
Display

Evolution decisions for features

Evolution decisions for dependencies

Figure 2: EvoFM for the automotive example.

 2008 2009 2010 2011
Multimedia Devices X X X X
 Radio X X X X
 Color Radio Display X X X
 Navigation X X X
 Navigation requires Radio X X
 Data Storage X
 DVD Drive X
 Hard Disk Drive X
 Navigation Display X X
 Monochrome Navi Display X X
 Color Navi Display X X
 DVD Entertainment X
 DVD Entertainment requires DVD Drive X
 DVD Entertainment requires Color Display X

Figure 3: Configuration matrix for EvoFM.

capture the commonalities and variabilities of multiple fea-
ture models. Consequently, EvoFM is based on the following
principles:

1. A feature in EvoFM represents one or more feature
model elements on product line level (e.g., a whole
subtree). This supports abstraction.

2. The feature types and the constraints in EvoFM de-
fine the possible commonalities and variabilities during
evolution. For instance, mandatory features in EvoFM
represent parts which remain stable during evolution
(i.e., are present in all product lines) while optional
features represent variable parts (which are affected
by the evolution).

3. A configuration of EvoFM corresponds to one evolu-
tion step, i.e., a concrete product line. The sequence
of configurations (represented, e.g., in a configuration
matrix) can be used for compact visualizations of prod-
uct line evolution over time.

For simplification, we assume that identifiers of features
remain consistent. In other words, we assume that during
the evolution (1) no feature is renamed and (2) if a feature f
is removed during evolution and a few evolution steps later
a new feature f is added, we assume that this is the same
feature, which is re-introduced into the product line.

3.3 Example of an EvoFM
This section shows a possible EvoFM for the automotive

example presented earlier in Figure 1. Hence, we make con-
crete proposals how EvoFM could be realized in detail.

111

Pr
od

uc
t L

in
e

Ev
ol

ut
io

n

Ev
ol

ut
io

n
Fe

at
ur

e
Co

nf
ig

.
Ev

ol
ut

io
n

Fe
at

ur
e

M
od

el

Pr
od

uc
t L

in
e

Im
pl

em
en

ta
ti

on
St

ru
ct

. M
od

el
Fe

at
ur

e
M

od
el

Evolution Step
t+1

Configuration of

Describes Describes Describes

Evolution
Feature Model

efm

Evolution
Feature

Configuration
efct

Evolution
Feature

Configuration
efct+1

Configuration of

Evolution
Feature

Configuration
efct+2

Configuration of

Evolution
Feature

Configuration
efct+n

Configuration of

Feature Model
fmt

Implementation
Structure

Model
ismt

Feature
Configuration

fct.1

Feature
Configuration

fct.2

Implementation
Structure

Configuration
isct.1

Implementation
Structure

Configuration
isct.2

Implements Implements

Feature
Configuration

fct.m

Implementation
Structure

Configuration
isct.m

Implements

Describes

Evolution Step
t

Feature Model
fmt+1

Implementation
Structure

Model
ismt+1

Evolution Step
t+2

Feature Model
fmt+2

Implementation
Structure

Model
ismt+2

Evolution Step
t+n

Feature Model
fmt+n

Implementation
Structure

Model
ismt+n

Evolution
Requirements

er

Conforms to

Product Line plt Product Line plt+1 Product Line plt+2 Product Line plt+n

Pr
od

uc
ts

Im
pl

em
en

ta
ti

on
St

ru
ct

ur
e

Co
nf

ig
.

Fe
at

ur
e

Co
nf

ig
ur

at
io

n

Product pt.1 Product pt.2 Product pt.m

Ev
ol

ut
io

n
Re

qu
ir

em
en

ts

Implements Implements Implements

Product pt+1.1

Implements

Instance of Instance of Instance of Instance of Instance of Instance of

Evolution

Product pt+2.1 Product pt+n.1

Co
nf
ig
ur
at
io
n

Figure 4: EvoSPL – Framework for the Evolution of Product Lines.

Figure 2 shows EvoFM for the automotive example from
Figure 1. As described by the basic principles (Section 3.2),
the product line features that vary over time are represented
by optional features in EvoFM. For instance, Navigation,
which has been introduced into the product line in 2009
(Figure 1), is represented in EvoFM by a corresponding op-
tional feature (Figure 2). Features that remain stable are
represented by mandatory features in EvoFM, e.g., Radio.

To reduce complexity, all subtrees (in the PL feature
model) which remain stable are abstracted to a single
(mandatory) feature in EvoFM, which is named like the root
feature of the represented subtree. For instance, the feature
Monochrome Display is not shown explicitly in EvoFM as,
here in the example, it is not affected by the evolution and
implicitly part of the subtree Radio. This means in turn,
that Radio in EvoFM represents multiple features in the
product line, namely Radio and Monochrome Display.

For cross-tree constraints we apply similar principles.
Constraints that remain stable over time are hidden in
EvoFM. However, if required it is possible to explicitly spec-
ify that a constraint varies over time. In that case, the ability

to affect the constraint by evolution is represented in EvoFM
as a special optional feature. For instance, in the product
line in 2009, the Navigation requires Radio while in 2010
Radio and Navigation are independent. This is represented
in EvoFM by an additional feature Requires: Radio specified
as subfeature of Navigation.

Figure 3 shows the configuration matrix of EvoFM, which
provides a compact overview on the product line evolution.
Each column corresponds to a feature model of the product
line (cf. Figure 1).

4. EVOSPL: A FRAMEWORK FOR THE
EVOLUTION OF PRODUCT LINES

The further discussion will proceed in two steps: In this
section, we will define EvoSPL, a framework for the evolu-
tion of product lines. In particular, this framework defines
the various models that are involved in the evolution process
and, hence, provides context for EvoFM introduced earlier.
In the next section we will then define several basic scenarios
that apply the framework.

112

The EvoSPL framework (see Figure 4) is organized along
two dimensions. The horizontal dimension shows the Evo-
lution, starting with the Evolution Step t over several steps
t + 1, t + 2, . . . , t + n and so forth. Depending on the usage
of the framework, along this axis we might consider the cur-
rent situation, historic evolution steps in the past or planned
future evolution steps.

Orthogonal to the evolution we distinguish three levels of
Configuration. From top to bottom these are:

Product Line Evolution – On the highest abstraction
level we have artefacts that describe the product line evo-
lution. Evolution Requirements er give guidelines and set
constraints for the further planning of evolution. The Evo-
lution Feature Model (EvoFM) efm has to conform to these
constraints and describes the evolutionary changes between
Evolution Steps in terms of features. For each Evolution Step
i there is an Evolution Feature Configuration efci, which de-
scribes the Product Line pli in terms of feature configuration
decisions of the Evolution Feature Model (EvoFM) efm.

Product Line – Each of these evolution steps i is a prod-
uct line pli consisting of a Feature Model fmi and an Im-
plementation Structure Model ismi. To support this cor-
respondence between the EvoFM and the various evolution
steps, the EvoFM is mapped onto product line models by
separate mapping models. To simplify the illustration, these
have been omitted from Figure 4.

Products – The third and most concrete level of configu-
ration is given by products. For the first evolution step, i.e.,
step t, Figure 4 shows several products, which have been
created as instances of the product line plt. These prod-
ucts are described by Feature Configurations fct.1, . . . , fct.m

(configurations of fmt) and corresponding Implementation
Structure Configurations isct.1, . . . , isct.m (configurations of
ismt), which implement these feature configurations. For
the subsequent evolutions steps (t+1, . . . , t+n) these prod-
uct artefacts have been omitted to simplify the illustration.

5. SCENARIOS
This section describes three different scenarios for the use

of our framework. Scenario 1, Reactive Derivation (Sec-
tion 5.1), describes how an EvoFM can be derived from
an existing sequence of feature models that describes the
product line evolution. Scenario 2, Proactive Planning (Sec-
tion 5.2), describes how to create an EvoFM from high-level
evolution requirements. Scenario 3, Analysis (Section 5.3),
discusses how an existing EvoFM can be used for analyzing
planned future evolution steps.

5.1 Reactive Derivation of EvoFM
In Reactive Derivation (see Figure 5) we assume that there

is already information given about the evolution in terms
of a sequence of feature models (fmt, . . . , fmt+n). These
feature models could either reflect historic data on previous
evolution or result from planning of future evolution or both
(i.e., t ≤ tcurrent ≤ t + n).

Given the sequence of feature models, one can derive

• a corresponding Evolution Feature Model (EvoFM)
efm, which summarizes this evolution path,

• n + 1 Evolution Feature Configurations
(efct, . . . , efct+n) describing the n evolution steps as
configurations of the EvoFM, and

Pr
od

uc
t L

in
e

Ev
ol

ut
io

n

Ev
ol

ut
io

n
Fe

at
ur

e
Co

nf
ig

.
Ev

ol
ut

io
n

Fe
at

ur
e

M
od

el

Pr
od

uc
t L

in
e

Fe
at

ur
e

M
od

el

Evolution
Feature Model

efm

Evolution
Feature

Configuration
efct

Evolution
Feature

Configuration
efct+1

Evolution
Feature

Configuration
efct+2

Evolution
Feature

Configuration
efct+n

Feature Model
fmt

Feature Model
fmt+1

Feature Model
fmt+2

Feature Model
fmt+n

Evolution
Model

Derivation

Evolution Step
t+1

Evolution Step
t

Evolution Step
t+2

Evolution Step
t+n

Figure 5: Scenario: Reactive derivation.

Metamodel
Element

Change
(Diff)

Change
Interpretation

Represented in EvoFM as
(i.e., maps to)

Class Feature Add,
Delete

Add/delete feature Optional feature

Modify Move feature, e.g.,
restructure feature
groups

See discussion in text

Attribute name
(of Feature)

Modify Replace a feature Two features, one with the old name
and one with the new name, as XOR
(as subfeatures of feature
representing this feature)

Attributes
min, max
(of Feature)

Modify Define mandatory
feature as optional or
vice versa

Mandatory feature
“mandatory”/”optional”
(as subfeatures of feature
representing this feature)

Class
FeatureGroup

Analogous to Feature

Attributes
min, max (of
FeatureGroup)

Modify Redefine XOR group
as OR or vice versa

Optional feature “XOR”/”OR”
(as subfeature of feature
representing this feature group)

Class
Dependency

Add,
Delete,
Modify

Add/delete cross-tree
constraint

Optional feature for the constraint
(as subfeature of feature
representing the source feature)

Reference
source, target
(of Dependency)

Add,
Delete,
Modify

Replace cross-tree
constraint by another
one

Two features, one for old constraint
and one for new constraint, as XOR
(as subfeatures of feature
representing the source feature)

Table 1: Transformation concepts for mapping com-
mon changes in feature models to EvoFM elements.

• mappings from EvoFM features to elements in the
product line feature models.

We will now take first steps towards an automatic deriva-
tion of EvoFM. The resulting generated EvoFM can be man-
ually refined and be used for further planning, like the defi-
nition of additional evolution steps in terms of EvoFM con-
figurations.

The automatic derivation as illustrated in Figure 5 is per-
formed in three steps: First, we perform a model compari-
son between the product line feature models to calculate the
commonalities and differences between them and store them
as a model (diff model). Second, we use a model transforma-
tion on the resulting diff model to create both the EvoFM
and the mapping from EvoFM to product line feature mod-
els. In a third step, the configurations for the existing evo-
lution steps can be calculated by comparing each product
line feature model with the EvoFM.

For the first step, we use EMF Compare [11] for model
comparison. EMF Compare calculates a model of the com-
monalities (match model) and a model of the differences be-
tween compared models (diff model). (More semantically
rich comparisons are possible with other techniques (e.g.,

113

Evolution
Requirements

er
Pr

od
uc

t L
in

e
Ev

ol
ut

io
n

Ev
ol

ut
io

n
Fe

at
ur

e
Co

nf
ig

.
Ev

ol
ut

io
n

Fe
at

ur
e

M
od

el

Pr
od

uc
t L

in
e

Fe
at

ur
e

M
od

el

Evolution
Feature Model

efm

Evolution
Feature

Configuration
efct

Evolution
Feature

Configuration
efct+1

Evolution
Feature

Configuration
efct+2

Evolution
Feature

Configuration
efct+n

Feature Model
fmt

Feature Model
fmt+1

Feature Model
fmt+2

Feature Model
fmt+n

Evolution
Step

Planning

Evolution Step
t+1

Evolution Step
t

Evolution Step
t+2

Evolution Step
t+n

Ev
ol

ut
io

n
Re

qu
ir

em
en

ts

Evolution
Path

Planning

Feature Model
Derivation

1

2

3

Figure 6: Scenario: Proactive planning.

[14]). Our prototype is currently restricted to a set of two
feature models (EMF Compare supports comparison of up
to three models).

Extension towards multiple feature models would require
to perform multiple comparisons, e.g., against the first fea-
ture model in the evolution sequence.

For the second step, we use a model transformation writ-
ten in ATL [9]. It takes the feature models and the diff
model resulting from the first step as input. To define the
transformation rules creating EvoFM, all possible changes
during the evolution of a feature model have to be consid-
ered. On technical level, EMF Compare distinguishes be-
tween (1) addition, (2) deletion, or (3) modification of (a)
model elements (b) attributes, or (c) references (see [1] for
a general discussion).

Table 1 provides an overview on relevant feature model
elements, possible changes on them, and their mapping to
EvoFM elements. The first column shows the model ele-
ments from the feature meta-model which have to be con-
sidered. The second column (“Change”) shows the types
of changes to be considered for each model element. The
third column (“Change Interpretation”) describes how these
changes are interpreted on conceptual level. The last col-
umn shows the corresponding EvoFM elements, where each
type of change is mapped to. The table rows correspond to
(summarized) transformation rules for the automatic deriva-
tion of an EvoFM like the one shown in Section 3.3. These
rules indirectly define the semantics of EvoFM.

We would like to discuss one specific case from the ta-
ble in greater detail: the moving of a feature within the
hierarchy. This kind of change often occurs when modelers
(re-)structure features into feature groups. An example can
be found in Figure 1: In 2010, Monochrome Navi Display
and Color Navi Display are direct children of Navigation
while in 2011 they are subfeatures of Navigation Display.
Currently, we handle this issue by just including Navigation
Display into EvoFM. A possible future solution could be to
introduce a cross-tree constraint for EvoFM which allows
to define that Navigation Display is only available in the
product line if DataStorage is available as well.

Figure 7: DSL editor for evolution requirements.

Features
Time 1 2 3

Navigation
DVD Drive

Internet

...

Figure 8: Roadmap view for evolution requirements.

5.2 Proactive Planning of Evolution
In this section we consider how long-term decisions made

by upper management can be transformed into an EvoFM.
Since the decisions are done in a business context they can
differ from technical requirements. We assume that we have
a scenario as shown in Figure 6. The feature model fmt and
the evolution requirement er (representing constraints set by
management) are given and we want to derive the evolution
feature model efm and the feature models fmt+1, fmt+2

and so on.
The evolution requirements er represent constraints given

by a manager like: (1) The DVD Drive will be replaced by
an internet streaming connection within the next three re-
visions, (2) The navigation will be removed within the next
four revisions, or (3) An internet connection will be intro-
duced in the next revision.

To gather the requirements in a semi-formal form we in-
troduce a simple domain-specific language (DSL) which al-
lows to express constraints as textual statements. We use
Xtext [10] to define the grammar and derive corresponding
tools, e.g., a language-aware editor with syntax highlight-
ing and auto-completion (see Figure 7). The information
specific in this language can be used to derive graphical
roadmap views similar to the one sketched in Figure 8.

We are currently experimenting with model transforma-
tions that read this DSL document representing the man-
ager’s statements and the current feature model fm to pro-
duce a preliminary version of the evolution feature model
(EvoFM) efm (cf. the transformation in Figure 6). To
this end, we use the feature model fm to identify the struc-
ture of features and the evolution requirements er to define
and extract changes. In contrast to the automatic deriva-
tion in Section 5.1, here we do not know where new features
should be located in the evolving feature model. We are cur-
rently experimenting with two options: Either new features
are inserted as children of a special Unsorted-feature or the
developer can augment the er specification with a desired

114

Evolution
Requirements

er

Pr
od

uc
t L

in
e

Ev
ol

ut
io

n

Ev
ol

ut
io

n
Fe

at
ur

e
Co

nf
ig

.
Ev

ol
ut

io
n

Fe
at

ur
e

M
od

el

Pr
od

uc
t L

in
e Fe

at
ur

e
M

od
el

Evolution
Feature Model

efm

Evolution
Feature

Configuration
efct

Evolution
Feature

Configuration
efct+p

Evolution
Feature

Configuration
efct+q

Feature Model
fmt

Feature Model
fmt+p

Implementation-
level Analysis

Evolution Step
t+p

Evolution Step
t

Evolution Step
t+q

Ev
ol

ut
io

n
Re

qu
ir

em
en

ts

Feature-level
Analysis

1 2

Feature
Configuration

fct.1

Implementation
Structure

Configuration
isct.1

Implements

Pr
od

uc
ts

Im
pl

em
en

t.
St

ru
ct

ur
e

Co
nf

.
Fe

at
ur

e
Co

nf
ig

ur
at

io
n

Product pt.1

Feature
Configuration

fct+p.1

Product pt.1

Implementation
Structure

Model
ismt

Implements

Im
pl

em
en

t.

St
ru

ct
ur

e
M

.

Feature-level
Analysis
Results

Impl.-level
Analysis
Results

Implementation
Structure

Configuration
isct+q.1

Product pt.1

Implementation
Structure

Model
ismt+q

Figure 9: Scenario: Analysis.

location (“introduce x as subfeature of y”).
In a second step (in Figure 6) we use the EvoFM to

derive the possible evolution feature configurations efct+1.
Finally, in a third process (in Figure 6) we can use the
mapping between the EvoFM efm, the feature model fmt,
and the evolution feature configuration efcx to generate the
feature models fmt+x−1.

5.3 Analysis with EvoFM
When analyzing a planned evolution of a product line we

want to answer questions like (1) Are the changes and evo-
lution decisions consistent? (2) Is it still possible to provide
all existing products? (3) Which features have to be imple-
mented or redesigned?

(1) In general the Feature Model fmt contains relations
which express technical or business requirements which have
to be fulfilled. When evolving, we can end up with an new
model fmt+p which is inconsistent. This can be checked

with various automated analyses (e.g., by translation into
logic and checking for satisfiability).

(2) Given some existing products we might ask whether
all of these can still be provided using the evolved Feature
Model fmt+p. To answer this, we can check existing Feature
Configurations fct,x against the new Feature Model fmt+p

(e.g., again by checking satisfiability).
(3) Beside these feature-level analyses (in Figure 9), the

framework also allows implementation-level analyses (in
Figure 9). These could provide additional information, e.g,
costs and consequences (in the implementation) for planned
evolution steps.

In general we want to increase the reusability of compo-
nents and support “evolution-aware” architectural decisions.
For instance, feature-implementation mappings allow to de-
termine features which currently have no implementation
in the Implementation Structure Model ismt+q. Similarly,
with additional information about the cost of implementing
a feature, provided, e.g., by experts, we can estimate the
cost of the planned evolution.

In order to support architectural decisions, additional in-
formation for the developer is required. Using EvoFM we
intend to provide different task-specific views, e.g., to clar-
ify the differences between Feature Models fmt and fmt+p

and to help to identify whether a component is stable or
not. Moreover, during design and construction of implemen-
tation components, we can provide additional information,
e.g., that a particular component has to be modified next
year and becomes obsolete one year later.

6. RELATED WORK
Several existing approaches deal with product line evolu-

tion on different levels of abstraction. According to [6], one
can distinguish between product-specific adaptation, reac-
tive evolution, and proactive evolution. In this paper we
focus on proactive evolution, i.e., active planning of future
versions on domain level. [19] shows the different dimen-
sions of evolution and handles them in terms of an evolution
graph. From this point of view, our paper focuses on the
product line dimension, while the evolution (maintenance)
of concrete products is not considered. Two concrete case
studies on product line evolution and a classification of pos-
sible changes during evolution can be found in [21].

Most of the existing work deals with the implementation
issues for evolving product lines like [15], which presents an
approach based on the combination of aspect-oriented pro-
gramming and frames. Others, like [16, 7, 8] use concepts
from model-driven development. For instance, [7] addresses
the domain evolution of model-based product lines by the
example of embedded systems. The authors present an ap-
proach to provide meta-model-based transformations to sup-
port systematic evolution steps.

7. CONCLUSIONS
We discussed first steps towards proactive planning of

product line evolution. Our research motivated by obser-
vations from industrial practice, in particular from the area
of embedded systems. In such real life applications of SPL,
there is a need for long-term planning of product portfolios
on feature-level. However, while several approaches address
evolution in the implementation, support on a more abstract
level that facilitates systematic planning and handling of

115

complex evolution scenarios is still missing.
Based on an initial analysis (Section 3.1) we argue that

feature models seem to be a promising tool to specify, man-
age, and analyze product line evolution more systematically
and on an appropriate level of abstraction. To this end,
we propose EvoFM, a feature model for product line evolu-
tion (Section 3) to capture commonalities and variabilities
between multiple evolution steps. Consequently, each evo-
lution step can be represented as a EvoFM configuration,
which can be leveraged as a base for compact high-level rep-
resentations and visual tools. Furthermore, we describe a
corresponding framework for feature-driven evolution plan-
ning (Section 4). On this base we show three typical ap-
plication scenarios and discuss corresponding tool support
(Section 5).

Future work will include investigations towards combina-
tion with other approaches for evolution planning. For in-
stance, the area of Technology Roadmapping [18] provides
concepts to visualize different aspects of product planning
(like business objectives, markets, products, technologies,
milestones, etc.) and the relationships between them – sim-
ilar to the sketch in figure 8.

On the lower level, combination with existing approaches
for model-driven evolution on implementation level (as de-
scribed in section 6) seems promising. In the long run, this
could lead to an overall model-driven framework, which al-
lows to consistently plan, analyze, and deploy product line
evolution on all levels of abstraction with seamless transi-
tions between them.

Altogether, we believe that feature-driven evolution plan-
ning – as introduced here in a very first step – might open
up several new research opportunities towards a systematic
feature-oriented engineering of software evolution.

8. REFERENCES
[1] M. Alanen and I. Porres. Difference and union of

models. In The Unified Modeling Language, Modeling
Languages and Applications, 6th International
Conference (UML 2003), pages 2–17, San Francisco,
CA, USA, October 2003.

[2] S. Apel, C. Kastner, and C. Lengauer. Featurehouse:
Language-independent, automated software
composition. In 31st International Conference on
Software Engineering (ICSE ’09), pages 221–231,
Washington, DC, USA, 2009. IEEE Computer Society.

[3] D. Batory, J. Sarvela, and A. Rauschmayer. Scaling
step-wise refinement. IEEE Transactions on Software
Engineering, 30:1278–1295, 2004.

[4] P. Clements and L. M. Northrop. Software Product
Lines: Practices and Patterns. The SEI series in
software engineering. Addison-Wesley, Boston, MA,
USA, 2002.

[5] K. Czarnecki and U. W. Eisenecker. Generative
Programming. Addison Wesley, Reading, MA, USA,
2000.

[6] S. Deelstra, M. Sinnema, and J. Bosch. Product
derivation in software product families: a case study.
Journal of Systems and Software, 74(2):173–194, 2005.

[7] G. Deng, G. Lenz, and D. C. Schmidt. Addressing
domain evolution challenges in software product lines.
In J.-M. Bruel, editor, MoDELS Satellite Events,
volume 3844 of LNCS, pages 247–261. Springer, 2005.

[8] D. Dhungana, T. Neumayer, P. Grunbacher, and
R. Rabiser. Supporting evolution in model-based
product line engineering. In 12th International
Conference on Software Product Lines (SPLC 2008),
pages 319–328, Limerick, Ireland, September 2008.
IEEE Computer Society.

[9] Eclipse-Foundation. ATL (ATLAS Transformation
Language). http://www.eclipse.org/m2m/atl/.

[10] Eclipse-Foundation. Xtext.
http://www.eclipse.org/Xtext.

[11] Eclipse Modeling Framework Technology (EMFT).
EMF Compare.
http://wiki.eclipse.org/index.php/EMF_Compare.

[12] C. Kaestner, T. Thum, G. Saake, J. Feigenspan,
T. Leich, F. Wielgorz, and S. Apel. FeatureIDE: A
tool framework for feature-oriented software
development. In ICSE ’09: Proceedings of the 2009
IEEE 31st International Conference on Software
Engineering, pages 611–614, Washington, DC, USA,
2009. IEEE Computer Society.

[13] K. Kang, S. Cohen, J. Hess, W. Novak, and
S. Peterson. Feature oriented domain analysis (FODA)
feasibility study. SEI Technical Report
CMU/SEI-90-TR-21, ADA 235785, Software
Engineering Institute, 1990.

[14] D. S. Kolovos. Establishing correspondences between
models with the epsilon comparison language. In 5th
European Conference on Model Driven Architecture -
Foundations and Applications, pages 146–157,
Enschede, The Netherlands, 2009.

[15] N. Loughran, A. Rashid, W. Zhang, and S. Jarzabek.
Supporting product line evolution with framed
aspects. In AOSD ACP4IS Workshop, 2004.

[16] T. Mens and T. D’Hondt. Automating support for
software evolution in UML. Automated Software
Engineering, 7(1):39–59, 2000.

[17] D. Parnas. On the design and development of program
families. IEEE Transactions on Software Engineering,
SE-2(1):1–9, March 1976.

[18] R. Phaal, C. J. P. Farrukh, and D. R. Probert.
Technology roadmapping–a planning framework for
evolution and revolution. Technological Forecasting
and Social Change, 71(1-2):5 – 26, 2004.

[19] S. Schach and A. Tomer.
Development/maintenance/reuse: software evolution
in product lines. In 1st Software Product Lines
Conference (SPLC 2000), pages 437–450, Denver,
Colorado, August 28-31 2000.

[20] Software Engineering Institute. SPL Hall of Fame.
Web site, 2008. http://splc.net/fame.html.

[21] M. Svahnberg and J. Bosch. Evolution in software
product lines: Two cases. Journal of Software
Maintenance: Research and Practice, 11(6):391–422,
1999.

[22] M. Voelter and I. Groher. Product line
implementation using aspect-oriented and
model-driven software development. In 11th
International Software Product Line Conference
(SPLC 2007), Kyoto, Japan, September 2007.

[23] D. M. Weiss and C. T. R. Lai. Software Product Line
Engineering: A Family-Based Software Development
Process. Addison-Wesley, 1999.

116

Detecting Feature Interactions in SPL Requirements
Analysis Models

Mauricio Alférez, Ana Moreira

Universidade Nova de Lisboa
Caparica, Portugal
{mauricio.alferez,

amm}@di.fct.unl.pt

Uirá Kulesza
UFRN

Natal, Brazil
uira@dimap.ufrn.br

João Araújo, Ricardo Mateus,
Vasco Amaral

Universidade Nova de Lisboa
Caparica, Portugal

{ja, vasco.amaral}@di.fct.unl.pt
rjm17469@fct.unl.pt

ABSTRACT
The consequences of unwanted feature interactions in a Software
Product Line (SPL) can range from minor problems to critical
software failures. However, detecting feature interactions in
reasonably complex model-based SPLs is a non-trivial task. This
is due to the often large number of interdependent models that
describe the SPL features and the lack of support for analyzing the
relationships inside those models. We believe that the early
detection of the points, where two or more features interact —
based on the models that describe the behavior of the features —,
is a starting point for the detection of conflicts and inconsistencies
between features, and therefore, take an early corrective action.

This vision paper foresees a process to find an initial set of points
where it is likely to find potential feature interactions in model-
based SPL requirements, by detecting: (i) dependency patterns
between features using use case models; and (ii) overlapping
between use case scenarios modeled using activity models.

We focus on requirements models, which are special, since they
do not contain many details about the structural components and
the interactions between the higher-level abstraction modules of
the system. Therefore, use cases and activity models are the
means that help us to analyze the functionality of a complex
system looking at it from a high level end-user view to anticipate
the places where there are potential feature interactions. We
illustrate the approach with a home automation SPL and then
discuss about its applicability.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications
D.2.13 [Software Engineering]: Reusable Software – domain
engineering

General Terms
Design, Verification.

Keywords
Software Product Lines Requirements, Feature Interactions.

1. INTRODUCTION
In Software Product Line Engineering (SPLE) detecting potential
unwanted interactions between features of an SPL is essential to
produce correct products [1], i.e., a product whose features are not
conflicting. In this paper, we use the definition of “feature
interaction” given in [2], which states that a feature interaction
exists when:

 “A service feature inhibits or subverts the expected behavior
of another service feature”.

 “The joint accurate execution of the functionality of two or
more features provokes a supplementary phenomenon which
cannot happen during the processing of each feature
functionality, when considered separately”.

The above definition of feature interaction focuses on the
manifestation of the interaction, and is applicable where
unexpected and undesired behavior occurs. FIs could be analyzed
in Domain Engineering to anticipate unwanted interactions
between SPL features, and also in Application Engineering during
the selection of features for specific products. In the literature, the
terms “feature interference” or “bad feature interaction” are
synonymous to refer to an undesired interaction. We will simply
use the expression “feature interactions” (FIs) when referring to
unwanted interactions.

Recent research on SPL Engineering (SPLE) aims at finding ways
to detect, as well as to resolve feature interactions. Some of these
approaches rely on manual creation of detailed models that
formalize the relationships between the features and allow the
analysis and detection of feature interactions [3-4]. These
approaches are useful to analyze the semantics of the interactions;
this is significant when the modeler has an initial idea on the
potential features that could present feature interactions. However,
the creation of extra models to find FIs can become an arduous
task if there is no clue about which are the set of features that
intervene in a potential FI.

In other cases, there is support to automate the detection of FIs,
but these are mainly focused on structural feature interactions
during the composition of the models for a specific product of the
SPL [5-7]. An example of this kind of FIs is when the design of a
feature requires elements in the models that are only introduced
by another feature that is not yet included in the system. In many

 Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FOSD’09, October 6, 2009, Denver, Colorado, USA.
Copyright 2009 ACM 978-1-60558-567-3/09/10 ...$10.00.

117

of these structural FIs, changing the order of the composition
resolves the interaction. However, this approach does not address
other kinds of FIs based on the meaning of the relationships
between the models of features.

This paper aims to tackle the above mentioned difficulties. In
particular, it addresses the need of a process to find an initial set
of points in the models of features where it is likely to find
potential FIs. The process is based on the semantics of the
relationships between the elements in the requirements analysis
models, and also their relationships with the features in the feature
model. The advantages of using this kind of process are: i) it does
not require other types of models (e.g., problems frames), ii) it
only uses recurring models like use cases and activity models; and
iii) it allows analyzing the functionality of a complex system
looking at it from a high level end-user view using requirements
models.

Specifically, our approach exploits the following two strategies:

1. Dependency patterns: These patterns take into consideration
the semantics of the relationships between the elements in the
requirements models to expose dependencies between the
features. This information helps the developer to focus on the
set of features that might be involved in FIs.

2. Overlapping detection: All variants of a product line may
have models that describe them. Since the variants have
usually significant overlaps in their functionality, their models
have significant overlaps too [8]. The identification of the
points of overlapping between models of features can assist
the developer to focus on the places where features might be
interacting in specific use case scenarios.

The remaining of this paper describes in more detail these two
strategies (Section 2), and then it illustrates their application in a
home automation case study (Section 3). It follows by discussing
the benefits and applicability of these strategies (Section 4).
Finally, it concludes and outlines future work (Section 5).

2. DETECTING POINTS OF
INTERACTION
We propose two strategies to detect points of interaction between
features in SPL requirements. The first strategy, dependency
pattern detection, is used when the source requirements models
handle coarse-grained information. The second strategy,
overlapping detection strategy, complements the first, and is
primarily used when interactions can be detected in behavioral
models containing fine-grained information. Next we sketch the
application process of these strategies and detail each one.

2.1 Process Overview
The use of the two strategies to identify candidate points of
interaction between features assumes a process workflow,
described in Figure 1.

This is a process where the inputs are: the use case model of the
SPL (a); the feature model (b); and the relationships, also called
trace links, between the features in the feature model and the
elements in the use case model (c).

Dependency patterns analysis (d) is based on the study of the
“include” and “extend” relationships in use case models. It is
applied to discover possible hidden dependencies between
features that might indicate points of potential FIs. The result (e)
is used as a guide to identify which use cases (related with the

dependent features) have to be specified using activity models.
Activity models are used to model the scenarios in which the
features may interact. The modeler can use existent models (f) or
provide new or updated versions (g-h). Then, he/she should
provide the updated trace links between features and model
elements of the activity models such as activity models, activities
and activity partitions (i).

Feature Model
Configuration

Use
Case
Model

Detect
Depen-
dency

Patterns

Updated
Activity
Models

Candidate Points
of Interaction

Between Features

Update / Create
Activity Models
and Trace Links

Rel.
Features
and Use

Case
models

Updated
Trace
Links

Set of Use
Cases

Scenarios
to be

Specified

c

l

i
h

g

Existent
Activity
Models

Overlapping
Detection

j

da

Feature
Model

Domain Engineering (Domain Analysis)

Application Engineering (Requirements Specification)

b

e

f

k

Figure 1. Overview of the Process Workflow

The updated trace links (i) that relate the elements in the activity
models (f-h), and the features in a specific product of the product
line (j), are used to detect overlapping (k) between the use case
scenarios related with the use cases identified in (d). Finally,
“overlapping detection” presents the candidate points of
interaction between features manifested in specific activities of
the activity models (l). In this paper we focus on the two steps on
Figure 1 highlighted in grey.

2.2 Detect Dependency Patterns
Some dependency patterns suggest where a potential feature
interaction is likely to be found. Also, they can suggest where
more detail is required about the behavior of a feature to identify
the presence of a feature interaction. Such patterns can be
recognized in coarse-grained requirements models elements like
UML2.0 use cases and their relationships.

A “dependency”, in the context of use case modeling, indicates
that a change in one use case can affect another use case. Our
hypothesis is that the analysis of the dependencies between use
cases can help to detect dependencies between the features that
they model. In this work we explore two well-known use cases
relationships: “includes” and “extends”.

In UML modeling, the “include” relationship states that one use
case (the base use case) includes the functionality, or behavior,
defined in another use case (the inclusion use case). The “include”
relationship supports the reuse of functionality in a use case
model. Therefore, the developer can add “include” relationships to
a use case model to show the situation in which the behavior of
the inclusion use case is common to two or more use cases.

The “extend” relationships can be used to specify that one use
case (extension) extends the behavior of another use case (base).
The extend relationship specifies that the incorporation of the

118

extension use case is dependent on what happens when the base
use case executes. This type of relationship reveals details about a
system or application that are typically hidden in a use case. It is
used in situations when: (i) part of a use case is optional system
behavior; (ii) a sub flow is executed only under certain conditions;
and (iii) a set of behavior segments may be inserted in a base use
case.

The “includes” and “extends” relationships imply a dependency
between base and inclusion use case, and base and extension use
case. Figure 2 provides a catalog of typical patterns where
features are related with use cases. We consider these
relationships “trace links” between the SPL features modeled in
taxonomic view provided by the feature model, and their
semantics provided by the use case and activity models.

a

f1 f2

a b

f1 f2

<<i>>

a b

f1 f2

<<e>>

Pattern A

Pattern B

Pattern C

It is possible to state that there is a
potential FI looking at the details about
the specific use case scenario and the
resources accessed by “a”.

a b c

f1 f2

<<i>> <<i>>

f3

Pattern D

f1 requires of f2 to complete its expected
behaviour. It is possible to state that there
is a potential FI.

If f1, f2 and f3 interact in the same
scenario, it is possible to state that
there is a potential FI between them.

a b c

If f1, f2 and f3 interact in the same
scenario, it is possible to state that
there is a potential FI between them.

f1 f2

<<e>> <<e>>

f3

Pattern E

fx <<e>> Extends relationship
between use cases

Includes relationship
between use cases

<<i>>y Use case y in a
use case model

TraceLinkbetween between feature and use case

Feature x in a
features model

f1 depends on the behaviour execution of
f2, and f2 depends on the behaviour
segment of f1 that complements its own
behaviour. It is possible to say that there
is a potential FI.

Figure 2. Patterns Catalog that Provide Information to Detect
Potential Feature Interactions

It is important to note that these dependency patterns are useful to
identify places (e.g., specific use cases involved in the patterns),
and set of features involved in potential feature interactions.
Providing details about the use cases’ scenarios gives more
information for the modeler to determine if the potential feature
interactions are in fact alerting about a real feature interactions.
Once use case scenarios are specified, the strategy “Overlapping
Detection” could be applied to support the search of more specific
points where the features interact.

The idea of detecting dependencies as a base to find points of
interaction between features is not completely new. Metzer [1]
suggested an approach based on specifying detection concepts at
the model level. The feature interactions are detected at different
levels, but are generally considered to be dependencies between
functional needs. Our contribution is to provide a specific catalog
of patterns in UML Use Case models, taking into account specific
types of relationships to infer functional dependencies between
the features.

2.3 Overlapping Detection Strategy
We use UML use case and activity models to model the
requirements behavior of each feature. We aim to find the specific
model elements in the whole set of the activity models, in which
the behavior of one feature influences the behavior expressed in
the models of other features.

Figure 3 sketches the relationships between the main elements
involved in a process of identifying the points of interaction
between features. It shows a feature model configuration for the
specific product “H” in the product line (top layer), the
relationships or trace links between features and requirements
represented as a tuple <traceLinkId, FeatureId, ModelId,
ElementId> (middle layer), and requirements models (bottom
layer). Each feature (e.g., A, B, and C) is related to model
elements in the requirements models through trace links. The
meaning of each trace link is that the model element describes
part of the intended behavior of the feature.

Feature A

Model A1

Model B1

Models C1

Feature B

Feature C

TraceLink 1

TraceLink 2

TraceLink 3

Requirements
Models

Feature Model Configuration for Product“H”

Trace Links

Model Element X

TraceLinks for “H”

T.Link Feature Model Element

1 A A1 X
2 B B1 X
3 C C1 X
...

Figure 3. Feature Interaction Detection based on the

Overlapping Strategy

The base strategy to find feature interactions between features A,
B and C is to find the overlapping elements of their behavioral
models in specific use case scenarios. The model element X
(bottom layer) in the requirements models layer represents a triple
overlap, where this model element, shared between the set of

119

requirements models, has trace links with features A, B and C of
the feature model configuration (top layer).

3. ILLUSTRATIVE EXAMPLE
We use the Smart Home SPL to illustrate our feature interaction
detection process sketched in Figure 1. This case study was
provided in the context of the European AMPLE Project [9] by
our industrial partner Siemens A.G [10-11].

Figure 4 shows a simplified Smart Home feature model and one
of its configurations called Economic Smart Home where the
features included for the specific product are ticked and the ones
that are excluded are marked with a cross.

Figure 4. Smart Home SPL Feature Model (Left); the

Economic Smart Home Configuration (Right)

Figure 5 shows the use case model for the economic version of the
Smart Home. In this model we marked in bold the model elements
that are not common to all the products of the Smart Home SPL,
but were included in the Economic version.

Table 1 shows part of the relationships between some of the
features in Figure 4 and requirements model elements in Figure 5
and Figures 7–9. The extra column “model elements container”
eases the identification of each model element in the models.

The process described in this paper assumed the existence of links
between features and other kind of models like the ones shown in
Table 1. These links can be created manually, or semi-
automatically. In a previous work we addressed the semi-
automatic creation of links using the VML4RE language [12].
This allows the creation of trace links programmatically in a
separate specification using designators and quantification. Also it
provides transformation operators specially tailored to
requirements analysis models like use cases, activity and goal
models. These operators ease the customization of the SPL
models for specific products such as the one shown for the
economic home in Figure 5.

Heating

Adjust
HeaterValue

Calculate
Energy

Consumption

Control
Temperature
Automatically

<<extend>>
<<actor>>
Thermostat

<<actor>>
Heater

<<include>>

Open And Close
Windows

Open And Close
Windows

Automatically

WindowsManagment

<<actor>>
Window
Sensor

<<actor>>
Window
Actuator

<<include>>

Open And
Close Windows

Manually

Activate Secure
Mode

Security <<include>>

Secure The
House

Notify Using
Touch Screen

Notification <<include>>

Send Security
Notification

<<actor>>
Siren

<<actor>>
Lights

<<actor>>
Glassbreak
Sensor

<<extend>>

<<extend>>

Inhabitant

Figure 5. Economic Smart Home Use case Model

Table 1. Trace Links Excerpt for Smart Home

Feature
Model Element Model Element Container

Name Type Name Type

Security

SecureTheHouse UseCase Security Package

SecureTheHouse
Activity
Model

Ams
Activity
Models

Send Security
Notification

UseCase Notification Package

Windows
Actuator

Activity
Partition

SecureThe
House

Activity
Model

Close Windows Activity
Windows
Actuator

Activity
Partition

OpenAndClose
Windows

Automatically
UseCase

Windows
Management

Package

… … … …
Control

Temperature
Automatically

UseCase Heating Package

Smart
Heating

Smart Heating
Activity
Model

Ams
Activity
Models

Windows
Actuator

Activity
Partition

SmartHeating
Activity
Model

Open Windows Activity
Windows
Actuator

Activity
Partition

Close Windows Activity
Windows
Actuator

Activity
Partition

OpenAndClose
Windows

Automatically
UseCase

Windows
Management

Package

Calculate Energy
Consumption

UseCase Heating Package

… … … …

OpenAndClose
Windows

Activity
Model

ams
Activity
Models

Electronic
Windows

Windows
Actuator

Activity
Partition

OpenAnd Close
Windows

Activity
Model

Open Windows Activity
Windows
Actuator

Activity
Partition

Close Windows Activity
Windows
Actuator

Activity
Partition

OpenAndClose
Windows

Automatically
UseCase

Windows
Management

Package

… … … …

120

Let us consider three features of the Smart Home case study:
“Smart Heating”, “ElectronicWindows” and “Security”. Smart
Home is designed to spend as less energy as possible. Therefore,
each time the system has to change the indoor temperature it will
first consider opening or closing windows, instead of using the
heater. The respective features are “SmartHeating” and
“ElectronicWindows”. Now, let us consider the “Security”
feature. This feature implies that if one of the intrusion detection
sensors is fired, the system starts to secure the house. This
includes closing the windows, activating the alarm and sending a
security notification to the inhabitants. Additionally, for non-
economic Smart houses, the system will send an extra security
notification to the security company via internet.

Imagine a situation where, during a hot summer day, the Smart
Home decides to save energy and also to cool the house opening
the windows: the house orders the windows actuator to open and
keep the windows opened until reaching the right indoor
temperature. Before the house reaches the right indoor
temperature, one of the intrusion detection sensors is fired and the
security process commands the windows to close. It is clear that
the house should do first what the security process commands.
Therefore, the developer had to describe what the Smart Home
system should do when the electronic windows, smart heating,
and security features interact in the same scenario in a specific
moment. We will see how to systematically identify the places
where such interactions may happen.

3.1 Applying Detection of Dependency
Patterns
We illustrate in Figure 6 each pattern described in Section 2.2. We
use as reference models the use case model of the Smart Home
case study and some of the trace links of Table 1.

Pattern A: It is necessary to create more detailed behavioral
models for the features “Smart Heating” and “Security” to
determine if there is a real FI between them. Detailed models are
used to see if these features are linked to the use case “Open and
Close Windows Automatically” in the same use case scenario and
if they share resources while opening and closing windows
automatically. For example, there might be a feature interaction
between “Security” and “Smart Heating” when requiring the
execution of opposite commands like “open” and “close” at the
same time over the shared resource “WindowsActuator”.

Pattern B: “Security” depends on the functionality provided by
“Notification”. However, there is no evidence of a feature
interaction between “Security” and “Notification” when sending a
notification. It is necessary to model the internal behavior of each
feature (Security and Windows Management) to see if there is
information about behavior of one feature that subverts or inhibits
the behavior of the other.

Pattern D: There is a potential feature interaction between
“SmartHeating” and “Security” when opening and closing
windows automatically. The use cases
“ControlTemperatureAutomatically” and “SecureTheHouse”
share a common behavior. The scenarios in which this common
behavior appears, have to be modeled. This is necessary to design
the possible corrective or preventive actions facing the interaction
between the features at a specific time.

OpenAndCloseWindows
Automatically

Smart Heating Security

SecureThe
House

Send Security
Notification

Security Notification

<<i>>

CalculateEnergy
Consumption

Open And
CloseWindows

Smart Heating WindowsManagement

<<e>>

NotifyUsing
TouchScreen

SendSecurity
Notification

NotifyUsing
Internet

TouchScreen Security

<<e>> <<e>>

Internet

Pattern A

Pattern B

Pattern C

Pattern E

Control
Temperature
Automatically

OpenAnd
CloseWindows
Automatically

Secure
The House

Smart Heating ElectronicWindows

<<i>> <<i>>

Security

Pattern D

fx Feature x in a feature model <<e>> Extends relationship
between use cases

Includes relationship
between use cases

<<i>>y Use case y in a use case model

TraceLink between between feature and use case

Figure 6. Patterns to Detect Candidate Feature Interactions in

the Smart Home Case Study

Pattern E: There is a potential feature interaction between
“TouchScreen” and “Internet”. This case does not correspond to
the Economic version of the Smart Home because it does not
include the optional feature “Internet”. However, we use it to
illustrate the pattern E where there is a potential feature
interaction between the two sub-features of “GUI”:
“TouchScreen” and “Internet”.

For Pattern E, we can imagine that the inhabitant receives a
security alarm notification in one of the in-house touch screens. It
may happen that the inhabitant does not want to spend time filling
reports and receiving the security team to inspect the house. In
addition, the inhabitant also knows that after X number of times
by Y period of time, that s/he or the Smart Home calls the security
company, s/he will have to start paying extra-money to the
security company. Under these circumstances the inhabitant
aborts the security notifications to the security company
throughout the Touch Screen. Therefore, the goal of the “security”
feature is not achieved because the process to secure the house
was not completed and the inhabitants may be in danger in case of
a real security alarm.

To avoid this feature interaction scenario the developer could
decide that the security notifications will be sent first to the
security company via Internet and then to the inhabitant. This
implies to assure that the “secure the house” behavior is

121

completed before the inhabitant or anyone else tries to inhibit it.
This is enforced to avoid that the inhabitant risks his security to
save some money.

3.2 Applying the Overlapping Detection
Strategy
The patterns in the previous section help to concentrate the
detection of feature interactions on some features, based on
coarse-grained relationships between use cases. These use cases
give a hint where we should start designing use case scenarios. To
find points of interaction between features in the requirements
models, we look for fine-grained elements that are related to more
than one feature and that may appear together in the same
scenario. Figures 7-9 show the activity models for the use cases
“Secure the House”, “Open and Close windows”, and “Smart
Heating”, which are related with the features “Security”,
“ElectronicWindows” and “SmartHeating”, respectively. Also,
part of the relationships, or trace links, between features and
requirements model elements are summarized in Table 1.

ReadSecurity
Configuration

CloseWindows

SendSecurity
Notification

W
in
d
ow

s
A
ct
ua
to
r

Sm
ar
t

H
o
m
e

A
la
rm

ActivateAlarm

Figure 7. Secure the House Activity Model

ReadCommand

OpenWindows

CloseWindows

[close]

[open]

W
in
d
ow

s
A
ct
u
a
to
r

Sm
ar
t

H
o
m
e

Figure 8. Open and Close Windows Activity Model

As it is shown in the activity models, and highlighted in the trace
links table, “Windows Actuator” is shared by the features
“Security”, “Smart Heating” and “Open and Close Windows”. So,
according to this strategy, this is a symptom of a candidate feature
interaction if the developer determines that there are actions that
cannot be performed simultaneously in the identified shared
element or resource.

This kind of feature interactions detected in the Smart Home
system has been analyzed also by other authors. Khkpour et al.
[13] called them Action conflicts. These conflicts require the
identification of conflicting actions manually. For example lock
and unlock window/door actions that are in conflict if they are
triggered simultaneously. Nakamura et al. [14] refer to Action
Conflicts as Appliance Interactions. Intuitively, an appliance

interaction means that two methods have conflicting goals or post
conditions that cannot be satisfied simultaneously on the common
appliance [14]. A typical example are the methods “TV.on()” and
“TV.off()”. In our case study it would be
“WindowsActuator.close()” and “WindowsActuator.open()”
(marked with dashed lines in Figures 7-9). These methods are
invoked in shared fragments of scenarios that describe the
behavior of different features like Security and Smart Heating.
Also Appliance Interaction can appear where the execution of one
method may disable another. Khkpour et al. [13] also talked about
Inexecutable Action conflicts. In the Smart Home this happens
when the inhabitant aborts manually the security notification as
described in Section 3.1.

W
in
d
o
w
s

A
ct
u
at
o
r

Sm
ar
t H

o
m
e

VerifyInstalledThermostats

MonitorInternalTemperature

Close
Windows

[No]

ReadExistingTemperatureThresholds

ThresholdsSet?
SetLower
AndUpper

Temperature

Thresholds

AdjustHeaterValue

[Yes]

Open
Windows

H
ea
te
r

[SwitchOff
Temperature
Monitoring]

[OutOfThresholds]

[OpenWindows]

[UseHeater]

[CloseWindows]

DetermineLowEnergy
ConsumptionStrategy

Figure 9. Smart Heating Activity Model

4. RELATED WORK AND DISCUSSION
Traditionally, feature interactions are associated with the
telecommunications domain but recently have appeared in other
domains like software systems. We believe that overlapping and
dependency pattern detection may not be the best technique for
the detection of feature interaction in arbitrary kinds of models in
all domains. There are other approaches that deal with detection in
specific domains and might offer more accurate results because of
the detail of their models. For example, in SPLE there has been
some work related with feature interaction detection. Classen [3]
employs problem frames to analyze feature interactions between
the environment and the SPL. This approach helps to reason about
each interaction separately and requires a high degree on
formalization of each interaction scenario. MATA uses the

122

Critical Pair Analysis (CPA) offered by its underlying
composition tool AGG [15] to detect feature interactions. They
focus on the detection of problems that avoid finishing the
composition of the models of a product. For example, bad order of
the compositions rules for the models that specify each feature.

To describe a precise technique to find feature interactions is not
our goal in this work. This technique suggests the points or places
in the models where we might find feature interactions. Since we
cannot guarantee that the points that we discover are genuine FIs,
we call them “candidate” points of FIs. Also, the patterns
identified and described in this work naturally do not cover all the
possible situations that indicate potential feature interactions.
There are exceptional situations or “side effects” that might
happen during the system execution that may be out of the scope
of the two strategies mentioned applied in such high level
descriptions of the functionality of the system used in
requirements engineering. We focus on requirements models
which are special since they do not contain many details about the
structural components and the interactions between the high
abstraction level modules of the system. Therefore, use cases and
activity models are just the means that help us to analyze the
functionality of a complex system looking at it from a high level
end-user view.

We decide for a lightweight approach to find the points in which
two or more features might interact. We consider the semantics of
the relationships between the recurring requirements models like
use cases, and overlapping detection between activity models that
specify the behavior of the system. In particular, we believe that
overlapping detection as a way to detect potential feature
interactions may be achievable in SPLs because of the fact that
many feature-related model fragments have a certain structural
similarity with other model fragments [8].

The power of our approach is its simplicity, because it relies on
the analysis of the relationships between elements in conventional
SPL requirements models. This, in comparison with other
approaches for feature interaction detection, does not require extra
models formalizing each part of the behavior of the features.
Overlapping and dependency patterns detection are useful to
indicate where to find candidate points of feature interactions in
the context software product lines. However, we think that the
approach envisioned in this paper should be taken as a
complement for the use of more formal and detailed detection
approaches, not like the unique or optimal solution.

5. CONCLUSIONS AND FUTURE WORK
To identify candidate points for features interactions we focused
on the identification of some patterns of dependency between
features, and the overlapping between the models that design the
features of the SPL. We are conscious that the overlapping
detection strategy as the mean to identify points where there are
potential feature interactions may not be the most accurate
solution. Working with models requires discipline to keep updated
trace links between each model fragment with the features that
they are related to, and also to use standard ways to name the
model fragments to make them comparable with other fragments.
Our approach suggests that there is a trade-off between
accurateness (formal and detail models to analyze feature
interactions in requirements) and simplicity (dependency patterns
and overlapping detection). Of course, we cannot judge for one or
the other, nor conclude about a mixture of both yet. However, we

believe that our work can help to initiate a discussion about this
issue for feature interaction detection in model-oriented
requirements approaches for SPL.

We need further investigation on the validation of our approach
with more case studies. Also, we are working on the combination
of more detailed techniques to specify the behavior of features and
the lightweight strategies presented in this paper. Finally, we are
working on conflicts that are derived from non-functional
properties of the SPL, and their relationship with functional FIs.

ACKNOWLEDGMENTS
This work is supported by the European FP7 STREP project
AMPLE [9].

6. REFERENCES
[1] Metzger, A. Feature Interactions in Embedded Control Systems.
Comput. Netw., 45 (5): 625-644, 2004.
[2] Combes, P. and Pickin, S. Formalisation of a User View of
Network and Services for Feature Interaction Detection. In Feature
Interactions in Telecomunications Systems, pages 120-135,
Amsterdam, The Netherlands, 1994. IOS Press.
[3] Classen, A. Problem Oriented Modelling and Verification of
Software Product Lines. Masters Thesis, University of Namur
(FUNDP), Namur, Belgium, 2007.
[4] Nhlabatsi, A., Laney, R. and Nuseibeh, B. Feature Interaction as a
Context Sharing Problem. In 10 Int. Conf. on Feature Interactions,
Lisbon, Portugal, 2009. IOS Press.
[5] Jayaraman, P., Whittle, J., Elkhodary, A. and Gomaa, H. Model
Composition in Product Lines and Feature Interaction Detection
Using Critical Pair Analysis. In 10 Int. Conf. on Model-Driven
Languages and Systems, volume 4735, pages 151-165, Nashville,
USA, 2007. Springer.
[6] Xuan, H. and Xu, J. Web Services Feature Interaction Detection
Based on Graph Transformation - A New Interaction Detection
Method. In Feature Interactions in Software and Comunication
Systems X, Lisbon, Portugal, 2009. IOS Press.
[7] Mehner, K., Monga, M. and Taentzer, G. Analysis of Aspect-
Oriented Model Weaving. Transactions on Aspect-Oriented Software
Development V, 5490: 235-263, 2009.
[8] Apel, S., Janda, F., Trujillo, S. and Kästner, C. Model
Superimposition in Software Product Lines. In Int. Conf. on Model
Transformation, Zurich, Switzerland, 2009.
[9] AMPLE. Ample Project, 2009. http://www.ample-project.net.
[10] Morganho, H., et al. Requirement Specifications for Industrial
Case Studies. AMPLE Project, D5.2, 2008.
[11] Siemens AG - Research & Development, 2009.
http://w1.siemens.com/innovation/en/index.php.
[12] Alférez, M., Santos, J., Moreira, A., Garcia, A., Kulesza, U.,
Araújo, J. and Amaral, V. Multi-View Composition Language for
Software Product Line Requirements. In 2nd Int. Conf. on Software
Language Engineering, Denver, USA, 2009.
[13] Khakpour, N., Sirjani, M. and Jalili, S. Formal Analysis of Smart
Home Policies Using Compositional Verification. In Feature
Interactions in Software and Communication Systems X, Lisbon,
Portugal, 2009.
[14] Nakamura, M., Igaki, H., Yoshimura, Y. and Ikegami, K.
Considering Online Feature Interaction Detection and Resolution for
Integrated Services in Home Network Systems. In Feature
Interactions in Software and Communication Systems X, Lisbon,
Portugal, 2009.
[15] Taentzer, G. AGG: A Graph Transformation Environment for
Modeling and Validation of Software. In AGTIVE, Virginia, USA,
2003.

123

124

Author Index

Namik Aktekin, 103
Mauricio Alferez, 117
Vasco Amaral, 117
Sven Apel, 27, 55, 63
Joao Araujo, 117
Mohsen Asadi, 95

Jorge Barreiros, 43
Don Batory, 1
Matthias Blume, 3
Marko Boskovic, 95
Götz Botterweck, 109

Wonseok Chae, 3

Josune De Sosa, 87

Christoph Elsner, 35

Janet Feigenspan, 55

Dragan Gasevic, 95
Xiaocheng Ge, 49
Sebastian Günther, 11

Marek Hatala, 95
Florian Heidenreich, 69
Peter Höfner, 75

Bo Nørregaard Jørgensen, 19

Christian Kästner, 27, 55
Nima Kaviani, 95
Stefan Kowalewski, 109
Martin Kuhlemann, 27
Uirá Kulesza, 117

Thomas Leich, 27, 55, 63
Christian Lengauer, 63
Jörg Liebig, 27, 63
Daniel Lohmann, 35, 81

Ricardo Mateus, 117
John McDermid, 49
Xabier Mendialdua, 87
Bardia Mohabbati, 95
Ana Moreira, 43, 117
Bernhard Möller, 75

Andrzej Olszak, 19

Richard Paige, 49
Andreas Pleuss, 109
Andreas Polzer, 109

Wolfgang Schröder-Preikschat, 35, 81
Julio Sincero, 81
Sagar Sunkle, 11

Reinhard Tartler, 81
Bedir Tekinerdogan, 103
Salvador Trujillo, 87

Ander Zubizarreta, 87

125

