
Bachelor’s Thesis

E X P L O R AT I O N O F S O F T WA R E T O O L S U S E D
F O R A N A LY Z I N G E Y E T R A C K I N G D ATA I N

S O F T WA R E E N G I N E E R I N G

timon dörzapf

October 10, 2023

Advisor:
Marvin Wyrich Chair of Software Engineering

Dr. Norman Peitek Chair of Software Engineering

Examiners:
Prof. Dr. Sven Apel Chair of Software Engineering

Prof. Dr. Anna Maria Feit Chair of Human-Computer Interaction

Chair of Software Engineering
Saarland Informatics Campus

Saarland University

Timon Dörzapf: Exploration of Software Tools Used for Analyzing Eye Tracking Data in Software
Engineering, © October 2023

Erklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement

I hereby confirm that I have written this thesis on my own and that I have not used
any other media or materials than the ones referred to in this thesis

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in
die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken,______________________ _____________________________
 (Datum/Date) (Unterschrift/Signature)

A B S T R A C T

A lot of empirical studies in software engineering use eye tracking to expand their data
points. Yet, there is still no standardization of the tools that are used to analyze eye tracking
data.

This poses a problem as comparability between studies that used different eye tracking
software tools is difficult. The results of a study may be influenced by the choice of the eye
tracking software tool to analyze obtained study data.

We explored and evaluated the software tools used by performing a lightweight Systematic
Mapping Study (SMS) and extracted the eye tracking software tools used from the papers
found. We then compared eye tracking metrics calculated by different software tools. We
found that there are significant differences in the results of software tools for the same data
set. This finding may impact the comparability and reproducibility of all studies that used
eye tracking, especially those that did not name the software tool they used. Additionally,
our evaluation of the current state of the art of software tools used in eye tracking studies in
software engineering enables future work to know which software tools may be the best fit
for their study.

v

C O N T E N T S

1 Introduction 1

2 Background 3

2.1 Eye Tracking Theory . 3

2.2 Eye Tracking Devices . 4

2.3 Visual Effort Metrics . 4

2.4 Fixation and Saccade Algorithms . 6

3 Related Work 9

4 Methodology 11

4.1 Research Questions . 11

4.2 Search Process . 12

4.3 Selection Process . 12

4.4 Data Extraction . 15

4.5 Data Analysis . 15

5 Evaluation 17

5.1 Results . 17

5.1.1 RQ1: Which software tools are used to analyze eye tracking data in
software engineering studies? . 17

5.1.2 RQ2: How do authors justify their choices of software tools and what
consequences do they discuss? . 24

5.1.3 RQ3: Which effects on the results and conclusions does using different
software tools on the same experiment data have? 25

5.2 Discussion . 29

5.2.1 Software Tool Usage . 29

5.2.2 Justifications and Consequences . 32

5.2.3 Software Tool Effects . 34

6 Threats to Validity 37

7 Concluding Remarks 39

7.1 Conclusion . 39

7.2 Future Work . 40

a Appendix 41

a.1 Appendix A: Analyzed Studies . 41

a.2 Appendix B: Extraction Form . 51

a.3 Appendix C: Results of RQ3 . 52

Bibliography 57

vii

L I S T O F F I G U R E S

Figure 5.1 Number of brand-specific eye trackers used in software engineering
studies from 1990 to 2023 . 18

Figure 5.2 Number of type-specific software tools used to analyze eye tracking
data in software engineering studies from 1990–2023 18

Figure 5.3 Number of different algorithms used to analyze eye tracking data in
software engineering studies from 1990–2023 19

Figure 5.4 Number of type-specific software tools used to analyze eye tracking
data in software engineering studies from 1990–2014 19

Figure 5.5 Number of type-specific software tools used to analyze eye tracking
data in software engineering studies from 2015–2019 20

Figure 5.6 Number of type-specific software tools used to analyze eye tracking
data in software engineering studies from 2020–2023 21

Figure 5.7 Number of different metrics calculated by software tools 21

Figure 5.8 Number of type-specific software Tools used by Tobii eye tracker . . 22

Figure 5.9 Number of type-specific software tools used for items where scrolling
is allowed . 23

Figure 5.10 Number of different study tasks of iTrace, Tobii and Ogama 23

L I S T O F TA B L E S

Table 4.1 Extracted data items . 15

Table 5.1 Software tools and their features . 24

Table 5.2 Justifications categories . 24

Table 5.3 Consequences categories . 25

Table 5.4 Calculated fixation counts by software tools 26

Table 5.5 Total fixation duration similarity . 27

Table 5.6 Average fixation duration similarity 27

Table 5.7 Calculated saccades counts similarity 28

Table 5.8 Total saccade duration similarity . 28

Table 5.9 Average saccade duration similarity 28

Table A.1 Extraction form . 51

Table A.2 Total fixation duration in milliseconds 52

Table A.3 Average fixation duration in milliseconds 53

Table A.4 Average fixation duration in milliseconds 53

Table A.5 Calculated saccades counts by software tools 54

Table A.6 Total saccade duration in milliseconds 55

Table A.7 Average saccade duration in milliseconds 56

viii

acronyms ix

A C R O N Y M S

AOI Area Of Interest

AOG Area Of Glance

EEG Electroencephalogram

fMRI functional Magnetic Resonance Imaging

GSV Galvanic Skin Response

IDE Integrated Development Environment

RFV Restricted Focus Viewer

SMS Systematic Mapping Study

SLR Systematic Literature Review

1
I N T R O D U C T I O N

Eye tracking in software engineering research has gotten more and more popular in
recent times. An argument as to why this is happening is the reduced costs of the hardware,
as eye tracking devices were rather expensive some decades ago compared to the prices of
today where low end ones start at 100€ [19]. Another advantage is that it helps studies to
understand the thought processes of developers by recording significant evidence about
how participants interact with visual information [19]. It has been used in a wide range of
applications such as code comprehension, debugging and traceability [20, 21]. In combina-
tion with other psycho-physiological measures, an even deeper understanding of the way
developers work can be achieved as eye tracking complements the other measures well. It
can for example be used to know which part of a snippet of code a participant is looking at
when using functional Magnetic Resonance Imaging (fMRI), such that the data of the fMRI

can be evaluated in a more efficient manner.

Even though eye tracking has been used for more than 30 years, there still is not a
standard way of performing and analyzing eye tracking experiments [18–20]. Particularly,
there is a large variety of tools that are used to analyze the eye tracking data [19, 20]. Due
to the wide amount of tools, it is difficult to choose the correct one for the requirements of a
study, as not every tool is compatible with every eye tracker. The tools also have different
capabilities. Depending on the needs of the study, it is important to choose the right tool
that has the required capabilities.

Some of these tools are closed-source and only work for the brand of eye trackers they
have been developed for. Additionally, the uncertainty of which code is behind the tool
makes them a weaker choice. Another point is that it is not possible to know the algorithms
behind the calculations, as you can not compare the calculations that were made if the
used algorithm is not known. All in all, this makes comparisons between studies a difficult
objective when using closed-source tools.

But compatibility between open-source tools is also a point that has not been discussed
in detail in literature. Even though the code and the algorithms that are used are publicly
available, there have not been studies which measure if the results from these tools are
equivalent or not. Thus also studies that use open-source tools are difficult to compare.

Goal of this Thesis

The goal of this thesis is to explore and evaluate the tools that were used during eye tracking
experiments in software engineering in a systematic way. This way, we were able to see
which tools have been used and how the usage of tools has evolved. Additionally, the effects
of using different tools for the same data was measured in an explorative way.

1

2 introduction

Another goal of this research is to lead to a deeper understanding of the question if
using different tools will lead to different results. By evaluating the usage of the different
tools and comparing the results of different tools with the same data, it can be seen if
using a different tool during the data analysis part has a significant effect on the result
of the study. This in turn will lead to knowing if one can use different tools without
consequences or if studies should use a standardized tool for the data analysis to make
studies comparable, which in turn will make it easier to perform eye tracking experiments.
As there was no such a systematic literature research conducted so far, the results of this
thesis will advance the research of eye tracking studies in software engineering by pro-
viding a deeper insight into the tools used in the data analysis part of the studies and
may help reducing threats to validity introduced by using certain eye tracking software tools.

Overview

After this introduction, we first cover underlying concepts about eye tracking in Chapter
2. We give an overview about the theory and assumptions of eye tracking. Then we will
present how eye tracking devices function. Finally, we explain some visual effort metrics
which are used to analyze eye tracking data.

Following this chapter, we will present some related work in Chapter 3. We cover papers
that provide additional information to eye tracking in software engineering and software
tools that were specifically developed to be used with eye tracking.

Afterwards, we describe our methodology in Chapter 4. There we present our research
questions. We present how we found the papers for our exploration of eye tracking software
tools. Then we describe how we performed the data analysis part of the thesis.

In Chapter 5, we present the results of our thesis. We also discuss those results and their
implications.

Additionally, we provide the threats to validity of our thesis and how we tried to
minimize those in Chapter 6. Finally, in Chapter 7, we summarize our findings and provide
a conclusion while also giving an outlook on further ideas to this subject.

2
B A C K G R O U N D

This chapter will provide necessary background information for this thesis.

2.1 eye tracking theory

Eye tracking devices are used to collect the eye movements of a person such that it can be
seen where the person is looking at. This makes it possible to monitor a person’s visual
attention when looking at a stimulus when working on a task, as the eye movement is
essential to cognitive processes of the brain when performing software engineering tasks. A
stimulus is the object that is needed to perform the task, for example the source code. A task
can be such thing as program comprehension of source code. The resulting data from eye
trackers is analyzed with respect to certain areas called Area Of Interest (AOI). These AOI

can be relevant or not to a person during a task. If the task is source code comprehension, a
relevant AOI could be a function name whereas an irrelevant AOI could be a comment about
something different. Another metric is the Area Of Glance (AOG). These can be either the
whole stimulus or another AOI.

Eye gaze data, which is obtained by processing the raw movement data, can be classified
into the following categories [5]:

• Saccade: rapid eye movements that are used to reposition the fovea to a new location
in the visual environment. They range in duration from 10 to 100 ms, which renders
the person effectively blind during the transition. They occur between fixations.

• Fixation: eye movement that stabilizes the retina over a stationary object of interest.
They range in duration from 150 to 600 ms, but this changes depending on the task
and the characteristics of the person.

• Scan path: a series of fixations or visited AOIs in a chronological order that appear due
to the eyes fixating on different parts of a stimulus.

• Pupil dilation and constriction: the dilation of the pupil, the aperture through which
the light enters the eye, is controlled by the iris muscle. According to Poole and
Ball [15], a larger pupil indicates increased cognitive effort.

The following assumptions about eye tracking have been made [9]:

• The immediacy assumption: states that a person tries to interpret a stimulus as soon
as the person sees it.

• The eye-mind assumption: states that until a person understands a stimulus, they
fixate their attention on it.

3

4 background

These assumptions build the foundation of how eye gaze data represents the person’s
cognitive processes. Sharafi et al [20] performed a Systematic Literature Review on eye
tracking studies in software engineering, which was used as a basis for RQ1 of this thesis.
The papers that were analyzed by Sharafi et al [20] support these assumptions and also
used them to analyze and interpret the eye-movement data. Another assumption of these
papers is that the person is actively engaged in performing their task.

2.2 eye tracking devices

There is a wider variety of eye trackers available for scientific and for business purposes [20].
Depending on the eye tracker, they may have a different form or use different methods to
track eye gaze. An eye tracker normally consists of the following hardware and software
components [19]:

• One or more (usually infrared) cameras

• One or more (usually infrared) light sources

• Image-processing software that detects and locates the eyes and the pupils and maps
eye motion and the stimulus.

• Data collection software to collect and store real-time eye gaze data.

• Real-time display showing the location of the eyes’ focus.

Currently, most available eye trackers use the corneal-reflection/pupil-center method
where an emitter of (usually infrared) light is directed toward the eyes, entering the
pupils [19]. A small amount of light is reflected by the eyes whereas a significant amount
of light is reflected back in the pupils which causes the pupils to appear bright. The eye
tracking cameras can detect those reflections and therefore track the movements of the eye.

2.3 visual effort metrics

In this section we will present some visual effort metrics that are used to measure the visual
effort that is representative of the task and stimuli being assessed [18].

Metrics based on Fixations

• Fixation Count (FC): total number of fixations in each AOI. According to Goldberg et
al [6], a higher number of fixations on a specific stimulus shows that the search for
finding relevant information is not efficient.

• Fixation Rate (FR): Can be calculated by the following formula:

FR =
Total number of Fixations in AOI

Total Number of fixations in AOG

These can be either the whole stimulus or another AOI. The fixation rate shows the
ratio of fixations between two different AOIs. If FR is smaller, the search task is less

2.3 visual effort metrics 5

efficient. If FR is higher and we are looking at comprehension tasks, then the person
shows great interest in an AOI or the AOI is difficult to understand.

• Fixation Spatial Density (SD): If we consider the stimulus as a grid, then SD is equal
to the number of cells that contain at least one fixation divided by the total number of
cells. It represents the coverage of an area and gives a measure of the dispersion of
the person’s fixations. It can be calculated as follows:

SD =
∑n

i=1 ci

n

with n the number of cells in the grid. If the cell of number i is visited, ci is 1 else 0.

• Convex Hull Area: the area of the smallest convex set of fixations which contain all
fixations of a person. It visualizes the spatial distribution of fixations and shows the
preferred parts of a visual stimulus.

Metrics based on the Duration of Fixations

• Average Fixation Time (AFD): sum of durations of all fixations divided by the number
of fixations.

AFD(AOI) = ∑n
i=1(ET(Fi)− ST(Fi)) in AOI

n

with ET(Fi) the end time, ST(Fi) the start time for a fixation Fi. n is the total number
of fixations in a given AOI.

• Ratio of ON-target:All-target Fixation Time (ROAFT): sum of the durations of all
fixations in a AOI divided by the total duration of all fixations for the AOG. Lower
efficiency is indicated by a smaller ratio.

ROAFT =
∑n

i=1(ET(Fi)− ST(Fi)) in AOI

∑n
j=1(ET(Fj)− ST(Fj)) in AOG

• Fixation Time (FT): sum of the durations of all fixations in an AOI.

• Average Duration of Relevant Fixations (ADRF): total duration of the fixations for
relevant AOIs.

ADRF =
Fixations Duration of Relevant AOIs

Total Number of Relevant AOIs

• Normalized Rate of Relevant Fixations (NRRF): compares two or more stimuli with
each other. A stimuli requires more visual effort if it requires more relevant fixations.

NRRF =
ADRF

(Fixation Duration of all AOIs
Number of all AOIs)

NRRF is normalized to adjust for the size of stimulus using the total number of AOIs

in the stimulus.

6 background

Metrics based on Saccades

• Number of Saccades and Saccade Duration: identical to their corresponding fixation-
based metrics.

• Regressions Rate: percentage of backwards saccades of any length. The higher the
percentage, the better can the person read and understand the stimulus.

Metrics based on Scanpaths

• Attention Switching Frequency: dynamics of visual attention using the total number
of switches between a set of AOIs per minute.

• Transitional Matrix: tabular representation of frequencies of transitions between AOIs.
Higher density indicates extensive search with inefficient scanning on a stimulus
whereas a sparse matrix indicates a directed and efficient search.

TM =
∑n

i=1 ∑n
j=1 ci,j

n2

• ScanMatch: compares scanpaths and computes a similarity score. It is based on the
Needleman-Wunsch algorithm.

• Linearity: search strategy of a person for a stimulus. It uses eye-movements linearity
to characterize how a person read source code.

2.4 fixation and saccade algorithms

A lot of different fixation algorithms exist today [1]. In this section, we will present some of
them:

IVT Algorithm

A widely employed approach for distinguishing between samples associated with fixations
and those linked to saccades is to analyze their velocities. The Identification by Velocity
Threshold (IVT) algorithm, as outlined by Salvucci and Goldberg [16], operates on this
principle. It employs a predefined velocity threshold to classify data into fixations and
saccades. In this context, fixations encompass segments of data with point-to-point velocities
below the specified threshold, while saccades include segments with velocities exceeding
this threshold.

This fundamental velocity-based criterion often serves as the foundation for various other
algorithms. The specific implementation discussed here is attributed to Komogortsev et
al. [11].

2.4 fixation and saccade algorithms 7

IDT Algorithm

One of the most widely used algorithms for detecting fixations is the Identification by
Dispersion-Threshold (IDT) algorithm. This algorithm, as outlined by Salvucci and Gold-
berg [16], is rooted in the data reduction technique developed by Widdel [22]. The IDT
algorithm operates on both the x and y data coordinates and relies on two predefined
thresholds: the maximum fixation dispersion threshold and the minimum fixation duration
threshold.

In order for a segment of data to be classified as a fixation, it must meet the minimum
duration threshold, which means that data samples covering a duration equal to or longer
than this threshold must fall within a spatial area not exceeding the dispersion threshold.
Any data samples that satisfy these criteria are designated as belonging to a fixation.

IMST Algorithm

Another approach to event detection involves the use of the Identification by Minimal
Spanning Tree (IMST) algorithm. This algorithm constructs a “tree” representation of the
data, with branches extending to individual data samples. The primary goal of the algorithm
is to create a tree structure that minimizes branching, ensuring that samples from distinct
clusters are associated with separate nodes higher up in the tree, rather than being forced
into an extensive branching structure linked to a single node at a lower level.

By imposing specific thresholds on the samples at the edges of a cluster, the IMST
algorithm can effectively identify saccades and exclude them from the fixation detection
process. This particular implementation of the IMST algorithm is credited to Komogortsev
et al. [11].

3
R E L AT E D W O R K

Sharafi et al [20] performed a Systematic Literature Review (SLR) in 2015 on the usage
of eye tracking in software engineering. They analyzed 36 papers between 1990 and 2014

using SLR to evaluate the current state of art of eye tracking. A limitation of current eye
tracking studies that was found was that several tools were used to analyze eye tracking
data. The authors named Taupe and OGAMA as examples for open-source software that is
working with many commercial eye trackers.

In “A Practical Guide on Conducting Eye Tracking Studies in Software Engineering” [19],
the authors also commented on the fact that due to a lack of standardized protocols and tools,
comparisons across studies are difficult. Commercial eye trackers suppliers are providing
their closed source data analysis tools, but there are open-source alternatives which provide
the ability to work with most commercial eye trackers. They contribute a list of 6 open-
source software data analysis tools which they would recommend based on their experience.

In recent years, there has been effort made to create more open-source software to analyze
eye tracking data [4, 7, 23]. These tools can be utilized with frequently used commercial
eye trackers by software engineering researchers, which makes them a good alternative to
the paid closed-source software of commercial eye tracker suppliers. Zyrianov et al [23]
presents Deja Vu, which can be used to record eye tracking and all telemetry data such that
high-speed, high-quality eye trackers can overcome their real-time limitations of mapping
screen coordinates to lines and columns, which in turn facilitates code comprehension
studies and more.

Andersson et al. [1] provided an overview over the currently existing algorithms to parse
eye movement data. They tested ten different algorithms on the same data set to provide a
comparison between those algorithms and to find out out which algorithms performs the
best. Their results were that depending on the algorithm, the resulting event duration had a
great variance depending on the algorithm that was used. For static stimuli, fixation and
saccade detection were working relatively well, but for all other measures and if dynamic
stimuli was used, the algorithms did not provide good results. They also found that the
LNS algorithm by Larsson, Nyström & Stridh [12] was the best performing algorithm for
saccade detection.

We can see that the lack of a standardized data analysis procedure is a problem that has
been known for some time. The increasing number of open-source software tools available
for analyzing eye tracking data makes it difficult to choose the right tool for a study. In
addition, the algorithms available can have a large impact on the results of the study.
Therefore, it is important to know which software tools are used in eye tracking studies in
software engineering and how the results of different software tools compare to each other.

9

4
M E T H O D O L O G Y

We will adopt part of the methodology known from conducting SMS to find a dataset of
relevant eye tracking studies. A SMS a is structured method that categorizes research reports
and results that have been published [14]. As we only want to categorize specific parts of
research reports and results, a partial execution of a SMS was chosen since this is well suited
for our objective of exploring the software tools used for eye tracking studies. Such a SMS

helps in identifying research gaps in eye tracking studies in software engineering [14]. As
we only use a partial execution of a SMS, we will not perform keywording using abstracts
and a classification scheme as described in [14]. In addition, only extract a subset of the
data items that are usually extracted in a SMS as described in [14], as we have no need for
the other data items.

4.1 research questions

As we will perform a part of a SMS on papers that use eye tracking in software engineering
studies, it is important to see which tool they used to analyze the data produced by the eye
tracker. As there are a lot of different software tools available, which are also categorized
into open-source and closed-source software tools, providing a summary of the software
tools used and their capabilities is an important insight. Therefore, the first research question
is:

RQ1: Which software tools are used to analyze eye tracking data in software engineering
studies?

In addition to the software tools used, it is also important to know why the authors chose
these software tools. Therefore, the second research question is:

RQ2: How do authors justify their choices of software tools and what consequences do they
discuss?

There have been discussions about the subject of comparability between this kind of
studies as it is difficult to compare the results of studies if the algorithm used to analyze
the data may be different. The comparability between eye tracking software tools is largely
unexplored. By comparing different software tools on the same data set, it may be possible
to see if certain software tools produce different results than other software tools. As such,
the third research question is:

RQ3: Which effects on the results and conclusions does using different software tools on the
same experiment data have?

11

12 methodology

4.2 search process

To find papers using eye tracking in software engineering for the part of a SMS, we used
the digital libraries of IEEEXplore1 and ACM2. As IEEEXplore and ACM both contain a
lot of software engineering specific papers and there is not a lot of overlap between those
two libraries [2]. As it was possible to use the same search query for both online libraries,
the internal validity of the results was not threatened in this regard. Other libraries such as
ScienceDirect or indexers such as Google Scholar were not used as this would have been
beyond the feasibility of a bachelor thesis.

The main goal of our study is to find all papers that use eye tracking with eye trackers
while performing tasks using software engineering-related stimuli such as code comprehen-
sion. Therefore, we define three sets of keywords with the stipulation of having at least one
keyword of each set present in the paper:

((“eye-track*” OR “eye track*” OR "eyetrack*") AND

(code OR program* OR representation*) AND

(comprehen* OR understand* OR

debug* OR read* OR scan*))

These search terms are similar to those of Sharafi et al [20] used for their literature research.
Their search string was:

((“eye-track*” OR “eye track*” OR "RFV" OR "Restricted Focus Viewer") AND

(source code OR program* OR "UML" OR "model*" OR representation*) AND

(comprehen* OR understand* OR

debug* OR "navigat*" OR read* OR scan*))

These are nearly the same as those of Sharafi et al. [20] except for the additional stipulations
that papers that use a Restricted Focus Viewer (RFV) are not allowed and that eye-tracking
experiments need to be conducted in front of a screen. I based my search terms on Sharafi
et al. [20], as they already conducted a literature search of eye tracking studies in software
engineering, which is a superset of the papers that we wanted to find, as it included more
varied search terms. Therefore, it was probable that those search terms would yield good
results for new papers of the same type.

As Sharafi et al. [20] already conducted a literature search for the years 1990–2014, it was
not deemed necessary to replicate this search for the years before 2015 as it would probably
lead to the same or fewer results. Thus, the literature search was conducted from 2015 to
2023.

Due to time constraints, no snowballing was performed.

4.3 selection process

The process to select the papers is the following:

1. Selecting related papers by search engines: The previously described query is executed
in the online libraries of IEEEXplore and ACM. The search engines for IEEEXplore

1 https://ieeexplore.ieee.org
2 https://dl.acm.org/

https://ieeexplore.ieee.org
https://dl.acm.org/

4.3 selection process 13

searched the metadata of the papers, which includes the abstract, index terms, and
bibliographic citation data (such as document title, publication title, author, etc.). This
search produced 173 results.

The search engine for ACM searched the abstract for the search terms. This search
produced 136 results.

As the search engine of ACM did not include a metadata option, the abstract search
was the best option to receive similar results. In total, the search of the IEEEXplore
and ACM libraries provided 309 results.

2. Selecting related papers by previous study: The 36 papers that Sharafi et al. [20] found
at the end of their selection process were added to the list of possible related papers.

In total, there are now 348 possible related papers.

3. Duplicate removal: by manual checking of the papers, duplicates were removed. In
total, 16 duplicates were removed such that 332 papers were left.

4. Quick Check: The 348 papers were checked for relevance by reading the title and
abstract. If the papers were either not relevant to software engineering or did not
conduct an eye tracking study, the papers were removed. After this step, there was a
total of 109 papers left.

5. Applying inclusion/exclusion criteria: by applying the inclusion and exclusion criteria
which are described in the following section, we checked whether the papers were
relevant or not to the goal of this thesis.

After the criteria were applied, there were 97 papers left, which is the final number of
papers found.

Inclusion and Exclusion Criteria

After the papers were collected, there was be a selection process with predefined inclusion
and exclusion criteria. I used nearly the same inclusion criteria as Sharafi et al. [20] with
two additional exclusion criteria and a slight modification of one exclusion criteria:

• I1: Primary studies published in journals or conference and workshop proceedings in
the form of experiments, surveys, case studies, reports, and observation papers using
eye-tracking technology to study and investigate software engineering activities.

• I2: Primary studies that present the more detailed and complete results if there is
more than one published version of a specific study.

The exclusion criteria are the following:

14 methodology

• E1: Papers that do not use an eye-tracker or that use a RFV.

• E2: Papers that are not related to software engineering.

• E3: Papers in “gray” literature, which are not published by trusted, well-known pub-
lishers, and– or which did not go through a well-defined referring process.

• E4: Papers that are not published in English.

• E5: Papers where eye-tracking experiments were not conducted in front of a screen.

• E6: Papers re-reporting the results, or doing a re-analysis of a previously published
experiment were studied, and the most comprehensive paper was selected.

• E7: Papers not involving an empirical study or only those that propose a proof of
concept.

The slight modification of the exclusion criteria compared to those of Sharafi et al. is
that papers that use a RFV are not allowed and that eye-tracking experiments need to be
conducted in front of a screen.

The two additional exclusion criteria are E6 and E7, as we only wanted to include studies
that created new data from eye tracking, as otherwise there may have been threats to validity
by reusing the same dataset.

Choice of Data Set for RQ3

Of the 97 analyzed studies, 28 studies had openly accessible replication packages available.
Those were mentioned either in the paper or in the supplemental materials on the website of
the journal in which they were published. Of those 28 studies with replication packages, 11

were not available anymore, probably due to their age. The remaining replication packages
were ranked with the following criteria, where the more important criteria has a lower
number:

1. Data contains raw eye tracking data.

2. Lowest amount of data loss.

3. Greatest amount of data points.

4. Data quality is superficially good, which means not a lot of data loss at once and not
a high number of values that make no sense when looking through the data.

4.4 data extraction 15

5. A software tool was used that is not already used in the comparison of software tools.

By applying the first four criteria, a list of six replication packages was created. The
replication package from McChesney et al. [13] was chosen as it was found to fulfill these
criterias best. This is due to the fact that it used Tobii Pro Lab to calculate the fixations, which
gives an additional data point in the comparison of different software tools. For example,
the data set of study 4 [17] was not chosen as the x and y coordinates consisted of values
between -1 and 1 with no indication on how to convert them to a format that works with
most software tools, which makes it difficult to provide a comparison between software tools.

4.4 data extraction

The pieces of information that were extracted from each paper can be found in Table 4.1.

Table 4.1: Extracted data items

Category Data Items

Included Papers Title, DOI, citation (APA), publication year, venue

Software Tools software tool used, software tool justifications and consequences

Eye Tracker eye tracker used, eye tracker configuration

Study Design study task, item type, item language, item scrolling

Participants number of participants, demographics of participants

Replication available replication package

To make sure the data was extracted in a consistent way, a data extraction form was
created and used to extract the data. A copy of the form is provided in Table A.1.

The data items were defined with an as good as possible description. Of all data items,
only the justifications and consequences of using a specific software tool to analyze the
eye tracking data had the need to be processed further. We classified the data using
thematic analysis [3] and coded the data with an inductive approach, as we did not want to
erroneously ‘force’ a preconceived result. For this data item, we first extracted the relevant
passage as a quote. From this quote, we created labels that are describing as accurately as
possible the quote. Finally, categories were built from these labels.

4.5 data analysis

For the first two RQs, we used descriptive statistics to analyze the data. We used the number
of papers that had specific characteristics to describe the data for RQ1. For RQ2, we used the
number of papers that had specific categories and labels of justifications and consequences
to describe the data.

For RQ3, we used the open data set from McChesney et al. [13] to compare the results of
different software tools.

The data set from McChesney et al. [13] was analyzed with the following software tools:

16 methodology

• Ogama version 5.13

• PyGaze version 0.6.04 with PyGazeAnalyzer version 0.1.05

• EMIP, commit from 2022-09-04
6

To understand if there is a difference between different software tools, the fixations and
saccades of the data set were calculated. As the software tools all have different capabilities,
only fixations and saccades were considered. Fixations could be calculated by all named
software tools. Saccades could only be calculated by PyGaze and Ogama. The data set
already contained the fixations and saccades calculated by Tobii Pro Lab.

iTrace was not used as it does not support import of other data. We tried to convert
the data to the format that iTrace uses, but we were not able to do so. The same was true
for TAUPE. As neither eyeCode nor PandasEye support the calculation of fixations and
saccades, they were not considered for the analysis.

To compare those software tools, the different types of algorithms are named and de-
scribed in the following section.

• Ogama: fixation detection algorithm from LC Technologies, which is a dispersion-type
algorithm with window.

• PyGaze: crude algorithm by PyGazeAnalyser, a submodule of PyGaze, not further
described.

• EMIP: IDT fixation algorithm.

• Tobii Pro Lab: As McChesney et al. [13] did not provide the algorithm that was used
to calculate the fixations/saccades and as Tobii Pro Lab has multiple available options,
it is unknown which algorithm was used.

Additionally, the dataset needed to be slightly converted for the different software tools.
As only fixations and saccades were calculated, the data set was converted to a format that
only contained the timestamp and the x and y coordinates to be able to import the data to
Ogama.

For PyGaze and EMIP, the files were read with a custom python script and converted to
the format that was needed for the software tools, which consisted also of timestamp and x
and y coordinates. Additionally, a slight modification of the code7 was needed to be able
to read the data from PyGaze, as the data was not in the format that was expected by the
script. This does not have implications for the results as the data was not changed in any
way.

3 http://www.ogama.net/
4 http://www.pygaze.org/
5 https://github.com/esdalmaijer/PyGazeAnalyser
6 https://github.com/nalmadi/EMIP-Toolkit
7 The function remove_missing of the fixation and saccade detection algorithm returned an array where missing

values were removed but the index of the array was not resetted and thus not continuous, therefore causing
a crash. This was remedied by changing remove_missing such that the indexes of the array were continuous
again.

http://www.ogama.net/
http://www.pygaze.org/
https://github.com/esdalmaijer/PyGazeAnalyser
https://github.com/nalmadi/EMIP-Toolkit

5
E VA L UAT I O N

This chapter evaluates the thesis core claims.

5.1 results

We can now take a look at the results from the thesis for the different research questions.

5.1.1 RQ1: Which software tools are used to analyze eye tracking data in software engineering
studies?

To understand which software tools are used by researchers during their studies, it is
important to know which eye tracker they used. This is due to the fact that some eye tracker
may be incompatible with certain software tools or it may also be easier to just use the
integrated software tool of the eye tracker than to convert the data properly for another
program.

More than half of the studies used a Tobii eye tracker, as can be seen in Figure 5.1. EyeLink
and Gazepoint are the manufacturers that come in second and third place, but with a great
difference as EyeLink was used eight times and Gazepoint was used seven times.

Overall, 32 out of 97 studies did not name the software tool that was used to analyze the
eye tracking data. 4 out of 97 studies did not use a software tool or algorithm to analyze
any part of the eye tracking data.

As can be seen in Figure 5.2, the most-used software tool is Tobii Software 1 with 15

uses, followed by iTrace with 11 uses and Ogama with 10 uses. Except for the software
tool Taupe with four uses, all other software tools were only used once. Out of the studies
where no tool or algorithm could be properly assigned, five studies used a custom tool
that the authors themselves created to analyze the eye tracking data. Two studies used no
software tool or algorithm and only did simple analytics. Two studies used no software tool
or algorithm and did no analytics at all. These four studies have been collapsed to one bar
in Figure 5.2.

Some studies also used algorithms to analyze the eye tracking data, see Figure 5.3. The
I-VT filter, the velocity-based algorithm and the Needleman-Wunsch algorithm were used
twice, whereas the rest was only used once.

Before 2015, there has not been many eye tracking studies in software engineering. Sharafi
et al. [20] found 36 papers in total, and we used 31 of those. From those studies, the most
used tools are Tobii Software and Taupe with four uses each. All other named tools were
not used more than once. Around 52% did not name the software tool or algorithm they
used. Discarding custom tools and tools that were not named, there was a variety of five
different tools used.

1 The term Tobii Software encompasses every software tool developed by Tobii. As there exist multiple versions
which changed name over time, they were collapsed to this term.

17

18 evaluation

0 20 40

Tobii 56

EyeLink 8

Gazepoint 7

SMI 6

not named 6

FaceLAB 3

ASL 3

EyeTribe 2

Avotec 2

ISCAN 1

Eye Mark 1

Arrington 1

Figure 5.1: Number of brand-specific eye trackers used in software engineering studies from 1990 to
2023

0 10 20 30

not named 32

Tobii 15

Ogama 11

iTrace 10

Taupe 4

none 4

custom tool 3

Pupil Labs 3

EyeMMV 2

GazePoint 2

PyGaze 1

Data Viewer 1

iMotions7 1

Figure 5.2: Number of type-specific software tools used to analyze eye tracking data in software
engineering studies from 1990–2023

5.1 results 19

0 1 1 2 2

I-VT filter 2

velocity-based algorithm 2

Needleman-Wunsch 2

ICM 1

dispersion algorithm 1

rectangular smoothing 1

Scanpath Trend Analysis 1

Linearity of code reading 1

Figure 5.3: Number of different algorithms used to analyze eye tracking data in software engineering
studies from 1990–2023

0 5 10 15

Tobii 4

not named 16

Taupe 4

EventStream 1

ClearView 1

iTrace 1

EyeTribe 1

custom tool 1

none 1

Figure 5.4: Number of type-specific software tools used to analyze eye tracking data in software
engineering studies from 1990–2014

20 evaluation

Between 2015 and 2019, we found 32 studies in software engineering that used eye
tracking, which can be seen in Figure 5.5. Ogama was the most-used software tool to
analyze eye tracking data in this timeframe with seven uses, followed by Tobii Software with
four uses and iTrace with three. Around 19% did not name the software tool or algorithm
they used. Discarding custom tools and tools that were not named, there was a variety of
ten different tools used.

0 2 4 6

Tobii 4

not named 6

Ogama 7

EyeMMV 1

ClearView 1

Data Viewer 1

GazePoint 1

PyGaze 1

custom tool 2

iTrace 3

CPR toolbox 1

Pupil Labs 1

Blickshift Analytics 1

none 1

Figure 5.5: Number of type-specific software tools used to analyze eye tracking data in software
engineering studies from 2015–2019

Between 2020 and 2023, we found 35 studies in software engineering that used eye
tracking, which can be seen in Figure 5.6. Tobii Software and iTrace were the most-used
software tools with seven uses each, followed by Ogama with 3 uses. Around 26% did not
name the software tool or algorithm they used. Discarding custom tools and tools that were
not named, there was a variety of six different tools used.

As different software tools have different features, they can also not calculate each value
that may be needed. Therefore, it is interesting to see which values are most needed during
eye tracking studies in software engineering. The value that was calculated the most often is
the fixation with 44 times, as can be seen in Figure 5.7. It is followed by saccades and AOIs,
with both 19 times each. The fixation time and mapping the eye tracking data were also
calculated more often with eleven and eight times respectively.

Tobii eye tracker have been used by most studies (around 57%). In Figure 5.8, we can see
which software tools were used to analyze the eye tracking data for studies that used Tobii
eye tracker. The studies mostly used Tobii Software with fifteen uses, followed by Ogama
with ten uses and Taupe with four uses. Around 41% did not name the software tool or
algorithm they used in combination with the Tobii eye tracker.

5.1 results 21

0 2 4 6 8

Tobii 7

not named 9

Ogama 3

none 2

iMotions7 1

SMI BeGaze 1

arules 1

custom tool 2

iTrace 7

Figure 5.6: Number of type-specific software tools used to analyze eye tracking data in software
engineering studies from 2020–2023

0 20 40

fixations 44

saccades 19

fixation time 11

AOI 19

heatmaps 4

other 21

mapping eye tracking data 8

gaze patterns 3

fixation count 5

Figure 5.7: Number of different metrics calculated by software tools

22 evaluation

0 10 20

Tobii 15

not named 23

Ogama 10

Taupe 4

Pupil Labs 1

PyGaze 1

SMI BeGaze 1

Figure 5.8: Number of type-specific software Tools used by Tobii eye tracker

Fifteen studies allowed the participants to scroll during the eye tracking experiment. The
different tools that were used can be seen in Figure 5.9 The most-used tool is iTrace with
nine uses, followed by Tobii Software with two uses.

The most-used software tools, Ogama, Tobii Software and iTrace, were categorized
depending on which study task was performed. The results can be seen in Figure 5.10 Tobii
Software and Ogama were only used for program comprehension and debugging tasks,
whereas iTrace has more variety as it also covered non-code comprehension and traceability
tasks.

The most important tools and their respective features can be seen in Figure 5.1. Most of
the tools are not supported anymore. Only iTrace and Tobii Software are able to support
scrolling during the recording, but only in specific windows. Tobii Software is only able to
support scrolling in browsers, whereas iTrace has multiple addons to support scrolling in
browsers and different Integrated Development Environments (IDEs).

5.1 results 23

0 2 4 6 8

Tobii 2

iTrace 9

iMotions7 1

application bundled with EMR-NC 1

not named 1

custom tool 1

Figure 5.9: Number of type-specific software tools used for items where scrolling is allowed

program comprehension debugging
traceability comprehension (non-code)

0 5 10 15

iTrace

Tobii

Ogama

Figure 5.10: Number of different study tasks of iTrace, Tobii and Ogama

24 evaluation

Table 5.1: Software tools and their features
Capabilities Software Tools

Ogama Taupe iTrace EyeCode PandasEye PyGaze EMIP Tobii Pro
Lab

iMotions

AOI analysis yes yes yes yes no yes yes yes yes

Plots yes yes yes yes no yes yes yes yes

Metrics yes yes no yes no yes yes yes yes

ML analysis no no no no no no no no

Realtime recording yes no yes no no no no yes yes

Support scrolling no no yes no no no no partially
(browsers)

no

Programming required no no no yes yes yes yes no no

ongoing support no no yes no no yes no yes yes

Hardware compability yes partially partially yes yes yes no no yes

Multi-input integration yes no no no no yes no no yes

open source yes yes yes yes yes yes yes no no

5.1.2 RQ2: How do authors justify their choices of software tools and what consequences do they
discuss?

During the data collection process, the justifications and consequences the authors named
for using a specific software tool were gathered. Those were then mapped to labels, which
were then compiled into categories. Out of 97 collected studies, 66 studies did not name any
justifications or consequences. The remaining 31 studies were analyzed and the results can
be seen in Table 5.2 and Table 5.3.

Table 5.2: Justifications categories

Categories # of Mentions # of Labels Description

visualization 5 4 Mentions of visualization techniques

features 16 8

Mentions of specific abilities of the software
tool

non-
functional
characteristics

8 8

Mentions of characteristics of the software tool
that are not of functional nature

support 4 3

Mentions of different ways the software tool
supports other hardware/software

In total, four different categories for justifications were identified, which can be seen in
Table 5.2. Of those categories, the feature category was mentioned the most and had also
the highest amount of labels. The most named label of the feature category was the ability
to support scrolling during the eye tracking measurements with five mentions. The second
most named label was the ability to map the eye gaze to meaningful elements on the screen
with four mentions. The visualization category mostly consisted of the advantage of having
different results from the eye tracking measurements visualized such as fixations and more.
The non-functional characteristics relate to some characteristics of the software tool such as
simplicity of use, ease of modifying the software tool for its own needs, that the software

5.1 results 25

tool is open source and some more. All labels that were identified were unique. The most
named label of the support category is the support of several eye trackers. The other labels
were support for a macintosh computer and synchronization of the eye tracking data and
the data of a Galvanic Skin Response (GSV) sensor.

Table 5.3: Consequences categories

Categories # of Mentions # of Labels Description

features 7 6 Mentions of visualization techniques

non-
functional
characteristics

4 3

Mentions of specific abilities of the software
tool

support 1 1

Mentions of characteristics of the software tool
that are not of functional nature

For the consequences, three different categories were identified, which can be seen in
Table 5.3. As with the justifications categories, the feature category was the most mentioned
one and had the highest amount of labels. Only one label was mentioned twice, which is
the inability to collect eye tracking data from outside the IDE window. The other labels were
all naming missing features that would have been beneficial for their analysis of the eye
tracking data. The non-functional characteristics category had one label, the inaccuracy of
the analyzed data, mentioned twice. The other two labels were the difficulty to find optimal
parameters to analyze the eye tracking data correctly and that the software tool is closed
source. The support category has only one label, which is that there is no synchronization
of the measured data between fMRI and an eye tracker.

5.1.3 RQ3: Which effects on the results and conclusions does using different software tools on the
same experiment data have?

To understand the effects on the results and conclusions of using different software tools on
the same experiment data, we used the replication package from McChesney et al. [13]. The
replication package contains the eye tracking data from 30 participants that were recorded
during a program comprehension task. By using the same data, we can compare the results
when analyzed with different software tools. The fixation counts were calculated for the
different software tools. The results can be seen in Table 5.4. The Tables 5.5–5.9 will show
the average similarity to Tobii Pro Lab and the average variance to provide a summary of
the results. The entire tables can be found in the Appendix A.3.

As it can be seen in Table 5.5, no software tool came to the same amount of fixations.
PyGaze, Ogama and Tobii Software had a similar amount of fixations, whereas EMIP had
a significantly lower amount of fixations. As each software tool used different algorithms
to calculate the fixations, except for Tobii Pro Lab, where the algorithm is not known, a
difference in the amount of fixations is expected.

PyGaze has the highest similarity to the values found by Tobii Pro Studio with 96.85%
whereas EMIP has the lowest similarity with 30,91%. Ogama has a similarity of 90.39% to
the values found by Tobii Pro Studio, which is still near to the original values, but it also

26 evaluation

Table 5.4: Calculated fixation counts by software tools using the data of McChesney et al. [13] with
Tobii Pro Lab as the originaly used software tool

Participant PyGaze EMIP Ogama Tobii Pro Lab
PyGaze /
Tobii Pro
Lab

EMIP / To-
bii Pro Lab

Ogama / To-
bii Pro Lab

P100 2908 612 2841 2970 97.91% 20.61% 95.66%

P114 740 110 819 934 79.23% 11.78% 87.69%

P131 957 113 1208 1331 71.90% 8.49% 90.76%

P157 2101 744 1819 1899 110.64% 39.18% 95.79%

P214 2641 1357 2010 2178 121.26% 62.30% 92.29%

P237 2337 305 2507 2595 90.06% 11.75% 96.61%

P267 2039 768 1738 1895 107.60% 40.53% 91.72%

P270 3031 1223 2729 2973 101.95% 41.14% 91.79%

P316 272 15 469 629 43.24% 2.38% 74.56%

P323 757 140 828 905 83.65% 15.47% 91.49%

P365 2324 952 1586 1731 134.26% 55.00% 91.62%

P370 1617 723 1234 1274 126.92% 56.75% 96.86%

P402 2829 1269 2348 2480 114.07% 51.17% 94.68%

P450 1038 180 1136 1203 86.28% 14.96% 94.43%

P459 1174 167 1320 1477 79.49% 11.31% 89.37%

P469 1391 200 1385 1662 83.69% 12.03% 83.33%

P513 1401 477 1268 1254 111.72% 38.04% 101.12%

P536 1118 237 1030 1291 86.60% 18.36% 79.78%

P561 1178 114 1684 1763 66.82% 6.47% 95.52%

P611 1649 726 1171 1287 128.13% 56.41% 90.99%

P642 1171 162 1027 1257 93.16% 12.89% 81.70%

P645 1325 321 1440 1778 74.52% 18.05% 80.99%

P653 632 47 952 1199 52.71% 3.92% 79.40%

P708 1377 687 1102 1185 116.20% 57.97% 93.00%

P751 3411 1586 2745 2881 118.40% 55.05% 95.28%

P758 988 169 1089 1403 70.42% 12.05% 77.62%

P812 2057 447 1688 1887 109.01% 23.69% 89.45%

P819 2443 1851 2159 2160 113.10% 85.69% 99.95%

P842 2052 376 1833 1892 108.46% 19.87% 96.88%

P900 2567 1323 1891 2069 124.07% 63.94% 91.40%

Average Similarity to Tobii Pro Lab 96.85% 30.91% 90.39%

Average Variance 19.61% 20.09% 5.33%

5.1 results 27

has the lowest variance with 5.33% to the values found by Tobii Pro Studio, compared to
19.61% for PyGaze and 20.09% for EMIP.

Table 5.5: Total fixation duration similarity by software tools using the data of McChesney et al. [13]
with Tobii Pro Lab as the originaly used software tool

PyGaze / Tobii Pro Lab EMIP / Tobii Pro Lab Ogama / Tobii Pro Lab

Average Similarity to Tobii Pro Lab 58.39% 12.31% 124.94%

Average Variance 14.15% 7.60% 10.64%

To understand the difference between the software tools in more detail, we also calculated
the total fixation duration and the average fixation duration. The results can be seen in
Table 5.5 and Table 5.6.

For PyGaze and EMIP, the total fixation duration is significantly lower than for the other
software tools. Especially, EMIP has a total fixation duration that is only 12.31% of the
values of Tobii Pro Lab. Ogama’s total fixation duration is slightly greater than the one from
Tobii Pro Lab with 124.94% and is closest to the values of Tobii Pro Lab.

The average fixation duration is the highest for Ogama with nearly 450% of the values of
Tobii Pro Lab. PyGaze and EMIP are, compared to Ogama, relatively close to the values
of Tobii Pro Lab with 175% and 126% respectively. The variance of the average fixation
duration of all participants is significantly higher for Ogama with nearly 200%, whereas
PyGaze and EMIP have a variance of around 50%.

Table 5.6: Average fixation duration similarity by software tools using the data of McChesney et
al. [13] with Tobii Pro Lab as the originaly used software tool

PyGaze / Tobii Pro Lab EMIP / Tobii Pro Lab Ogama / Tobii Pro Lab

Average Similarity to Tobii Pro Lab 178.33% 129.15% 445.18%

Average Variance 50.48% 48.75% 196.94%

Only PyGaze and Ogama were able to calculate the saccades, as can be seen in Table 5.7.
The number of saccades is greatly different between all three different software tools. The
difference is especially high between PyGaze/Ogama and Tobii Pro Lab. This is due to the
fact that Tobii Pro Lab counts multiple saccades between different fixations, therefore the
number of saccades is higher. Disregarding this fact, the difference between the software
tools is probably due to the different algorithms that were used and the differences in the
parameters that were used for the algorithms. As McChesney et al. [13] did not state which
parameters were used, it is not possible to compare them to those of PyGaze and Ogama.
Additionally, Ogama uses needs some more parameters than PyGaze, which could also lead
to a difference in the results. Nevertheless, it can be seen that a difference in parameters
and algorithms can lead to a difference in the results.

Like we did for the fixations, we also calculated the total saccade duration and the average
saccade duration. The results can be seen in Table 5.8 and Table 5.9. The total saccade
duration is significantly higher for PyGaze and Ogama than for Tobii Pro Lab with 1253%
and 497% respectively. This is due to the fact that Tobii Pro Lab counts multiple saccades

28 evaluation

Table 5.7: Calculated saccades counts similarity by software tools using the data of McChesney et
al. [13] with Tobii Pro Lab as the originaly used software tool

PyGaze / Tobii Pro Lab Ogama / Tobii Pro Lab

Average Similarity to Tobii Pro Lab 9.56% 34.27%

Average Variance 2.93% 10.10%

between different fixations, therefore the number of saccades is higher and the total saccade
duration is lower. There is still a rather big difference in total saccade duration between
PyGaze and Ogama, which can be attributed to the different amount of saccades they found.

Table 5.8: Total saccade duration similarity by software tools using the data of McChesney et al. [13]
with Tobii Pro Lab as the originaly used software tool

PyGaze / Tobii Pro Lab Ogama / Tobii Pro Lab

Average Similarity to Tobii Pro Lab 1253.80% 497.23%

Average Variance 248.86% 231.62%

For the average saccade duration metric, PyGaze stands out by having a significantly
higher average saccade duration than the other software tools with 5003.21% of the values
of Tobii Pro Lab. It has also around 10 times the average saccade duration of Ogama. This
may be due to the fact that the parameters could not be correctly adjusted in PyGaze, as
the values of the required arguments could not be found in the documentation of the eye
tracker. Ogama also has a significantly higher average saccade duration than Tobii Pro Lab
with 426.00% of the values of Tobii Pro Lab.

Table 5.9: Average saccade duration similarity by software tools using the data of McChesney et
al. [13] with Tobii Pro Lab as the originaly used software tool

PyGaze / Tobii Pro Lab Ogama / Tobii Pro Lab

Average Similarity to Tobii Pro Lab 5003.21% 570.91%

Average Variance 1038.74% 294.35%

5.2 discussion 29

5.2 discussion

In this section, we will discuss the previously presented results. We will go through all three
research questions and discuss the results for each of them.

5.2.1 Software Tool Usage

One motivation of this thesis was to find out which software tools are used to analyze eye
tracking data in software engineering studies. Especially, we wanted to find out if most
studies named the software tool they used and how the usage of different software tools
changed over time.

We found that around 32% of the studies did not name the software tool they used to
analyze the eye tracking data. This is a relatively high percentage, as it is important to know
which software tool was used to analyze the eye tracking data, such that the results can be
reproduced. It is important to report the software tool used, as different software tools may
have different algorithms to analyze the eye tracking data and thus may come to different
results, as can be seen in the results of RQ3. It is also important to know which software
tool was used, as some software tools may not be able to analyze the eye tracking data
in the way the researcher wants to. For example, if a researcher wants to analyze the eye
tracking data in real-time, but the software tool does not support this, the researcher would
have to find another software tool that supports this or would have to change the research
question. Another example would be if the software tool does not support the eye tracker
that the researcher wants to use. Before 2014, around 52% of the studies did not name the
software tool they used. The percentages were lowered in the following years, as between
2015 and 2019, around 19% of the studies did not name the software tool they used and
between 2020 and 2023, around 26% of the studies did not name the software tool they
used. This indicates that the reporting of the software tool used to analyze the eye tracking
data has improved over time, even though it has dropped a bit in the last few years. This is
probably due to the increased interest in eye tracking studies in software engineering and
the resulting need for a specific reporting structure that required the software tool used.
Holmqvist et al. [8] presented in their paper a reporting structure for eye tracking studies.
Among the strongly recommended aspects to be reported were the adequate description of
the data processing and analysis steps with all relevant parameters and the reporting of
firmware and software versions where applicable..

Another important result is that the most-used software tool is Tobii Software. This is
probably due to the fact that Tobii is the most-used eye tracker in software engineering
studies. The ease of using the provided software tool of the eye tracker instead of searching
a compatible software tool and maybe needing to make some modifications to the data set
may also be a reason for this. Another reason may be that the researchers are not aware of
other software tools that may be better suited for their needs. This may imply that there
may be better software tools available than Tobii Software, but most researchers do not
research properly if such a software tool exists.

iTrace being the second most-used software tool is probably due to the fact that it supports
scrolling during the eye tracking measurements, which is a feature that is not supported by

30 evaluation

many other software tools. This makes it a desirable software tool for software engineering
studies, as scrolling is a common task in software engineering and increases the validity
of a study, as the participants can perform the task in a more natural way. It makes also
the design of experiments easier as the participant is not confined onto one screen and
can freely scroll and change windows, enabling wider possibilities of experiment setups.
iTrace being the only tool to support scrolling besides Tobii Software, which only supports
scrolling in specific windows, makes it a valid choice for many studies. Also the continuous
support and development of new features, such as the support for VSCode, may be a reason
for its popularity.

Ogama being the third most-used software tool is probably due to the fact that it is
open source, supports many different eye trackers and has been developed in 2007, which
makes it one of the older software tools. Therefore, it is established in the eye tracking
community and is probably known by many researchers. Additionally, it was published
before the amount of eye tracking studies started to increase due to lower price and greater
affordability of eye trackers, which made it a good choice as a proven software tool. But the
trend shows that Ogama is used less and less, as between 2015 and 2019, it was the most
used software tool, but between 2020 and 2023, it was only the third most used software
tool. This is probably due to the fact that it is no longer supported since May 2016. Newer
eye trackers may not be fully supported, additionally the algorithms to calculate the eye
tracking metrics will also age quickly.

The analysis of software tools used over time showed that there was a lot of variety
in the software tools used. Until 2014, mostly Taupe was used, which is probably due to
the fact that it was the only open source software tool available at that time. iTrace was
just published in 2014, which is probably why it was only used once. Taupe was not used
in further studies. This is likely a result of the fact that it only supports the Gazetracker
and EyeLink II eye trackers, which are not used in many studies. It is also not supported
anymore and therefore not a good choice for new studies.

Between 2015 and 2019, Ogama was the most used software tool, followed by Tobii
Software and iTrace. In this timeframe there was a lot of variety of software tools used with
ten different software tools used. During this time, the amount of eye tracking studies in
software engineering increased, which may be a reason for the variety of software tools used.
There was a need for new features and also new eye trackers were used, which increased
the need for new software tools.

Between 2020 and 2023, iTrace and Tobii Software were the most used software tools,
followed by Ogama. In this timeframe, there was less variety of software tools used with
only six different software tools used. This can be explained by the fact to the fact that an
equilibrium was found between the software tools that are used. The software tools that
are used are well established and have been used in many studies, which makes them a
good choice for new studies. iTrace being the second most used software tool is probably
due to the fact that it supports scrolling during the eye tracking measurements, which is a
feature that is not supported by many other software tools and is a desirable feature for
software engineering studies. As Tobii was also the most used eye tracker manufacturer in
this timeframe, it is not surprising that Tobii Software was the most used software tool.

5.2 discussion 31

Twelve studies did not use a software tool but an existing algorithm to analyze the eye
tracking data. Some of them are algorithms that are also used by some software tools, so
it may be that they just named the algorithm that was used and not the software tool that
used it. This may have implications for the results as there could be implementation-specific
differences in the algorithm which could lead to different results, depending on the software
tool. Therefore such studies should rather name the software tool, if they used one, or add
the code for their implementation such that it can be checked for differences.

It is not surprising that only four studies did no or only simple analytics, as the reason
for choosing to do an eye tracking experiment is to use and analyze the eye tracking data.
As the eye tracking data can also be used to replay how a person looked on the screen, it
does not need to be always analyzed. This shows us that there are more ways eye tracking
data can be used than just objective analysis.

Five studies used custom tools to analyze eye tracking data. This is probably mostly due
to the vast amount of work to create a custom tool, which may only be used once for this
study. Additionally, it reduces the reproducibility of the study as no one else can use this
custom tool. Therefore it is mostly not a good choice, only when the study has some very
specific needs that can not be met with other software tools.

The values that were most calculated by different software tools were fixations, saccades
and AOIs. As not every study named the values they calculated, there may be other values
that were calculated more often. Nevertheless, it seems as if fixations are the most important
value of eye tracking data. This is probably due to the fact that fixations are the most
basic value of eye tracking data and are needed to calculate other values, such as saccades.
Additionally, fixations are a good indicator of where the participant was looking at, which
is important for many studies. Interestingly there were not as many fixations named as
saccades, even though these are mostly calculated together. This may be because not all
studies named all metrics that they calculated. There is also a wider variety of calculated
values by software tools, most of which were only calculated once. This may be attributed
to the fact that different studies have different needs and therefore need different values to
be calculated.

By looking at the software tools used by Tobii eye tracker, we can see that Tobii Software
and Ogama were the most used software tools. It is not surprising that Tobii Software
was the most used software tool, as it is the software tool provided by Tobii. Interestingly,
around 41% of the studies did not name the software tool they used in combination with
the Tobii eye tracker. Probably most of those studies did use the Tobii Software software
tool, but did not name it, as they probably thought it was not necessary to name it, as it is
the software tool provided by Tobii. Even though it may make sense to them, it is not clear
for other persons reading the papers and therefore should also be named in any case.

As we saw in Figure 5.10, the most-used software tools, Ogama, Tobii Software and iTrace,
were categorized depending on which study task was performed. For both Ogama and
Tobii Software, the study tasks were program comprehension and debugging. Only iTrace
also covered non-code comprehension and traceability. This is probably due to missing

32 evaluation

features in Ogama and Tobii Software, which are needed for specific studies. For example,
traceability is a study task that is not supported by Ogama and only partially by Tobii
Software, which is probably why iTrace was used for those studies.

5.2.2 Justifications and Consequences

Most studies did not name any justifications or consequences for their choice of software
tool. This is probably due to the fact that they did not think it would be important to name
them for their choice of software tool, as they probably thought that the software tool they
used would not make a difference in the results. It could also be that they did not know any
other software tools and therefore did not have a choice, which they did not think to write
down. Another reason could be that they had some justifications or consequences to chose
a certain software tool, but did not think about writing down them for their choice. Still, it
is important to name the justifications or consequences for the choice of software tool, as
different software tools may have different algorithms to analyze the eye tracking data and
thus may come to different results, as can be seen in the results of RQ3.

Interestingly, there were in total 33 total mentions of justifications and only 12 total
mentions of consequences. Researchers probably mostly spoke about why a specific software
tool was chosen, but did not think about the consequences of their choice. It may also be
that there are not many consequences for the choice of software tool, as most software
tools have similar features and therefore do not have many consequences for the choice of
software tool.

Justifications

The most mentioned category of justifications for the choice of software tool was the features
of the software tool with scrolling support being the most mentioned feature. This result
shows that scrolling support is an important feature for software engineering studies. This
is probably due to the fact that scrolling is a common task in software engineering and
increases the validity of a study, as the participants can perform the task in a more natural
way. Software engineers often scroll through code to find a specific part of the code or
to get an overview of the code. Additionally, no programming today is done on a static
screen, which makes scrolling an important task in software engineering. Therefore, it is not
surprising that scrolling support is the most named feature for the choice of software tool.

The second most mentioned category of justifications for the choice of software tool was
the ability to map the eye gaze data to meaningful elements. This makes analysis easier and
more meaningful, as the eye gaze data can be mapped to the elements that the participant
was looking at. Accordingly, the ability to map the eye gaze data to meaningful elements is
an important feature for software engineering studies and it is no wonder that it was the
second most mentioned feature for the choice of software tool.

Non-functional characteristics were the second most mentioned category of justifications
for the choice of software tool. Interestingly, all mentioned labels were unique, which shows
that most studies wanted specific characteristics for their choice of software tool. This is

5.2 discussion 33

probably due to the fact that different studies have different needs and therefore need
different characteristics for their choice of software tool. But that also insinuates that there
is no software tool that fulfills all the needs of the studies, which may be a reason for the
variety of software tools used. Additionally, as all labels are unique, it is not possible to
generalize them and therefore it is not possible to say which characteristics are important
for software engineering studies. Interestingly, there was only one mention of using a tool
because it is open source. This may be due to the fact that there are several open source
tools available and therefore it is not a unique characteristic anymore.

Visualizations were the third most mentioned category of justifications for the choice of
software tool. Good visualizations abilities are important for eye tracking studies, as they
make it easier to to interpret the data and understand the results. This can be seen by the
fact that the only label mentioned more than once was the visualization of different results
of eye tracking data.

The last category of the justifications, support, shows that hardware and software support
are important for the choice of software tool. The only label that was mentioned more than
once was the support of several eye trackers. This is probably due to the fact that different
eye trackers are used in software engineering studies and therefore it is important that the
software tool supports the eye tracker that is used in the study. If only a specific brand of
eye trackers is supported, it will limit the choice of eye trackers for the study, which may be
undesirable and may compromise the validity of the study. Therefore, it is important that
the software tool supports several eye trackers.

Consequences

As with the justifications, the most frequently cited category of consequences for the choice
of software tool was the features of the software tool. Only one label was mentioned more
than once, which was the inability to collect eye tracking data from outside the IDE window.
This shows us that studies want to increase the validity of their studies by running the
experiment in a more natural environment, but the software tool is a limitation of this goal.
As the other labels were unique, it shows that different studies have different needs and
therefore need different features for their choice of software tool. Additionally, it means that
the most important features of software tools have been met, as otherwise a label would
have been mentioned more than once.

The second most mentioned category of consequences for the choice of software tool
is the non-functional characteristics. Only the label “inaccuray of the analyzed data” was
mentioned more than once, which shows that the accuracy of the analyzed data is an
important characteristic for software engineering studies. Such inaccuracies can lead to
wrong results and therefore wrong conclusions, which may compromise the validity of
the study. Therefore, it is important that such a consequence is discussed for the choice
of a software tool. Interestingly, there was only one mention of a consequence being that
a software tool is proprietary. As a lot of people used proprietary software tools such as
Tobii Software, a larger amount of this consequence would have been expected. It seems

34 evaluation

like researchers did not think about the implications of using proprietary software tools
and thus did not name it as a consequence of using proprietary software.

The last category of the consequences, support, only has one label in total, which is
the lack of synchronization between the eye tracker and fMRI. In combination with the
justification of using a specific software tool because it supports synchronization with a
GSV sensor, it shows that synchronization is an important feature for software engineering
studies. Especially in the current time, where multimodal studies are becoming more and
more popular, it is important that the software tool supports synchronization with other
sensors such as fMRI, Electroencephalogram (EEG), GSV, . . .

5.2.3 Software Tool Effects

The last research question was about the effects of different software tools on the results of
eye tracking data. We wanted to find out if different software tools lead to different results
and if so, how big the difference is.

The fact that we were able to only compare three software tools shows that there is a
great difference in the abilities of software tools that analyze eye tracking data. Not all of
them were able to analyze fixations and saccades, which are the most basic values of eye
tracking data. Some of them were not able to import data from other software tools or only
with a lot of effort by reverse engineering the data format. Especially iTrace is only able to
work with data that it has recorded itself, which is unfortunate, as it is the second most
used software tool and one of the only software tools that has still ongoing development
and support. This makes comparability between different software tools and thus different
studies difficult, as the data needs to be converted to the format of the software tool that is
used for the analysis.

Of the three open-source software tools that we were able to compare, none had the same
algorithms to analyze the eye tracking data. This explains at least some difference between
the results. The number of fixations was pretty on par between Tobii Pro Lab, PyGaze and
Ogama, contrary to those of EMIP. This may be either due to an error on our side due to a
data conversion error or due to the fact that EMIP uses a different algorithm to calculate the
fixations, which may also be flawed.

If we take a look at the total fixation duration and the average fixation duration, we can
see that there is a big difference between the software tools, also in the case of PyGaze and
Ogama. Therefore, it seems as if the algorithms and/or the implementation of the algorithms
are different between the software tools. The algorithms that were seen as the most accurate
have also changed over time, which is probably why there is a lot of different algorithms
used by software tools, especially the older ones, as most of them have no more ongoing
development and support. This may also be a reason for the difference in the results, as the
algorithms may be outdated and therefore not as accurate as newer algorithms.

For the number of saccades, the differences are even greater than for the number of
fixations. For Tobii Pro Lab, this is in part due to the fact that they consider multiple
saccades between different fixations, which is not done by PyGaze and Ogama. Therefore,
the number of saccades is higher, which explains the difference in the results. Nevertheless,

5.2 discussion 35

there is still a rather big difference in the number of saccades between PyGaze and Ogama.
The reasons for this may be the same as for the number of fixations, as the algorithms
and/or the implementation of the algorithms are different between the software tools.

The total saccade duration and the average saccade duration are also significantly differ-
ent between the software tools, with value differences between Tobii Pro Lab and PyGaze
reaching up to 5000%. The variance of those results is also very high, with values reaching
up to 1000%. It seems like the software tools calculate the saccade duration in a very
different way, which leads to the high differences in the results.

All in all, this leads to the conclusion that different software tools may lead to different
results. Especially when different algorithms are used, the results may be very different.
This is an issue because it makes it difficult to compare the results of different studies,
as the results may be different due to the different software tools used. Even though we
only analyzed basic values of eye tracking data, the results were already very different. It
is unknown if the results would be even more different for more complex values of eye
tracking data, but we can assume that it does make a difference.

This is important knowledge for researchers, as they need to be aware of the fact that
different software tools may lead to different results and therefore need to be careful when
comparing the results of different studies, especially when different software tools were
used. It is also important for researchers to name the software tool they used to analyze the
eye tracking data, as it may impact the results and therefore the conclusions of the study.

It also clearly shows the need for a standardized procedure to conduct eye tracking
studies. Having too many different software tools available will make it more difficult to
compare the results of different studies, as some studies may use different software tools.
Therefore, it would be important to have a standardized software tool that is used by most
studies, such that the results can be compared more easily. Another possibility would be
to have a standardized data format for eye tracking data, such that the data can be easily
converted to the format of the software tool that is used for the analysis. This would make
it easier to compare the results of different studies, as the data would be in the same format
and therefore the results would be more comparable. The trend is already going towards
less available software tools, as the number of software tools used in software engineering
studies decreased over time. But there is still a lot of variety in the software tools used.
Older software tools are still used, as newer might not have all features that are necessary
for a study. Implementing these abilities in newer software tools may help to reduce the
number of software tools used.

6
T H R E AT S T O VA L I D I T Y

There are several threats that can affect the validity of this thesis.

In the search and selection approach, there may have been papers that were missed due
to insufficient search parameters. To minimize this threat, the chosen search parameters are
close to the search parameters of Sharafi et al. [20].

Additionally, the restriction of the search to the libraries of IEEEXplore and ACM poses a
threat to validity. Some papers that would have been found in other libraries or indexers
were probably excluded. This is, unfortunately, due to the smaller scope that this thesis can
encompass without being too much work.

The fact that no snowballing was done after the keyword search, compared to Sharafi et
al. [20], poses also another threat, which is reduced by finding in total 97 papers, which is
a large enough size such that missed papers will not threaten the validity of the study as
much as if only a small amount of papers would have been found.

The fact that the search is restricted to the years 2015–2023 is also a threat to validity. The
rationale is that the papers that would be interesting for this thesis would have been found
by Sharafi et al. [20], as the results of the literature search here are a subset of those from
Sharafi et al. [20].

The only criteria that aids in maintaining the quality of the studies is I1. No further quality
assessment was performed, even if it is sometimes suggested in guidelines for systematic
literature reviews [10]. This thesis aims to find out if there are still flaws in the reporting for
eye tracking studies, therefore, such flaws are even ”desired”.

In the data extraction and analysis process, there may be human errors as only one
person performed the search process. We extracted the data ourselves, although it is not
recommended by the standards of a SMS study [14]. Due to the way a bachelor thesis is
structured, we could not ask other persons to help in extracting the data, which would have
increased the validity of this thesis.

Additionally, the data extraction form may be poorly designed which would produce
wrong or incomplete results. This threat was diminished by revising the form with the help
of the advisors. The data extraction, especially subjective categories such as the justifications
and consequences of using a specific software tool, is a threat to validity as only one person
identified the extracted data. To minimize this threat, in cases where we were not sure,
there were frequent talks with the advisors about the data extraction and analysis process
to achieve a high standard.

The comparison of the software tools harbors also threats to validity. The difference
between the algorithms that were used may affect the results in such a way that the
conclusion that was drawn may be different. This threat could not be diminished as we
could not choose to use the same algorithm for all tools. As we did not have a greater pool

37

38 threats to validity

of software tools that we could choose from for our analysis, we needed to use software
tools with different algorithms.

Another threat to validity is that the results may not be generalizable to all software tools.
The software tools that we were not able to compare may not provide the same results as
the ones that we compared. This threat could not be diminished as we could not compare
all software tools that were used in the studies.

The fact that we only compared the software tools with the same data may also be a threat
to validity. We only used one data set for the comparison of the software tools, which may
also have skewed data and thus skewed the results of RQ3. We may have come to a different
conclusion if we used a different data set or if we analyzed more data sets. This threat could
not be diminished due to the limited time available for this thesis. More data sets would
have considerably increased the effort, as most data sets are saved in different data formats,
thus the data extraction process would have been more difficult and time-consuming.

7
C O N C L U D I N G R E M A R K S

In this chapter, we will summarize our work and also provide an outlook for future work in
the direction of eye tracking studies in software engineering.

7.1 conclusion

In this thesis, we explored the current state of art of eye tracking software tools used in
software engineering and compared different eye tracking software tools with respect to
their results.

By performing a modified SMS on studies published between 2015 and 2023 with the
addition of previously found papers by Sharaifi et al. [20], we were able to come to some
interesting conclusions. First of all, we found that there has been an increase in the naming
of the software tools that were used in the studies over time, but there are still too many
studies that do not name the software tools that were used. We also found that the most used
software tools are Tobii Studio, iTrace, and Ogama by a relatively large margin. Additionally,
the number of different software tools that were used in the studies has decreased over time,
while also having multiple open-software tools stop development and support. The most
important measures that were calculated with software tools were the fixations, saccades
and AOIs. We also found that iTrace has been used a lot because it is one of the few software
tools to support scrolling during eye tracking measurements.

We also analyzed the justifications and consequences that authors named as to why
they chose a certain software tool. We found that scrolling support was an important
argument as to why a software tool was used. Additionally, it seems like the most impor-
tant non-functional characteristics that a software tool should have are already present.
Other important justification categories were visualizations and support for software and
hardware.

The greatest consequence named was that the software tool was unable to collect eye
tracking data from outside the IDE window. Other categories of named consequences were
non-functional characteristics and support for software and hardware.

Lastly, we compared fixations and saccades and some of their respective metrics calculated
by different software tools. We compared the results of Ogama, PyGaze, EMIP and Tobii
Pro Lab. In doing so, we were able to find out that there exists a difference in the results, at
times those results were even greatly different from each other. While the software tools had
different algorithms that they used to calculate the results, it is still an interesting finding
and one that needs to be further researched.

In conclusion, we can see that there is a need for a standardized data analysis process to
ensure the comparability of eye tracking studies in software engineering.

39

40 concluding remarks

7.2 future work

In this section, we will describe which possibilities of future work have emerged from this
thesis.

Eye Tracking Studies

The results of RQ1 and RQ2 from this thesis have shown us the current state of art of
eye tracking software tools used in eye tracking. It would be interesting to replicate these
research questions in around five years to see the development of the usage of software
tools in the near future. This is an especially interesting point as the number of eye tracking
studies in software engineering have been increasing rapidly the last 10 years. Sharafi et
al. [20] found 36 papers from 1990 to 2014 while this thesis found 97 papers from 2015 to
2023. Therefore, we recommend a replication in around five years, as we expect that the
number of found papers will be even greater than in this time frame.

Software Tools Comparability

As already described in the Threats to Validity, we were only able to compare software tools
with different types of algorithms. A new study that investigates the impact of the software
tools and their respective configurations would help in providing a better understanding of
the differences in the results between the software tools. Conducting a study with more or
even all currently used software tools will also provide better basic knowledge. Additionally,
exploring more metrics such as AOIs and their dependent metrics will show the differences
in more detail. It will also enable to investigate if the conclusions that studies formed from
their eye tracking data are consistent among different software tools or if the choice of
software tool may influence the result. The outcome of such a study could be of great
importance for the community.

Standardized Data Analysis Procedure

From the results of this thesis, it can be seen that there is a need for a standardized procedure
to analyze eye tracking data. Having no consistent data format for the data sets of eye
tracking data has a negative impact on the reproducibility of the results of studies. Also,
a lot of studies use proprietary software to analyze their eye tracking data, which makes
it more difficult to compare the data if one has no access to this software. Therefore, we
recommend that a specific data format is chosen to be used by every eye tracker and that the
research community should agree on a specific open-source software tool to use to analyze
the eye tracking data.

A
A P P E N D I X

a.1 appendix a : analyzed studies

[S1] Amine Abbad-Andaloussi, Thierry Sorg, and Barbara Weber. “Estimating Devel-
opers’ Cognitive Load at a Fine-Grained Level Using Eye-Tracking Measures.” In:
Proceedings of the 30th IEEE/ACM International Conference on Program Comprehension.
ICPC ’22. Virtual Event: Association for Computing Machinery, 2022, 111–121. isbn:
9781450392983. doi: 10.1145/3524610.3527890. url: https://doi.org/10.1145/
3524610.3527890.

[S2] Nahla J. Abid, Bonita Sharif, Natalia Dragan, Hend Alrasheed, and Jonathan I.
Maletic. “Developer Reading Behavior While Summarizing Java Methods: Size
and Context Matters.” In: 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). 2019, pp. 384–395. doi: 10.1109/ICSE.2019.00052.

[S3] Maike Ahrens, Kurt Schneider, and Melanie Busch. “Attention in Software Mainte-
nance: An Eye Tracking Study.” In: 2019 IEEE/ACM 6th International Workshop on Eye
Movements in Programming (EMIP). 2019, pp. 2–9. doi: 10.1109/EMIP.2019.00009.

[S4] Zubair Ahsan and Unaizah Obaidellah. “Predicting expertise among novice pro-
grammers with prior knowledge on programming tasks.” In: 2020 Asia-Pacific Signal
and Information Processing Association Annual Summit and Conference (APSIPA ASC).
2020, pp. 1008–1016.

[S5] Zubair Ahsan and Unaizah Obaidellah. “Is Clustering Novice Programmers Possible?
Investigating Scanpath Trend Analysis in Programming Tasks.” In: Proceedings of
the 2023 Symposium on Eye Tracking Research and Applications. ETRA ’23. Tubingen,
Germany: Association for Computing Machinery, 2023. isbn: 9798400701504. doi:
10.1145/3588015.3589193. url: https://doi.org/10.1145/3588015.3589193.

[S6] Naser Al Madi. “How Readable is Model-Generated Code? Examining Readability
and Visual Inspection of GitHub Copilot.” In: Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering. ASE ’22. Rochester, MI,
USA: Association for Computing Machinery, 2023. isbn: 9781450394758. doi: 10.
1145/3551349.3560438. url: https://doi.org/10.1145/3551349.3560438.

[S7] Nasir Ali, Zohreh Sharafl, Yann-Gaël Guéhéneuc, and Giuliano Antoniol. “An em-
pirical study on requirements traceability using eye-tracking.” In: 2012 28th IEEE
International Conference on Software Maintenance (ICSM). IEEE. 2012, pp. 191–200.

[S8] Magdalena Andrzejewska and Anna Stolińska. “Do Structured Flowcharts Out-
perform Pseudocode? Evidence From Eye Movements.” In: IEEE Access 10 (2022),
pp. 132965–132975. doi: 10.1109/ACCESS.2022.3230981.

41

https://doi.org/10.1145/3524610.3527890
https://doi.org/10.1145/3524610.3527890
https://doi.org/10.1145/3524610.3527890
https://doi.org/10.1109/ICSE.2019.00052
https://doi.org/10.1109/EMIP.2019.00009
https://doi.org/10.1145/3588015.3589193
https://doi.org/10.1145/3588015.3589193
https://doi.org/10.1145/3551349.3560438
https://doi.org/10.1145/3551349.3560438
https://doi.org/10.1145/3551349.3560438
https://doi.org/10.1109/ACCESS.2022.3230981

42 appendix

[S9] Christoph Aschwanden and Martha Crosby. “Code scanning patterns in program
comprehension.” In: Proceedings of the 39th hawaii international conference on system
sciences. Citeseer. 2006.

[S10] Titus Barik, Justin Smith, Kevin Lubick, Elisabeth Holmes, Jing Feng, Emerson
Murphy-Hill, and Chris Parnin. “Do Developers Read Compiler Error Messages?”
In: 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE). 2017,
pp. 575–585. doi: 10.1109/ICSE.2017.59.

[S11] J Bauer, J Siegmund, N Peitek, JC Hofmeister, and S Apel. “Indentation: simply a
matter of style or support for program comprehension? In 2019 IEEE/ACM 27th
International Conference on Program Comprehension (ICPC).” In: IEEE 2 (2019),
pp. 14–45.

[S12] Roman Bednarik. “Expertise-dependent visual attention strategies develop over time
during debugging with multiple code representations.” In: International Journal of
Human-Computer Studies 70.2 (2012), pp. 143–155.

[S13] Roman Bednarik and Markku Tukiainen. “An eye-tracking methodology for charac-
terizing program comprehension processes.” In: Proceedings of the 2006 symposium on
Eye tracking research & applications. 2006, pp. 125–132.

[S14] Tanya Beelders. “Eye-Tracking Analysis of Source Code Reading on a Line-by-
Line Basis.” In: Proceedings of the Tenth International Workshop on Eye Movements
in Programming. EMIP ’22. Pittsburgh, Pennsylvania: Association for Computing
Machinery, 2022, 1–7. isbn: 9781450392891. doi: 10.1145/3524488.3527364. url:
https://doi.org/10.1145/3524488.3527364.

[S15] Andrew Begel and Hana Vrzakova. “Eye Movements in Code Review.” In: Proceed-
ings of the Workshop on Eye Movements in Programming. EMIP ’18. Warsaw, Poland:
Association for Computing Machinery, 2018. isbn: 9781450357920. doi: 10.1145/
3216723.3216727. url: https://doi.org/10.1145/3216723.3216727.

[S16] Ian Bertram, Jack Hong, Yu Huang, Westley Weimer, and Zohreh Sharafi. “Trust-
worthiness Perceptions in Code Review: An Eye-Tracking Study.” In: Proceedings
of the 14th ACM / IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM). ESEM ’20. Bari, Italy: Association for Computing Ma-
chinery, 2020. isbn: 9781450375801. doi: 10.1145/3382494.3422164. url: https:
//doi.org/10.1145/3382494.3422164.

[S17] Dave Binkley, Marcia Davis, Dawn Lawrie, Jonathan I Maletic, Christopher Morrell,
and Bonita Sharif. “The impact of identifier style on effort and comprehension.” In:
Empirical software engineering 18 (2013), pp. 219–276.

[S18] Teresa Busjahn, Roman Bednarik, Andrew Begel, Martha Crosby, James H. Paterson,
Carsten Schulte, Bonita Sharif, and Sascha Tamm. “Eye Movements in Code Reading:
Relaxing the Linear Order.” In: 2015 IEEE 23rd International Conference on Program
Comprehension. 2015, pp. 255–265. doi: 10.1109/ICPC.2015.36.

[S19] Teresa Busjahn, Roman Bednarik, and Carsten Schulte. “What influences dwell time
during source code reading? Analysis of element type and frequency as factors.” In:
Proceedings of the Symposium on Eye Tracking Research and Applications. 2014, pp. 335–
338.

https://doi.org/10.1109/ICSE.2017.59
https://doi.org/10.1145/3524488.3527364
https://doi.org/10.1145/3524488.3527364
https://doi.org/10.1145/3216723.3216727
https://doi.org/10.1145/3216723.3216727
https://doi.org/10.1145/3216723.3216727
https://doi.org/10.1145/3382494.3422164
https://doi.org/10.1145/3382494.3422164
https://doi.org/10.1145/3382494.3422164
https://doi.org/10.1109/ICPC.2015.36

A.1 appendix a : analyzed studies 43

[S20] Teresa Busjahn, Carsten Schulte, and Andreas Busjahn. “Analysis of code reading to
gain more insight in program comprehension.” In: Proceedings of the 11th Koli Calling
International Conference on Computing Education Research. 2011, pp. 1–9.

[S21] Nergiz Ercil Cagiltay, Gul Tokdemir, Ozkan Kilic, and Damla Topalli. “Performing
and analyzing non-formal inspections of entity relationship diagram (ERD).” In:
Journal of Systems and Software 86.8 (2013), pp. 2184–2195.

[S22] Gerardo Cepeda Porras and Yann-Gaël Guéhéneuc. “An empirical study on the
efficiency of different design pattern representations in UML class diagrams.” In:
Empirical Software Engineering 15.5 (2010), pp. 493–522.

[S23] K R Chandrika, J Amudha, and Sithu D Sudarsan. “Recognizing eye tracking traits
for source code review.” In: 2017 22nd IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA). 2017, pp. 1–8. doi: 10.1109/ETFA.2017.
8247637.

[S24] Gary Cheng, Leonard KM Poon, Wilfred WF Lau, and Rachel C Zhou. “Applying
Eye Tracking to Identify Students’ Use of Learning Strategies in Understanding
Program Code.” In: Proceedings of the 3rd International Conference on Education and
Multimedia Technology. 2019, pp. 140–144.

[S25] Natalia Chitalkina, Roman Bednarik, Marjaana Puurtinen, and Hans Gruber. “When
You Ignore What You See: How to Study Proof-Readers’ Error in Pseudocode
Reading.” In: ACM Symposium on Eye Tracking Research and Applications. ETRA ’20

Short Papers. Stuttgart, Germany: Association for Computing Machinery, 2020. isbn:
9781450371346. doi: 10.1145/3379156.3391979. url: https://doi.org/10.1145/
3379156.3391979.

[S26] Ricardo Couceiro, Raul Barbosa, Joáo Duráes, Gonçalo Duarte, Joáo Castelhano,
Catarina Duarte, Cesar Teixeira, Nuno Laranjeiro, Júlio Medeiros, Paulo Carvalho,
Miguel Castelo Branco, and Henrique Madeira. “Spotting Problematic Code Lines
using Nonintrusive Programmers’ Biofeedback.” In: 2019 IEEE 30th International
Symposium on Software Reliability Engineering (ISSRE). 2019, pp. 93–103. doi: 10.1109/
ISSRE.2019.00019.

[S27] Martha E Crosby, Jean Scholtz, and Susan Wiedenbeck. “The Roles Beacons Play in
Comprehension for Novice and Expert Programmers.” In: PPIG. 2002, p. 5.

[S28] Martha E Crosby and Jan Stelovsky. “How do we read algorithms? A case study.”
In: Computer 23.1 (1990), pp. 25–35.

[S29] Daniel Davis and Feng Zhu. “Understanding and improving secure coding behavior
with eye tracking methodologies.” In: Proceedings of the 2020 ACM Southeast Conference.
2020, pp. 107–114.

[S30] Hacı Ali Duru, Murat Perit Çakır, and Veysi İşler. “How does software visual-
ization contribute to software comprehension? A grounded theory approach.” In:
International Journal of Human-Computer Interaction 29.11 (2013), pp. 743–763.

https://doi.org/10.1109/ETFA.2017.8247637
https://doi.org/10.1109/ETFA.2017.8247637
https://doi.org/10.1145/3379156.3391979
https://doi.org/10.1145/3379156.3391979
https://doi.org/10.1145/3379156.3391979
https://doi.org/10.1109/ISSRE.2019.00019
https://doi.org/10.1109/ISSRE.2019.00019

44 appendix

[S31] Sarah Fakhoury, Yuzhan Ma, Venera Arnaoudova, and Olusola Adesope. “The Effect
of Poor Source Code Lexicon and Readability on Developers’ Cognitive Load.” In:
Proceedings of the 26th Conference on Program Comprehension. ICPC ’18. Gothenburg,
Sweden: Association for Computing Machinery, 2018, 286–296. isbn: 9781450357142.
doi: 10.1145/3196321.3196347. url: https://doi.org/10.1145/3196321.3196347.

[S32] Thomas Fritz, Andrew Begel, Sebastian C Müller, Serap Yigit-Elliott, and Manuela
Züger. “Using psycho-physiological measures to assess task difficulty in software
development.” In: Proceedings of the 36th international conference on software engineering.
2014, pp. 402–413.

[S33] Peter Leo Gorski, Sebastian Möller, Stephan Wiefling, and Luigi Lo Iacono. ““I
just looked for the solution!”On Integrating Security-Relevant Information in Non-
Security API Documentation to Support Secure Coding Practices.” In: IEEE Trans-
actions on Software Engineering 48.9 (2022), pp. 3467–3484. doi: 10.1109/TSE.2021.
3094171.

[S34] Anurag Goswami, Gursimran Walia, Mark McCourt, and Ganesh Padmanabhan.
“Using Eye Tracking to Investigate Reading Patterns and Learning Styles of Software
Requirement Inspectors to Enhance Inspection Team Outcome.” In: Proceedings of
the 10th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement. ESEM ’16. Ciudad Real, Spain: Association for Computing Machinery,
2016. isbn: 9781450344272. doi: 10.1145/2961111.2962598. url: https://doi.org/
10.1145/2961111.2962598.

[S35] Yann-Gaël Guéhéneuc. “TAUPE: towards understanding program comprehension.”
In: Proceedings of the 2006 conference of the Center for Advanced Studies on Collaborative
research. 2006, 1–es.

[S36] Florian Hauser, Stefan Schreistter, Rebecca Reuter, Jurgen Horst Mottok, Hans
Gruber, Kenneth Holmqvist, and Nick Schorr. “Code Reviews in C++ Preliminary
Results from an Eye Tracking Study.” In: ACM Symposium on Eye Tracking Research
and Applications. 2020, pp. 1–5.

[S37] Prateek Hejmady and N Hari Narayanan. “Visual attention patterns during program
debugging with an IDE.” In: proceedings of the symposium on eye tracking research and
applications. 2012, pp. 197–200.

[S38] Haytham Hijazi, Joao Duraes, Ricardo Couceiro, João Castelhano, Raul Barbosa,
Júlio Medeiros, Miguel Castelo-Branco, Paulo de Carvalho, and Henrique Madeira.
“Quality Evaluation of Modern Code Reviews Through Intelligent Biometric Program
Comprehension.” In: IEEE Transactions on Software Engineering 49.2 (2023), pp. 626–
645. doi: 10.1109/TSE.2022.3158543.

[S39] Alexander Homann, Lisa Grabinger, Florian Hauser, and Jürgen Mottok. “An Eye
Tracking Study on MISRA C Coding Guidelines.” In: Proceedings of the 5th European
Conference on Software Engineering Education. ECSEE ’23. Seeon/Bavaria, Germany:
Association for Computing Machinery, 2023, 130–137. isbn: 9781450399562. doi:
10.1145/3593663.3593671. url: https://doi.org/10.1145/3593663.3593671.

https://doi.org/10.1145/3196321.3196347
https://doi.org/10.1145/3196321.3196347
https://doi.org/10.1109/TSE.2021.3094171
https://doi.org/10.1109/TSE.2021.3094171
https://doi.org/10.1145/2961111.2962598
https://doi.org/10.1145/2961111.2962598
https://doi.org/10.1145/2961111.2962598
https://doi.org/10.1109/TSE.2022.3158543
https://doi.org/10.1145/3593663.3593671
https://doi.org/10.1145/3593663.3593671

A.1 appendix a : analyzed studies 45

[S40] Yu Huang, Kevin Leach, Zohreh Sharafi, Nicholas McKay, Tyler Santander, and
Westley Weimer. “Biases and differences in code review using medical imaging and
eye-tracking: genders, humans, and machines.” In: Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. 2020, pp. 456–468.

[S41] Constantina Ioannou, Per Bækgaard, Ekkart Kindler, and Barbara Weber. “Towards a
tool for visualizing pupil dilation linked with source code artifacts.” In: 2020 Working
Conference on Software Visualization (VISSOFT). 2020, pp. 105–109. doi: 10.1109/
VISSOFT51673.2020.00016.

[S42] Toyomi Ishida and Hidetake Uwano. “Synchronized Analysis of Eye Movement and
EEG during Program Comprehension.” In: 2019 IEEE/ACM 6th International Workshop
on Eye Movements in Programming (EMIP). 2019, pp. 26–32. doi: 10.1109/EMIP.2019.
00012.

[S43] Ahmad Jbara and Dror G. Feitelson. “How Programmers Read Regular Code: A Con-
trolled Experiment Using Eye Tracking.” In: 2015 IEEE 23rd International Conference
on Program Comprehension. 2015, pp. 244–254. doi: 10.1109/ICPC.2015.35.

[S44] Sebastien Jeanmart, Yann-Gael Gueheneuc, Houari Sahraoui, and Naji Habra. “Im-
pact of the visitor pattern on program comprehension and maintenance.” In: 2009
3rd International Symposium on Empirical Software Engineering and Measurement. 2009,
pp. 69–78. doi: 10.1109/ESEM.2009.5316015.

[S45] Patrick Jermann and Kshitij Sharma. “Gaze as a Proxy for Cognition and Communi-
cation.” In: 2018 IEEE 18th International Conference on Advanced Learning Technologies
(ICALT). 2018, pp. 152–154. doi: 10.1109/ICALT.2018.00043.

[S46] Toru Kano, Ryuichi Sakagami, and Takako Akakura. “Modeling of cognitive pro-
cesses based on gaze transition during programming debugging.” In: 2021 IEEE 3rd
Global Conference on Life Sciences and Technologies (LifeTech). 2021, pp. 412–413. doi:
10.1109/LifeTech52111.2021.9391940.

[S47] Philipp Kather, Rodrigo Duran, and Jan Vahrenhold. “Through (Tracking) Their Eyes:
Abstraction and Complexity in Program Comprehension.” In: ACM Trans. Comput.
Educ. 22.2 (2021). doi: 10.1145/3480171. url: https://doi.org/10.1145/3480171.

[S48] Jozsef Katona, Attila Kovari, Cristina Costescu, Adrian Rosan, Andrea Hathazi, Ilona
Heldal, Carsten Helgesen, Serge Thill, and Robert Demeter. “The Examination Task
of Source-code Debugging Using GP3 Eye Tracker.” In: 2019 10th IEEE International
Conference on Cognitive Infocommunications (CogInfoCom). 2019, pp. 329–334. doi:
10.1109/CogInfoCom47531.2019.9089952.

[S49] Jozsef Katona, Attila Kovari, Ilona Heldal, Cristina Costescu, Adrian Rosan, Robert
Demeter, Serge Thill, and Teodor Stefanut. “Using Eye- Tracking to Examine Query
Syntax and Method Syntax Comprehension in LINQ.” In: 2020 11th IEEE International
Conference on Cognitive Infocommunications (CogInfoCom). 2020, pp. 000437–000444.
doi: 10.1109/CogInfoCom50765.2020.9237910.

https://doi.org/10.1109/VISSOFT51673.2020.00016
https://doi.org/10.1109/VISSOFT51673.2020.00016
https://doi.org/10.1109/EMIP.2019.00012
https://doi.org/10.1109/EMIP.2019.00012
https://doi.org/10.1109/ICPC.2015.35
https://doi.org/10.1109/ESEM.2009.5316015
https://doi.org/10.1109/ICALT.2018.00043
https://doi.org/10.1109/LifeTech52111.2021.9391940
https://doi.org/10.1145/3480171
https://doi.org/10.1145/3480171
https://doi.org/10.1109/CogInfoCom47531.2019.9089952
https://doi.org/10.1109/CogInfoCom50765.2020.9237910

46 appendix

[S50] Xinyu Li, Wei Liu, Huitong Liu, Jing Xu, and Wenqing Cheng. “Task-oriented
Analysis on Debugging Process Based on Eye Movements and IDE Interactions.” In:
2021 16th International Conference on Computer Science and Education (ICCSE). 2021,
pp. 379–384. doi: 10.1109/ICCSE51940.2021.9569438.

[S51] Xinyu Li, Wei Liu, Weiwei Wang, Jinrong Zhong, and Menglin Yu. “Assessing
Students’ Behavior in Error Finding Programming Tests: An Eye-Tracking Based
Approach.” In: 2019 IEEE International Conference on Engineering, Technology and
Education (TALE). 2019, pp. 1–6. doi: 10.1109/TALE48000.2019.9225906.

[S52] Calvin Liang, Jakob Karolus, Thomas Kosch, and Albrecht Schmidt. “On the suit-
ability of real-time assessment of programming proficiency using gaze properties.”
In: Proceedings of the 7th ACM International Symposium on Pervasive Displays. 2018,
pp. 1–2.

[S53] Yu-Tzu Lin, Yi-Zhi Liao, Xiao Hu, and Cheng-Chih Wu. “EEG Activities During
Program Comprehension: An Exploration of Cognition.” In: IEEE Access 9 (2021),
pp. 120407–120421. doi: 10.1109/ACCESS.2021.3107795.

[S54] Yu-Tzu Lin, Cheng-Chih Wu, Ting-Yun Hou, Yu-Chih Lin, Fang-Ying Yang, and
Chia-Hu Chang. “Tracking Students’ Cognitive Processes During Program Debug-
ging—An Eye-Movement Approach.” In: IEEE Transactions on Education 59.3 (2016),
pp. 175–186. doi: 10.1109/TE.2015.2487341.

[S55] Lianzhen Liu, Wei Liu, Xinyu Li, Jing Xu, and Wenqing Cheng. “An Analysis Scheme
to Interpret Students’ Cognitive Process in Error Finding Test.” In: Proceedings
of the 2nd World Symposium on Software Engineering. WSSE ’20. Chengdu, China:
Association for Computing Machinery, 2020, 220–225. isbn: 9781450387873. doi:
10.1145/3425329.3425350. url: https://doi.org/10.1145/3425329.3425350.

[S56] Ian McChesney and Raymond Bond. “Observations on the Linear Order of Program
Code Reading Patterns in Programmers with Dyslexia.” In: Proceedings of the 24th
International Conference on Evaluation and Assessment in Software Engineering. EASE
’20. Trondheim, Norway: Association for Computing Machinery, 2020, 81–89. isbn:
9781450377317. doi: 10.1145/3383219.3383228. url: https://doi.org/10.1145/
3383219.3383228.

[S57] Ian McChesney and Raymond Bond. “Eye Tracking Analysis of Code Layout, Crowd-
ing and Dyslexia - An Open Data Set.” In: ACM Symposium on Eye Tracking Research
and Applications. ETRA ’21 Short Papers. Virtual Event, Germany: Association for
Computing Machinery, 2021. isbn: 9781450383455. doi: 10.1145/3448018.3457420.
url: https://doi.org/10.1145/3448018.3457420.

[S58] Jean Melo, Fabricio Batista Narcizo, Dan Witzner Hansen, Claus Brabrand, and
Andrzej Wasowski. “Variability through the eyes of the programmer.” In: 2017
IEEE/ACM 25th International Conference on Program Comprehension (ICPC). IEEE. 2017,
pp. 34–44.

[S59] Markus Nivala, Florian Hauser, Jürgen Mottok, and Hans Gruber. “Developing
visual expertise in software engineering: An eye tracking study.” In: 2016 IEEE Global
Engineering Education Conference (EDUCON). 2016, pp. 613–620. doi: 10.1109/EDUCON.
2016.7474614.

https://doi.org/10.1109/ICCSE51940.2021.9569438
https://doi.org/10.1109/TALE48000.2019.9225906
https://doi.org/10.1109/ACCESS.2021.3107795
https://doi.org/10.1109/TE.2015.2487341
https://doi.org/10.1145/3425329.3425350
https://doi.org/10.1145/3425329.3425350
https://doi.org/10.1145/3383219.3383228
https://doi.org/10.1145/3383219.3383228
https://doi.org/10.1145/3383219.3383228
https://doi.org/10.1145/3448018.3457420
https://doi.org/10.1145/3448018.3457420
https://doi.org/10.1109/EDUCON.2016.7474614
https://doi.org/10.1109/EDUCON.2016.7474614

A.1 appendix a : analyzed studies 47

[S60] Unaizah Obaidellah, Tanja Blascheck, Drew T. Guarnera, and Jonathan Maletic. “A
Fine-Grained Assessment on Novice Programmers’ Gaze Patterns on Pseudocode
Problems.” In: ACM Symposium on Eye Tracking Research and Applications. ETRA ’20

Short Papers. Stuttgart, Germany: Association for Computing Machinery, 2020. isbn:
9781450371346. doi: 10.1145/3379156.3391982. url: https://doi.org/10.1145/
3379156.3391982.

[S61] Unaizah Obaidellah and Mohammed Al Haek. “Evaluating Gender Difference on
Algorithmic Problems Using Eye-Tracker.” In: Proceedings of the 2018 ACM Symposium
on Eye Tracking Research & Applications. ETRA ’18. Warsaw, Poland: Association for
Computing Machinery, 2018. isbn: 9781450357067. doi: 10.1145/3204493.3204537.
url: https://doi.org/10.1145/3204493.3204537.

[S62] Unaizah Obaidellah, Michael Raschke, and Tanja Blascheck. “Classification of strate-
gies for solving programming problems using AoI sequence analysis.” In: Proceedings
of the 11th ACM Symposium on Eye Tracking Research & Applications. 2019, pp. 1–9.

[S63] Benedito de Oliveira, Márcio Ribeiro, José Aldo Silva da Costa, Rohit Gheyi, Guil-
herme Amaral, Rafael de Mello, Anderson Oliveira, Alessandro Garcia, Rodrigo
Bonifácio, and Baldoino Fonseca. “Atoms of confusion: The eyes do not lie.” In:
Proceedings of the XXXIV Brazilian Symposium on Software Engineering. 2020, pp. 243–
252.

[S64] Sofia Papavlasopoulou, Kshitij Sharma, Michail Giannakos, and Letizia Jaccheri.
“Using Eye-Tracking to Unveil Differences Between Kids and Teens in Coding
Activities.” In: Proceedings of the 2017 Conference on Interaction Design and Children.
IDC ’17. Stanford, California, USA: Association for Computing Machinery, 2017,
171–181. isbn: 9781450349215. doi: 10.1145/3078072.3079740. url: https://doi.
org/10.1145/3078072.3079740.

[S65] Kang-il Park and Bonita Sharif. “Assessing Perceived Sentiment in Pull Requests
with Emoji: Evidence from Tools and Developer Eye Movements.” In: 2021 IEEE/ACM
Sixth International Workshop on Emotion Awareness in Software Engineering (SEmotion).
2021, pp. 1–6. doi: 10.1109/SEmotion52567.2021.00009.

[S66] Norman Peitek, Annabelle Bergum, Maurice Rekrut, Jonas Mucke, Matthias Nadig,
Chris Parnin, Janet Siegmund, and Sven Apel. “Correlates of Programmer Efficacy
and Their Link to Experience: A Combined EEG and Eye-Tracking Study.” In: Pro-
ceedings of the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. ESEC/FSE 2022. Singapore, Singapore:
Association for Computing Machinery, 2022, 120–131. isbn: 9781450394130. doi:
10.1145/3540250.3549084. url: https://doi.org/10.1145/3540250.3549084.

[S67] Norman Peitek, Janet Siegmund, and Sven Apel. “What drives the reading order of
programmers.” In: An eye tracking study. In ICPC (2020).

[S68] Norman Peitek, Janet Siegmund, Chris Parnin, Sven Apel, and André Brechmann.
“Toward Conjoint Analysis of Simultaneous Eye-Tracking and FMRI Data for Program-
Comprehension Studies.” In: Proceedings of the Workshop on Eye Movements in Program-
ming. EMIP ’18. Warsaw, Poland: Association for Computing Machinery, 2018. isbn:

https://doi.org/10.1145/3379156.3391982
https://doi.org/10.1145/3379156.3391982
https://doi.org/10.1145/3379156.3391982
https://doi.org/10.1145/3204493.3204537
https://doi.org/10.1145/3204493.3204537
https://doi.org/10.1145/3078072.3079740
https://doi.org/10.1145/3078072.3079740
https://doi.org/10.1145/3078072.3079740
https://doi.org/10.1109/SEmotion52567.2021.00009
https://doi.org/10.1145/3540250.3549084
https://doi.org/10.1145/3540250.3549084

48 appendix

9781450357920. doi: 10.1145/3216723.3216725. url: https://doi.org/10.1145/
3216723.3216725.

[S69] Fei Peng, Chunyu Li, Xiaohan Song, Wei Hu, and Guihuan Feng. “An Eye Tracking
Research on Debugging Strategies towards Different Types of Bugs.” In: 2016 IEEE
40th Annual Computer Software and Applications Conference (COMPSAC). Vol. 2. 2016,
pp. 130–134. doi: 10.1109/COMPSAC.2016.57.

[S70] Cole S. Peterson. “Investigating the Effect of Polyglot Programming on Developers.”
In: 2021 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC).
2021, pp. 1–2. doi: 10.1109/VL/HCC51201.2021.9576404.

[S71] Cole S. Peterson, Kang-il Park, Isaac Baysinger, and Bonita Sharif. “An Eye Tracking
Perspective on How Developers Rate Source Code Readability Rules.” In: 2021
36th IEEE/ACM International Conference on Automated Software Engineering Workshops
(ASEW). 2021, pp. 138–139. doi: 10.1109/ASEW52652.2021.00037.

[S72] Cole S. Peterson, Jonathan A. Saddler, Tanja Blascheck, and Bonita Sharif. “Visually
Analyzing Students’ Gaze on C++ Code Snippets.” In: 2019 IEEE/ACM 6th Inter-
national Workshop on Eye Movements in Programming (EMIP). 2019, pp. 18–25. doi:
10.1109/EMIP.2019.00011.

[S73] Cole S. Peterson, Jonathan A. Saddler, Natalie M. Halavick, and Bonita Sharif. “A
Gaze-Based Exploratory Study on the Information Seeking Behavior of Developers
on Stack Overflow.” In: Extended Abstracts of the 2019 CHI Conference on Human Factors
in Computing Systems. CHI EA ’19. Glasgow, Scotland Uk: Association for Computing
Machinery, 2019, 1–6. isbn: 9781450359719. doi: 10.1145/3290607.3312801. url:
https://doi.org/10.1145/3290607.3312801.

[S74] Razvan Petrusel and Jan Mendling. “Eye-tracking the factors of process model
comprehension tasks.” In: Advanced Information Systems Engineering: 25th International
Conference, CAiSE 2013, Valencia, Spain, June 17-21, 2013. Proceedings 25. Springer. 2013,
pp. 224–239.

[S75] Paige Rodeghero, Cheng Liu, Paul W. McBurney, and Collin McMillan. “An Eye-
Tracking Study of Java Programmers and Application to Source Code Summariza-
tion.” In: IEEE Transactions on Software Engineering 41.11 (2015), pp. 1038–1054. doi:
10.1109/TSE.2015.2442238.

[S76] Paige Rodeghero, Collin McMillan, Paul W McBurney, Nigel Bosch, and Sidney
D’Mello. “Improving automated source code summarization via an eye-tracking
study of programmers.” In: Proceedings of the 36th international conference on Software
engineering. 2014, pp. 390–401.

[S77] Jonathan A. Saddler, Cole S. Peterson, Sanjana Sama, Shruthi Nagaraj, Olga Baysal,
Latifa Guerrouj, and Bonita Sharif. “Studying Developer Reading Behavior on Stack
Overflow during API Summarization Tasks.” In: 2020 IEEE 27th International Con-
ference on Software Analysis, Evolution and Reengineering (SANER). 2020, pp. 195–205.
doi: 10.1109/SANER48275.2020.9054848.

[S78] Djan Santos and Cláudio Sant’ Anna. “How Does Feature Dependency Affect Config-
urable System Comprehensibility?” In: 2019 IEEE/ACM 27th International Conference
on Program Comprehension (ICPC). 2019, pp. 19–29. doi: 10.1109/ICPC.2019.00016.

https://doi.org/10.1145/3216723.3216725
https://doi.org/10.1145/3216723.3216725
https://doi.org/10.1145/3216723.3216725
https://doi.org/10.1109/COMPSAC.2016.57
https://doi.org/10.1109/VL/HCC51201.2021.9576404
https://doi.org/10.1109/ASEW52652.2021.00037
https://doi.org/10.1109/EMIP.2019.00011
https://doi.org/10.1145/3290607.3312801
https://doi.org/10.1145/3290607.3312801
https://doi.org/10.1109/TSE.2015.2442238
https://doi.org/10.1109/SANER48275.2020.9054848
https://doi.org/10.1109/ICPC.2019.00016

A.1 appendix a : analyzed studies 49

[S79] Zohreh Sharafi, Ian Bertram, Michael Flanagan, and Westley Weimer. “Eyes on
Code: A Study on Developers’ Code Navigation Strategies.” In: IEEE Transactions on
Software Engineering 48.5 (2022), pp. 1692–1704. doi: 10.1109/TSE.2020.3032064.

[S80] Zohreh Sharafi, Yu Huang, Kevin Leach, and Westley Weimer. “Toward an objec-
tive measure of developers’ cognitive activities.” In: ACM Transactions on Software
Engineering and Methodology (TOSEM) 30.3 (2021), pp. 1–40.

[S81] Zohreh Sharafi, Alessandro Marchetto, Angelo Susi, Giuliano Antoniol, and Yann-
Gaël Guéhéneuc. “An empirical study on the efficiency of graphical vs. textual
representations in requirements comprehension.” In: 2013 21st International Conference
on Program Comprehension (ICPC). IEEE. 2013, pp. 33–42.

[S82] Zohreh Sharafi, Zéphyrin Soh, Yann-Gaël Guéhéneuc, and Giuliano Antoniol. “Women
and men—different but equal: On the impact of identifier style on source code read-
ing.” In: 2012 20th IEEE International Conference on Program Comprehension (ICPC).
IEEE. 2012, pp. 27–36.

[S83] Bonita Sharif, Michael Falcone, and Jonathan I Maletic. “An eye-tracking study on
the role of scan time in finding source code defects.” In: Proceedings of the Symposium
on Eye Tracking Research and Applications. 2012, pp. 381–384.

[S84] Bonita Sharif, Grace Jetty, Jairo Aponte, and Esteban Parra. “An empirical study
assessing the effect of seeit 3d on comprehension.” In: 2013 First IEEE Working
Conference on Software Visualization (VISSOFT). IEEE. 2013, pp. 1–10.

[S85] Bonita Sharif and Jonathan I Maletic. “An eye tracking study on the effects of layout
in understanding the role of design patterns.” In: 2010 IEEE International Conference
on Software Maintenance. IEEE. 2010, pp. 1–10.

[S86] Kshitij Sharma, Patrick Jermann, Marc-Antoine Nüssli, and Pierre Dillenbourg. “Un-
derstanding collaborative program comprehension: Interlacing gaze and dialogues.”
In: (2013).

[S87] Georg Simhandl, Philipp Paulweber, and Uwe Zdun. “Design of an executable
specification language using eye tracking.” In: 2019 IEEE/ACM 6th International
Workshop on Eye Movements in Programming (EMIP). IEEE. 2019, pp. 37–40.

[S88] Zéphyrin Soh, Zohreh Sharafi, Bertrand Van den Plas, Gerardo Cepeda Porras, Yann-
Gaël Guéhéneuc, and Giuliano Antoniol. “Professional status and expertise for UML
class diagram comprehension: An empirical study.” In: 2012 20th IEEE International
Conference on Program Comprehension (ICPC). IEEE. 2012, pp. 163–172.

[S89] Louis Spinelli, Maulishree Pandey, and Steve Oney. “Attention patterns for code
animations: using eye trackers to evaluate dynamic code presentation techniques.”
In: Companion Proceedings of the 2nd International Conference on the Art, Science, and
Engineering of Programming. 2018, pp. 99–104.

[S90] Randy Stein and Susan E Brennan. “Another person’s eye gaze as a cue in solv-
ing programming problems.” In: Proceedings of the 6th international conference on
Multimodal interfaces. 2004, pp. 9–15.

https://doi.org/10.1109/TSE.2020.3032064

50 appendix

[S91] Renske Talsma, Erik Barendsen, and Sjaak Smetsers. “Analyzing the influence of
block highlighting on beginning programmers’ reading behavior using eye tracking.”
In: Proceedings of the 9th Computer Science Education Research Conference. 2020, pp. 1–10.

[S92] Rachel Turner, Michael Falcone, Bonita Sharif, and Alina Lazar. “An eye-tracking
study assessing the comprehension of C++ and Python source code.” In: Proceedings
of the Symposium on Eye Tracking Research and Applications. 2014, pp. 231–234.

[S93] Hidetake Uwano, Masahide Nakamura, Akito Monden, and Ken-ichi Matsumoto.
“Analyzing individual performance of source code review using reviewers’ eye
movement.” In: Proceedings of the 2006 symposium on Eye tracking research & applications.
2006, pp. 133–140.

[S94] Maureen Villamor and Ma. Mercedes Rodrigo. “Predicting Successful Collaboration
in a Pair Programming Eye Tracking Experiment.” In: Adjunct Publication of the 26th
Conference on User Modeling, Adaptation and Personalization. UMAP ’18. Singapore, Sin-
gapore: Association for Computing Machinery, 2018, 263–268. isbn: 9781450357845.
doi: 10.1145/3213586.3225234. url: https://doi.org/10.1145/3213586.3225234.

[S95] Braden Walters, Timothy Shaffer, Bonita Sharif, and Huzefa Kagdi. “Capturing
software traceability links from developers’ eye gazes.” In: Proceedings of the 22nd
International Conference on Program Comprehension. 2014, pp. 201–204.

[S96] Thomas Weber, Christina Winiker, and Heinrich Hussmann. “A Closer Look at
Machine Learning Code.” In: Extended Abstracts of the 2021 CHI Conference on Human
Factors in Computing Systems. CHI EA ’21. Yokohama, Japan: Association for Com-
puting Machinery, 2021. isbn: 9781450380959. doi: 10.1145/3411763.3451679. url:
https://doi.org/10.1145/3411763.3451679.

[S97] Shehnaaz Yusuf, Huzefa Kagdi, and Jonathan I Maletic. “Assessing the comprehen-
sion of UML class diagrams via eye tracking.” In: 15th IEEE International Conference
on Program Comprehension (ICPC’07). IEEE. 2007, pp. 113–122.

https://doi.org/10.1145/3213586.3225234
https://doi.org/10.1145/3213586.3225234
https://doi.org/10.1145/3411763.3451679
https://doi.org/10.1145/3411763.3451679

A.1 appendix a : analyzed studies 51

a
.2

a
p

p
e

n
d

i
x

b
:

e
x

t
r

a
c

t
i
o

n
f

o
r

m

Ta
bl

e
A

.1
:E

xt
ra

ct
io

n
fo

rm

D
at

a
it

em
D

es
cr

ip
ti

on
R

Q
s

Ti
tl

e
Ti

tl
e

of
th

e
st

ud
y

ID
ID

of
th

e
st

ud
y

(S
1

,S
2
,.

..
)

D
O

I
D

oc
u

m
en

t
ob

je
ct

id
en

ti
fi

er
to

lin
k

to
th

e
co

nc
re

te
in

st
an

ce
of

a
pa

pe
r.

If
d

oe
s

no
t

ex
is

t,
ot

he
r

lin
k

to
co

nc
re

te
in

st
an

ce
of

a
pa

pe
r.

ci
ta

ti
on

(i
n

A
PA

)
Pa

pe
r

ci
ta

ti
on

in
A

PA
fo

rm
at

.

ye
ar

Pu
bl

ic
at

io
n

ye
ar

of
th

e
pa

pe
r.

ve
nu

e
Ei

th
er

jo
ur

na
l,

co
nf

er
en

ce
,o

r
w

or
ks

ho
p.

to
ol

To
ol

th
at

is
us

ed
to

an
al

yz
e

th
e

ey
e

tr
ac

ki
ng

da
ta

an
d

w
hi

ch
pa

rt
of

th
e

ey
e

tr
ac

ki
ng

da
ta

,i
fn

am
ed

.I
fa

cu
st

om
to

ol
is

us
ed

,a
de

sc
ri

pt
io

n
of

th
e

to
ol

us
ed

w
ill

be
ad

de
d.

1

to
ol

ju
st

ifi
ca

ti
on

/c
on

se
qu

en
ce

Ju
st

ifi
ca

ti
on

s
an

d
/

or
co

ns
eq

u
en

ce
s

th
at

th
e

au
th

or
ga

ve
fo

r
th

e
ch

oi
ce

of
to

ol
to

an
al

yz
e

th
e

ey
e

tr
ac

ki
ng

da
ta

,i
f

gi
ve

n.
2

ey
et

ra
ck

er
W

hi
ch

ey
e

tr
ac

ke
r

th
e

st
ud

y
w

as
us

in
g

to
m

ea
su

re
th

e
pa

rt
ic

ip
an

ts
.

1

co
nfi

gu
ra

ti
on

ey
et

ra
ck

er
W

hi
ch

co
nfi

gu
ra

tio
n

th
e

ey
e

tr
ac

ke
r

ha
s,

fo
r

ex
am

pl
e:

D
is

ta
nc

e
be

tw
ee

n
sc

re
en

an
d

pa
rt

ic
ip

an
t,

si
ze

/r
es

ol
ut

io
n

of
sc

re
en

,.
..

1

st
ud

y
ta

sk
W

hi
ch

ta
sk

th
e

pa
rt

ic
ip

an
ts

ne
ed

ed
to

pe
rf

or
m

to
co

m
pl

et
e

th
e

st
ud

y.
(p

ro
gr

am
co

m
-

pr
eh

en
si

on
,d

eb
ug

gi
ng

,T
ra

ce
ab

ili
ty

,C
ol

la
bo

ra
tiv

e,
C

om
pr

eh
en

si
on

(n
on

-c
od

e)
,.

..
)

1

#p
ar

ti
ci

pa
nt

s
Pa

rt
ic

ip
an

t
sa

m
pl

e
si

ze
.

1

de
m

og
ra

ph
ic

s
C

om
po

si
ti

on
of

th
e

sa
m

pl
e,

e.
g.

pr
of

es
si

on
al

s,
fa

cu
lt

y,
st

ud
en

ts
.

1

#i
te

m
s

pe
r

pa
rt

ic
ip

an
t

N
um

be
r

of
it

em
s

a
pa

rt
ic

ip
an

t
ha

d
to

lo
ok

at
.

1

it
em

ty
pe

W
ha

tk
in

d
of

ite
m

th
e

pa
rt

ic
ip

an
th

ad
to

lo
ok

at
,f

or
ex

am
pl

e
fo

r
di

ag
ra

m
s

it
w

ou
ld

be
a

di
ag

ra
m

,f
or

co
de

co
m

pr
eh

en
si

on
a

co
de

sn
ip

pe
t

as
a

lis
t

1

it
em

la
ng

ua
ge

W
hi

ch
pr

og
ra

m
m

in
g

la
ng

ua
ge

th
e

ite
m

or
ig

in
at

es
fr

om
,i

f
it

is
po

ss
ib

le
to

de
sc

ri
be

,
as

a
lis

t
1

it
em

sc
ro

ll
in

g
If

th
e

it
em

s
w

er
e

bi
g

en
ou

gh
th

at
sc

ro
lli

ng
w

as
in

vo
lv

ed
to

se
e

al
lo

f
it

du
ri

ng
th

e
ey

e
tr

ac
ki

ng
m

ea
su

re
m

en
ts

1

re
pl

ic
at

io
n

pa
ck

ag
e

D
oe

s
th

e
st

ud
y

ha
ve

a
re

pl
ic

at
io

n
pa

ck
ag

e
av

ai
la

bl
e

3

52 appendix

a.3 appendix c : results of rq3

Table A.2: Total fixation duration in milliseconds by software tools using the data of McChesney et
al. [13] with Tobii Pro Lab as the originaly used software tool

Participant PyGaze EMIP Ogama Tobii Pro Lab
PyGaze /
Tobii Pro
Lab

EMIP / To-
bii Pro Lab

Ogama / To-
bii Pro Lab

P100 275307 41766.7 605255 480676 57.27% 8.69% 125.92%

P114 63486 7058.3 170860 147388 43.07% 4.79% 115.93%

P131 83701 7400 240537 191336 43.75% 3.87% 125.71%

P157 227271 53475 393077 348104 65.29% 15.36% 112.92%

P214 321484 104575 531027 424945 75.65% 24.61% 124.96%

P237 205723 20141.7 513272 370787 55.48% 5.43% 138.43%

P267 227000 56441.7 418484 366252 61.98% 15.41% 114.26%

P270 355742 92908.3 633489 536216 66.34% 17.33% 118.14%

P316 19185 958.3 124078 76006 25.24% 1.26% 163.25%

P323 68977 9716.7 178955 143876 47.94% 6.75% 124.38%

P365 278466 68216.7 401796 362687 76.78% 18.81% 110.78%

P370 199139 51941.7 305843 256845 77.53% 20.22% 119.08%

P402 327360 94800.0 519945 421034 77.75% 22.52% 123.49%

P450 94024 11783.3 221153 185581 50.66% 6.35% 119.17%

P459 101069 11316.7 379203 206081 49.04% 5.49% 184.01%

P469 123992 13308.3 325529 289593 42.82% 4.60% 112.41%

P513 150233 34475 260499 218014 68.91% 15.81% 119.49%

P536 109585 16608.3 280028 225783 48.54% 7.36% 124.03%

P561 89493 7216.7 321156 237171 37.73% 3.04% 135.41%

P611 209808 50491.7 305412 268719 78.08% 18.79% 113.65%

P642 106427 10725 259606 220171 48.34% 4.87% 117.91%

P645 125351 22100 317457 289072 43.36% 7.65% 109.82%

P653 48119 3050 235771 155650 30.91% 1.96% 151.48%

P708 172018 51075 284344 244048 70.49% 20.93% 116.51%

P751 400894 119016.7 619912 558417 71.79% 21.31% 111.01%

P758 85093 11300 291354 215887 39.42% 5.23% 134.96%

P812 207169 30475 391232 313256 66.13% 9.73% 124.89%

P819 343749 153741.7 472490 394164 87.21% 39.00% 119.87%

P842 199931 24983.3 375159 307517 65.01% 8.12% 122.00%

P900 330268 100000 476772 416780 79.24% 23.99% 114.39%

Average Similarity to Tobii Pro Lab 58.39% 12.31% 124.94%

Average Variance 14.15% 7.60% 10.64%

A.1 appendix a : analyzed studies 53

Table A.3: Average fixation duration in milliseconds

Table A.4: Average fixation duration in milliseconds by software tools using the data of McChesney
et al. [13] with Tobii Pro Lab as the originaly used software tool

Participant PyGaze EMIP Ogama Tobii Pro Lab
PyGaze /
Tobii Pro
Lab

EMIP / To-
bii Pro Lab

Ogama / To-
bii Pro Lab

P100 94.67 68.25 213.04 54.00 175.31% 126.38% 394.51%

P114 85.79 64.17 208.62 52.51 163.39% 122.21% 397.32%

P131 87.46 65.49 199.12 37.84 231.16% 173.08% 526.27%

P157 108.17 71.88 216.10 88.40 122.37% 81.31% 244.46%

P214 121.73 77.06 264.19 87.42 139.25% 88.15% 302.21%

P237 88.03 66.04 204.74 44.47 197.95% 148.50% 460.40%

P267 111.33 73.49 240.78 88.04 126.45% 83.47% 273.49%

P270 117.37 75.97 232.13 75.64 155.17% 100.43% 306.89%

P316 70.53 63.89 264.56 20.12 350.50% 317.49% 1314.68%

P323 91.12 69.40 216.13 41.62 218.94% 166.76% 519.31%

P365 119.82 71.66 253.34 115.76 103.51% 61.90% 218.84%

P370 123.15 71.84 247.85 105.92 116.28% 67.83% 234.00%

P402 115.72 74.70 221.44 67.33 171.86% 110.95% 328.87%

P450 90.58 65.46 194.68 51.07 177.38% 128.19% 381.21%

P459 86.09 67.76 287.28 23.35 368.74% 290.25% 1230.48%

P469 89.14 66.54 235.04 61.96 143.87% 107.40% 379.35%

P513 107.23 72.27 205.44 80.87 132.61% 89.38% 254.05%

P536 98.02 70.08 271.87 50.19 195.31% 139.64% 541.74%

P561 75.97 63.30 190.71 28.62 265.45% 221.19% 666.36%

P611 127.23 69.55 260.81 109.24 116.48% 63.67% 238.76%

P642 90.89 66.20 252.78 69.50 130.77% 95.26% 363.72%

P645 94.60 68.85 220.46 53.71 176.14% 128.18% 410.45%

P653 76.14 64.89 247.66 26.31 289.34% 246.61% 941.15%

P708 124.92 74.34 258.03 80.73 154.74% 92.09% 319.61%

P751 117.53 75.04 225.83 104.65 112.31% 71.71% 215.80%

P758 86.13 66.86 267.54 35.19 244.75% 190.01% 760.29%

P812 100.71 68.18 231.77 62.07 162.26% 109.84% 373.42%

P819 140.71 83.06 218.85 94.21 149.36% 88.17% 232.30%

P842 97.43 66.45 204.67 72.58 134.24% 91.55% 282.00%

P900 128.66 75.59 252.13 103.63 124.16% 72.94% 243.31%

Average Similarity to Tobii Pro Lab 178.33% 129.15% 445.18%

Average Variance 50.48% 48.75% 196.94%

54 appendix

Table A.5: Calculated saccades counts by software tools using the data of McChesney et al. [13] with
Tobii Pro Lab as the originaly used software tool

Participant PyGaze Ogama Tobii Pro Lab
PyGaze /
Tobii Pro
Lab

Ogama / To-
bii Pro Lab

P100 1174 2840 8901 13.19% 31.91%

P114 309 819 2807 11.01% 29.18%

P131 291 1208 5057 5.75% 23.89%

P157 337 1819 3938 8.56% 46.19%

P214 680 2010 4861 13.99% 41.35%

P237 548 2507 8338 6.57% 30.07%

P267 415 1738 4160 9.98% 41.78%

P270 854 2729 7089 12.05% 38.50%

P316 157 469 3777 4.16% 12.42%

P323 350 828 3457 10.12% 23.95%

P365 412 1586 3133 13.15% 50.62%

P370 335 1234 2425 13.81% 50.89%

P402 743 2348 6253 11.88% 37.55%

P450 230 1136 3634 6.33% 31.26%

P459 705 1320 8827 7.99% 14.95%

P469 376 1385 4674 8.04% 29.63%

P513 243 1268 2696 9.01% 47.03%

P536 361 1030 4499 8.02% 22.89%

P561 484 1684 8287 5.84% 20.32%

P611 279 1171 2460 11.34% 47.60%

P642 231 1027 3168 7.29% 32.42%

P645 310 1440 5382 5.76% 26.76%

P653 276 952 5915 4.67% 16.09%

P708 356 1102 3023 11.78% 36.45%

P751 600 2745 5336 11.24% 51.44%

P758 390 1089 6135 6.36% 17.75%

P812 350 1688 5047 6.93% 33.45%

P819 806 2159 4184 19.26% 51.60%

P842 326 1833 4237 7.69% 43.26%

P900 600 1891 4022 14.92% 47.02%

Average Similarity to Tobii Pro Lab 9.56% 34.27%

Average Variance 2.93% 10.10%

A.1 appendix a : analyzed studies 55

Table A.6: Total saccade duration in milliseconds by software tools using the data of McChesney et
al. [13] with Tobii Pro Lab as the originaly used software tool

Participant PyGaze Ogama Tobii Pro Lab PyGaze / Tobii Pro Lab
Ogama / To-
bii Pro Lab

P100 921514 329092 80494 1144.82% 408.84%

P114 313829 147017 24469 1282.56% 600.83%

P131 483984 246438 38120 1269.63% 646.48%

P157 544167 156562 52390 1038.68% 298.84%

P214 749440 225648 57396 1305.74% 393.14%

P237 782713 278835 69037 1133.76% 403.89%

P267 569643 156361 52288 1089.43% 299.04%

P270 899442 276474 77130 1166.14% 358.45%

P316 424430 277348 15899 2669.54% 1744.44%

P323 377388 204446 23849 1582.41% 857.25%

P365 500691 102392 51587 970.58% 198.48%

P370 411428 110385 38151 1078.42% 289.34%

P402 738307 224676 74800 987.04% 300.37%

P450 363368 144217 35569 1021.59% 405.46%

P459 799317 432091 38687 2066.11% 1116.89%

P469 513002 193633 39139 1310.72% 494.73%

P513 352738 95013 39161 900.74% 242.62%

P536 481634 206083 33218 1449.92% 620.40%

P561 682863 367973 46536 1467.39% 790.73%

P611 417410 118961 41457 1006.85% 286.95%

P642 390305 132267 33140 1177.75% 399.12%

P645 530188 215417 49770 1065.28% 432.82%

P653 489824 258381 30742 1593.34% 840.48%

P708 411093 130834 32911 1249.11% 397.54%

P751 784188 170201 84649 926.40% 201.07%

P758 557110 266953 36475 1527.37% 731.88%

P812 531087 149404 50883 1043.74% 293.62%

P819 675741 211519 60534 1116.30% 349.42%

P842 510194 139237 54252 940.42% 256.65%

P900 627856 156422 60829 1032.17% 257.15%

Average Similarity to Tobii Pro Lab 1253.80% 497.23%

Average Variance 248.86% 231.62%

56 appendix

Table A.7: Average saccade duration in milliseconds by software tools using the data of McChesney
et al. [13] with Tobii Pro Lab as the originaly used software tool

Participant PyGaze Ogama Tobii Pro Lab PyGaze / Tobii Pro Lab
Ogama / To-
bii Pro Lab

P100 785.60 115.88 27.10 2898.66% 427.55%

P114 1018.93 179.51 26.20 3889.31% 685.20%

P131 1663.18 204.00 28.64 5807.15% 712.30%

P157 1619.54 86.07 27.59 5870.42% 311.98%

P214 1103.74 112.26 26.35 4188.35% 426.00%

P237 1430.92 111.22 26.60 5378.62% 418.07%

P267 1375.95 89.97 27.59 4986.66% 326.05%

P270 1054.45 101.31 25.94 4064.39% 390.50%

P316 2720.71 591.36 25.28 10763.72% 2339.55%

P323 1081.34 246.92 26.35 4103.37% 936.97%

P365 1215.27 64.56 29.80 4077.83% 216.63%

P370 1231.82 89.45 29.95 4113.49% 298.72%

P402 995.02 95.69 30.16 3299.01% 317.26%

P450 1579.86 126.95 29.57 5343.34% 429.37%

P459 1135.39 327.34 26.19 4334.73% 1249.73%

P469 1368.01 139.81 23.55 5809.10% 593.68%

P513 1457.60 74.93 31.23 4667.46% 239.94%

P536 1337.87 200.08 25.73 5199.57% 777.60%

P561 1413.80 218.51 26.40 5356.11% 827.82%

P611 1501.47 101.59 32.21 4661.21% 315.38%

P642 1689.63 128.79 26.36 6408.77% 488.50%

P645 1715.82 149.60 27.99 6129.65% 534.42%

P653 1781.18 271.41 25.64 6946.95% 1058.55%

P708 1158.01 118.72 27.77 4169.55% 427.48%

P751 1309.16 62.00 29.38 4455.69% 211.03%

P758 1428.49 245.14 26.00 5494.63% 942.91%

P812 1521.74 88.51 26.97 5643.38% 328.24%

P819 839.43 97.97 28.03 2995.29% 349.58%

P842 1569.83 75.96 28.67 5474.66% 264.91%

P900 1048.17 82.72 29.40 3565.19% 281.36%

Average Similarity to Tobii Pro Lab 5003.21% 570.91%

Average Variance 1038.74% 294.35%

B I B L I O G R A P H Y

[1] Richard Andersson, Linnea Larsson, Kenneth Holmqvist, Martin Stridh, and Marcus
Nyström. “One algorithm to rule them all? An evaluation and discussion of ten
eye movement event-detection algorithms.” In: Behavior research methods 49 (2017),
pp. 616–637.

[2] John Bailey, Cheng Zhang, David Budgen, Mark Turner, and Stuart Charters. “Search
Engine Overlaps : Do they agree or disagree?” In: Second International Workshop
on Realising Evidence-Based Software Engineering (REBSE ’07). 2007, pp. 2–2. doi:
10.1109/REBSE.2007.4.

[3] Daniela S Cruzes and Tore Dyba. “Recommended steps for thematic synthesis in
software engineering.” In: 2011 international symposium on empirical software engineering
and measurement. IEEE. 2011, pp. 275–284.

[4] Benoît De Smet, Lorent Lempereur, Zohreh Sharafi, Yann-Gaël Guéhéneuc, Giuliano
Antoniol, and Naji Habra. “Taupe: Visualizing and analyzing eye-tracking data.” In:
Science of computer programming 79 (2014), pp. 260–278.

[5] Andrew T Duchowski. Eye tracking methodology: Theory and practice. Springer, 2017.

[6] Joseph H Goldberg and Xerxes P Kotval. “Computer interface evaluation using eye
movements: methods and constructs.” In: International journal of industrial ergonomics
24.6 (1999), pp. 631–645.

[7] Drew T Guarnera, Corey A Bryant, Ashwin Mishra, Jonathan I Maletic, and Bonita
Sharif. “itrace: Eye tracking infrastructure for development environments.” In: Pro-
ceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications. 2018,
pp. 1–3.

[8] Kenneth Holmqvist, Saga Lee Örbom, Ignace TC Hooge, Diederick C Niehorster,
Robert G Alexander, Richard Andersson, Jeroen S Benjamins, Pieter Blignaut, Anne-
Marie Brouwer, Lewis L Chuang, et al. “Eye tracking: empirical foundations for a
minimal reporting guideline.” In: Behavior research methods 55.1 (2023), pp. 364–416.

[9] Marcel A Just and Patricia A Carpenter. “A theory of reading: from eye fixations to
comprehension.” In: Psychological review 87.4 (1980), p. 329.

[10] Staffs Keele et al. Guidelines for performing systematic literature reviews in software
engineering. 2007.

[11] Oleg V Komogortsev, Denise V Gobert, Sampath Jayarathna, Sandeep M Gowda,
et al. “Standardization of automated analyses of oculomotor fixation and saccadic
behaviors.” In: IEEE Transactions on biomedical engineering 57.11 (2010), pp. 2635–2645.

[12] Linnéa Larsson, Marcus Nyström, and Martin Stridh. “Detection of saccades and
postsaccadic oscillations in the presence of smooth pursuit.” In: IEEE Transactions on
biomedical engineering 60.9 (2013), pp. 2484–2493.

57

https://doi.org/10.1109/REBSE.2007.4

58 bibliography

[13] Ian McChesney and Raymond Bond. “Eye tracking analysis of code layout, crowding
and dyslexia-an open data set.” In: ACM Symposium on Eye Tracking Research and
Applications. 2021, pp. 1–6.

[14] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. “Systematic map-
ping studies in software engineering.” In: 12th International Conference on Evaluation
and Assessment in Software Engineering (EASE) 12. 2008, pp. 1–10.

[15] A Poole and Linden Ball. “Eye tracking in human-computer interaction and usability
research: Current status and future prospects.” In: Jan. 2006, pp. 211–219.

[16] Dario D Salvucci and Joseph H Goldberg. “Identifying fixations and saccades in
eye-tracking protocols.” In: Proceedings of the 2000 symposium on Eye tracking research
& applications. 2000, pp. 71–78.

[17] Zohreh Sharafi, Yu Huang, Kevin Leach, and Westley Weimer. “Toward an objec-
tive measure of developers’ cognitive activities.” In: ACM Transactions on Software
Engineering and Methodology (TOSEM) 30.3 (2021), pp. 1–40.

[18] Zohreh Sharafi, Timothy Shaffer, Bonita Sharif, and Yann-Gaël Guéhéneuc. “Eye-
tracking metrics in software engineering.” In: 2015 Asia-Pacific Software Engineering
Conference (APSEC). IEEE. 2015, pp. 96–103.

[19] Zohreh Sharafi, Bonita Sharif, Yann-Gaël Guéhéneuc, Andrew Begel, Roman Bed-
narik, and Martha Crosby. “A practical guide on conducting eye tracking studies in
software engineering.” In: Empirical Software Engineering 25 (2020), pp. 3128–3174.

[20] Zohreh Sharafi, Zéphyrin Soh, and Yann-Gaël Guéhéneuc. “A systematic literature
review on the usage of eye-tracking in software engineering.” In: Information and
Software Technology 67 (2015), pp. 79–107.

[21] Bonita Sharif and Huzefa Kagdi. “On the use of eye tracking in software traceability.”
In: Proceedings of the 6th International Workshop on Traceability in Emerging Forms of
Software Engineering. 2011, pp. 67–70.

[22] Heino Widdel. “Operational problems in analysing eye movements.” In: Advances in
psychology. Vol. 22. Elsevier, 1984, pp. 21–29.

[23] Vlas Zyrianov, Cole S Peterson, Drew T Guarnera, Joshua Behler, Praxis Weston,
Bonita Sharif, and Jonathan I Maletic. “Deja Vu: semantics-aware recording and
replay of high-speed eye tracking and interaction data to support cognitive studies
of software engineering tasks—methodology and analyses.” In: Empirical software
engineering 27.7 (2022), p. 168.

	Abstract
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	2 Background
	2.1 Eye Tracking Theory
	2.2 Eye Tracking Devices
	2.3 Visual Effort Metrics
	2.4 Fixation and Saccade Algorithms

	3 Related Work
	4 Methodology
	4.1 Research Questions
	4.2 Search Process
	4.3 Selection Process
	4.4 Data Extraction
	4.5 Data Analysis

	5 Evaluation
	5.1 Results
	5.1.1 RQ1: Which software tools are used to analyze eye tracking data in software engineering studies?
	5.1.2 RQ2: How do authors justify their choices of software tools and what consequences do they discuss?
	5.1.3 RQ3: Which effects on the results and conclusions does using different software tools on the same experiment data have?

	5.2 Discussion
	5.2.1 Software Tool Usage
	5.2.2 Justifications and Consequences
	5.2.3 Software Tool Effects

	6 Threats to Validity
	7 Concluding Remarks
	7.1 Conclusion
	7.2 Future Work

	A Appendix
	A.1 Appendix A: Analyzed Studies
	A.2 Appendix B: Extraction Form
	A.3 Appendix C: Results of RQ3

	 Bibliography

