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Abstract

In open-source software (OSS) projects, often many developers from different loca-
tions contribute to the source code. To coordinate their collaboration, developers fre-
quently use email communication. In summary, this study aims to get more insight
into the coordination of collaboration in OSS projects. In this thesis, we investigate
whether synchronous development on the source code of the OSS project QEMU
is reflected in the corresponding communication on the mailing list. Therefore, we
use the concept of co-commit bursts and email bursts to analyze the synchronous
development of pairs of developers. To this end, we replicate an empirical study
of Xuan and Filkov [XF14]. As an enhancement, we consider three different levels
of abstraction from the source code, namely files, features, and functions, on which
we detect synchronous development within a certain time window. Usually, source
code is organized in files, whereas features and functions are semantic units of pro-
gram parts. In our study, we found that synchronous development based on features
appears more frequently than synchronous development on files or functions. In ad-
dition, we quantify the synchronicity of commits that form a co-commit burst. For
each of the abstraction levels, we examine whether there is a timely correlation be-
tween commit activities and email communication. We also analyze whether there
is a significant difference in code growth and implementation effort within periods of
synchronous development and outside of synchronous development. Finally, we com-
pare the differences of file-based, feature-based, and function-based collaboration of
developers.
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1. Introduction

Software projects are often carried out by several developers which implement the
source code of the software. To produce software of high quality, the source code
should be simple and easy to maintain. However, if many developers contribute to
the same parts of a software project, it is not that easy to implement good code
since every developer submits their own changes. Additionally, changes of various
developers can introduce conflicts or mismatched enhancements. Hence, some devel-
opers collaborate and arrange with each other, e.g., to prevent conflicting changes,
to reduce the amount of bugs, or to keep the code simple and maintainable. Collab-
oration of developers and communication among them to coordinate collaboration
is widely-used [CHC08, MFT02], particularly in software companies.

Especially in open-source software (OSS) projects, often a huge number of indepen-
dent different developers, who may be distributed all over the world, contributes to
the project [MFT02]. Since they have different workplaces, they often communicate
via the Internet to discuss software issues or enhancements or to review code changes
[WGS03].

In this work, we investigate if collaboration of software developers on source-code
level is correlated to their email communication. For that purpose, we replicate an
empirical study of Xuan and Filkov [XF14] on synchronous development in open-
source software. In addition, we analyze a larger case study than the original authors
have used, namely the virtual-machine monitor QEMU, and enhance their work by
focussing on three different levels of abstraction in the source code: files, features,
and functions. Moreover, we introduce a new metric to quantify the synchronicity
of collaborative development.

In accordance with Xuan and Filkov, we extract time intervals in which two de-
velopers commit to the same source-code artifact synchronously within a certain
time window. These time windows are called co-commit bursts. In addition, we also
gather time intervals in which two developers write emails within a certain time win-
dow, which are called email bursts. We also check if there is a significant difference
between the code growth within co-commit bursts and outside of co-commit bursts.
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As we look at three different levels of abstraction, we also compare the outcomes
of the three analyses to each other and check whether synchronous development
appears more frequently respectively the effects of synchronous collaboration occur
more strongly on one of these artifact-based analyses compared to the others. This
will give us more insight into which level of abstraction is the most appropriate
developers organize their collaboration on.

This thesis is organized as follows: In Chapter 2, we introduce the background of
developer collaboration and explain the levels of abstraction, namely files, features,
and functions. In Chapter 3, we present the study which we want to replicate and
the research questions and hypotheses which we have derived. Chapter 4 contains
a detailed description of our methodology, metrics, and limitations. We state the
results of our study in Chapter 5, discuss them afterwards, and deal with our threats
to validity. In Chapter 6, we conclude and list future work.



2. Background

In open-source software (OSS) projects, developer collaboration from programmers
spread all over the world is common. We shortly explain some widely-used kinds
of developer collaboration and explain the term synchronous development, which is
coined by Xuan and Filkov [XF14]. Thereafter, we introduce three different lev-
els of abstraction from the source code which we consider to identify synchronous
development.

2.1 Synchronous Development
Collaboration on source-code level consists of bug fixes, code refactoring, enhance-
ment of a software and adding new features, or even deleting unused or wrongly used
functionality, for instance [Sin10]. If a pair of developers contributes to the same
code artifact, i.e., to the same part of the source code, within a short period of time,
their collaboration is called synchronous development. We consider two different
levels of synchronous development, namely co-commit bursts and email bursts.

Often version-control systems (VCS), such as Git, are used to manage the code base
of a certain software online. In VCS, various developers can check out the current
source code from a source-code repository, modify some parts of the software, and
submit their code changes to the repository again. [Som10, DP03] In addition,
VCS often provide tools to maintain and coordinate the submitted changes. The
VCS usually stores all code changes, combined with their authors and modification
time stamps. So, modifications to the source code are called commits. A commit
is composed of a couple of code changes to parts of the source code made by one
single developer at a certain point in time. If two developers commit to the same
code artifacts within a short space of time, we call that a co-commit burst (short,
C-burst) [XF14]. We analyze how co-commit bursts affect the code growth and
implementation effort. There are several levels of abstraction from the source code
to treat certain parts of the code as artifacts. The three artifact types which we use
in this study are explained in Section 2.2.

Besides code-based collaboration, developer collaboration in many cases also in-
cludes communication to coordinate source-code changes [BGD+06, WSDN09]. In
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our study, we focus on email communication of pairs of developers on a publicly
available mailing list which belongs to the software project. With this, an email
burst (short, E-burst) appears if two persons each write an email to the mailing list
within a brief time period [XF14].

The maximal time difference between two commits respectively two emails to be
considered as a burst is called time window. For example, if we want to determine
bursts at a 1-day time window, the difference in time of commits of two different
developers can maximally be one day to treat their synchronous development as a
C-burst. The same holds analogously for E-bursts and the time difference between
two emails of two different authors [XF14].

Further below, we investigate whether co-commit bursts and email bursts in OSS
correlate. Therefore, we call a synchronous occurrence of co-commit bursts and
email bursts coordination bursts.

Besides the study of Xuan and Filkov which we reproduce, there exists some other
research on the investigation on the relationship between development and commu-
nication between developers. We just name a sample of the work which is done in
this area of software engineering research. Herbsleb and Grinter [HG99] conducted a
study on the coordination of a geographically distributed software project. Their re-
sult was that ad-hoc communication between developers is one of the most important
parts of today’s well-working software development. Toral et al. [TMTB10] analyzed
the social communities which arose from collaborative development in OSS projects.
Also Joblin et al. [JMA+15] constructed collaboration networks of developers based
on co-commits on source-code artifacts and used network analysis techniques to
gain more information on the collaboration. In contrast to our work, they did not
analyze email-based collaboration and also neglect the time-wise synchronicity of
co-commits. Bacchelli et al. [BDL10] analyzed the email communication of OSS
projects and determined much discussed source-code artifacts. Afterwards, they
investigated the defect-proneness of those artifacts. In contrast to all mentioned re-
lated work, the work of Xuan and Filkov and our replication study directly compare
synchronous development on source-code level to synchronous email communication.

2.2 Abstraction Levels of Source-Code Artifacts

To identify periods of synchronous development of a pair of developers, we consider
code changes on source-code artifacts. Though, there are several options how to
decompose the code of a software project into artifacts. Different types of artifacts
represent various levels of abstraction from the source code: files, functions, and
features. Each of these abstraction levels depicts another way of seeing software
and therefore we expect them to have different effects on developer collaboration.
Moreover, the different levels of abstraction have different levels of granularity of
decomposing source-code into artifacts.

All three mentioned levels of abstraction (files, functions, and features) are consid-
ered in our study. We perform our research work on all of them in separate and
compare the different results afterwards. In Chapter 3, we state our concrete re-
search questions and hypotheses. Below, we describe the individual characteristics
of each of the three abstraction levels in detail.
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2.2.1 Files

Generally, a software project consists of multiple files. Some of the files just contain
documentation or images, but most of the files contain source code. In our study,
we just focus on files containing source code. Often the source code itself is spread
among several files. Usually each file contains code written in a certain programming
language.

Depending on the programming language, a distinction is made between several
types of source-code files. For instance, projects which use the programming lan-
guage C differentiate between implementation files (*.c) and so-called header files
(*.h), which just comprise a couple of definitions and declarations which can be
used and included by several other code files. Usually, header files contain common
definitions and function declarations, which are included within several other files
[KR88]. We omit header files because they usually do not contain a lot of source
code and programming elements which are specific to the software functionality it-
self. Commonly, the functionality of software is contained in implementation files.
So, header files are not necessary when analyzing the collaboration of developers on
source-code level.

Since the decomposition of source code into files is obvious due to the separated im-
plementation itself, we treat files as different artifacts within our file-based analysis.

Collaboration of developers on the same file can be semantically random or logically
intended: Depending on the length and semantic content of an implementation file,
it is possible that one file contains only semantic related parts of the source code.
However, a source-code file can also contain the implementation of various distinct
units of the software which are not related to each other. So, it might be that two
developers change one file and modify completely independent software parts, as
well as it is possible to change parts that belong to the same semantic unit of the
program. In short, synchronous development on the file level of abstraction is easy
to detect because of separated implementation, but does not tell us if there actually
is a semantically intended collaboration of developers.

2.2.2 Functions

A more fine-grained level of abstraction from the source code are functions, which are
small parts of files and consist of a couple of statements to perform a certain task
within the software. In other words, functions are subroutins which encapsulate
computations that can be used in various parts of the program regardless of the
concrete implementation [KR88]. The code of a function is completely contained
within one file. Therefore, a function is the most fine-grained viewpoint to group
statements into semantic units. In our study, we use functions as an artifact type
since functions are one of the smallest detectable code parts which can be seen as
logic units. Usually, almost every line of a file belongs to one function.

However, there are some macro definitions, variable declarations, or #include state-
ments, for example, which are not part of a function. We group all the statements
not belonging to a function as code at file level. So, to not distort the way of seeing
functions, we disregard code changes made at the file level when we analyze on the
function level.
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From the perspective of synchronous development, functions are small semantic
units developers can collaborate on. If two developers change the same function,
they mostly adapt the same logic part of the software since a function encapsulates
computation parts. Ordinarily, functions are comparably small in terms of lines of
code and several functions are contained within one file. So, if two developer change
the same function, they semantically collaborate on that function.

2.2.3 Features

Furthermore, we also look at features as a more coarse-grained viewpoint of abstrac-
tion. Features are semantic units of variable software, such as configurable parts in
Software Product Lines. Software Product Lines (SPLs) are known as highly config-
urable software systems. The main component of a SPL is a set of features, which
are also established as configuration options to provide variability. Each of these fea-
tures is a characteristic of the system which implements a certain user requirement.
[ABKS13, CN02, GBS01]. Hence, each feature forms a logical unit and is reflected
somewhere in the source code. This relates to the implementation technique which
is used to develop an SPL. For instance, one possible method is conditional com-
pilation which uses preprocessor directives to mark variable feature code. In the
programming language C, for instance, features can be implemented by using the
preprocessor directive #ifdef [ABKS13, KR88]. The code belonging to a certain
feature can be scattered across several files in the source code and is most commonly
represented by a set of functions.

Code not belonging to a certain feature is called base code since it implements and
supports the core functionality of the software which is part of every configuration.
To keep the feature level of abstraction, we group all elements of the base code
to a virtual feature called base feature. As the base feature is not really a feature
in terms of a semantic unit, we completely disregard the base feature in our C-
burst analysis. In other words, we remove the changes made to the base feature
by arbitrary developers from all commits before identifying C-bursts in the feature-
based analysis.

If two developers collaborate on the same features, they actually work on the same se-
mantic units, which usually are more coarse-grained units than functions are. There-
fore, feature-based collaboration is not only a collaboration of developers on the same
source-code software artifacts, but also a substantial semantic collaboration.



3. Research Questions and
Hypotheses

Our study is based on a study of Qi Xuan and Vladimir Filkov [XF14], which we
replicate under different conditions and using slightly different metrics. In addi-
tion, we extend their research by new ideas and considering three different levels
of abstraction from the source code. In what follows, the study goals and research
hypotheses are extensively expounded.

3.1 Replication of Burst Study of Xuan and Filkov

In their work, Xuan and Filkov [XF14] analyzed whether file-based synchronous
development in open-source software (OSS) projects exists and how synchronous
development is related to coordination via emails. Additionally, they investigate
how code changes in terms of lines of code (LOC) differ between synchronous and
non-synchronous development. They acquired commit data from git1 repositories
of 31 different OSS projects from the Apache Software Foundation, which covered
a time range between the years 2000 and 2012. In addition, they downloaded the
emails from the corresponding developer mailing lists. From the case studies they
analyzed, each case study has at most 72 developers within the analyzed time range,
up to 17,808 emails per case study, and, at most, 14,697 commits per case study.

In contrast, we analyze the synchronous development of a considerably larger OSS
case study, namely QEMU, which had 918 developers in the time interval from
the beginning of April in 2009 to the mid of June in 2016. These developers were
authors of 29,312 commits and wrote 380,958 emails on the corresponding mailing
list. However, due to computational and resource limitations, we just analyze the
346,714 emails which were written by persons which also authored commits to the
source-code repository.

For the burst analyses – both co-commit and email analyses – Xuan and Filkov used
different time windows ξ with 1 ≤ ξ ≤ 10 days. In our replication study, we stick to

1https://git-scm.com/
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their range of time windows and, therefore, we perform our study with time windows
ξ of 1 day, 5 days, and 10 days.

Additionally, we transferred their approach to different levels of abstraction, i.e., we
performed their study on a file-based abstraction of synchronous development, on
function-based synchronous development, and on feature-based synchronous devel-
opment.

3.2 Hypotheses

Mainly, we follow the hypotheses of Xuan and Filkov [XF14] and investigate whether
they also hold for our study and for different levels of abstraction. Hereinafter, we
present their hypotheses, which we take over as our hypotheses in a slightly adapted
way. Notice that we check each of these hypotheses separately for each of our three
different artifact types, namely synchronous development on files, on features, and
on functions.

We aim to apply the same study setup and metrics Xuan and Filkov have used for
their empirical study, to find out whether the hypotheses of Xuan and Filkov and
our hypotheses can be accepted. Unfortunately, we do not have the same raw data
as they had and, therefore, we have to slightly deviate from their approaches. The
methodology we use in this study is precisely described in Chapter 4, our limitations
to this study are reported in Section 4.8.

3.2.1 C-Burst-related Hypotheses

Initially, we check whether synchronous development is a random phenomenon or
not. Otherwise, it would be meaningless to discuss further hypotheses on syn-
chronous development. Therefore, we validate whether the number of bursts per
developer pair is significantly not random, which leads us to our first hypothesis:

Hypothesis 1. Synchronous development occurs significantly more frequently in
OSS projects than by chance.

As an enhancement to the study of Xuan and Filkov, we quantify the parts of
synchronous commits of two developers which were changed by both developers.
Remember that we (as well as Xuan and Filkov) treat commits of two different de-
velopers within a certain time interval as synchronous if there is, at least, one artifact
which was changed by both commits. However, such synchronous commits also can
contain changes on lots of different artifacts which only one developer committed
to. In Chapter 4, we present a metric which quantifies the amount of actual syn-
chronous development for each co-commit burst. We call that metric synchronicity
degree, which is a numeric approach to determine synchronous development, com-
pared to the binary approach of just identifying co-commit bursts. So, we also check
whether the calculated synchronicity degree is random or not, and, thus, formulate
our next hypothesis:

Hypothesis 1a. The synchronicity degree in OSS projects is significantly higher
than by chance.
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Further, Xuan and Filkov investigate how code growth and the effort of program-
ming behave within synchronous development. Therefore, they use the number of
lines of code (LOC) which are changed within synchronous commits. Thereto, they
determine the number of added lines ∆add and the number of deleted lines ∆delete per
commit and designed the following metrics to quantify the code growth and effort
per commit:

Code growth: ∆L = ∆add −∆delete (3.1)

Code effort: ∆W = ∆add + ∆delete (3.2)

Using these metrics, they expect that the code growth is higher in synchronous
development than in non-synchronous development, but the code effort is lower in
synchronous development than in non-synchronous one.

Hypothesis 2. OSS projects grow more in change of LOC per commit if developers
participate in synchronous development. In addition, in synchronous development
the effort in deleted plus added lines per commit is lower than in non-synchronous
development.

Since synchronous development is assumed to be more effective, it is hypothesized
that due to collaboration between two developers not as many lines need to be
deleted than in non-synchronous development.

Hypothesis 3<. The number of deleted lines per commit is smaller within co-
commit bursts than outside co-commit bursts.

In the case that this hypothesis of Xuan and Filkov will not be accepted, we will check
whether the number of deleted lines is even higher in synchronous development:

Hypothesis 3>. The number of deleted lines per commit is larger within co-commit
bursts than outside co-commit bursts.

3.2.2 E-Burst-related Hypotheses

To coordinate their collaboration, developers need to communicate with each other.
Often they use emails to align their development. Xuan et al. already showed
that communication and commit activities are related to each other [XGDF12].
Hence, we expect that synchronous development comes along with synchronous email
communication.

Hypothesis 4. More co-commit bursts are accompanied with more email bursts.

Xuan and Filkov further investigate the association between co-commit bursts and
email bursts and, therefore, argue:

Hypothesis 5. Email bursts and synchronous development are positively coupled.
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3.2.3 Comparative Hypotheses

As a further enhancement to the study of Xuan and Filkov, we compare the dif-
ferences of synchronous development based on our three different artifact types,
namely files, features and functions. Since features are semantic units, we assume
that feature-based synchronous development is significantly more distinct than file-
based synchronous development. Moreover, we hypothesize that function-based
synchronous development occurs less frequently than file-based and feature-based
synchronous development since functions can be very small parts of the source code
and synchronous changes to the same functions by different developers are not that
effective as collaboration on bigger parts of software units is. One reason for that
is that in a commit often more than one function is changed and hence the syn-
chronicity of synchronous development on functions is less than on semantic units
like features.

To investigate whether our assumptions on the relationship between file-based,
feature-based, and function-based synchronous development are right, we compare
the outcomes of the Hypotheses 1 to 5 of the three different artifact-type-based
analyses to each other. Each of the following hypotheses refers to one hypothesis of
the above ones.

Hypothesis 6.1 (refers to Hypothesis 1). Synchronous development on features
occurs significantly more frequently than synchronous development on files and syn-
chronous development on functions.

Hypothesis 6.1a (refers to Hypothesis 1a). The synchronicity degree of synchronous
development on features is significantly higher than the synchronicity degree of syn-
chronous development on files or on functions.

Hypothesis 6.2 (refers to Hypothesis 2). The code growth per commit is signifi-
cantly higher in synchronous development on features than in synchronous develop-
ment on files or on functions. In addition, the code effort in terms of added and
deleted LOC is significantly smaller on features than on files or functions.

Hypothesis 6.3< (refers to Hypothesis 3<). The number of deleted lines per commit
within co-commit bursts on features is significantly smaller than within co-commit
bursts on files or on functions.

Hypothesis 6.3> (refers to Hypothesis 3>). The number of deleted lines per commit
within co-commit bursts on features is significantly greater than within co-commit
bursts on files or on functions.

Hypothesis 6.4 (refers to Hypothesis 4). The effect ”More co-commit bursts are
accompanied with more email bursts” is stronger on feature-based synchronous de-
velopment than on file-based or function-based synchronous development.

Hypothesis 6.5 (refers to Hypothesis 5). Email bursts and synchronous develop-
ment on features are stronger positively coupled than email bursts and file-based or
function-based synchronous development.



4. Methodology and
Implementation

To determine synchronous development in open-source software (OSS) projects and
to analyze the identified co-commit bursts and email bursts, we use the following
methodology. After gathering the required commit and email data, we use the
statistical programming language R1 to determine coordination bursts and analyze
them.

Firstly, we present our subject system QEMU. Secondly, we describe how we gather
our commit and email data. Thereafter, we explain the procedure of identifying
bursts, our null models, and our metrics to check our hypotheses. Finally, we deal
with the limitations to our study.

4.1 Subject System: QEMU

We analyze QEMU2, short for Quick Emulator, which is an open-source virtual-
machine emulator which uses dynamic translation to virtualize hardware, i.e, it
allows to run software made for a specific hardware on a machine with another
hardware.

QEMU is developed in the programming language C, features are implemented by
using C preprocessor directives. For the development of QEMU, there exists a Git
repository3 where the source code is managed. In addition, a developer mailing
list exists, which can be downloaded from the Gmane mailing list archive4 as well.
Since QEMU is an OSS project, everyone can contribute to the software project.
Nevertheless, QEMU has a policy5 which forces developers to send patches, which
can contain bug fixes or newly implemented features, to the developer mailing list.

1http://www.r-project.org/
2http://qemu.org/
3http://git.qemu.org/
4http://dir.gmane.org/gmane.comp.emulators.qemu/
5http://wiki.qemu.org/Contribute/SubmitAPatch/
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Moreover, every patch-commit has to follow a certain coding style and has to com-
prise a meaningful commit message.

Between 2009-04-02 and 2016-06-15, 918 different developers contributed to the
source code of QEMU and added 29,312 commits. Within the same time span,
the corresponding mailing list collected 380,958 emails, 346,714 of them written by
developers which also contributed to the source code.

4.2 Extraction of Commit and Email Data using

Codeface

At the beginning, we gather the commit and email data for the QEMU OSS project.
To get data about the commits of the project, we use the publicly available data of
the git repository hosted on GitHub6. All software projects stored there use the
version-control system git7, which makes it possible for us to extract the relevant
commit data. For the extraction, we use the framework Codeface8, which analyzes
social and technical aspects of development in software projects based on the version
history of a git project. Codeface allows us to gather information on files, features
and functions within the software. Internally, Codeface uses the tool cppstats
[LAL+10] to determine which code belongs to which feature, based on preprocessor
directives. Using Codeface, we are able to extract the meta data of all commits
of a software project [JMA+15]. As given in Table 4.1, commit meta data contains
information on the author of a commit, the date at which the author had finished
the commit, the number of added and deleted lines as well as the changed artifacts
(files, features, functions), together with the number of added lines per artifact.

Besides the commit data, we also need to gather data about the emails sent corre-
sponding to the development of the OSS project. Therefore, we downloaded emails

Table 4.1: Commit meta-data which we extract from the git repository.

meta-data extracted from each commit

author
author date

number of added lines
number of deleted lines

changed artifacts
number of added lines per artifact

Table 4.2: Email meta-data which we extract from the mailing list archive.

meta-data extracted from each email

author
creation date

6https://github.com/qemu/qemu/
7https://git-scm.com/
8https://siemens.github.io/codeface/
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from a publicly available developer mailing list corresponding to the project to ana-
lyze. In particular, we get the emails from the mailing list archive Gmane9. Then,
we also use the framework Codeface to extract data out of the email headers,
namely the date an email was created on as well as the author of an email, as stated
in Table 4.2.

Nevertheless, authors often use different names and several email addresses, which
makes it hard to map emails with different names and addresses of the sender to one
real person. Codeface first tries to assign emails to a certain author by matching
names, which was developed by Oliva et al. [OSdO+12]. If names of authors do not
match, Codeface proceeds with matching email addresses. According to Wiese et
al., the heuristic of Oliva et al. to disambiguate the authors of emails provides good
results compared to other email disambiguation heuristics [WTdSS+16].

Since Codeface stores the outcome of its analyses in a database on a remote
machine, we deploy an extension10 to Codeface to extract the data relevant for
our study from the database. So, we are machine independent in the end.

4.3 Identification of Bursts

After gathering the required meta-data of commits and emails, the identification of
coordination bursts can begin. In our study, we performed three different burst iden-
tifications with different time windows on each of the three artifact-based analyses.
We consider time windows ξ of 1 day, 5 days, and 10 days. To identify coordination
bursts, we exactly follow the algorithm developed by Xuan and Filkov [XF14].

Co-commit bursts are a set of commit activities of a pair of developers within a cer-
tain time interval ξ, in which both developers change, at least, one artifact together.
Therefore, we determine the C-bursts for each pair of developers. (1) So, for each
pair of developers A and B, we check in a first step if they have artifacts which
they both commit to at any time.11 If A and B never changed the same artifact,
it is pointless to search for co-commit bursts. (2) In the case that they both have,
at least, one changed artifact in common, we iterate over all commits of developer
A and compare each commit of A to all commits of developer B which have an
absolute time difference to the considered commit of developer A of at most ξ. So,
it does not matter whether the commit of A was finished before the commit of B or
the other way round. (3) In the next step, we check whether the identified commits
of B within a time window of ξ to the considered commit of A change, at least, one
artifact which also is changed in the considered commit of A. (4) If so, we deter-
mine a burst consisting of one commit of A and all the commits of B that co-change,
at least, one artifact changed by the commit of A within the chosen time window.
(5) As a final step, we merge overlapping bursts of the same developer pair, i.e., we
check whether the newly identified burst starts before another burst has ended or
ends after another burst has started. In that case, we combine the two bursts and

9http://dir.gmane.org/gmane.comp.emulators.qemu/
10https://github.com/clhunsen/codeface-extraction/
11In the file-based analysis, we check if they both commit to any file. In the feature-based

analysis, we only look for features they both commit to, and in the function-based analysis we
search for functions they have changed both.
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get one burst with a longer time interval. (6) In addition, we also determine the
occurrence time of each burst, which is just the mean of start time and end time.
In the end, for each pair of developers we have a separate list of co-commit bursts
where each burst is represented by its starting, ending, and occurrence time.

For determining email bursts, almost the same approach as for co-commit bursts
is used: (1) For each pair of authors A and B, we iterative over all the emails
created by author A and search for all emails of author B whose creation date has
an absolute time difference of less or equal ξ to the considered mail of A. Here, we
have no further conditions to check, so all detected emails within the time window
form an email burst. (2) We also merge overlapping email bursts of the same pair
of authors in the same way as we merge overlapping co-commit bursts. (3) Finally,
for each pair of developers we get a separate list of email bursts where each burst is
represented by its starting, ending, and occurrence time.

4.4 Synchronicity Degree

The above introduced methodology to identify synchronous development is kind of
superficial because it does not consider how big the overlap between two commits of
two developers actually is. As an enhancement to the work of Xuan and Filkov, we
quantify the synchronicity of all the commits within a co-commit burst. Thus, we
developed a metric, called synchronicity degree, which measures the overlap based
on the number of lines of code (LOC) each of the two developers adds to several
artifacts of the commits within a co-commit burst.

We calculate the synchronicity degree for each co-commit burst. Since every burst
refers to a pair of developers, the synchronicity degree determines the degree of
synchronicity between the two developers within a burst.

Let x denote a certain burst of the developer pair consisting of developers A and B.
With that, we define the synchronicity degree degsync:

degsync(x) = 2

√
added(A, syncArtifacts(x))

added(A, x)
· added(B, syncArtifacts(x))

added(B, x)
(4.1)

where

added(A, x) returns the amount of lines added by developer A within

co-commit burst x,

syncArtifacts(x) = changedArtifacts(x,A) ∩ changedArtifacts(x,B)

with

changedArtifacts(x,A) returning all the artifacts which are changed

by developer A in co-commit burst x.

In other words, to determine the synchronicity degree of a co-commit burst, we
calculate the geometric mean over a product consisting of two factors where each
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factor refers to one of the two developers forming the burst. Each of the factors is
the fraction of the number of added lines to synchronous artifacts over the number
of added lines to all artifacts made by the single developer the factor refers to.
To compute the synchronicity degree, we do not look at single commits within
bursts, but we gather the changed artifacts and the added lines of all commits of
one developer within the considered burst.

The geometric mean is used here since higher values get not that much weight
compared to the arithmetic mean. That is the effect we need since we want the
synchronicity degree to be lower if one developer adds a lot more lines within a
burst than the other one.

We explain some characteristics of our synchronicity degree on three examples given
in Table 4.3, Table 4.4 and Table 4.5. The first example, stated in Table 4.3,
considers a co-commit burst of the developers A and B which contains changes
to four different artifacts. However, there are only synchronous changes on two
artifacts, namely Artifact 2 and Artifact 3, whereas Artifact 1 was only changed
by developer A and Artifact 4 only be developer B. So, one may assume that the
synchronicity degree may be 0.5 since half of the changed artifacts get synchronously
changed. If one considers the number of lines which were added to each of the
artifacts, one can see that developer A only adds 20 lines to the synchronously
changed artifacts, whereas developer B adds 8,000 lines to them. That gives one the
idea to directly compare the 20 lines to the 8,000 lines based on the arithmetic mean,
which would result in a very low degree of synchronicity. However, this idea does
not contemplate that developer B adds a lot more lines to all changed artifacts than
developer A does. Therefore, we look at the fraction of what each developer adds
to the synchronous artifacts compared to the additions to all her changed artifacts,
and then use the geometric mean to reduce the weight of higher fractions, which
results in our definition of synchronicity degree in Equation 4.1. So, in the example
in Table 4.3 the synchronicity degree is computed as follows:

degsync(c1) = 2

√
added(A, syncArtifacts(c1))

added(A, c1)
· added(B, syncArtifacts(c1))

added(B, c1)

= 2

√
10 + 10

100 + 10 + 10
· 4000 + 6000

4000 + 6000 + 1000
(4.2)

≈ 0.39

To also show some other scenarios, in Table 4.4 we depict a C-burst in which the
two developers change one of three artifacts synchronously and every developer adds
the equal amount of lines to each artifact, which results in a synchronicity degree of

deg sync(c2) = 2

√
10
20
· 10

20
= 0.50.

Lastly, in Table 4.5 we provide an example where developer B completely dom-
inates the co-commit burst in terms of added lines, but only added few lines to
the synchronous artifacts and therefore the synchronicity degree approximately is

deg sync(c3) = 2

√
10
15
· 10

2010
≈ 0.06.
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Table 4.3: Example for a C-burst, named c1, of the developers A and B, having
low synchronicity degree though both are contributing to almost the same artifacts,
where developer B changes much more lines within the burst than developer A.

Developer Artifact Added LOC Synchronicity Degree

Artifact 1 100
A Artifact 2 10

Artifact 3 10
0.39

Artifact 2 4,000
B Artifact 3 6,000

Artifact 4 1,000

Table 4.4: Example for a C-burst, named c2, of the developers A and B where both
developers change the same amount of lines and also change the same amount on
the synchronously changed artifact.

Developer Artifact Added LOC Synchronicity Degree

A Artifact 1 10
Artifact 2 10

0.50
B Artifact 2 10

Artifact 3 10

Table 4.5: Example for a C-burst, named c3, of the developers A and B, having very
low synchronicity degree though both are contributing the same amount of LOC to
the synchronously changed artifact.

Developer Artifact Added LOC Synchronicity Degree

A Artifact 1 5
Artifact 2 10

0.06
B Artifact 2 10

Artifact 3 2,000
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4.5 Null Models

In the previous sections, we denoted how we identify bursts and how we quantify
the synchronicity of co-commit bursts. Nevertheless, we do not know whether the
results are statistically significant. To ascertain that our identified bursts and their
synchronicity do not appear randomly, we build null models. We stick to the null
models illustrated by Xuan and Filkov [XF14].

a1 a2 a3 a4 a5 an−2 an−1 an

a1 a2 a3 a4 a5 an−2 an−1 an

∆1 ∆2 ∆3 ∆4 ∆n−2 ∆n−1

Figure 4.1: Randomization of commit time series. Adapted from [XGDF12].

First, we generate a null model for the commit time series. Therefore, we random-
ize the time intervals between two successive commits for each developer by just
transposing the order of the intervals. Thus, the distribution of the time intervals
stays the same as well as the order and the changed artifacts of the commits of each
developer [XGDF12, XF14]. To randomize the time intervals, we use the sample

function of the base package of R without replacement. In Figure 4.1, we exemplar-
ily perform a randomization for commit activities a1, . . . , an of a single developer by
transposing the intervals ∆1, ...,∆n−1 between two successive commits.

Based on the randomized time series of the commits of each developer, the co-commit
bursts on the randomized time series, which are called simulated C-bursts [XF14],
are determined as described in Section 4.3.

To check Hypothesis 1 stating that the real C-bursts are not generated by chance,
we compare the real C-bursts to the simulated ones. For the null model, we gen-
erate fifty different simulations. On that point, we count the number of C-bursts
per developer pair for real and all simulated C-bursts and use a paired t-test to
statistically compare the real number of bursts per developer pair and the median
of the number of bursts per developer pair for the simulations. We use Cohen’s d
[Coh88] as an effect size to measure the magnitude of the differences.

Besides the null model for the commit time series, also a null model for the email
communication is necessary to avoid that the identified email bursts just appeared
by chance. Hereto, we use almost the same approach as for null model of the commit
time series. In contrast, we do not randomize the time intervals between the emails of
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each author, but the time intervals between successive emails of each pair of authors
to keep the order of emails sent by two different authors. So, each pair of authors
has its own simulated email-time series. Among them, the simulated E-bursts are
determined as described in Section 4.3.

The email null model is used to check whether a noticed correlation between C-bursts
and E-bursts does not appear randomly. This is the topic of Section 4.7.

4.6 Code-Growth and Code-Effort Metrics

Analyzing synchronous development comprises to investigate whether there is a sig-
nificant difference between the code growth in synchronous and non-synchronous
development. Additionally, it is assumed that the effort in synchronous develop-
ment is significantly smaller than in non-synchronous development.

To examine Hypothesis 2 and Hypothesis 3, Xuan and Filkov [XF14] established
some metrics, which we also use for our study.

The two basic metrics are the number of added (Ladd) and deleted (Ldelete) lines per
commit. In our study, we use Codeface to extract the meta data for each commit.
That already gives us the information how many lines were added and how many
lines were deleted within a commit.

However, Codeface provides only the number of added lines per artifact (file,
feature, function), but not the deleted lines per artifact. Since we do not consider
changes on header files within our analyses, we have to subtract the added lines
to the header files from the added lines of the whole commit. This also holds for
the base-feature lines within the feature-based analysis as well as for the file-level
lines within function-based analysis. Moreover, we also should subtract the number
deleted lines of those files from the overall number deleted lines of a commit, but
this is not possible for us since Codeface does not tell us the number of deleted
lines on artifact level. Thus, we develop heuristics which aim to mitigate the issue.
We assume that lots of changes to the header files (resp. base feature, file level)
are just changes, i.e., there are as many added lines as deleted lines in a commit on
these files. Besides these changes, we also assume that there are more commits that
just add new functionality than commits deleting it. Hence, we estimate that the
number of deleted lines on the disregarded artifacts is half as high as the number of
added lines to these artifacts, which leads to the following equation:

Ldelete(disregardedArtifact) = 0.5 · Ladd(disregardedArtifact) (4.3)

To quantify the code growth and effort in terms of lines of code (LOC), Xuan and
Filkov defined the following metrics [XF14]:

Code growth: ∆L = Ladd − Ldelete (4.4)

Code effort: ∆W = Ladd + Ldelete (4.5)

All the metrics Ladd , Ldelete ,∆L, and ∆W are determined per commit.

The comparison of synchronous to non-synchronous development presumes that we
categorize which commits are synchronous and which not. In our study, we consider
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a commit to be synchronous if there is, at least, one burst for any of the developer
pairs which the commit is part of. That is to say, a commit is treated as synchronous
if there is, at least, one artifact in the commit that is synchronously changed by
another commit of another developer. Each commit which does not contain such
synchronously changed artifacts is considered to be non-synchronous.

Lastly, we use a statistical t-test to compare added lines, deleted lines, code growth,
and code effort of synchronous commits to the regarding metrics of non-synchronous
commits.

4.7 Correlation between C-Bursts and E-Bursts
To investigate whether the occurrences of co-commit bursts and email bursts are
related, we again use the methodology presented by Xuan and Filkov [XF14]. In
Hypothesis 4, we assume that more C-bursts are accompanied with more E-bursts.
To check this hypothesis, we perform a correlation test, using Pearson correlation
coefficient [CP91], for the numbers of C-bursts and E-bursts per pair of developers.
In addition, we fit a linear model with parameters α and β between the number
of C-bursts, denoted by NC , and the corresponding number of E-bursts, denoted
by NE:

NC = αNE + β (4.6)

Furthermore, we additionally check Hypothesis 5, saying that email bursts and co-
commit bursts are positively timely correlated, using the Pearson correlation co-
efficient. Therefore, we only consider developer pairs which have more than five
C-bursts and more than five E-bursts, according to the study of Xuan and Filkov.
For each pair of developers fulfilling the above preconditions, we perform the follow-
ing steps to get the curves and calculate the correlation coefficient:

(1) First, let ΓC be the set of C-bursts of the current pair and ΓE be the set of E-
bursts of the current pair. Let L denote the day on which the first burst in ΓC ∪ΓE

begins and let U denote the day on which the last burst in ΓC ∪ ΓE ends. So, let T
be a series of time stamps, more precisely days, beginning at L and ending at U .
(2) For each C-burst of the considered pair, we count the commit activities which
form the burst of both developers together for each day within the burst. So, for each
day t ∈ T , we get the corresponding number of commit activities of the considered
burst. We perform the same step also for E-bursts by counting the emails of the
considered developer pair per day within the considered burst. Hence, for each C-
burst of the current developer pair we have a time series xC containing the amount
of commit activities of the analyzed burst per day t ∈ T , and also for each E-burst
we have a time series xE containing the amount of email activities of the analyzed
burst per day t ∈ T .
(3) Afterwards, we combine all C-bursts of one developer pair to a C-curve ϕC , and
we also sum all E-bursts of the developer pair to get an E-curve ϕE as follows:

ϕC(t) =
∑

xC∈ΓC

xC(t) (4.7)

ϕE(t) =
∑

xE∈ΓE

xE(t) (4.8)
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(4) Finally, we use the determined curves to calculate the Pearson correlation coef-
ficient of the currently considered developer pair, which Xuan and Filkov defined as
follows:

R =

∫ U

L
ϕC(t)ϕE(t) dt√∫ U

L
[ϕC(t)]2dt

√∫ U

L
[ϕE(t)]2dt

(4.9)

In our implementation, we compute the integrals by the sum of the function values
of the integrand. In the end, we have calculated R for each pair of developers having
more than five C-bursts and more than five E-bursts.

To be sure that the determined correlation between co-commit bursts and email
bursts appears not by chance, we use our null model for email time series, which
we already have described in Section 4.5. Thus, we detect the email bursts on our
simulated email time series and compute the corresponding E-curves for the simu-
lation. Hence, for each pair of developers, we calculate the correlation coefficient R
between real C-curves and real E-curves as well as between real C-curves and sim-
ulated E-curves. In both cases, we just consider developer pairs having more than
five C-bursts and more than five E-bursts. Afterwards, we use a Mann-Whitney
U test (we cannot use a t-test due to the reduced amount of considered developer
pairs here) to compare real and simulated correlation coefficients. For measuring
the effect size of the correlation, we use Cliff’s Delta [Cli96] here to measure the
magnitude of the differences. Hypothesis 5 will be accepted if the correlation coef-
ficients using the real email time series are significantly higher than the correlation
coefficients on the simulated email data.

4.8 Limitations and Differences to the Original

Study

Our above denoted methodology deviates from the one stated by Xuan and Filkov
[XF14] since we had to deal with some technical limitations. Therefore, in this
section, we will shortly summarize our restraints and differences to the replicated
study.

First of all, we analyze the QEMU OSS project, which has a comparably larger
number of developers and emails than the projects Xuan and Filkov have analyzed.
Since our amount of emails to handle (380,958) is much higher than theirs (73,965
added up for their six investigated case studies), it is not feasible for us to analyze
all of them. Therefore, we decided to only consider emails which were written by an
author which is also an author of a commit.

To generate their null model, Xuan and Filkov used 100 simulations of commit bursts
and also 100 simulations of email bursts. Due to the above reasons, we were only
able to generate 50 simulations for the commit time series and one simulation for
the email time series, which limits the validity of our null-model, at least, for the
email-burst analysis.

Since commit activities and email communication activities may not take place at
exactly the same time and, therefore, may happen slightly deferred, the original
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authors use Gaussian smoothing to slightly level the appearance of co-commit and
email bursts. Due to the lack of time, we postpone the smoothing to future work.
Instead, we compare the C-curves and E-curves without any smoothing or normal-
ization.

Another limitation is the correctness of the code-growth and code-effort metrics,
which depend on the number of deleted lines per artifacts which we do not consider,
such as header files. Since the framework Codeface does not provide the deleted
lines on artifact level, we use an heuristic to estimate the deleted lines of not-
considered artifacts, which distorts the outcome of the regarding metrics. Due to
the large number of commits of QEMU (29,312), it is not feasible to extract the
number of deleted lines on each artifact within each commit. For the same reason,
we cannot determine added and deleted lines for synchronous and non-synchronous
commits as Xuan and Filkov do because we only know these values on the commit
level but not on artifact level within commits and, therefore, we always analyze the
whole commit en bloc.

Furthermore, the original authors use a different algorithm to disambiguate the
authors of emails. Xuan and Filkov use the email disambiguation algorithm of Bird
et al. [BGD+06], which uses a similarity metric between pairs of email addresses
and names and links pairs where the result of the similarity metric is under a certain
threshold. In contrast, Codeface uses the email disambiguation heuristic of Oliva
et al. [OSdO+12], which groups email addresses if the names of the senders are equal.
According to Wiese et al. [WTdSS+16], both heuristics show good results compared
to other heuristics. However, the heuristic of Bird et al. is more influenced by the
number of analyzed emails and authors than the heuristic of Oliva et al., which we
use in our study.
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5. Results and Discussion

In this chapter, we provide some data on the determined coordination bursts in
QEMU, which we gathered during our analyses. Thereafter, we present the statis-
tical results needed to accept or reject our hypotheses from Chapter 3. Afterwards,
we discuss our results and also denote the threats to validity of our study.

5.1 Results
We analyze the commit and email data of the open-source software (OSS) project
QEMU within the time interval from the start of April in 2009 (2009-04-02) to the
mid of June in 2016 (2016-06-15). To determine synchronous development, we use
the official mirror of the software repository on GitHub1. For the analysis of the
devolpers’ coordination via email, we have downloaded email data from the mailing-
list archive Gmane2. In this section, we just provide the general results of our study
and the results regarding our hypotheses.

5.1.1 General Results

General Results regarding the Number of Developers

Before checking our hypotheses, we obtain some general results regarding the iden-
tified C-bursts and E-bursts. Overall, in our file-based approach, we analyze the
commits of 918 different developers, which results in 842,724 distinct pairs of devel-
opers. Within the feature-based analysis, we consider only 461 developers since the
remaining 457 developers only contribute to the base feature, which we completely
disregard in the feature-based analysis. Ultimately, due to disregarding file-level
changes in the function-based analysis, we analyze 874 developers committing to
functions.

General Results regarding C-Bursts

In Table 5.1, we present statistics such as the length or the synchronicity degree for
the determined C-bursts of the 1-day time window. Analyzing the implementation

1https://github.com/qemu/qemu/
2http://dir.gmane.org/gmane.comp.emulators.qemu/
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Table 5.1: General data on the identified C-bursts of QEMU for a time window of
1 day.

Files Features Functions

#Developers 918 461 874
#Developer Pairs 420,903 106,030 381,501

#Bursts overall 1,755 765 819

min 0.00 0.00 0.00
#C-Bursts per Pair median 0.00 0.00 0.00

mean 0.00 0.01 0.00
max 15.00 9.00 9.00

min 0.00 0.00 0.00
Length of C-Bursts median 0.28 0.47 0.27

(in days) mean 0.39 0.49 0.36
max 1.96 1.98 1.26

min 0.00 0.01 0.00
Synchronicity Degree median 0.30 0.50 0.12

mean 0.42 0.58 0.22
max 1.00 1.00 1.00

Table 5.2: General data on the identified C-bursts of QEMU for a time window of
5 days.

Files Features Functions

#Developers 918 461 874
#Developer Pairs 420,903 106,030 381,501

#Bursts overall 4,644 2,281 2,182

min 0.00 0.00 0.00
#C-Bursts per Pair median 0.00 0.00 0.00

mean 0.01 0.02 0.01
max 28.00 23.00 14.00

min 0.00 0.00 0.00
Length of C-Bursts median 2.41 2.69 2.18

(in days) mean 2.63 2.79 2.39
max 19.35 13.51 13.53

min 0.00 0.00 0.00
Synchronicity Degree median 0.20 0.50 0.08

mean 0.32 0.53 0.17
max 1.00 1.00 1.00
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Table 5.3: General data on the identified C-bursts of QEMU for a time window of
10 days.

Files Features Functions

#Developers 918 461 874
#Developer Pairs 420,903 106,030 381,501

#Bursts overall 7,261 3,721 3,604

min 0.00 0.00 0.00
#C-Bursts per Pair median 0.00 0.00 0.00

mean 0.02 0.04 0.01
max 35.00 22.00 21.00

min 0.00 0.00 0.00
Length of C-Bursts median 6.14 6.56 5.76

(in days) mean 6.27 6.58 5.61
max 82.47 54.79 30.87

min 0.00 0.00 0.00
Synchronicity Degree median 0.15 0.49 0.06

mean 0.28 0.50 0.14
max 1.00 1.00 1.00

files of QEMU, we identify 1,755 bursts for all pairs of developers. At maximum,
there are 15 C-bursts per pair of developers, but most of the pairs have few or
no C-bursts as the median of zero bursts per developer pair denotes. A file-based
C-burst has a length of 0 up to 1.96 days. The median synchronicity degree is
0.42. In fact, there are bursts which have a synchronicity degree of 1, as well as
bursts, which have a synchronicity degree of almost 0. Performing the feature-based
analysis, we find a number of 765 C-bursts overall. A single pair of developers has
up to 9 bursts and a synchronicity degree of 0.58 on average. Within the function-
based analysis, we identify 819 C-bursts having a maximal length of 1.26 days with
a median synchronicity of 0.22.

For the time window of 5 days we get similar results, given in Table 5.2. In difference
to the 1-day time window, we get a higher number of bursts, namely 4,644 bursts
for the file-based analysis, 2,281 for the feature-base one, and 2,182 for the function-
based one. In addition, the length of C-bursts also is higher due to the larger time
window.

In Table 5.3, we show the general results of the C-bursts using a time window
of 10 days. Here, we determine 7,261 bursts on file-based collaboration, 3,721 on
feature-based collaboration, and 3,604 on function-based collaboration. Within the
time window of 10 days, a developer pair causes up to 35 C-bursts with a length up
to 82.47 days for file-based bursts, up to 54.79 for feature-based bursts, and up to
30.87 days for function-based bursts.
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Table 5.4: General data on the identified E-bursts of QEMU for the time windows
of 1 day, 5 days and 10 days.

Time window 1 day 5 days 10 days

#Email authors (only authors of commits) 883 883 883
#Author Pairs (only authors of commits) 389,403 389,403 389,403

# Bursts overall 910,712 689,859 564,849

min 0 0 0
#E-Bursts per Pair median 0 0 0

mean 2.34 1.77 1.45
max 418 118 57

min 0.00 0.00 0.00
Length of E-Bursts median 0.99 6.37 14.79

(in days) mean 1.25 9.02 20.82
max 52.30 1,764.13 2,216.71

General Results regarding E-Bursts

In our email-burst analysis, we considered 883 different authors of emails, which also
contributed to the source code as authors of commits. Thus, we analyzed 389,403
pairs of authors. The number of identified E-bursts is higher than the number of
identified C-bursts, as depicted in Table 5.4. We determined 910,712 E-bursts for
the 1-day time window respectively 689,859 for the 5-days time window, and 564,849
for the 10 days time window. In difference to the number of C-bursts, the number
of E-bursts decreases as the time window increases. The reason for that is that
increasing the time window often combines several smaller bursts. Contrary to the
number of bursts, the length of E-bursts increases as the time window increases.
Hence, the median length of an E-burst is 0.99 days for the 1-day time window,
6.37 days for the 5-days time window and 14.79 for the 10 days time window. An
interesting fact is that there also exist E-bursts which last about five years or even
more, namely 1,764.13 days for the 5-days time window or 2,216.71 days for the 10-
days time window. Usually, pairs of developers taking part in such lengthy E-bursts
belong to the lead developers of QEMU because they write emails to the mailing
list, at least, every 5 days respectively 10 days for several years.

5.1.2 C-Burst-related Hypotheses

In our first hypothesis we state that synchronous development does not appear
randomly. We use a paired t-test to compare the number of C-bursts per pair of
developers of real and simulated C-bursts and estimate that the real number of
bursts is larger than the simulated one. The result of the t-test is given in Table 5.5.
For all three time windows ξ of 1 day, 5 days and 10 days we obtain that C-bursts
based on files, features, or functions do significantly appear more frequently than
by chance because the p-value is smaller than 0.05. However, the Cohen’s d effect
size between 0.02 and 0.04 is comparably small. This means that the mean of the
differences between the number of real C-bursts and the number of simulated C-
bursts per developer pair is small. Nevertheless, this is caused by the huge number
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Table 5.5: Paired t-tests in the differences of the number of bursts per developer pair
between real and simulated C-bursts for the different analyses and time windows.

ξ mean of differences t df p-value Cohen’s d

1 0.003 24.67 420,900 < 0.05 0.04
files 5 0.005 25.50 420,900 < 0.05 0.04

10 0.006 26.72 420,900 < 0.05 0.04

1 0.005 10.89 106,030 < 0.05 0.03
features 5 0.008 8.00 106,030 < 0.05 0.02

10 0.010 7.46 106,030 < 0.05 0.02

1 0.002 17.35 381,500 < 0.05 0.03
functions 5 0.003 14.23 381,500 < 0.05 0.02

10 0.004 12.89 381,500 < 0.05 0.02

of pairs of developers which has no C-bursts. Therefore, we accept Hypothesis 1.
Hypothesis 1: Accepted.

Besides the number of bursts per pair of developers, we also check whether the deter-
mined synchronicity degrees are significantly higher than the synchronicity degrees
of our simulations. Hereto, the conducted unpaired t-tests show that this is true for
all time windows and for all levels of abstraction, which can be seen in the p-values
in Table 5.6. Comparing real and simulated synchronicity degrees results in an ef-
fect size d between 0.18 and 0.39, which is comparably high compared to the effect
size of comparing the number of real and simulated C-bursts per pair of developers.
So, the differences between real and simulated synchronicity degrees are effectively
higher than the differences between the number of real and simulated C-bursts per
developer pair. In Figure 5.1 we depict the related box-and-whisker diagrams, show-
ing that the synchronicity degree always is higher for the real C-bursts than for the
simulated ones. Recapitulating, we accept Hypothesis 1a.

Hypothesis 1a: Accepted.

Since we know from the previous results that the determined synchronous devel-
opment is not random, we further investigate in the code growth in synchronous
development. We hypothesize that the code growth in terms of lines of code is
higher in synchronous development than in non-synchronous development, whereas
the code effort is lower in synchronous development than in non-synchronous devel-
opment. Using a 1-day time window, we identified 5,493 commits as synchronous
and 23,819 as non-synchronous in our file-based analysis, as given in Table 5.7.
According to our performed unpaired t-test, denoted in Table 5.8, the number of
added lines on files is significantly higher in synchronous development than in non-
synchronous development since the p-values are smaller than 0.05. The same holds
for the time window of 5 days, where we found 11,584 synchronous and 17,764
non-synchronous commits. Also for a 10-days time window, the number of added
lines in synchronous development (15,980 commits) significantly exceeds the num-
ber of added lines in non-synchronous development (13,332 commits), as depicted in
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Table 5.6: T-tests of the differences in the synchronicity degrees between real and
simulated C-bursts for the different analyses and time windows.

ξ avg. real avg. simulated t df p-value Cohen’s d

1 0.42 0.30 19.56 3,661.60 < 0.05 0.39
files 5 0.32 0.25 19.57 9,583.00 < 0.05 0.24

10 0.28 0.23 20.24 14,979.00 < 0.05 0.20

1 0.58 0.55 3.95 1,594.00 < 0.05 0.10
features 5 0.53 0.51 3.77 4,719.40 < 0.05 0.06

10 0.50 0.48 5.67 7,704.70 < 0.05 0.07

1 0.22 0.15 11.01 1,707.70 < 0.05 0.35
functions 5 0.17 0.13 12.71 4,483.60 < 0.05 0.25

10 0.14 0.11 12.31 7,409.20 < 0.05 0.18

Table 5.7: Numbers of synchronous and non-synchronous commits for the different
time windows and analysis types.

ξ # synchronous commits # non-synchronous commits

1 5,493 23,819
files 5 11,548 17,764

10 15,980 13,332

1 1,758 4,082
features 5 3,315 2,525

10 3,927 1,913

1 2,177 24,387
functions 5 4,445 22,119

10 6,501 20,063

Figure 5.2 (a). In Figure 5.2 (b), we depict the comparison of the number of added
lines within synchronous and non-synchronous commits for the feature-based anal-
ysis, where also the number of added lines per synchronous commit is higher than
for non-synchronous commits. Nevertheless, the p-values of the performed t-tests
(cf. Table 5.8) state that this difference is significant for feature-based analysis with
1-day time window, but not for the feature-based analysis with a time window of
5 or 10 days. Furthermore, in Table 5.8 we see that the the number of added lines
(Ladd) is significantly higher for synchronous development than for non-synchronous
development, which also can be seen in Figure 5.2 (c).

Besides the number of added lines, in Hypothesis 2 we also consider the code-growth
and code-effort metrics. In Figure 5.3, we show the results of the code-growth metric
∆L for all artifact types and all time windows. Based on these plots, the code growth
in synchronous development seems to be larger than in non-synchronous develop-
ment. Nonetheless, these differences are not significant since most of the p-values
of the t-test comparing the code growth per commit in synchronous development
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Figure 5.1: Box-and-whisker diagrams (without outliers) of the synchronicity degree
of the real C-bursts and the simulated C-bursts for the (a) file-based, (b) feature-
based, and (c) function-based analysis for the different time windows.
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Figure 5.2: Box-and-whisker diagrams (without outliers) of the number of added
lines per commit (Ladd) within synchronous and non-synchronous commits for the
(a) file-based, (b) feature-based, and (c) function-based analysis for the different
time windows.
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Table 5.8: T-tests of the differences of the number of added lines in synchronous
development and in non-synchronous development for the different analyses and
time windows.

ξ avg. sync. avg. non-sync. t df p-value Cohen’s d

1 40.67 37.13 1.66 13,797.00 < 0.05 0.02
files 5 36.44 38.67 -1.09 27,989.00 < 0.05 0.01

10 34.82 41.36 -2.70 17,604.00 < 0.05 0.03

1 41.84 28.84 2.45 2,350.60 < 0.05 0.08
features 5 40.84 22.14 4.98 5,120.70 0.86 0.12

10 38.57 20.82 5.12 5,837.50 1.00 0.12

1 55.91 28.99 8.46 2,708.30 < 0.05 0.17
functions 5 55.77 26.26 6.52 4,696.60 < 0.05 0.19

10 51.98 24.46 8.18 7,142.40 < 0.05 0.17

Table 5.9: T-tests of the differences of code growth in synchronous development and
in non-synchronous development for the different analyses and time windows.

ξ avg. sync. avg. non-sync. t df p-value Cohen’s d

1 7.77 19.62 -2.00 6,210.90 0.98 0.04
files 5 11.03 21.54 -3.05 21,149.00 1.00 0.04

10 11.74 24.18 -3.82 27.942.00 1.00 0.04

1 -4.27 -3.97 -0.02 1,909.00 0.51 0.00
features 5 -5.86 -1.71 -0.44 4,051.40 0.67 0.01

10 -5.47 -1.19 -0.51 5,430.80 0.69 0.01

1 21.87 13.44 0.67 2,209.80 0.25 0.04
functions 5 27.49 11.45 2.13 4,566.30 < 0.05 0.07

10 25.54 10.44 2.83 6,874.30 < 0.05 0.06

and in non-synchronous development are greater than 0.05 (cf. Table 5.9). So, only
for function-based synchronous development with time windows of 5 or 10 days, the
code-growth in synchronous commits is significantly higher than in non-synchronous
commits.

Next, we consider the code effort ∆W , which is depicted in Figure 5.4. For all
time windows of file-based, feature-based, and function-based analyses, the effort in
terms of lines of code is higher in synchronous commits than in non-synchronous
commits. The conducted t-test for the comparison of code effort in synchronous and
in non-synchronous commits also supports this outcome since the code effort is sig-
nificantly higher in all cases due to a p-value larger than 0.05, as given in Table 5.10.
Since code growth is not significantly higher in synchronous development than in
non-synchronous development and also the code effort is not lower in synchronous
commits than in non-synchronous commits, we reject Hypothesis 2.

Hypothesis 2: Rejected.
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Figure 5.3: Box-and-whisker diagrams (without outliers) of the code growth ∆L per
commit within synchronous and non-synchronous commits for the (a) file-based, (b)
feature-based, and (c) function-based analysis for the different time windows.
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Figure 5.4: Box-and-whisker diagrams (without outliers) of the code effort ∆W per
commit within synchronous and non-synchronous commits for the (a) file-based, (b)
feature-based, and (c) function-based analysis for the different time windows.
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Table 5.10: T-tests of the differences of code effort in synchronous development and
in non-synchronous development for the different analyses and time windows.

ξ avg. sync. avg. non-sync. t df p-value Cohen’s d

1 73.57 54.64 2.91 6,221.00 1.00 0.06
files 5 61.85 55.81 1.60 20,589.00 0.95 0.02

10 57.89 58.54 -0.18 28,438.00 0.43 0.00

1 87.96 61.65 1.51 1,967.10 0.94 0.06
features 5 87.53 45.99 3.96 4,047.60 1.00 0.09

10 82.60 42.82 4.28 5,241.30 1.00 0.09

1 89.94 44.54 3.46 2,214.50 1.00 0.18
functions 5 84.05 41.07 5.52 4,602.90 1.00 0.17

10 78.42 38.49 7.14 6.949.50 1.00 0.16

Table 5.11: T-tests of the differences of the number of deleted lines in synchronous
development and in non-synchronous development for the different analyses and
time windows (estimation: number of deleted lines in synchronous development <
number of deleted lines in non-synchronous development).

ξ avg. sync. avg. non-sync. t df p-value Cohen’s d

1 32.90 17.51 2.62 5,674.50 1.00 0.07
files 5 25.41 17.13 2.77 14,068.00 1.00 0.04

10 23.08 17.18 2.48 24.484.00 0.99 0.03

1 46.11 32.81 0.84 1,900.30 0.80 0.03
features 5 46.69 23.85 2.48 3,872.30 0.99 0.06

10 44.03 22.01 2.70 5,148.70 1.00 0.06

1 21.87 13.44 1.48 2,184.70 0.93 0.10
functions 5 28.28 14.81 2.18 4,526.90 0.99 0.07

10 26.44 14.03 2.88 6.778.40 1.00 0.07

The last metric we consider here is the number of deleted lines per commit. We
hypothesize that this metric is higher in non-synchronous than in synchronous com-
mits. However, as pictured in Figure 5.5, the number of deleted lines per commit
is higher in synchronous development. This holds for all time windows and analysis
types. Also the associated t-tests sustain this outcome, as given in Table 5.11. Thus,
we reject Hypothesis 3<.

Hypothesis 3<: Rejected.

Checking the opposite hypothesis (cf. Table 5.12) results in a significantly higher
number of deletions in synchronous development compared to the non-synchronous
development. Hence, we accept Hypothesis 3>.

Hypothesis 3>: Accepted.
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Figure 5.5: Box-and-whisker diagrams (without outliers) of the number of deleted
lines per commit (Ldelete) within synchronous and non-synchronous commits for the
(a) file-based, (b) feature-based, and (c) function-based analysis for the different
time windows.
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Table 5.12: T-tests of the differences the number of deleted lines in synchronous
development and in non-synchronous development for the different analyses and
time windows (estimation: number of deleted lines in synchronous development >
number of deleted lines in non-synchronous development).

ξ avg. sync. avg. non-sync. t df p-value Cohen’s d

1 32.90 17.51 2.62 5,674.50 < 0.05 0.07
files 5 25.41 17.13 2.77 14,068.00 < 0.05 0.04

10 23.08 17.18 2.48 24.484.00 < 0.05 0.03

1 46.11 32.81 0.84 1,900.30 0.20 0.03
features 5 46.69 23.85 2.48 3,872.30 < 0.05 0.06

10 44.03 22.01 2.70 5,148.70 < 0.05 0.06

1 21.87 13.44 1.48 2,184.70 0.07 0.10
functions 5 28.28 14.81 2.18 4,526.90 < 0.05 0.07

10 26.44 14.03 2.88 6.778.40 < 0.05 0.07

5.1.3 Correlation of C-Bursts and E-Bursts

We investigate whether C-bursts and E-bursts are correlated. First, we check
whether the numbers of C-bursts per pair of developers and the numbers of E-
bursts per pair of developers are correlated. We conducted correlation tests using
the Pearson correlation coefficient. The results of these correlation tests are stated
in Table 5.13. For all file-based, feature-based, and function-based analyses, the
correlation coefficient is between 0.17 and 0.39, indicating that there is a positive
correlation between the numbers of C-bursts per developer pair and the numbers
of E-bursts per developer pair. Moreover, the correlation coefficient is higher for
smaller time windows than for the 10-days time window, holding for all analyses.

In addition, we fitted a linear model for the pairwise number of E-bursts and cor-
responding number of C-bursts as stated in Equation 4.6. Considering the 5-days
time window, we get a linear fit with parameters α = 0.00035 and β = −0.01 for
the file-based analysis, as depicted in Figure 5.6 (a), where we also denote the good-
ness of fit in terms of R-square, adjusted R-square, and Root Mean Square Error
(RMSE). In Figure 5.6 (b) we illustrate the linear fit of the feature-based analyses,
resulting in parameters α = 0.00082 and β = 0. Last, Figure 5.6 (c) contains the
illustration of the relationship between the number of pairwise C-bursts and cor-
responding E-bursts for the function-based approach. Here, we fit a linear model
with parameters α = 0.00021 and β = 0. The results of all analysis types are quite
similar for time windows of 5 days or 10 days. We depict the regarding illustrations
for all time windows in Figure A.1 to Figure A.3 in the Appendix.

Since in all cases more C-bursts are accompanied with more E-bursts, we accept
Hypothesis 4.

Hypothesis 4: Accepted.

Furthermore, we analyze whether there is a timely correlation between C-bursts and
E-bursts of each developer pair. Therefore, we generate C-curves and E-curves for
each pair having more than five C-bursts and more than five E-bursts as stated
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Figure 5.6: Relationship between the number of C-bursts (NC) and the number
of E-bursts (NE) per developer pair for time window ξ=5 for the (a) file-based,
(b) feature-based, and (c) function-based analysis. The black line depicts the corre-
sponding fitted linear model.
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Table 5.13: Correlation tests for the numbers of C-bursts and the numbers of E-
bursts per pair of developers for the different analyses and time windows.

ξ correlation t df p-value

1 0.39 272.17 420,900 < 0.05
files 5 0.24 157.45 420,900 < 0.05

10 0.18 121.55 420,900 < 0.05

1 0.26 86.38 106,030 < 0.05
features 5 0.19 62.40 106,030 < 0.05

10 0.17 55.35 106,030 < 0.05

1 0.32 207.95 381,500 < 0.05
functions 5 0.22 137.81 381,500 < 0.05

10 0.17 105.33 381,500 < 0.05

Table 5.14: Mann-Whitney U tests for the real and simulated correlation between C-
curves and E-curves per developer pair for the different analyses and time windows.
(Only developer pairs having more than five C-bursts and more than five E-bursts
are considered.)

ξ real corr. simulated corr. W p-value Cliff’s delta

1 0.13 0.02 690 < 0.05 0.97
files 5 0.12 0.03 11,916 < 0.05 0.76

10 0.12 0.04 30,182 < 0.05 0.68

1 0.12 0.02 62 < 0.05 0.83
features 5 0.10 0.03 1,223 < 0.05 0.69

10 0.11 0.04 2,383 < 0.05 0.52

1 0.08 0.02 29 < 0.05 0.80
functions 5 0.11 0.03 1,129 < 0.05 0.61

10 0.11 0.04 3,589 < 0.05 0.53

in Section 4.7. With these curves, we compute the Pearson correlation coefficient
between the real C-curve and the real E-curve of each developer pair. To show that
the correlation appears not by chance, we also compute the correlation coefficient
between the real C-curves and the simulated E-curves for each pair of developers.
Since only between 5 and 195 developer pairs (depending on time window and anal-
ysis type) have more than five C-bursts and more than five E-bursts, we cannot
use a t-test here due to the few and not normally distributed data points. Instead,
we conduct Mann-Whitney U tests to compare the correlation coefficients of both
computations, given in Table 5.14. For all time windows and all case studies, the
correlation coefficients using the real email time series are significantly higher than
the correlation coefficients based on the simulated email time series. Moreover, the
correlation coefficient is positive in all cases, saying that the C-curves and E-curves
are positively correlated. Therefore, we accept Hypothesis 5.

Hypothesis 5: Accepted.
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Table 5.15: T-tests with FDR correction for the comparison of the numbers of C-
bursts per developer pair of file-based, feature-based, and function-based analyses
for the different time windows.

ξ t df p-value

1 7.66 150,738.30 < 0.05
# C-bursts features > # C-bursts files 5 12.54 151,332.80 < 0.05

10 16.04 152,625.20 < 0.05

1 13.44 123,277.00 < 0.05
# C-bursts features > # C-bursts functions 5 20.03 121,092.50 < 0.05

10 24.38 123,037.30 < 0.05

1 10.58 701,004.60 < 0.05
# C-bursts files > # C-bursts functions 5 13.41 673,415.00 < 0.05

10 14.45 690,895.80 < 0.05

5.1.4 Comparison of File-based, Feature-based, and Function-
based Synchronous Development

Hitherto, we have stated the results of file-based, feature-based, and function-based
analyses. In the following, we compare the outcomes of the three different analyses.

First, we compare the number of C-bursts per developer pair of file-based, feature-
based, and function-based approach. Therefore, we use a t-test with false-discovery-
rate correction (FDR correction). In Table 5.15, we present the regarding outcomes:
The number of C-bursts per pair of developers is significantly higher in the feature-
based analysis than in the file-based analysis due to a p-value lower than 0.05.
Moreover, the amount of C-bursts in the feature-based analysis is also higher than
in the function-based analysis. Furthermore, the number of C-bursts per developer
pair of the file-based analysis is significantly higher than the number of C-bursts per
developer pair for the function-based analysis, too. Hence, we accept Hypothesis 6.1 .

Hypothesis 6.1: Accepted.

Next, we compare the synchronicity degrees of the three approaches. Our hypoth-
esis states that the synchronicity degree is higher for feature-based C-bursts than
for file-based or function-based C-bursts. Thereto, we conduct a t-test with FDR
correction, given in Table 5.16. Hence, the result reflects our hypothesis because
the synchronicity degrees of feature-based C-bursts are significantly higher than the
synchronicity degrees of file-based C-bursts which, in turn, are significantly higher
than the synchroncity degrees of function-based synchronous development. This can
also be seen in Figure 5.7. Consequently, we accept Hypothesis 6.1a.

Hypothesis 6.1a: Accepted.

Further above, we showed that the number of added lines per commit is significantly
higher in synchronous development than in non-synchronous development. This
holds for all analyses and all time windows except the 5-days and 10-days time
window in the feature-based analysis. Here, we check whether the number of added
lines in synchronous development is higher for synchronous development based on



40 5. Results and Discussion

comparison of synchronicity degrees
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Figure 5.7: Box-and-whisker diagrams comparing the synchronicity degrees of the
file-based, feature-based, and function-based analyses for time windows ξ of 1 day,
5 days, and 10 days. Outliers are omitted.

Table 5.16: T-tests with FDR correction for the comparison of the synchronicity
degrees of file-based, feature-based, and function-based analyses for the different
time windows.

ξ t df p-value

1 15.43 2,986.94 < 0.05
sync. degrees features > sync. degrees files 5 33.51 8,478.26 < 0.05

10 47.49 13,288.88 < 0.05

1 33.10 2,782.62 < 0.05
sync. degrees features > sync. degrees functions 5 57.96 7,828.92 < 0.05

10 77.93 12,031.55 < 0.05

1 22.32 4,343.29 < 0.05
sync. degrees files > sync. degrees functions 5 31.83 11,763.75 < 0.05

10 40.33 19,893.82 < 0.05

features than on files or functions. We again conducted a t-test with FDR correction,
depicted in Table 5.17. Since the p-value in all tests is higher than 0.05, we have to
reject our hypothesis. Moreover, we already have rejected Hypothesis 2 regarding
the code-growth and code-effort metrics, so we have no significant results to compare
here and therefore we also reject Hypothesis 6.2.

Hypothesis 6.2: Rejected.

Next, we compare the number of deleted lines per commit of the different results.
Due to the rejection of Hypothesis 3<, we also reject Hypothesis 6.3<.

Hypothesis 6.3<: Rejected.
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Table 5.17: T-tests with FDR correction for the comparison of the number of added
lines in synchronous commits of file-based, feature-based, and function-based anal-
yses for the different time windows.

ξ t df p-value

1 0.23 2,171.05 1.00
sync. Ladd features > sync. Ladd files 5 1.28 4,099.42 0.30

10 1.26 4,751.41 1.00

1 -2.45 2,994.64 1.00
sync. Ladd features > sync. Ladd functions 5 -2.70 7,559.33 1.00

10 -3.09 10,314.38 0.31

1 -4.44 3,552.40 1.00
sync. Ladd files > sync. Ladd functions 5 -4.21 4,993.03 1.00

10 -5.03 7,502.89 1.00

Table 5.18: T-tests with FDR correction for the comparison of the number of deleted
lines in synchronous commits of file-based, feature-based, and function-based anal-
yses for the different time windows (estimating that the number of deleted lines is
higher in feature-based analysis than in the file-based or function-based analysis).

ξ t df p-value

1 0.80 2,273.38 0.41
sync. Ldelete features > sync. Ldelete files 5 2.29 4,014.71 0.03

10 2.69 4,548.80 0.01

1 0.61 3,558.29 0.41
sync. Ldelete features > sync. Ldelete functions 5 1.71 6,204.53 0.07

10 2.04 6,453.89 0.03

1 -0.08 3,172.81 0.53
sync. Ldelete files > sync. Ldelete functions 5 -0.42 6,418.75 0.66

10 -0.71 9,765.92 0.76

We already showed that the number of deleted lines is significantly higher in syn-
chronous development than in non-synchronous development. Here, we compare the
number of deleted lines per synchronous commits of file-based, feature-based, and
function-based analyses. The result of the regarding t-tests with FDR-correction is
depicted in Table 5.18. Only for the 10-days time window, the number of deleted
lines per synchronous commits in the feature-based analysis is significantly larger
than the number of deleted lines per synchronous commits of the file-based and
function-based analysis. Since this does not hold for the 1-day and 5-days time
windows, and also not for the comparison of file-based and function-based analysis,
we reject Hypothesis 6.3>.

Hypothesis 6.3>: Rejected.



42 5. Results and Discussion

Table 5.19: Correlation coefficients for the real C-curves per developer pair and the
real E-curves per developer pair (only pairs with more than five C-bursts and more
than five E-bursts are considered) for the different analyses and time windows. Cliff’s
delta is the corresponding effect size to compare real and simulated correlation. For
additional data, see Table 5.14.

ξ real correlation Cliff’s delta

1 0.13 0.97
files 5 0.12 0.76

10 0.12 0.68

1 0.12 0.83
features 5 0.10 0.69

10 0.11 0.52

1 0.08 0.80
functions 5 0.11 0.61

10 0.11 0.53

To compare the correlation between the number of C-bursts per developer pair
and the number of E-bursts per developer pair of file-based, feature-based, and
function-based analyses, we consider the slopes of the linear models depicted in
Figure 5.6. According to Hypothesis 6.4, the slope of the fitted line of the feature-
based analysis (0.00082) is higher than the slope of the fitted line of the file-based
analysis (0.00035), which, in turn, is higher than the slope of the fitted line of
the function-based analysis (0.00021). Hence, the effect that more C-bursts are
accompanied with more E-bursts is stronger on feature-based development than on
file-based and function-based development. Thus, we accept Hypothesis 6.4.

Hypothesis 6.4: Accepted.

Finally, we compare the correlation between the curves of C-bursts and E-bursts of
file-based, feature-based, and function-based analyses. Considering the effect-size,
Cliff’s delta, as given in Table 5.19, we see that for all considered time windows the
effect size between real and simulated correlation of C-curves and E-curves is higher
for the file-based analysis than for the feature-based analysis. Also the correlation
coefficient itself is larger for file-based synchronous development than for feature-
based synchronous development. Moreover, comparing feature-based and function-
based correlation coefficients, we notice that for the 1-day and 5-days time windows
the effect size as well as the correlation coefficient is higher for the feature-based
analysis than for the function-based analysis. However, this holds not for the 10-days
time window of feature-based and functions-based analyses. Since the correlation of
the feature-based C-curves and E-curves has not the strongest effect compared to
the file-based and function-based curves, we reject Hypothesis 6.5.

Hypothesis 6.5: Rejected.
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5.2 Discussion
After presenting the results of our study in the previous section, we now discuss all
the results regarding C-bursts, E-bursts, and the comparison of file-based, feature-
based, and function-based analyses.

5.2.1 C-Burst-related Hypotheses

To start with, we remind our C-burst-related hypotheses:

Hypothesis 1. Synchronous development occurs significantly more
frequently in OSS projects than by chance.

[Accepted]

Hypothesis 1a. The synchronicity degree in OSS projects is sig-
nificantly higher than by chance.

[Accepted]

Hypothesis 2. OSS projects grow more in change of LOC per com-
mit if developers participate in synchronous development. In addi-
tion, in synchronous development the effort in deleted plus added
lines per commit is lower than in non-synchronous development.

[Rejected]

Hypothesis 3<. The number of deleted lines per commit is smaller
within co-commit bursts than outside co-commit bursts.

[Rejected]

Hypothesis 3>. The number of deleted lines per commit is larger
within co-commit bursts than outside co-commit bursts.

[Accepted]

For all time windows ξ of 1 day, 5 days, and 10 days, the synchronous development
occurs more than random within all file-based, feature-based, and function-based
analyses, which is the initial position for our whole study. Knowing that synchronous
development in QEMU appears not by chance, we can consider the synchronicity
degree of the identified C-bursts, which is also higher than for randomly generated C-
bursts. Altogether, these results show us that considering the concept of synchronous
development in open-source software is well-founded.

Next, we consider the used code-growth metrics. Developer collaboration (regard-
less of whether it is based on files, features, or functions) is accompanied with a
higher productivity in terms of added lines per commit. However, as opposed to
the outcomes of the study of Xuan and Filkov [XF14], the number of deleted lines
per commit is also higher in synchronous development than in non-synchronous de-
velopment. A reason, therefore, might be that the expectation that collaborating
developers delete less code than non-collaborating developers is wrong. For exam-
ple, if developers refactor large parts of the source code, they probably delete a
huge number of lines of code. Also, changing a huge amount of lines results in a
huge amount of deleted lines. Consequently, expecting that the number of deleted
lines per commit is lower in synchronous development than in non-synchronous de-
velopment is not reasonable. In contrast, the higher number of deleted lines in
synchronous development compared to non-synchronous development reveals that
collaborative development is more productive in terms of deletions.

Combining the results of comparing the numbers of added lines and deleted lines
in synchronous and non-synchronous development, we can conclude that in syn-
chronous development more lines are changed (regardless of whether they are added
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or deleted). Nevertheless, relating the number of added and deleted lines to each
other to draw further conclusions on the productivity of developers is not meaning-
ful here. Hence, the results of the comparison of the code-growth and code-effort
metrics in synchronous and non-synchronous development are not convincing.

5.2.2 E-Burst-related Hypotheses

Before discussing the E-burst-related results, we also remind the corresponding hy-
potheses:

Hypothesis 4. More C-bursts are accompanied with more E-bursts. [Accepted]

Hypothesis 5. E-bursts and synchronous development are posi-
tively coupled.

[Accepted]

According to our hypotheses, the number of C-bursts and the number of E-bursts per
pair of developers correlate positively. However, the slopes of the fitted lines of the
linear models describing the relationship between the numbers of C-bursts and E-
bursts are comparably small. This holds for all time windows and all analysis types.
Thus, on average, there is one C-burst for every 1,220 E-bursts of one developer pair
in the feature-based analysis. Moreover, in the file-based analysis, there, roughly,
is one C-burst for every 3,000 E-bursts, and in the function-based analysis we have
one C-burst for every 5,000 E-bursts. For time windows of 1 day or 10 days the
corresponding difference between the number of C-bursts and E-bursts per pair of
developers is even worse. In addition to that, one should keep in mind that the
overall number of E-bursts is more than 500 times higher than the overall number
of C-bursts (just focusing on the 5-days time window). As illustrated in Figure 5.6,
most of the developer pairs have 0 to 2 C-bursts, but up to 100 E-bursts, which
biases our results. Therefore, the fitted linear model is much less expressive than
expected. However, it is intelligible that developers more often send emails to the
mailing list than they contribute to the source code because they also can comment
on the commits or bug reports of others without contributing to the source code
itself in a near time period.

Furthermore, there is a positive timely correlation between C-bursts and E-bursts
of developer pairs for all file-based, feature-based, and function-based analyses. The
computed correlation coefficient has a comparably small value between 0.08 and 0.12.
One reason for this weak positive correlation is that the amount of E-bursts per pair
of developers intensively exceeds the amount of C-bursts per pair of developers.
Another reason, therefore, is that E-bursts and C-bursts do not occur at exactly the
same time, but delayed. According to the commit policy of QEMU, developers are
requested to send their commits to the corresponding mailing list. Then it is possible
that a few weeks or even months elapse until the submitted commit is discussed. The
other way round, it is also possible that a certain feature or bug will be discussed on
the mailing list first, but the corresponding implementation or bugfix will be sent
to the mailing list much later and then will potentially be pushed to the repository
without any discussion on the mailing list.
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5.2.3 Comparative Hypotheses

Finally, we discuss the comparison of all the results of the three different artifact-
based analyses, namely file-based, feature-based, and function-based analyses. Right
at the start, we remind the regarding hypotheses:

Hypothesis 6.1 (refers to Hypothesis 1). Synchronous develop-
ment on features occurs significantly more frequently than syn-
chronous development on files and synchronous development on
functions.

[Accepted]

Hypothesis 6.1a (refers to Hypothesis 1a). The synchronicity de-
gree of synchronous development on features is significantly higher
than the synchronicity degree of synchronous development on files
or on functions.

[Accepted]

Hypothesis 6.2 (refers to Hypothesis 2). The code growth per com-
mit is significantly higher in synchronous development on features
than in synchronous development on files or on functions. In addi-
tion, the code effort in terms of added and deleted LOC is signifi-
cantly smaller on features than on files or functions.

[Rejected]

Hypothesis 6.3< (refers to Hypothesis 3<). The number of deleted
lines per commit within co-commit bursts on features is significantly
smaller than within co-commit bursts on files or on functions.

[Rejected]

Hypothesis 6.3> (refers to Hypothesis 3>). The number of deleted
lines per commit within co-commit bursts on features is significantly
greater than within co-commit bursts on files or on functions.

[Rejected]

Hypothesis 6.4 (refers to Hypothesis 4). The effect ”More co-
commit bursts are accompanied with more email bursts” is stronger
on feature-based synchronous development than on file-based or
function-based synchronous development.

[Accepted]

Hypothesis 6.5 (refers to Hypothesis 5). Email bursts and syn-
chronous development on features are stronger positively coupled
than email bursts and file-based or function-based synchronous de-
velopment.

[Rejected]

The number of feature-based C-bursts is significantly higher than the number of
file-based or function-based C-bursts, which supports our assumption that collabo-
ration on features is more common than file-based or function-based collaboration
of developers. Functions are also semantic units, but mostly very small compared
to features. In addition, functions usually do not encompass a certain feature in
the application domain, but only a small set of statements capturing a certain task.
Therefore, it is reasonable that feature-based collaboration occurs more frequently.
Moreover, file-based collaboration appears not that often as feature-based collabo-
ration since files are not necessarily semantic units and, therefore, file-based collab-
oration might not be that intended as feature-based collaboration. These ideas are
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not only supported by the frequency of synchronous development, but also by the
synchronicity of the regarding synchronous development.

We also aimed to compare the productivity, effectiveness, and programming effort
of synchronous development on files, features, or functions. However, we did not get
significant outcomes which allow us to draw conclusions from the comparison. As
already stated in the previous subsection, judging the code growth and code effort
in terms of added or deleted lines of code is not that meaningful.

Lastly, we compare the correlation between C-bursts and E-bursts of feature-based,
file-based, and function-based analyses. In file-based collaborations, more E-bursts
are needed to discuss code changes than in feature-based collaborations, because
the average number of E-bursts per C-burst is lower in feature-based collaboration
than in file-based collaboration. Since feature-based collaboration is collaboration
on semantic units, feature-based code changes of two developers do not need as much
coordination than in file-based collaboration. For function-based collaboration, more
coordination in terms of email communication is necessary than on feature-based
collaboration since functions may be used in several contexts, e.g., in several files or
by several features.

Nevertheless, considering the timely correlation of C-bursts and E-bursts, file-based
collaboration on commit level is slightly stronger correlated to email communica-
tion than feature-based collaboration. One reason therefore might be that file-based
collaboration needs more coordination that feature-based collaboration, as stated
above. Another reason therefore can be that communication about files is more
selective and isolated, so E-bursts are related to certain C-bursts, whereas com-
munication about features is more or less spread on larger period in time. Thus
feature-based communication is not directly related to certain commits due to fea-
tures being logic abstraction from the application domain. The same reasons also
hold for the comparison of feature-based and function-based correlation between
C-bursts and E-bursts, where functions are sets of statements which are discussed
more isolated and based on certain commits. Nonetheless, the differences of the
correlations of the three artifact-based analyses are biased by not considering the
content of emails and not considering time shifts between commits and emails, as
already stated in the previous section.

5.3 Threats to Validity
After the above discussion of our results, we denote the threats to the validity of
our study.

One threat to validity is that our null models consists of few simulations, namely
50 random simulations of commit time series and only 1 random simulation of the
email time series for our case study. Another threat to validity is that only less than
0.2 percent of the considered developer pairs of QEMU have more than five C-bursts
and more than five E-bursts, which holds for all of our analyses and all considered
time windows. However, since we analyze a huge amount of developer pairs, we still
find significant differences between the different analyses.

Considering the C-burst analysis, our results regarding the differences in terms of
lines of code (LOC) between synchronous and non-synchronous development may
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be biased since therefore we treat commits as synchronous even if the corresponding
synchronicity degrees are close to zero. The reason for that is that we replicated the
study of Xuan and Filkov [XF14], which did not measure the degree of synchronic-
ity. Moreover, we cannot easily determine the actual number of deleted lines per
artifact. Since we know the correct number of deleted lines per commit, we use a
heuristic to guess the number of deleted lines of unconsidered artifacts, assuming
that the number of deleted lines is half of the regarding number of added lines per
artifact. This primarily influences the feature-based analysis, in which we completely
disregard contributions to the base feature why we have to determine the number of
deleted lines of the base feature to subtract them from the overall number of deleted
lines of a commit. In addition, the incorrect determination of the number of deleted
lines also affects all the code-growth and code-effort metrics. Aside from that, the
numbers of added and deleted lines themselves are biased: If developers just change
lines without adding additional lines or removing lines, each changed line is consid-
ered as both deleted and added. So, changing a huge amount of lines also results
in a huge amount of added lines and in a huge amount of deleted lines. On top
of this, the extracted number of added and deleted lines per commit also considers
blank lines, which cannot be used to value the productivity of developers. Besides,
using code-growth metrics and differences in the number of added or deleted lines
of code to quantify the productivity or implementation effort might be not a valid
approach since these measurements do not consider the code complexity of a line of
code and also disregard the time which is needed for the regarding implementation.
However, the number of added lines of code can be easily extracted from the source
code repository, whereas we do not have information on the regarding implemen-
tation time, for instance. In general, using code-growth and code-effort metrics to
assess the productivity of a developer is not valid since they also do not measure the
quality of the produced source code.

Furthermore, there are also threats to the validity of the E-burst analysis. Since
developers can use different email addresses with different names, we cannot correctly
disambiguate them. Hence, Codeface uses a heuristic, which we have introduced
and discussed in Section 4.8. So, it is possible that we consider two different authors
to be identical due to having the same name. Opposed to that, there also might be
authors which use different email addresses and names which we then consider to
be distinct authors, whereas it is one and the same author.

Another thing to keep in mind is that we do not check whether C-bursts and E-bursts
are semantically coupled. So, it is possible that developers write a lot on the mailing
list, but on different topics than they contribute to the source code. In addition, we
do not consider the topic or thread information of the sent emails for the E-burst
identification, which can result in E-bursts consisting of completely unrelated emails.
Such E-bursts will potentially not stand in any correlation to C-bursts. Moreover,
developers may have different preferences how quickly or how often they check their
emails and send replies, which also can bias our study regarding the relation of the
number of C-bursts and the number of E-bursts per pair of developers. Furthermore,
we did not include the differences in the lengths of bursts in terms of days in our
corresponding analyses. Directly comparing C-curves and E-curves of developer
pairs can also distort the results of our study since commit activities and email
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activities may not take place at exactly the same time, but slightly shifted, which
we do not cover within our study.

In addition to that, in git repositories, every commit has an author and a commiter
which can possibly differ. Moreover, every commit is a assigned an author date,
which is the point in time at which the author had finished the commit, as well as a
commit date, which is the date at which the commit was committed to the project.
In our study we use the author of a commit, together with the regarding author
date, since that is the person that usually is the original creator of an commit.
Nevertheless, a commit can get public much later than it was created and therefore
the communication on the mailing list can also take place around the commit date
instead of the author date, which is a threat to validity to our study. For the sake of
completeness, we note that Xuan and Filkov did not specify which date they have
used for their study.

While comparing the results of our analyses for file-based, feature-based, and function-
based synchronous development, we disregard that we analyze different parts of
the source code within the different studies. So, for the feature-based analysis,
we omit the source code belonging to the base feature, which reduces the number
of considered developers by half compared to the file-based analysis, for instance.
Nonetheless, since we only want to analyze the contributions to actual features, it
is intended to disregard the developers which do not contribute to actual features
in the feature-based analysis.

Aside from that, in our study we just focus on the developer coordination which
takes place by writing emails to the developer mailing list, according to the origi-
nal study. However, developers which personally know each other may coordinate
their synchronous development by private emails or verbal communication. More-
over, other tools can be used for coordination, such as instant messengers or social
networks, which we do not consider in our study.

For time reasons, we only analyze the synchronous development of one case study.
Thus, we cannot generalize our outcomes since for other case studies we might get
different results.
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In this chapter, we summarize the outcomes of our study. Thereafter, we denote
possible enhancements and future work regarding this study.

6.1 Summary

In this thesis, we analyzed the collaboration and coordination of developers in the
open-source software project QEMU. Therefore, we replicated an empirical study of
Xuan and Filkov [XF14] on co-commit bursts and email bursts in open-source soft-
ware, which we enhanced by analyzing and comparing file-based, feature-based, and
function-based collaboration of developers. We analyzed more than seven years of
the development of the case study QEMU and found that synchronous development
of pairs of developers is more than a random phenomenon, regardless of consid-
ering the different time windows of 1 day, 5 days or 10 days between developers’
activities. We also quantified the synchronicity of synchronous development which
is also significantly higher than on random simulations. In addition, we identified
more co-commit bursts based an features than based on files or functions. Also the
synchronicity degree of feature-based collaboration is significantly higher than on
file-based or function-based collaboration. As result, developers collaborate more
frequently on semantic units like features since this is the level of abstraction from
the source code developers think in.

Moreover, we investigated whether the code growth and code effort of synchronous
and non-synchronous development significantly differ. Here, we found that the
number of added lines per commit is larger in synchronous development than in
non-synchronous development. In contrast to the study of Xuan and Filkov, also
the number of deleted lines is higher in synchronous development than in non-
synchronous development. In addition, the code growth is not significantly higher in
time intervals of synchronous development than in time intervals of non-synchronous
development. Additionally, the code effort in terms of lines of code is not smaller in
synchronous development than in non-synchronous development. Nevertheless, we
cannot draw any conclusions from these results since only measuring the productiv-
ity and implementation effort in terms of lines of code is not sufficient thereto.
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Furthermore, we also compared the relation of co-commit bursts and email bursts
of pairs of developers. We identified much more email bursts per pairs of developers
than co-commit bursts of developers. On average, in feature-based collaboration less
communication in terms of the number of email bursts takes place to coordinate syn-
chronous commits than in file-based or function-based collaboration. Analyzing the
timely correlation of co-commit bursts and email bursts, we identified a weak pos-
itive correlation between co-commit bursts and email bursts of pairs of developers.
Notwithstanding that this correlation is weak, it is higher for file-based collaboration
of developers than for feature-based collaboration of developers.

6.2 Future Work

For the future, we plan to extend our study in several ways. First, we will generate
more simulations of the commit time series and also more simulations of the email
time series than used in this study to get a more convincing null model. In addition,
the null model for the commit time series can be extended by randomizing a second
dimension: Besides randomizing the time differences between subsequent commits
of a developer, the changed artifacts of commits can also be randomly permuted.

Furthermore, we aim to find a more suitable heuristic to determine the number of
deleted lines per source-code artifact. One possible approach hereto could be to
compute the ratio between the number of added and deleted lines per commit and
than transfer this ratio to the number of changed lines of the artifacts within the
commits.

Moreover, we aim to develop a more appropriate approach of how to classify syn-
chronous and non-synchronous changes. Here, we aim to differentiate between syn-
chronous and non-synchronous parts of commits instead of treating the whole com-
mit as synchronous. So, only the artifacts of commits which are synchronously
changed by both developers will be considered to be synchronous, whereas the rest
of the commit will be considered to be non-synchronous. This could be a more exact
way of comparing code growth of synchronous and non-synchronous development.

Since we developed a metric for the synchronicity degree of synchronous commits, we
also plan to design a synchronicity-degree metric for synchronous emails. Here, we
think of several different approaches: We could consider the thread id of each email
to only group emails which belong the same email thread. Another solution could be
to group semantically related emails based on the subjects of the emails or based on
email content, e.g., by using text mining methods. Further, an email can also have
more than one receiver. So, besides the mailing list, emails of developers can also be
directly addressed to other developers. We can also use this information to determine
directly collaborative developers, for instance. We also reflect about identifying the
collaboration within groups of developers instead of pairs of developers to get a more
accurate model for communication activities.

Due to existing time shifts between commit activities and email activities, we aim
to find an appropriate solution to handle these shifts within our investigation of the
correlation between C-curves and E-curves. Therefore, Xuan and Filkov [XF14] use
an adapted way of Gaussian smoothing to deal with such time differences between
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commits and emails. However, we also try to find other methods to consider time
shifts within the comparison of C-curves and E-curves to get more insight into what
their smoothing actually effects.

Another idea is to study bug reports corresponding to the analyzed case-study and
draw further conclusions on the role of synchronous development. For example, we
can investigate the amount or appearance of bugs or bug fixes within synchronous
or non-synchronous development to find out more about the advances or drawbacks
of synchronous development in open-source systems.

Finally, we contemplate analyzing the synchronous development and the correspond-
ing coordination bursts for a larger number of open-source case studies such as
BusyBox, OpenSSL, or the Linux kernel, having different sizes in terms of the
number of developers, coming from various domains, and having different contribu-
tion policies.
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A. Appendix

In the Appendix, we provide additional illustrations to several outcomes of our study.
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Relationship between number of C-bursts and number of E-bursts per
pair of developers
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Figure A.1: Relationship between the number of C-bursts (NC) and the number
of E-bursts (NE) per developer pair for time window ξ=1 for the (a) file-based,
(b) feature-based, and (c) function-based analysis. The black line depicts the corre-
sponding fitted linear model.
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Figure A.2: Relationship between the number of C-bursts (NC) and the number
of E-bursts (NE) per developer pair for time window ξ=5 for the (a) file-based,
(b) feature-based, and (c) function-based analysis. The black line depicts the corre-
sponding fitted linear model.
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Figure A.3: Relationship between the number of C-bursts (NC) and the number
of E-bursts (NE) per developer pair for time window ξ=10 for the (a) file-based,
(b) feature-based, and (c) function-based analysis.
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