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ABSTRACT

Open-source software is becoming more and more important in multiple areas of computer
usage like productivity software, i.e. office tools or mailing software, or embedded systems.
Be it for operating systems like linux distributions, free alternatives to commercial software
or even security relevant software.

Using data about code commits and mailing-lists from open-source software projects, we
create author-based networks to further analyse network evolution, i.e. how new connections
in the network are created, based on data from real open-source software projects. More pre-
cisely, we analyse three open-source software projects regarding the preferential attachment
model, i.e. whether or not their developer networks evolve in a way, that those developers
who are already highly connected, acquire most new links in the network. This is done by
splitting the data into subnetworks, also called timeframes. Using these subnetworks, we
find out the time periods when a projects developer network evolved based on preferential
attachment and discuss the reasons behind the preferential attachment evolution for each
project. This is done in order to get a better understanding of how developers connect to each
other in an open-source community.

Busybox, OpenSSL and QEMU were chosen as the projects used for analysis, because they
all are well known, use mailing-lists for communication, have a long history of data that can
be analysed and have a non-negligible number of contributors (the lowest number being over
3000 contributors for Busybox).

For the two smaller projects, Busybox and OpenSSL, we found out that on mailing lists
non-new developers tend to connect to other non-new developers that already are highly
connected, most prominently during times without noticebly large mail traffic on the mailing-
list threads.

For QEMU, having nearly ten times more new connections between developers than the
Busybox or QEMU, no such correlation could be observed.

Additionally, the chosen length of the timeframes partially does have impact on whether
or not timeframes are considered to evolve based on preferential attachment. However, no
generalization for which timeframe length has which effect on the network could be made,
because results between the projects vary.
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1
INTRODUCT ION

Open-source software is becoming more and more important in multiple areas of computer
usage like science or even entertainment. Be it for operating systems like linux distributions,
free alternatives to commercial software like Blender or Gimp, or libraries and frameworks
for other software projects to build upon, e.g. React by Facebook or Angular by Google. Major
software companies, as mentioned before, release their toolkits under open-source licenses, so
people all over the world can use them while also contributing to them with feature requests,
issue reports and code commits. There are multiple reasons why a company opensources
their software, e.g. a) selling services complimentary to their software or b) reducing cost by
outsourcing developer work to a community [1].

Also, open-source software projects heavily rely on their community. Most projects do not
have different layers of management, where an employee has to do what the boss says. While
terms of governance in different open-source communities might differ from each other, a
project should follow some principles in order to stay healthy [17]. One of these principles is
the autonomous participation principle, in which a potential contributer should be allowed
to contribute on their own terms, otherwise an open-source community will not be able to
grow and survive [17].

When someone wants to join an open-source community, this newcomer must first learn
about contribution guidelines if there are any and, in case he plans to submit code, understand
the code base. There are several ways, this can be achieved, e.g. reading of available docu-
ments or asking questions on mailing lists. The second option would already lead to active
involvment in the community. When someone answers the question or joins the conversation,
connections from the newcomer to the community network are established. These connections
are not limited to mail conversation though, as code contributions that are related to other
peoples contributions also create connections in the network. While reasons for joining an
open-source community are already well studied [1], the way someone joins an open-source
community did not receive so much attention in the past.

1.1 goal of this thesis

All developers who join an open source software project sooner or later will connect with
other people in that project, but there is no definite answer on how they connect to the network.
Are there any developers who are more preferred than others or do new connections follow a
more random approach? Multiple types of real-life networks seem to evolve based on the
preferential attachment hypothesis [13], but does this also map onto open-source software
projects?

While a macroscopic analysis of different network types, including collaboration networks,
was already conducted by Barabási and Jeong [13], this thesis aims to cover the following
research questions on specific open-source software projects as part of the collaboration-
network area.

1



2 introduction

RQ1. How do new authors connect to a developer network?
Do newcomers connect to other newcomers or do they try to connect to already
active authors? An onboarding technique for open-source projects to acquire new
developers is core developers mentoring newcomers[11]. For newcomers to receive
mentoring, they therefore should first connect to already active developers who
can either mentor them or forward them to core developers who can offer them
mentoring, instead of connecting to other newcomers, which could result in a
slowdown of integration because of potential missing mentoring.

RQ2. Do these projects evolve based on preferential attachment?
Do authors, who are already highly connected, receive more new connections
than those, who are not that highly connected? A developer who is already highly
connected, most likely can be considered a core developer. When a developer net-
work evolves based on preferential attachment, most new network connections are
acquired by such core developers, which would mean that most developers would
preferably contact core developers, enabling better mentoring opportunities[11].

RQ3. For those projects, that evolve based on preferential attachment: Is there a relation
between preferential attachment and the amount of activity in the project?

We will examine moments, where the networks evolved based on preferential
attachment and find out whether or not there were more or less mails or commits
than during those moments, where the networks did not evolve based on prefer-
ential attachment. If there is a correlation between both activity and preferential
attachment, one could already estimate whether or not a project could have evolved
based on the preferential attchment model, based on the projects activity, before
having to conduct a full analysis for preferential attachment.

RQ4. What impact do different timeframe lengths have on analysis results?
For better understanding of the evolution of a whole network, the network can
be split into timeframes of the same length. This length however can be chosen
arbitrarily, with no information about the impact of different timeframe lengths
on the results. Analysing these timeframe lengths can help future preferential
attachment studies to choose a fitting length for splitting networks.
Besides timeframe lengths, do different splitting techniques, have an impact on
analysis? The reason for using either splitting type is simple, being wanting to
conduct a microscopic or macroscopic analysis on the projects network, whereas
there is no comparison between the results from the two used splitting types
regarding preferential attachment.

These questions will be answered based on observation and evaluation of the data from
mailing-lists and commits from various open-source software projects, namely Busybox,
OpenSSL and QEMU.
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1.2 overview

In Chapter 2, we will explain networks as a core concept for this work as well as important
network properties. Additional to that, the network building and network splitting that is
used in this work will be described. Besides that, we will clarify network growth models,
preferential attachment in particular, as well as the scale-freeness property.

Chapter 3 will cover the steps, that were needed to gain the results, needed for this thesis.
First, lots of data about differently sized software projects was collected using the Codeface
framework by Siemens1. The collected data mainly consists of mail headers and code-commit
metadata. Everything in that dataset is timestamped, so the first step will consist of building
networks from the given data and split those networks based on a fixed timeframe length.
After that, activity and connectivity metrics are computed based on the networks, so these
metrics then can be used to plot and analyse the networks any further. Using plottet data,
we can identify interesting and abnormal parts in the timeline of the respective software
project and try to map it to events in the projects timeline. While we can already try to identify
patterns indicating preferential attachment, based on the visual look of these plots, we will
use power-law fitting in order to base the findings on solid research.

Chapter 4 will contain results, a discussion part as well the discussion of potential threats
to validity. You can find related work to this thesis in Chapter 5. Chapter 6 will cover the
conclusion of this thesis as well as possible future work on this topic. Visualizations for the
results can be found in Appendix A.

1 See: https://github.com/siemens/codeface





2
BACKGROUND

This chapter will cover the basics that are needed to understand the work presented in this
thesis. First, networks, network building and the process of splitting them into smaller sub-
networks will be explained, because network analysis will not take care of the whole network
but needs to be more fine-grained. Then we will discover different network-growth models
including preferential attachment, which will be explained in more detail.

2.1 network theory

Networks are the core concept utilized in this work. In simple terms a network is a graph. It
consists of edges and vertices. In mathematical terms we write 𝐺 = (𝑉, 𝐸). Each edge 𝑒 ∈ 𝐸
connects two vertices 𝑣1, 𝑣2 ∈ 𝑉, which is written as 𝑒 = ⟨𝑣1, 𝑣2⟩. Each vertex also has its
own vertex degree. We declare 𝑉(𝑁) as the function returning all vertices (or nodes) for the
network 𝑁 and 𝐸(𝑁) as the function returning all edges for the network 𝑁.

v e r t e x d e g r e e The vertex degree of a vertex 𝑣 is the number of edges that are connected
to the given vertex 𝑣 and is written as 𝛿(𝑣)[21]. It is important to observe that the degree of a
node can also be affected by network simplification1.

d e g r e e d i s t r i b u t i on The degree distribution is a probabilistic distribution describing
the vertex degrees of all network nodes and is the basis for all network-growth models. It
is written as Π(𝑘), where 𝑘 is the degree of the nodes Π(𝑘) is describing [13]. The form of
this distribution gives us more insight in the way a network, we want to analyse, grows. This
analysis is done by fitting the distribution to a growth model.

n e twork s im p l i f i cat i on A simplified network removes redundant as well as self
referencing edges, so there is no edge 𝑒 = ⟨𝑣, 𝑣⟩ and
∀𝑒1, 𝑒2 ∈ 𝐸; 𝑒1 = ⟨𝑣1, 𝑣2⟩ ∧ 𝑒2 = ⟨𝑣1, 𝑣2⟩ ⇒ 𝑒1 = 𝑒2[10].
Simplifying a network can cause a difference in vertex degrees, since nodes, that receive 𝑛
edges from 𝑚 nodes, where 𝑛 > 𝑚 in a non-simplified network, will only receive 𝑥 ≤ 𝑚 edges
in a. 𝑥 is less or equal to 𝑚, because if there already exists an edge between two nodes, no new
edge will be created between them. This work uses simplified networks for analysis, because
we are only interested in single connections from one person to another. Otherwise, also the
quantity of interaction between two nodes would increase the vertex degree and lead to the
assumption, that more people connected with one person than they did in reality.

d i r e c t e d n e twork s Edges in a network can be directed, which means that a node
has outgoing and incoming edges [6]. It also adds more information to the vertex degree as
the overall vertex degree now consists of an incoming vertex degree and an outgoing vertex

1 See paragraph 2.1
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6 background

degree. The analysis in this thesis uses directed networks, so future work can also analyse
directions of interactions, e.g. who started a conversation on a mailing list or who did answer
another person. This thesis however does not directly make use of directions.

g row th mod e l A growth-model is a form of a vertex degree distribution Π(𝑘). There are
multiple growth models, e.g. Erdős–Rényi model, Watts-Strogatz model and the preferential
attachment model. Latter will be explained in the next subsection. The Erdős–Rényi model is
meant to describe a fully random network and has two variants. The first variant, given 𝑛
for the amount of nodes and 𝑀 for the amount of edges, returns a random network out of
the set of networks that have 𝑛 nodes and 𝑀 edges [4]. The second variant is based on the
probability 𝑝, two nodes should connect. For the network generation based on this variant, a
random-number generator will decide for each pair of nodes whether or not, an edge will be
created between them. The Erdős–Rényi model will be used in this thesis in order to generate
randomized networks based on real network configurations, i.e. the amount of nodes 𝑛 and
edges 𝑚 of a real network will be inserted into the model. This variant is easier to use in this
setup than the second variant, therefore the second variant will not be used in this thesis.
The Watts-Strogatz model on the other hand creates networks fulfilling the small-worldness
property, i.e. clustering in a way, that most nodes, even though they are not directly connected
to each other, can be reached with a short path [12]. This model is only described in this
thesis in order to give an overview about how different growth models can be. The only two
models that will be used are the Erdős–Rényi model as well as the preferential attachment
model.

p r e f e r e n t i a l at tachm en t Preferential attachment is a growth-model that describes
the probability Π(𝑘) of network vertices with vertex degree 𝑘 receiving a new edge to another
vertice. In a network that follows the preferential attachment model, vertices that already
have a high vertex degree have a higher chance of receiving a new edge to another node than
those that do not have a high vertex degree, so Π(𝑘) is a monotonically increasing function
[13]. Networks in this work will be analysed for preferential attachment properties, because
it is one of the more precise network models for real-world networks [13]. The time evolution
for preferential attachment is given by the following differential equation:

𝑑𝑘𝑖
𝑑𝑡 = 𝑚Π(𝑘𝑖), Π(𝑘𝑖) =

𝑘𝛼
𝑖

∑𝑗 𝑘𝛼
𝑗

= 𝐶(𝑡)𝑘𝛼
𝑖 , (2.1)

where 𝑚 is a constant[13]. As a simplification, one can say that Π(𝑘) returns the rate at which
a node with the vertex degree 𝑘 acquires a new edge [13].

The probability Π(𝑘) is assumed to follow a power law with the scaling exponent 𝛼 > 0.
Depending on 𝛼, the preferential attachment can be a) linear for 𝛼 = 1, b) sub-linear for 𝛼 < 1
and c) super-linear for 𝑎𝑙𝑝ℎ𝑎 > 1[3]. For 𝛼 = 1, the degree distribution can be reduced to the
scale-free model[13] (see below).

s ca l e - f r e e n e s s A scale-free network can be distinguished from non scale-free networks
by the presence of highly connected nodes[15]. Its degree distribution can be fit to a power-
law distribution [2]. When a network evolves based on preferential attachment, it returns a
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scale-free network[15]. Scale-freeness only takes into account the degree distribution of the
network[2] and is not determined based on network evolution unlike preferential attachment.

(a) (b)

Figure 2.1: Examples for different splitting approaches: In (a), you can see an example for a scale-
free network. The highlighted have a noticeable higher vertex-degree (5-6) than the non-
highlighted nodes (1-2); (b) shows an example for a non-scale-free network. There is no
node with a vertex-degree highly exeeding other nodes vertex degrees (1-3).

2.2 network application

n e twork bu i l d i ng Building a collaboration network for an open-source software
project can be done by making use of a) email and b) commit data. For email data, we look
at whole conversations on the mailing lists. Each email for a topic creates an edge between
the sender and everyone else, who participated on this topic. For commit data, we use a file
based approach where an edge is created for every two authors who made a commit on the
same file. When such a network is built, we only see the final network with all nodes and
edges that were formed by the time the data was collected. In order to see an evolution of the
network, we must create some sort of snapshots of the network at different dates.

n e twork s p l i t t i ng This work focusses on time-split networks, which are split into
timeframes of the same length. Each of these time-split networks is a subnetwork of the
whole network. Splitting can either be done a) Node-Based Figure 2.2a and b) Edge-Based
Figure 2.2b. The Node-Based approach only looks at actions of the current time frame to
determine edges between vertices, while the Edge-Based approach also looks at the history,
so edges are also created for actions that were conducted in the past, e.g. author A edited
file main.c in a timeframe older than the current one. Author B then edits the same file in the
current timeframe. This creates an edge in the Edge-Based approach, even though the first
edit was not done in the current time frame.



8 background

Depending on the splitting method, a more microscopic analysis (in case of node-based
splitting), i.e. timeframes are isolated from the rest of the network, or a more macroscopic
analysis (in case of edge-based splitting), i.e. edges for each timeframe can form based on
actions from past timeframes, can be conducted. It is to be noted that the choice of splitting
method can also have an impact on the resulting degree distribution, since some people may
have lots of incoming edges in a historical view but they do not receive that much edges
in the currently viewed timeframe. Additionally to the splitting type, the network can be
cut using the sliding-window approach. With this approach, for every neighbouring pair
of timeframes, another timeframe is cut, having its starting date in the center of the first
timeframes timeline and its end date in the center of the second timeframe. When timeframes
are cut at poorly chosen dates, e.g. without sliding-windows, when a timeframe gets cut in t
he midst of a high rate of new link acquisition, these new links would then be split between
two timeframes. With the sliding-window approach, another timeframe including all of these
new edges would then be created, revealing that high-activity situation, that otherwise would
have stayed hidden.



2.2 network application 9

2005 2005 2006 2006

A B

file.cpp

2005

A B

file.cpp

2006

   C

(a)

2005 2005 2006 2006

A B

file.cpp

2005

A B

file.cpp

2006

   C

(b)

Figure 2.2: Examples for different splitting approaches. The timeframes are chosen to be one year long,
starting at the first of january.(a) describes a node-based approach:When developers A and
B both modify file.cpp in the year 2005, they create an edge to each other in the developer
network. When in the year 2006, developer B and C both edit file.cpp, they also create an
edge to each other. no edge is created between developer A and C, because developer A
did not edit file.cpp in the same timeframe as developer C; (b) describes an edge-based
approach: When developers A and B modify file.cpp in 2005, they again construct an edge
to each other When in year 2006 developers B and C modify file.cpp, they again create an
edge towards each other, but this time, developer C also creates an edge to developer A,
because developer A modified file.cpp in the past.





3
APPROACH

In this chapter, the approaches that were used to answer the research questions fromChapter 1
will be described in detail. We will go over techniques that help finding out how newcomers
join a network and to decide whether or not a network can be mapped on the preferential
attachment model. If a networks evolution can be partially mapped onto the preferential
attachment model, i.e. we find timeframes in the network that evolve based on preferential
attachment, we can go a step further and try to find out if there is a correlation between those
time periods where it can be mapped onto the model and time periods of high or low activity
on the mailing list and code contributions, i.e. whether or not there are more or less mails or
code commits than usual. In a last step, we will compare different network configurations,
i.e. towards each other, meaning we will combine different timeframe lengths and splitting
types, in order to find out similarities between them.

In a last step, we will compare results from different configurations, i.e. combinations of dif-
ferent timeframe lengths and splitting types, and try to find out how different configurations
affect the preferential attachment analysis.

3.1 project overview

The three software projects that are analysed in this thesis, namely a) Busybox1, b) OpenSSL2

and c) QEMU3, are all open-source projects. They have in common, that their main com-
munication medium are mailing-lists4. Information about the project size5 can be found in
Table 3.1.

b u s y box Busybox combines different unix-software, that is considered to be standard,
into a single program. Its main use-case is to run on small systems, like embedded systems
or inside docker containers to give those systems unix functionality, without having to install
a complete unix environment. It was first created by Bruce Perens in 1996. After it was made
public in 1999, the project has gone through the hands of multiple maintainers until 2006,
when Denys Vlasenko took over maintanence. The project is considered the smallest of the
three projects covered in this thesis, because its total number of authors is the smallest[5].

o p en s s l OpenSSL is an open-source software implementing encryption algorithms as
well as generation and management functionality for digital certificates. The project was built
as a fork of SSLeay, an early open-source SSL implementation, in 1998. In 2019, 17 developers
in total have commit authorization, other contributors have to submit their code contributions
via pull requests. Like most older software projects, OpenSSL relied on mailing lists until it

1 https://www.busybox.net/
2 https://www.openssl.org/
3 https://www.qemu.org/
4 With an exception of OpenSSL
5 For the data that was used for this thesis. The projects have undergone further development in the meantime.
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started to transition to the Github issue system for communication and organization in 2013.
With slightly more than 8000 authors, for mailing-lists and code contributions combined,
OpenSSL is the second project in terms of author-based project size in this thesis[19].

q emu The last project in the list, QEMU, was started in 2003 by Fabrice Bellard. The
name QEMU is an acronym and means “Quick Emulator”. QEMU is used for hardware
virtualization and even was partially used by VirtualBox. Like Busybox, QEMU still uses
mailing-lists as a communication medium. Regarding the number of commits and mails, this
project is by far the biggest project in the list[20].

Table 3.1: Overview of all projects used in this thesis

Name Initial release Number of commits Number of mails Number of authors
Busybox 1999 27285 46158 3091
OpenSSL 1998 42753 37723 8079
QEMU 2003 123380 740429 9150

3.2 data preparation

In order to answer the previously posed research questions, data is needed first, namely
mailing list data as well as code-commit data. Other data that can be used to model author
networks in an open-source software projects could be issue-data, but since all analysed
projects use or were using mailing-lists as their primary medium for communication, only
a few years of issue-data would be available only for OpenSSL. Networks for code-commit
data in this thesis only use the file-based relation, meaning that authors who edited the same
file, connect with each other. Other types of author relation for commit-data based networks
are function-based relation, i.e. only authors who edit the same function inside a file connect
with each other, and the feature-based relation, i.e. authors who commit code for the same
feature connect to each other. There are multiple reasons, the file-based relation was chosen.
First, using more than one commit-based author relation could easily blast the length of this
bachelors thesis and second, before analysing a more fine-grained author relation like the
function-based or feature-based relation, a more general relation like the file-based relation
should be analysed in order to get an overview about the networks.

As mentioned previously in Chapter 1, this data is collected using the codeface framework
6. An example for mail data can be found at Listing 3.1 and an example for commit data can
be found at Listing 3.2.

Listing 3.1: An example for mail data. Column names for the semicolon seperated data from left
to right: Name of the author; Mail address of the author; Message ID; Date of dispatch;
Timezone offset; Mail subject; Thread ID

"Author name"; "author.mail@example.net"; "<434571BC.8070702@example.net>";

"2003-10-14 16:06:13"; "200"; "Re: [PATCH] syslog,logread,etc."; "73#1000"

6 See: https://github.com/siemens/codeface



3.2 data preparation 13

Listing 3.2: An example for commit data. Column names for the semicolon seperated data from left
to right: Commit ID; Author submition date; Author name; Author mail; Commit date;
Committer name; Committer mail; Commit Hash; Number of changed files; Lines added;
Lines removed; Difference lines added and lines removed; Name of changed file; Name of
function; Type of change (in this case ”Function”); Lines changed in this function

"4572950"; "1999-10-05 16:24:54"; "Author name"; "author.mail@example.net";

"1999-10-05 16:24:54"; "Committer name"; "commiter.mail@example.net";

"cc8ed39b240180b58810784f844e253263594ac3"; "113"; "24504"; "0"; "24504";

"archival/gzip.c"; "bi_windup"; "Function"; "13"

This data is used to build networks using the coronet library7 with its nodes being the
authors. Edges have a different meaning depending on the type of data. In case of mail data,
edges are formed between authors, who participated on the same mailing list thread. So
when, e.g. author John Doe writes a mail on a thread ten other people already participated
on, an edge between him and each of these other ten authors will be created. For commit
data, a file-based approach is chosen. This way, when an author edits a file, edges between
this author and every other author who previously edited this particular file are created. So
e.g. author John Doe adds a line to the file main.cpp, which was already edited by ten other
people before, an edge between John’s node and every of the other ten nodes is then created.
Time and date of each action are preserved, so the network can be split in the next step.

As already mentioned in Chapter 2, splitting the network is important for analysing the
time evolution of said network. If the network would not be split, we could only see the whole
state of the network at the time of data acquisition, because all edges between developers are
already created. Such a network does not fit well for the type of analysis that is conducted
in this thesis, because the analysis requires information about the networks evolution, i.e.
we need to know which authors did connect with each other during which time periods, so
transitions between those time periods can be analysed. Networks are split using multiple
configurations, i.e. the timeframe length as well as the splitting method is adjusted. The
chosen values for timeframe lengths are three months, six months and nine months, which
hasmultiple reasons, the first one being that Barabási suggested to use short timeframe lengths,
using lengths of one year himself[13] and the other being that all three timeframe lengths
are dividable by three, meaning that both, six-month and nine-month timeframe lengths can
be compared with the three-month timeframe length by simply mapping one timeframe of
the six-month timeframe length onto two timeframes of the three-month timeframe length
covering the exact same time period or mapping one timeframe of the nine-month timeframe
length onto three timeframes of the three-month timeframe lenght covering the exact same
time period. Additionally, each length is also split using sliding windows, i.e. for each two
adjacent timeframes, a third one starting in the middle of the first timeframe and ending
in the middle of the second timeframe is created; this way, information loss by splitting
in the midst of some interesting activity can be mitigated. In total, there are six timeframe
length configurations (𝑥 months as well as 𝑥 months with sliding windows). Node-based and
edge-based splitting8 is combined with each of the timeframe lengths, resulting in 12 final
splitting configurations. For each software project, this means that both mail and commit

7 See: https://github.com/se-sic/coronet
8 See paragraph 2.2
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based networks are split by those 12 splitting configurations, totaling to 24 split network
types. With these networks, the following research questions can be addressed.

3.3 rq1: how do new authors connect to a developer network?

For the connectivity analysis, i.e. finding out whether newcomers first connect to other
newcomers or more active developers, we first have to define classifications for nodes and
edges. For nodes, there are only two types, namely new and old. A new node is a node that
did not appear in the network in any earlier timeframe, while an old node has been present in
any earlier timeframe. This classification has to be done in order to find out, which developer
in the network is a newcomer and which developer is not. This is done by creating a new
node for a newcomer and an old node for a developer who also has been active in the last
timeframe. Edges are classified as the types a) old-old, b) new-old and c) new-new. Old-old
defines an edge between two old nodes, a new-old edge is an edge between a new node and an
old node and the last type, new-new, defines an edge that is created between two new nodes.

In order to not only look into each timeframe seperately but at the whole history of the
software-project instead and to not further increase the complexity of the analysis we will be
using edge-based splitting. In an already built and split network, we first define an empty set
𝐴 = ∅ and iterate over all timeframes 𝑡 ∈ 𝑇 of this network. For each timeframe 𝑡, we define
three counters, one for each edge type which are defined as above. With 𝐸𝑡, the set of all edges
in the timeframe 𝑡, we then look at each edge 𝑒 = ⟨𝑣1, 𝑣2⟩ ∈ 𝐸𝑡. Now we can have three cases:

𝑣1 ∈ 𝐴 ∧ 𝑣2 ∈ 𝐴 , (3.1)

(𝑣1 ∈ 𝐴 ∧ 𝑣2 ∉ 𝐴) ∨ (𝑣1 ∉ 𝐴 ∧ 𝑣2 ∈ 𝐴) , (3.2)

𝑣1 ∉ 𝐴 ∧ 𝑣2 ∉ 𝐴 (3.3)

If 𝑒 matches equation 3.1, we increase the old-old counter. If 𝑒 matches equation 3.2, we
increase the new-old counter. If none of the cases before match, 𝑒 must match equation 3.3
and therefore we increase the new-new counter. With 𝑉𝑡, the set of all nodes in the timeframe
𝑡, we set 𝐴 = 𝐴 ∪ 𝑉𝑡 at the end of each iteration. Now that we have each type of edge for each
timeframe, we can calculate the proportion of each edge type in each timeframe as well as
the proportion of each edge type in the whole project network. Using these proportions, we
can find out whether newcomers prefer to connect to other newcomers or to developers who
are already active in the projects community.

3.4 rq2: do these projects evolve based on preferential attachment?

In order to find out whether a project evolves based on preferential attachment, we again
have to split the network into timeframes. As a rough overview, in order to find out if the
network evolved based on preferential attachment between two timeframes, the distribution
of new edges per vertex degree must be checked whether or not it can be fit on a power-law
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distribution[13]. For such a fitting, we have to find out the vertex degrees of authors from the
first timeframe and assign weights onto them based on the amount of edges that are acquired

Like in the connectivity analysis in the previous section, we iterate over the edge-based
split timeframes 𝑇 in ascending order, only that we start at the second timeframe 𝑡2, because
for each timeframe 𝑡𝑛 we need 𝑡𝑛−1 in order to find out which developers are newcomers and
which developers were already active in 𝑡𝑛−1. If we would start at 𝑡1, all authors in 𝑡1 would
be considered newcomers, and no information about the previous vertex degrees would be
available, resulting in all new edges being accounted towards the vertex degree zero. We
can get the set of authors, that have not been in 𝑡𝑛−1 with 𝑉new = 𝑉(𝑡𝑛)\𝑉(𝑡𝑛−1) and the
set of authors, that was also in 𝑡𝑛−1 with 𝑉old = 𝑉(𝑡𝑛−1)\𝑉(𝑡𝑛) so 𝑉old ∩ 𝑉new = ∅. Edges
from nodes within 𝑉new to nodes within 𝑉old are called external and edges from nodes within
𝑉old to nodes within 𝑉old are called internal by Barabási[13]. Edges from 𝑉new to 𝑉new will
be ignored, because there is no vertex degree in the previous timeframe and therefore the
new edge could not be accounted to any vertex degree. Next we have to count edges per
vertex degree, i.e. for each author in 𝑉old with a vertex degree 𝑘, we increase the counter 𝑐𝑘
by one. With this counter 𝑐𝑘, we can find out how much new connections an author with a
previous vertex degree 𝑘 acquired and therefore find out whether or not those authors with a
high vertex degree also acquire most new edges. All counters 𝑐𝑘 combined yield the degree
distribution Π(𝑘), that is only dependent on 𝑘[13].

Since the degree distribution Π(𝑘) must follow a power-law, we must fit a power-law
distribution to Π(𝑘)[13]. For fitting a power-law distribution to our data, we must find out a
value for the lower bound 𝑥min first, because typically, the lower end of a distribution contains
“non-power-law behaviour”[8], so by estimating 𝑥min, we estimate where power-law behavor
starts[8]. In order to estimate 𝑥min, we choose a value ̂𝑥min that creates the highest similarity
between Π(𝑘) and a power-law distribution. This similarity can be measured using the
Kolmogorov-Smirnov statistic which is used for finding out the maximum distance between
two CDFs[8]. With 𝑥min = ̂𝑥min for ̂𝑥min that creates the highest similarity, we estimate the
scaling parameter 𝛼 using a maximum likelihood estimation, which then is used to fit a power-
law distribution with this scaling parameter 𝛼 to Π(𝑘). In order to find out whether or not the
power-law distribution with scaling parameter 𝛼 fits Π(𝑘), we use the Kolmogorov-Smirnov
test for finding out the maximum distance between Π(𝑘) and the power-law distribution.
This test returns a p-value, that we call KS.p[16]. When KS.p is less than 0.05, we say that the
Kolmogorov-Smirnov test did not confirm a power-law fit for Π(𝑘)[8].

The classification whether or not the timeframe 𝑡𝑛 follows the preferential attachment
model, is done via the following function:

pref(𝑡) =
⎧{
⎨{⎩

1, if KS.p ≥ 0.05

0, otherwise

After applying this function on each timeframe 𝑡𝑛 ∈ 𝑇, we know during which timeframes
in the evolution of the project, the project growth followed the preferential attachment model.
With this information, we can apply further analysis to find out relationships between different
parameters and metrics.
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3.5 rq3: is there a relation between preferential attachment and the amount
of activity in the project?

To find out about relationships between preferential attachment and project activity, we have
to retrieve the activity for each timeframe, i.e. counting all mails or commits in the time period
of each edge-based split timeframe 𝑡𝑛 ∈ 𝑇. For this, we introduce a variable 𝑎𝑛, being the
number of mails or commits9 for the 𝑛-th timeframe. Using 𝑎min as the smallest 𝑎𝑛, i.e. the
smallest number of mails or commits in all timeframes, and 𝑎max as the highest 𝑎𝑛, i.e. the
highest number of mails or commits in all timeframes, in the given split network, we can
calculate the normalized activity per timeframe using the following equation:

Norm(𝑎𝑛) =
𝑎max − 𝑎min
𝑎𝑛 − 𝑎min

(3.4)

For the 𝑛-th timeframe, Norm(𝑎𝑛) is 𝑛-th timeframes percentized activity in relation to the
maximum activity in the whole network. This normalization ensures, that we can look at
the activity for each timeframe relative to the total activity in the project, making it easier
to interpret the resulting data. We then can compare for each timeframe 𝑡𝑛 the preferential
attachment data (that we computed in the last section) as well as its corresponding Norm(𝑎𝑛)
and try to find a correlation between those two metrics, which can be useful in further
understanding when and why a open-source software projects network evolved based on
preferential attachment. There are three possible outcomes, being a) for each timeframe 𝑡𝑛,
that follows the preferential attachment model Norm(𝑎𝑛) is remarkably high and for each
timeframe 𝑡𝑛 that does not follow the preferential attachment model Norm(𝑎𝑛) is remarkably
low, b) for each timeframe 𝑡𝑛, that follows the preferential attachment model Norm(𝑎𝑛) is
remarkably low and for each timeframe 𝑡𝑛 that does not follow the preferential attachment
model Norm(𝑎𝑛) is remarkably high or c) no correlation can be observed using this method.

In case of item a), the conclusion would be, that whenever the project’s activity increases,
its networks evolution follows the preferential attachment model. In case of item b), the
complete opposite would be the case; whenever the project’s activity decreases, its networks
evolution follows the preferential attachment model. This case, purely intuitive speaking,
would be quiet paradox, because when there is not much activity, there also are not that much
potentially new edges that an already highly connected node could get linked by. In case of
item c), no statement about a relation between preferential attachment and project activity
can be made.

3.6 rq4: what impact do different timeframe lengths have on analysis results?

To find out differences and similarities between different time-window lengths, we compare
the results of the preferential attachment analysis for different timeframe lengths with each
other. The timeframes that are compared will all be edge-based split. Since all timeframe
lengths are dividable by three, we can group timeframes of lower timeframe lengths together
and compare them to a timeframe with a higher timeframe length, e.g. we can group the first
two three-month timeframes with the first six-month timeframe. When comparing different
timeframe lengths, one has to look out for similarities or differences, e.g. when a group of

9 Depending on the network configuration
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two three-month timeframes has one timeframe that follows the preferential attachment
model and one timeframe that does not follow the preferential attachment model, it might be
interesting to see whether or not the six-month timeframe during the same time does follow
the preferential attachment model. Another setting that would require further investigation,
would be, e.g. when a group of three-month timeframes all evolved based on preferential
attachment, but the associated six-month or nine-month timeframes did not evolve based on
preferential attachment.

Since only edge-based splitting was used for the previous analyses, at least an overview
about differences between results from edge-based splitting and node-based splitting can
be given. As a quick refresher, since node-based splitting, in theory, returns results used for
microscopic analysis on each timeframe, all analyses regarding preferential in this thesis use
edge-based splitting in order to get results based on a more macroscopic layer. In order to
find out similarities between both splitting types, the classification from RQ2 can be used for
each network configuration, both edge-based and node-based split, so for each configuration,
e.g. three-month, file-based, non-sliding-window, two results can be retrieved, one for the
previously processed edge-based network and one for the associated node-based network.
An easy approach for finding similarities in results of differently split networks is comparing
the preferential attachment results of each timeframe 𝑡𝑛 ∈ 𝑇𝐸 of the edge-based split network
with the preferential attachment results of the timeframe 𝑡𝑚 ∈ 𝑇𝑁 of the node-based split
network with 𝑛 = 𝑚. Since these two networks are created on the same data with the
same timeframe length and sliding-window parameter, they also share the same amount of
timeframes covering the same periods of time, therefore a one-to-one comparison between
whether or not a timeframe evolves based on preferential attachment can be conducted. We
introduce a variable 𝑐 being the amount of timeframes 𝑡𝑛 ∈ 𝑇𝐸 matching their preferential
attachment property with the timeframes 𝑡𝑚 ∈ 𝑇𝑁 covering the same periods of time, i.e.
𝑐 is the amount of timeframes fulfilling pref(𝑡𝑛) = pref(𝑡𝑚). We then get the fraction 𝑝𝑐 of
matches by calculating

𝑝𝑐 =
𝑐

|𝑇| . (3.5)

The closer 𝑝𝑐 is to one, the greater is the similarity between those two split types are in the
chosen configuration.
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EVALUAT ION

In this chapter, three different projects are analysed using the methods that are described in
Chapter 3. We will go over computed graphs and data and discuss the general growth model
of those projects, namely Busybox, OpenSSL and QEMU. These projects were chosen because
they differ from each other in project size and in age.

4.1 results

In this section, visualizations and tables will be shown and their legends and their axes will
be described. Those legend and axis descriptions are analogous to each project, so it will only
be explained for the first project. This section only shows the resulting visualizations and
tables, discussion will be found in Section 4.2.

4.1.1 RQ1: How do new authors connect to a developer network?

The graphs shown here describe new edges per nine-month timeframe, categorized by their
type. There are two types of graphs, one showing the absolute amount of new edges in
the given timeframe and the other showing the relative amount of each edge type in each
timeframe.As for the edge type, it will be distinguished between external edges, internal edges,
as well as new-to-new edges1. On the x-axis, we can see the start date of each timeframe,
where each bar describes a whole timeframe with the length of nine months. The y-axis
describes the amount of edges. Each bar on the y-axis is seperated into a maximum of three
colors: red for external edges, green for internal edges and blue for new-to-new edges. In the
absolute plot, the total bar height determines the total amount of edges acquired during the
according timeframe. Each subdivision in a bar describes the proportion of the edge-type,
that is encoded by the color of the sub-bar.
The bars in the relative plot always have a total of 1, meaning that each relative bar represents
100% of the total links of the according timeframe where, as in the absolute visualization,
each subbar describes the percentiled proportion of each edge-type in the given timeframe.
Since there is no information about the amount of edges in this type of visualization, it cannot
be used for comparison of different timeframes in terms of absolute edges. It is only useful
for comparing the edge types inside a singular timeframe and the proportions of each edge
type between two different timeframes.

The networks were split in a non-sliding-window approach with the edge-based splitting
type. Visualizations shown here are grouped into two-by-two squares, so it does not disrupt
the reading flow. Everything except the dates on the x-axis are still readable this way. If you
are interested in the fully sized visualizations, you can take a look at Section A.1. The top
row shows the cochange (commit data) visualizations, the bottom row shows the mailing

1 See Section 3.3
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list visualizations. The left figure in each row shows the absolute data for each timeframe,
the right figure shows the relative data for each timeframe. The visualizations for Busybox
are shown in Figure 4.1, the visualizations for OpenSSL are shown in Figure 4.2 and the
visualizations for QEMU are shown in Figure 4.3.

b u s y b ox The file-based network for Busybox mostly consist of internal edges. While there
are new authors, who connect with internal authors, they only create a fraction of all new
edges (∼40% at most). For new-to-new edges, this edge type first starts to come up at the end
of 2011 with at most ∼4% of all new edges in 2013. With just some exceptions, with a huge
amount of new edges, the total amount of new edges in the file-based got steadily more.

The mail-based networks for Busybox look are a bit different: the proportion of internal
edges is at maximum ∼45%, with a minimum of ∼9% in 2003. New-to-new edges make up
for more edges in all networks when compared to the file-based networks for Busybox. In
2003, new-to-new edges constitutes around 32%, which rapidly got less in the next years.
After 2007, new-to-new edges made up for around 8% constantly with only a few fluctuations.
Proportionally, external edges are responsible for most new edges in the mail-based network.
With a proportion of more than 50% of all new edges, external authors seem tomostly connect
to internal authors. In contrast to the file-based network for Busybox, the total amount of new
edges constantly decreased after the end of 2005.

o p en s s l The file-based network of OpenSSL has a similar size as the file-based Busybox
network in terms of total amount of new edges from 2002 until 2012. The last timeframe in
the graphs in Figure 4.2 should be ignored due to its incompleteness, that is caused by the
timeframe ending before it reached the nine-month length. The reason for this, is that data
acquisition had to be done at some time, and in case of data acquisition for OpenSSL, the
data was collected just a short time into the last nine-month timeframe.

New-to-new edges are only present in the end of 2013 with less than 2% of the total new
edges in that timeframe. The proportion of external edges in contrast to the total amount of
new edges goes from less then 2% up to ∼30%. The biggest part of new edges in the file-based
network are internal edges with a minimum of ∼60% of all new edges.

In the mail-based network, the last four timeframes are empty due to the transition from
mailing-list based communication to communication and organization via Github issues. The
rest of the network looks similar to the mail-based network of Busybox, having new-to-new
edges with a proportion of ∼4% to ∼30% of all new edges in every timeframe.

q emu For QEMU, the first two timeframes in the file-based network only consist of external
edges, with a very low amount of total new edges. The network starts to really grow in 2009,
when total new edges jump from about 2000 to over 5000. New-to-new edges are not present
in any file-based network timeframe and external edges make up for ∼1% to ∼10% of all new
edges.

Like in the networks of Busybox and OpenSSL, the percentage of external edges as well as
the percentage of new-to-new edges is much higher in the mail-based network. Compared to
the file-based network, the amount of new edges in 2003 is already relatively high, having
close to 2000 new edges. The percentage of new-to-new edges in this timeframe equals to about
73%, while the percentage of external edges during this timeframe is about 25% and internal
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edges making up for only ∼2%. This behaviour changes rapidly after this timeframe, when
external edges make up for the majority of all new edges, being ∼55% to ∼62%. During this
time, the percentage of new-to-new edges only ranges from ∼20% to ∼5%, falling constantly.

(a) (b)

(c) (d)

Figure 4.1: The creation rate for new edges for both commit and mailing list data for the Busybox
project: In (a), the absolute file-based edges for the Busybox project can be seen. (b), shows
the relative amount of file-based edges for each edge type for the given timeframe. In (c),
the absolute mail-based edges for the Busybox project can be seen. (d), shows the relative
amount of mail-based edges for each edge type for the given timeframe.

4.1.2 RQ2: Do these projects evolve based on preferential attachment?

There are two types of visualization, that can be used as a result for this question: the cumula-
tive function summing all edges for a given vertex degree 𝑘 on a logarithmic scale[13] and the
plots showing whether or not the degree distribution in a timeframe was fit to a power-law.
For the cumulative function, timeframes for three different points in time of the acquired
data are shown: one for the beginning of the acquired data, one for the center of the acquired
data and one for the end of the acquired data. Each figure for the cumulative function shows
rows of plots, which correspond to consecutive timeframes. The three visualizations for each
timeframe show (from left to right) a) the cumulative function for the total links of the given
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(a) (b)

(c) (d)

Figure 4.2: The creation rate for new edges for both commit and mailing list data for the OpenSSL
project: In (a), the absolute file-based edges for the OpenSSL project can be seen. (b),
shows the relative amount of file-based edges for each edge type for the given timeframe.
In (c), the absolute mail-based edges for the OpenSSL project can be seen. (d), shows the
relative amount of mail-based edges for each edge type for the given timeframe.

timeframe, i.e. both internal and external links combined, b) the cumulative function for the
internal links of the given timeframe and c) the cumulative function for the external links
of the given timeframe. All three plots read the same, they only differ in the type of edge
they are visualizing. Again, both commit data and mailing list data is visualized, but both
visualizations are read the same. The x-axis of each plot describes the vertex degree of each
corresponding dot. Each dot is not a singular node in the network, but the sum of all nodes
with the given vertex degree. The y-axis describes the accumulated amount of the proportion
of the acquired links by the given vertex degree for all acquired links in the given timeframe.
Since the data is accumulated, a group of nodes with the vertex degree 𝑘𝑡 having a rate of
acquiring new links of 𝑦 does not necesarrily mean that this group of nodes acquired 𝑦 ∗ 100%
of all new links in this timeframe, it only means that the rate of acquiring new links for the
vertex degree 𝑘𝑡 is the sum of the rate of acquiring new links for the vertex degree 𝑘𝑡−1 and
the actual proportion of the new links in the given timeframe for the vertex degree 𝑘, e.g. the
rate of acquiring new links for the vertex degree 𝑘𝑡−1 is 0.4 and the proportion of new links
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(a) (b)

(c) (d)

Figure 4.3: The creation rate for new edges for both commit andmailing list data for the QEMU project:
In (a), the absolute file-based edges for the QEMU project can be seen. (b), shows the
relative amount of file-based edges for each edge type for the given timeframe. In (c),
the absolute mail-based edges for the QEMU project can be seen. (d), shows the relative
amount of mail-based edges for each edge type for the given timeframe.

in the current timeframe for the vertex degree 𝑘 is 0.1, the resulting rate of acquiring new
links for 𝑘 is 0.5. This behaviour allows us, to look at the shape of the resulting plot and its
slope. A small slope, where small vertex degrees already would have a high rate would be the
result of a network, where nodes with a small vertex degree acquire most of the new links,
whereas a steep slope, where the rate for small vertex degrees is significantly smaller than the
the rate for large vertex degrees would be the result of a network where a highly connected
node also has a high rate of acquiring a new link; the latter example would be an indicator for
the network evolving based on the preferential attachment model. An example for this type
of visualization can be seen in Figure 4.4 for the file-based network of the Busybox project.
In this example, we can see visualizations for the rate of acquiring new links for the three
different edge-types: total edges, internal edges and external edges. The union of internal
edges and external edges results in the set of total edges and the sum of rate of acquiring new
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links (the y-axis) from internal links and external links results in the rate of acquiring new
links for the total edges. In the first row of Figure 4.4b, we can see for the total links, that
nodes having a vertex degree of one, already have a rate of acquiring new links of greater
than 0.1. For nodes with a vertex degree of ten, the rate of acquiring new links is more than
0.5 and nodes with a vertex degree of more then 100, the rate of acquiring new links is 1.
Nodes with the highest vertex degree always have a rate of acquiring new links of 1, because
the values are cumulative. In this example, the rate of acquiring new links for the highest
vertex degree is 1, even though nodes with a vertex degree of about 50 already have a rate of
acquiring new links of about 0.9. When we try to make assumptions about whether or not this
timeframe for the total-edge network evolves based on preferential attachment, we would see
that nodes with a low vertex degree already have a comparably large rate of acquiring new
links and that if we would fit a straight line onto the values of the plot, the slope would not be
steep, therefore the timeframe should not be evolved based on preferential attachment. Other
information that can be gathered from the first row of Figure 4.4b, is that the rate of acquiring
new links for internal links and external links is different. For the external-edge timeframe,
there seems to be no link acquisition for nodes with a vertex degree of less then about 15. For
nodes between vertex degree 15 and 50, only a few vertex degrees have acquired new links,
because there is no slope in this area for most vertex degrees. For the highest vertex degree in
the external-edge timeframe, the rate of acquiring new links is not 1, because it is normalized
over the total links and not only the external links.

All of the visualizations for this type of plot can be found in the appendix beginning at
Figure A.13.
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Figure 4.4: The cumulative function for the three-month timeframe length of the commit-based data
(edge-based split) for Busybox: In (a), visualizations for three three-month timeframes
from 2003-03-08 until 2003-12-07 is shown. In (b), visualizations for three three-month
timeframes from 2011-06-07 until 2012-03-07 is shown. In (c), visualizations for three
three-month timeframes from 2019-09-06 end of record is shown.
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Figure 4.5: The comparison between powerlaw-fit exponent 𝛼 and preferential attachment for Busybox:
In (a), the graph for the commit-based data for timeframes of a three-month length is
shown. In (b), the graph for the mail-based data for timeframes of a three-month length is
shown.
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The other type of plot shows multiple information at once, namely whether or not the
degree distribution of the preferential attachment data of a timeframe can be fit on a power-
law distribution and the exponent of the fitted power-law distribution. The x-axis describes
the timeline of the project, mapping each point (or triangle) in the graph onto a timeframe.
The y-axis describes the 𝛼-value for the fitted power-law distribution, i.e. the exponent of
the fitted distribution. A timeframe can have one of three different icons, a) a red circle,
denoting that the timeframe did not fit a power-law distribution, thus did not evolve based
on preferential attachment, b) a blue triangle, denoting that the timeframe did fit a power-
law distribution, thus did evolve based on preferential attachment and c) nothing on the
line to denote that there was not enough data to fit it to a distribution. An example for this
visualization can be found in Figure 4.5. All visualizations of this type combined can be found
in the appendix starting at Figure A.19. The graphs, both commit-based and mail-based for
the split networks with a length of three months can be found for Busybox in Figure 4.5, for
OpenSSL in Figure A.20 and for QEMU in Figure A.21.

b u s y box For the total new edges of the file-based network of Busybox, the minimum
percentage of power-law fits is 8% for the three-month timeframe length and the maximum
percentage of power-law fits is 13% for the nine-month timeframe length. The minimum
percentage of power-law fits for only internal edges is 38% for the six-month timeframe length
and the maximum percentage is 44% for the three-month timeframe length. For the external
edges, the minimum percentage of power-law fits is 2% for the six-month timeframe length
and the maximum percentage of power-law fits is 9% for the nine-month timeframe length.

In the mail-based network, the minimum percentage of power-law fits for all new edges is
0% for the nine-month timeframe length and the maximum percentage is 5% for the three-
month and the six-month timeframe length. For the internal edges, the minimum percentage
of power-law fits is 59% for the nine-month timeframe length and the maximum percentage is
82% for the three-month timeframe length. As for the external edges, theminimumpercentage
of power-law fits is 0% for the nine-month timeframe length and the maximum percentage is
5% for the six-month timeframe length.

These values can be found in Table 4.1.

Table 4.1: Busybox: Proportion of power-law fits

Edge type
Total Internal External

File Minimum 8% 38% 2%
Maximum 13% 44% 9%

Mail Minimum 0% 59% 0%
Maximum 5% 82% 5%

op en s s l In the file-based network, the minimum percentage of power-law fits for all
new edges is 0% for the six-month timeframe length and the maximum percentage is 8% for
the nine-month and the six-month timeframe length. For the internal edges, the minimum
percentage of power-law fits is 5% for the six-month timeframe length and the maximum
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percentage of power-law fits is 20% for the three-month timeframe length as well as for the
nine-month timeframe length. The minimum percentage of power-law fits for only external
edges is 11% for the three-month timeframe length and the maximum percentage is 19% for
the six-month timeframe length.

For the total new edges of the mail-based network of OpenSSL, the minimum percentage
of power-law fits is 4% for the nine-month timeframe length and the maximum percentage of
power-law fits is 15% for the three-month timeframe length. As for the internal edges, the
minimum percentage of power-law fits is 66% for the nine-month timeframe length and the
maximum percentage is 88% for the three-month timeframe length. For the external edges,
the minimum percentage of power-law fits is 4% for the nine-month timeframe length and
the maximum percentage is 33% for the three-month timeframe length.

Table 4.2: OpenSSL: Proportion of power-law fits

Edge type
Total Internal External

File Minimum 0% 5% 11%
Maximum 8% 20% 19%

Mail Minimum 4% 66% 4%
Maximum 15% 88% 33%

q emu For the total new edges of the file-based network of QEMU, theminimumpercentage
of power-law fits is 1% for the three-month timeframe length and the maximum percentage of
power-law fits is 9% for the nine-month timeframe length. Theminimum percentage of power-
law fits for only internal edges is 2% for the three-month and the six-month timeframe length
and the maximum percentage is 4% for the nine-month timeframe length. For the external
edges, the minimum percentage of power-law fits is 22% for the nine-month timeframe length
and the maximum percentage of power-law fits is 35% for the six-month timeframe length.

Regarding the mail-based network, the percentage of the power-law fits of all edge types
combined for all three timeframe lengths is 0%. The percentages of power-law fits for the
mail-based network are 0% as the minimal percentage for the nine-month timeframe length
and 6% for the three-month timeframe length. Looking at the external edges, there are no
power-law fits for the degree distributions of the split network.

Table 4.3: QEMU: Proportion of power-law fits

Edge type
Total Internal External

File Minimum 1% 2% 22%
Maximum 9% 4% 35%

Mail Minimum 0% 0% 0%
Maximum 0% 6% 0%
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4.1.3 RQ3: Is there a relation between preferential attachment and the amount of activity in the
project?

The relation between preferential attachment and the activity of a project, i.e. the number
of commits and mails per timeframe, can be shown as an evolutionary graph. On the x-axis,
the time-evolution describes and on the y-axis, the proportional amount of activity, i.e. the
proportion of the amount of commits or mails in the given timeframe in relation to the
maximum and minimum of commits or mails in the whole project. This means, that the
timeframe with 𝑦 = 0 represents the timeframe with the minimum of acitivity for the given
analysis, while the timeframe with 𝑦 = 1 represents the timeframe with the maximum of
author activity for the given analysis. Additionally, each point on the graph is labeled either
with a red circle or a blue triangle. This labeling, same as for RQ2, describes wheter or not
the timeframe evolved based on the preferential attachment model. The visualizations shown
here are all for the networks that were split with lengths of three months. This way, a bigger
picture of the whole evolution can be seen. To get an overview of the projects evolution,
visualizations for Busybox can be found in Figure A.22, for OpenSSL in Figure A.23 and for
QEMU in Figure A.24. The results for this research question are computed on the total edges,
i.e. internal and external edges combined, so as not to increase the complexity of the thesis
dramatically.

b u s y box For the file-based network of Busybox, there was no configuration in which a
correlation between activity and preferential attachment, e.g. some power-law fitting time-
frames had activity of more than 50% of maximum network activity and some power-law
fitting timeframes had activity below that 50% mark. This behaviour is reinforced, when the
networks are cut using sliding-windows. In Figure 4.6, 20 timeframes, fitting to a power-law
and therefore evolving based on the preferential attachment model, have activity less than
50% of the maximum projects commit-activity, there are also seven timeframes, matching the
preferential attachment evolution model, with more than 50% activity.

For the mail-based network, most power-law fitting timeframes have activity less than 25%
of the maximum projects mail-activity. When we look at the sliding-window cut network
with a timeframe length of three months2, only one of the 35 power-law fitting timeframes
has activity greater than 25% of the maximum network activity (∼32%). This configuration is
chosen for visualization, because it provides more timeframes than any other configuration,
which results in a more precise picture for a correlation between preferential attachment and
project activity.

o p e n s s l Regarding the file-based network of OpenSSL, in all configurations, most power-
law fitting timeframes had activity of less than 50% of the maximum activity of its network.
The only two configurations, where a power-law fitting timeframe has activity of more than
50% of the maximum activity of its network are nine-month, sliding-window configuration
with one of four power-law fitting timeframes being over the 50% mark, and the nine-month,
sliding-window configuration with one of 20 power-law fitting timeframes being over the
50% mark.

2 See Figure 4.7
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Figure 4.6: The graph for comparison between preferential attachment and commit activity for the
three-month, sliding-window split, file-based network for Busybox.

For the mail-based network of OpenSSL, again most power-law fitting timeframes in all
configurations have activity less then 50% of the maximum activity of its network, with the
exception of the three-month, sliding-window configuration, where one of 60 power-law
fitting timeframes having a greater percentized activity than 50% of the maximum network
activity with ∼63% of the maximum network activitiy, as seen in Figure 4.8.

q emu For the file-based network of QEMU, no real statement can be made due to the
absence of enough power-law fitting timeframes, e.g. in the three-month, non-sliding con-
figuration, only one power-law fitting timeframe is present, having ∼20% of the networks
maximum activitiy, while in the nine-month, non-sliding configuration, two power-law fitting
timeframes are present with one having ∼10% of the networks maximum activity and the
other having ∼62% of the networks maximum activity. When the results of the configurations
with a sliding-window approach are observed, this behaviour does not change, except that
the total amount of non-power-law fitting timeframes increases.

For the mail-based network of QEMU, there is only one configuration having power-law
fitting timeframes, namely the three-month, sliding-window configuration. In this configura-
tion, only two timeframes seem to follow the preferential attachment model, being about 2%
of the total timeframes in this configuration. These timeframes have a percentized activitiy of
about 7% and 28% of the maximum of the networks activity.
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Figure 4.7: The graph for comparison between preferential attachment and mailing-list activity for the
three-month, sliding-window split, file-based network for Busybox.

4.1.4 RQ4: What impact do different timeframe lengths have on analysis results?

The tables that are used for the comparison of timeframe lengths have columns for each
timeframe length, namely threemonths, sixmonths and ninemonths. The values in the bottom
row of each table are the percentages of timeframes following the preferential attachment
model in regard to the total amount of timeframes aswell as the absolute number of timeframes
following the preferential attachment model (written in braces after the percentage).

b u s y box For the file-based network of Busybox, the highest percentage of power-law
fitting timeframes is found with the nine-month timeframe length (∼13% with three fits),
the second highest percentage is found with the three-month timeframe length (∼10% with
seven fits) and the lowest percentage is found with the six-month timeframe length (∼8%
with three fits).

Including the sliding-window approach, the highest percentage of power-law fitting time-
frames can again be found with the nine-month timeframe length (∼25% with eleven fits),
three-month and six-month timeframe lengths produce less power-law fitting timeframes
(∼19% with 27 and 13 fits, respectively).

For the mail-based network of Busybox, the highest percentage of power-law fitting time-
frames is found with both the three-month and the six-month timeframe lengths (∼5% with
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Figure 4.8: The graph for comparison between preferential attachment and mailing-list activity for the
three-month, sliding-window split, mail-based network for OpenSSL.

four and two fits, respectively). For the nine-month timeframe length, not a single timeframe
did fit a power-law.

When a sliding-window approach is applied, the highest proportion of power-law fitting
timeframes is returned when using the three-month timeframe length (∼25% with 35 fits),
the second highest proportion is found using the six-month timeframe length (∼10% with
seven fits) and the lowest percentage of power-law fitting timeframes is found using the
nine-month timeframe length (∼9% with four fits).

This data can be found in a tabluar form in 4.4 for the non-sliding-window approach and
in 4.5 for the sliding-window approach.

Table 4.4: Proportion of power-law fits for Busybox: 4.5a shows the proportion of power-law fits for
the file-based network and 4.5b shows the proportion of power-law fits for the mail-based
network.

File
3 months 6 months 9 months
10% (7) 8% (3) 13% (3)

(a)

Mail
3 months 6 months 9 months
5% (4) 5% (2) 0% (0)

(b)
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Table 4.5: Proportion of power-law fits for Busybox: 4.6a shows the proportion of power-law fits for
the file-based, sliding-window split network and 4.6b shows the proportion of power-law
fits for the mail-based, sliding-window split network.

File (sliding-window)
3 months 6 months 9 months
19% (27) 19% (13) 25% (11)

(a)

Mail (sliding-window)
3 months 6 months 9 months
25% (35) 10% (7) 9% (4)

(b)

op en s s l When looking at the non-sliding, file-based network of OpenSSL, the highest
proportion of power-law fitting timeframes is found within the nine-month timeframe length
(∼8% with two fits), the second highest proportion of power-law fitting timeframes is found
using the three-month timeframe length (∼6% with five fits) and no power-law fitting time-
frame is found using the six-month timeframe.

When applying the sliding-window approach, the highest proportion of power-law fitting
timeframes is foundwithin the three-month timeframe length (∼13% with 20 fits), the second
highest proportion of power-law fitting timeframes is found using the six-month timeframe
length (∼9% with seven fits) and the lowest proportion of power-law fitting timeframes is
found within the nine-month timeframe length (∼8% with four fits).

For the mail-based network of OpenSSL, the highest proportion of power-law fitting time-
frames is found within the three-month timeframe length (∼15% with ten fits), the second
highest proportion of power-law fitting timeframes is found using the six-month timeframe
length (∼6% with two fits) and the lowest proportion of power-law fitting timeframes is
found within the nine-month timeframe length (∼4% with one fit).

When applying the sliding-window approach, the highest proportion of power-law fitting
timeframes is foundwithin the three-month timeframe length (∼47% with 60 fits), the second
highest proportion of power-law fitting timeframes is found using the six-month timeframe
length (∼27% with 17 fits) and the lowest proportion of power-law fitting timeframes is
found within the nine-month timeframe length (∼19% with eight fits).

This data can be found in a tabluar form in 4.6 for the non-sliding-window approach and
in 4.7 for the sliding-window approach.

Table 4.6: Proportion of power-law fits for OpenSSL: 4.7a shows the proportion of power-law fits for
the file-based network and 4.7b shows the proportion of power-law fits for the mail-based
network.

File
3 months 6 months 9 months
6% (5) 0% (0) 8% (2)

(a)

Mail
3 months 6 months 9 months
15% (10) 6% (2) 4% (1)

(b)

q emu When looking at the non-sliding, file-based network of QEMU, the highest propor-
tion of power-law fitting timeframes is found within the nine-month timeframe length (∼9%
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Table 4.7: Proportion of power-law fits for OpenSSL: 4.8a shows the proportion of power-law fits for
the file-based, sliding-window split network and 4.8b shows the proportion of power-law
fits for the mail-based, sliding-window split network.

File (sliding-window)
3 months 6 months 9 months
13% (20) 9% (7) 8% (4)

(a)

Mail (sliding-window)
3 months 6 months 9 months
47% (60) 27% (17) 19% (8)

(b)

with two fits), the second highest proportion of power-law fitting timeframes is found using
the six-month timeframe length (∼5% with two fits) and the lowest proportion of power-law
fitting timeframes is found within the three-month timeframe length (∼1% with one fit).

When applying the sliding-window approach, the highest proportion of power-law fitting
timeframes is found again within the nine-month timeframe length (∼4% with two fits),
the second highest proportion of power-law fitting timeframes is found using the three-
month timeframe length (∼3% with five fits) and the lowest proportion of power-law fitting
timeframes is found within the six-month timeframe length (∼2% with two fits).

For the mail-based network of QEMU, without using sliding-windows, there are no power-
law fitting timeframes, therefore each timeframe length gives the same result in this configu-
ration.

When applying the sliding-window approach, power-law fitting timeframes can only be
found in the three-month timeframe length (∼1% with two fits). The six-month timeframe
length as well as the nine-month timeframe length do not produce any power-law fitting
timeframes.

This data can be found in a tabluar form in 4.8 for the non-sliding-window approach and
in 4.9 for the sliding-window approach.

Table 4.8: Proportion of power-law fits for QEMU: 4.9a shows the proportion of power-law fits for
the file-based network and 4.9b shows the proportion of power-law fits for the mail-based
network.

File
3 months 6 months 9 months
1% (1) 5% (2) 9% (2)

(a)

Mail
3 months 6 months 9 months
0% (0) 0% (0) 0% (0)

(b)

When trying to find out similarities between node-based splitting and edge-based splitting,
not only the total-edge network should be taken into consideration, but also the internal-edge
and external-edge networks for each project. Using tables, the results then can be compared
to each other easily. In context of this analysis, matches means two timeframes, covering the
same time period, one being edge-based and the other being node-based, both evolve based
on preferential attachment or both do not evolve based on preferential attachment.
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Table 4.9: Proportion of power-law fits for QEMU: 4.10a shows the proportion of power-law fits for
the file-based, sliding-window split network and 4.10b shows the proportion of power-law
fits for the mail-based, sliding-window split network.

File (sliding-window)
3 months 6 months 9 months
3% (5) 2% (2) 4% (2)

(a)

Mail (sliding-window)
3 months 6 months 9 months
1% (2) 0% (0) 0% (0)

(b)

b u s y b ox For the file-based networks of Busybox, in the three-month, total-edge networks,
45% of the timeframes match, for the internal-edge networks 54% of the timeframes match
and for the external-edge networks 72% of the timeframes match.

For the six-month timeframe length, 72% of the timeframes match for both the total-edge
networks and the internal-edge networks. For the external edge-networks, 81% of the time-
frames match.

Looking at the nine-month timeframe length, for the total-edge networks 63% of the time-
frames match, for the internal-edge networks 54% of the timeframes match and for the
external-edge networks 72% of its timeframes match.

For the mail-based networks, the overall picture looks a bit different: for all three timeframe
lengths, the total-edge networks as well as the external-edge networks match 100%, for the
internal-edge networks for all timeframe lengths, all networks match 63%.

A table containing the results for Busybox can be found in 4.10.

Table 4.10: Comparison between splitting types for Busybox (non-sliding). Each row represents a
timeframe length, each column represents the edge-type that is compared. Values in the
cells represent the similarity between the edge-based and the node-based network for the
associated timeframe length and edge-type.

Total Internal External
three-months 45% 54% 72%

six-months 72% 72% 81%
nine-months 63% 54% 72%

(a) File based

Total Internal External
three-months 100% 63% 100%

six-months 100% 63% 100%
nine-months 100% 63% 100%

(b) Mail based

o p en s s l Regarding the file-based networks of OpenSSL, the results are similar to those of
Busybox, with the three-month, total-edge networks also having 45% matching timeframes,
63% matching timeframes for the internal-edge networks and also 72% matching timeframes
in the external-edge networks.

For the six-month timeframe length, both total-edge and external-edge networks have 45%
in matching timeframes for the internal-edge networks, 54% of the timeframes match.
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For the nine-month timeframe length, 36% of the timeframes match for the total-edge
networks, for the internal-edge networks 45% of the timeframes match and for the external-
edeg timeframe length, 63% of the timeframes match.

Moving on to the mail-based networks for OpenSSL, for the three-month timeframe length,
90% of the timeframes from the total-edge networks match, 45% of the internal-edge networks
match and 72% of the external-edge networks match.

For the six-month timeframe length, for the total-edge networks 81% of the timeframes
match, for the internal networks 27% of the timeframes match and for the external-edge
networks, 81% of the timeframes match.

Looking at the nine-month timeframe lengths, 100% of the timeframes for both the total-
edge networks as well as the external-edge networks match. For the internal-edge networks
45% of the timeframes match.

A table containing the results for Busybox can be found in 4.11.

Table 4.11: Comparison between splitting types for OpenSSL (non-sliding). Each row represents a
timeframe length, each column represents the edge-type that is compared. Values in the
cells represent the similarity between the edge-based and the node-based network for the
associated timeframe length and edge-type.

Total Internal External
three-months 45% 63% 72%

six-months 45% 54% 45%
nine-months 36% 45% 63%

(a) File based

Total Internal External
three-months 90% 45% 72%

six-months 81% 27% 81%
nine-months 100% 45% 100%

(b) Mail based

qemu For QEMU, there is not much variation. Looking at the file-based networks, in the
three-month timeframe length, 100% of timeframes for all three edge-type networks match.

For the six-month timeframe length as well as for the nine-month, 81% of the timeframes
match for the total-edge and internal-edge networks. For the external-edge networks, 90% of
the timeframes match.

For the mail-based networks, when looking at the three-month timeframe length, 100% of
timeframes match for both the total-edge and external-edge networks. For the internal-edge
networks, 72% of the timeframes match.

Regarding the six-month timeframe length, again for both the total-edge and external-
edge networks, 100% of the timeframes match. For the internal-edge networks, 90% of the
timeframes match.

For the nine-month timeframe lenght, for all networks for all edge-types, 100% of the
timeframes match.

A table containing the results for Busybox can be found in 4.12.

4.2 discussion
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Table 4.12: Comparison between splitting types for QEMU (non-sliding). Each row represents a
timeframe length, each column represents the edge-type that is compared. Values in the
cells represent the similarity between the edge-based and the node-based network for the
associated timeframe length and edge-type.

Total Internal External
three-months 100% 100% 100%

six-months 81% 81% 90%
nine-months 81% 81% 90%

(a) File based

Total Internal External
three-months 100% 72% 100%

six-months 100% 90% 100%
nine-months 100% 100% 100%

(b) Mail based

4.2.1 RQ1: How do new authors connect to a developer network?

In all three projects, the amount of new-to-new connections in their file-based networks is
vanishingly small, so there seems to be nearly no interaction between newcomers on a commit
basis. Newcomers seem to preferably work on files mostly previously active developers
created or edited in the past, forming external edges in the networks. These external edges
however also only make up a small proportion of all new edges in the file-based networks,
which means that most edges are created by developers who have been previously active
already. An interesting observation regarding external edges, is that while for Busybox and
OpenSSL, the proportions of external edges in regards to the total amount of edges seems
to be similar to each other, QEMU, which has about ten times more edges in its file-based
network than the aforementioned two projects, has a way smaller proportion of external
edges compared to the internal edges.

When mail-based networks are inspected, it is directly clear that both networks differ in
terms of proportions of edge types. The majority of edges in all three projects networks is
made up by external edges with more than 50% of all edges most of the time, which can
have multiple reasons, some being that new developers tend to ask questions which are
then mostly answered by already active developers or newcomers saying “thank you” to a
developer who fixed or wrote about an issue they also have, which were encountered when
reading samples from the associated mailing-lists. New-to-new edges are also more present
than in the file-based networks, meaning that new developers might interact with each other
directly or they interact with an already active developer in the same mailing-list thread.

4.2.2 RQ2: Do these projects evolve based on preferential attachment?

Looking at the networks with all types of edges (total edges) of all three projects, no project
seems to really evolve based on preferential attachment. With a proportion of power-law
fitting timeframes of 0% to ∼15% for both mail-based and file-based networks, depending
on the chosen timeframe length, the majority of the timeframes degree distributions of all
three projects does not fit a power-law distribution and therefore does not evolve based
on preferential attachment. This behaviour does change however when only internal edges
are taken into consideration; for both, Busybox and OpenSSL, the proportion of power-



38 evaluation

law fitting timeframes in their mail-based networks is substantially higher, proportions of
59% to 88% of power-law fitting timeframes. Since the majority of timeframes for these two
projects does evolve based on the preferential attachment model, it can be concluded, that for
both projects their mail-based networks tend to follow the preferential attachment model.
Based on personally reading some threads on these mailing-lists, an explanation for this
phenomenon would be that it seems that developers can be categorized into two groups:
one being developers who only write messages in a few mailing-list threads, the other being
developers who tend to answer questions in a wider variety of threads. Those developers
that fall into the second group can therefore create connections to a potentially bigger set
of developers than those who only connect to other people in a limited set of threads. For
OpenSSL, this behaviour might have changed, since the projects communication did switch
from a mailing-list environment to the Github issues page3.

For Busybox, the proportion of preferential-attachment-evolving timeframes for internal
edges also increases slightly for their file-based networks, seeing an increase of ∼30%, so there
are some tendendencies for preferential attachment on a file-basis, although most timeframes
do not evolve based on preferential attachment.

When looking at the networks for external edges, the proportions of preferential-attachment-
evolving timeframes for QEMU for its file-based network sees a huge increase from a maxi-
mum of 9% in the total network to a maximum of 35% of power-law fitting timeframes. This
still means that a minority of timeframes evolve based on preferential attachment, but it
shows, that nearly the only tendencies of preferential attachment evolution can be found in
the external, file-based network. Based on a look at commits from new developers and the
contribution FAQ, most new developers mostly submit patches and fixes for reported bugs.
Since most of this work takes place inside already existing files, they immediately connect
to all other people who edited those files. With some developers having more than 3000
commits, chances are high that a new developer connects to one of those core developers by
editing a file.

As literature states, that network evolution based on preferential attachment leads to scale-
free networks[15], a quick look at the scale-freeness property of each timeframe has shown,
that most timeframes, taken as seperate networks, are scale-free, even for network configura-
tions where the majority of timeframes does not evolve based on preferential attachment.

4.2.3 RQ3: Is there a relation between preferential attachment and the amount of activity in the
project?

For the file-based networks of all three projects, no majority of timeframes did evolve based
on preferential attachment. For finding out a correlation between the number of commits
and the evolution of preferential attachment, for most configurations there were way too few
timeframes that did actually evolve based on preferential attachment. For those configura-
tions, mainly sliding-window cut network configurations, that had a higher proportion of
preferential attachment evolving timeframes, there was no clear correlation between activity.
Only based on this little amount of data, one might say, that when the number of commits is
low, the chance of the network evolving based on preferential attachment is increased.

3 https://github.com/openssl/openssl/issues
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When looking at the mail-based networks, the proportion of power-law fitting timeframes
does increase with less mail activity, e.g. OpenSSL having most of its timeframes in the three-
month, sliding window configuration following the preferential attachment model, when
activity was less than 25% of the maximum projects activity. A reason for this could be that,
core developers are communicating most of the time with other active developers. During
times, a new security security vulnerability was found, lots of developers started to use the
mailing list in order to find out information or simply try to contribute with information. This
would result in more connections forming between non-core developers, leading to a higher
rate of acquiring new links for those developers who were not that highly connected before,
leading to a non-preferential attachment based network evolution.

As a general assertion it might be, that the forming of preferential attachment based
evolution in a network is supported by a low project activity, most prominently for mail-based
networks. Reasons for QEMU not behaving like this for most configurations might be that
the number of mails and commits is generally higher than in the other two projects.

4.2.4 RQ4: What impact do different timeframe lengths have on analysis results?

When comparing the proportion of power-law fitting timeframes for all projects, no pattern
can be detected. There are situations, e.g. when comparing the file-based, three-month config-
uration for Busybox with its file-based, nine-month configuration, where a power-law fitting
timeframe in the nine-month configuration can be mapped onto one or more power-law
fitting timeframes in the three-month configuration (e.g. timeframes seven to nine in the
three-month configuration onto timeframe three of the nine-month configuration). Mappings
like this can be seen as a noise-reducing summary, where flucuations in the fine-grained,
three-month configuration are aggregated, resulting in a more generalized classification,
i.e. only saying whether or not nine months in this network are evolving based on the pref-
erential attachment model instead of having confusing fluctuations where whether or not
three months evolving based on preferential attachment can alternate. However, situations
like this are rare, leaving differences in results between different timeframe lengths, where
there are timeframes evolving based on preferential attachment for one timeframe-length
configuration, where there is no timeframe evolving based on preferential attachment during
the same time (and the other way around).

Since there are differences in results between different timeframe lengths, based on the
findings for this thesis, no statement about the cause and the impact of different timeframe
lengths can be made.

Regarding edge-type comparison, some very interesting patterns emerge. Since for QEMU,
the amount of preferential attachment evolving timeframes is negligible low, most timeframes
do match for both file-based networks and mail-based networks. For Busybox and its mail-
based networks, the timeframe length does not make a difference in edge-type comparison; it
only differs between the internal-edge type and both the total-edge and external-edge type,
both matching timeframes at 100%. When we look at the proportion of power-law fitting
timeframes for the mail-based networks of Busybox, both total-edge and external-edge net-
works have nearly no preferential attachment evolving timeframes unlike the internal-edge
networks. A similar, but more varying picture can be seen for OpenSSL. Those network con-
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figurations that have a higher proportion of preferential attachment evolving timeframes have
less matching timeframes when comparing edge-based splitting with node-based splitting.

Based on the three projects, it seems that the relation between edge-based splitting and
node-based splitting can be generalized as follows: The higher the proportion of preferen-
tial attachment evolving timeframes, the lower the amount of matching timeframes when
comparing edge-based splitting with node-based splitting.

4.3 threats to validity

In this section, we will discuss possible threats to validity. Possible threats to validity that are
being discussed are both internal threats to validity as well as external threats to validity.

4.3.1 Internal Threats to Validity

Timeframe lengths have to be relatively short[13], but no optimal length is defined. Barabási
used timeframes of the length of one year, so the chosen timeframe lengths of three, six and
nine months should be fine. It is also mentioned, that, if a network develops a stationary
state, the degree distribution becomes independent of the points in time, the timeframes
are taken[13], but there is no definition of said stationary state. This should not cause any
problems, because when the points in time that were chosen do not affect the degree distribu-
tion, using these points to calculate the results would also not have any impact on the degree
distribution.

There is no best-practice or proven way for choosing the best start time for network splitting.
It is done in a rather arbitrary way. Even though, network splitting was also done using the
sliding-window approach, this only gives a slightly better resolution, i.e. there are alternative
timeframes with a slightly different (half of the timeframe length) cutting point for not-so-
perfectly cut timeframes.

4.3.2 External Threats to Validity

All projects for this thesis are comparably older projects, all having in common that they are
built upon mailing-list based communication. Since the term open-source software project
does not only include projects with mailing lists but also projects hosted on, e.g. Github,
where communication takes mostly place on forum-like issue threads, findings about mail
communication in this thesis might not be mappable onto those newer projects having issue
boards instead of mailing lists.

Also, since projects on Github are easier to access for new developers due to this platforms
features and sheer amount of hosted projects, the inital hurdle of joining such a project might
be lower than for older projects, that are hosted on their own servers without browser-based
inspection tools for files and code.

Another threat is the age of the analysed projects: while those projects have around twenty
years of development, findings for these projects might not be mappable onto newer projects
having just a few years of development.
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Also, since there are already differences between the analysed projects, such differences
can also occure between other projects, that were not analysed in the scope of this thesis.





5
RELATED WORK

This chapter covers related work for the preferential attachment field as well as similar topics.
A general analysis for measuring preferential attachment for a macroscopic scope was

conducted by H Jeong, Z Néda, and A. L Barabási[13] for a) coauthorship networks of neuro-
science, b) citation networks, where each node represents a published paper and each edge
represents a citation of said paper, c) actor networks, where nodes represent actors and
edges represents the collaboration between two actors in the same movie and d) internet
data, where autonomous systems were mapped to nodes and direct connections between
those systems created edges between those nodes. This work focussed on retrieving the
exponent of the power-law fitting for each network in order to classify the networks as either
sub-linear preferential attachment, linear preferential attachment or super-linear preferential
attachment[13].

In 2006, A. Capocci et al.[7] conducted an analysis for the growth of the online encyclopedia
Wikipedia. The authors used articles as vertices and hyperlinks between articles as directed
edges, resulting in a directed network. They found out, that the article network of Wikipedia
was growing based on the preferential attachment model. Due to its age, this work might be
outdated by today. Additionally, the topology of the network that was used for the analysis,
based on Wikipedia, could be different from the topologies of the developer-community
networks of the open-source software projects that were used for this thesis.

Regarding open-source software projects, Wonseok Oh and Sangyong Jeon[18] released
a paper in 2007 covering membership dynamics and network characteristics of such open-
source software projects and how the stability of a developer network is impacted by these
dynamics and characteristics. The authors found out, that when external influences, e.g.
“the availability of other OSS projects”[18], were weak, the developer networks were rather
random than scale-free[18].

Studies about the organizational structure of 18 open-source software projects was con-
ducted by Mitchell Joblin, Sven Apel and Wolfgang Mauerer[15]. A network-analytical ap-
proach was applied in order to find out, how open-source projects manage themselves. This
study gave some very interesting results, being that developers a) seem to form networks
which have the scale-free property, b) gather more and more requirements for coordination as
the project grows and c) they are arranged hierarchically initially, but when the project starts
to grow in terms of developers, only the core team seems to keep this hierarchical structure.
All things considered, it seems like open-source software projects do not follow “conventional
software-engineering wisdom”[15].

Organization of teams of open-source software projects was also examined by Kevin
Crowston et al.[9]. Based on three active open-source software projects, the authors analysed
self-organization in those projects, task assignment to be more precise. Their core finding
was, that self-assignment of tasks was the most common task-assignment method, so most
developers chose the work they wanted to do themselves[9].

43
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Other work in regards of collaboration networks between developers, an approach for
network mining and visualization from version control systems, is presented by Andrejs
Jermakovics et al.[14]. With their techniques, the authors were able to compute similarities
between developers based on file-edits, by assigning weights onto files and using a cosine
measure to compute developer similarity. To improve the modularity of their approach, the
authors have included filtering techniques[14].

Unlike the previously mentioned research projects, that focussed evolution on a network ba-
sis, an empirical studywas conducted byGuowuXie and Jianbo Chen and IulianNeamtiu[23]
for the software evolution of open-source software. Seven open-source software projects, in-
cluding OpenSSH, were used in order to analyse each of their official releases. The authors of
the study tried to verify the laws of software evolution by Lehman and Belady. They concluded
that half of the laws, namely Continuing Change, Increasing Complexity, Self Regulation
and Continuing Growth do still apply for open-source projects, whereas Conservation of
Organizational Stability, Conservation of Familiarity, Declining Quality and Feedback System
could not be validated for the chosen projects. They also found out, that different branches of
open-source software does evolve in parallel and that all investigated projects have so called
“change hot spots”, meaning that “a high percentage of changes are concentrated to a small
percentage of code”[23].

Regarding the onboarding process for open-source software projects, also addressed in
this thesis, a case study by Fabian Fagerholm et al.[11] was conducted. They found out that
core developers spending some time on mentoring as well as organizing events (the authors
give the example of hackathons) can fuel the onboarding process[11].

Further work in direction of onboarding guidelines was done by Igor Steinmacher et al.[22].
Unlike the studies conducted by Fabian Fagerholm[11], does not take company-backed open-
source projects into account, but focusses on mainly community-backed projects. The article
introduces guidelines for both, open-source communities that want more contributions by
external developers as well as for newcomers who want to start contributing to open-source
projects. These guidelines are split into community guidelines and newcomer guidelines,
which again are split into social as well as technical guidelines. For the community guidelines,
the authors propose implementing newcomer-specific portals including contribution guide-
lines and readme files. Also newcomers should be assigned to tasks that are considered easy.
When a newcomer asks questions about the project or a task they are assigned to, the request
should be answered as quickly as possible, otherwise the newcomer, who most likely is a
volunteer, loses their motivation for working for the project. The guidelines for newcomers
are partially similar to the community guidelines, e.g. instead of getting assigned onto an
easy task, it is proposed that a newcomer should try to find an easy task themselves, if they
are not assigned onto a task by the community. A more technical suggestion for newcomers
is setting up a virtual machine just for this single project in order to make dependency man-
agement easier[22]. All these guidelines can have an impact on how developers connect to
an open-source community network.
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CONCLUDING REMARKS

This chapter covers the final findings of this thesis as well as possible future work, that can be
conducted based on these findings.

6.1 conclusion

Regarding the connection of new authors to a developer network, it seems that newcomers
connect more via mailing-lists than code commits. On mailing lists, most new connections
between authors are created between newcomers and already active authors, while commit-
based connections are mostly created between pre-active developers. Also, connections be-
tween newcomers, while extremely rare in the file-based networks, are common in all analysed
mailing-list networks for all three projects .

Most of the time, all projects did not evolve based on preferential attachment. QEMU
aside, the proportion of preferential attachment evolving timeframes is higher for mail-based
networks than it is for file-based networks. For QEMU, there is only a noticeable number of
preferential attachment evolving timeframes for the external-edge, file-based network.

When project activity is correlated with whether or not preferential attachment is present
in a network of a project, it seems that the lower the project activity is, the higher is the
proportion of preferential attachment evolving timeframes.

Timeframe lengths, on the other hand, seem to not have any distinct correlation with
whether or not the network of a project evolves based on preferential attachment. The exact
impact of timeframe length on preferential attachment analysis could not be determined since
the results from different projects vary.

However for the splitting type, namely edge-based splitting or node-based splitting, there
seems to be an inverse correlation between network splitting type and preferential attachment
results, i.e. when the proportion of preferential attachment evolving timeframes is high for
an edge-based network, the similarity between results from both splitting types was low as
well as the other way around. This means, that for an edge-based network configuration
that results in a high number of preferential attachment evolving timeframes, the associated
node-based network configuration returns different results in terms of preferential attachment
evolving timeframes. The other way around, for an edge-based network configuration that
results in a low number of preferential attachment evolving timeframes, the associated node-
based network configurations results, regarding timeframes that evolve based on preferential
attachment, are similar to those of the edge-based configuration.

In summary, our results indicate that mailing-list based networks of smaller projects evolve
based on preferential attachment for internal edges, during time periods of low volume of
sent emails. For bigger projects, in this case QEMU, almost no timeframe evolved based on
preferential attachment. For the file-based networks of all analysed projects, the amount of
preferential attachment evolving timeframes was low.
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6.2 future work

Based on this thesis, more modern open-source software projects can be analysed, e.g. React
by Facebook. The example of React is also interesting to analyse because of its affiliation to
a commercial company. Besides of the age of open-source software projects, projects that
did not rely on mailing-list based communication but rather used issue-boards from the
beginning could be interesting to investigate for preferential attachment and compare it to
mailing-list based projects.

Regarding the scale-freeness property of a network, it might be interesting to get a better
understanding about the relationship between the scale-freeness property and the preferential
attachment evolution. Based on our results, an open-source software developer network does
not need to evolve based on preferential attachment in order to result in a scale-free network.
The question rises, what other reasons lead to the formation of scale-free networks in developer
communities.

Also comparisons between different timeframe lengths did not yield any satisfying result.
Since timeframe lengths do have a small impact on preferential attachment analysis, it might
be interesing to find out how different timeframe lengths do affect the analysis in a more
generalizable way.

Another interesting question would be what impact a preferential attachment evolving
developer-network has on the associated software-project. Are there any assumptions that
could be made about a software project based on whether or not its developer networks
evolve based on preferential attachment?



A
APPENDIX

For reasons of space, only a few visualizations were shown in the main text of this thesis. In
this chapter, you can find a collection of the used visualizations.

a.1 plots

Figure A.1: The absolute creation rate for new edges for the commit-based network for the Busybox
project with a nine-month timeframe length
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Figure A.2: The relative creation rate for new edges for the commit-based network for the Busybox
project with a nine-month timeframe length

Figure A.3: The absolute creation rate for new edges for the mail-based network for the Busybox
project with a nine-month timeframe length
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Figure A.4: The relative creation rate for new edges for the mail-based network for the Busybox project
with a nine-month timeframe length

Figure A.5: The absolute creation rate for new edges for the commit-based network for the OpenSSL
project with a nine-month timeframe length
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Figure A.6: The relative creation rate for new edges for the commit-based network for the OpenSSL
project with a nine-month timeframe length

Figure A.7: The absolute creation rate for new edges for the mail-based network for the OpenSSL
project with a nine-month timeframe length
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Figure A.8: The relative creation rate for new edges for themail-based network for the OpenSSL project
with a nine-month timeframe length

Figure A.9: The absolute creation rate for new edges for the commit-based network for the QEMU
project with a nine-month timeframe length
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Figure A.10: The relative creation rate for new edges for the commit-based network for the QEMU
project with a nine-month timeframe length

Figure A.11: The absolute creation rate for new edges for the mail-based network for the QEMU project
with a nine-month timeframe length
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Figure A.12: The relative creation rate for new edges for the mail-based network for the QEMU project
with a nine-month timeframe length
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Figure A.13: The cumulative function for the three-month timeframe length of the commit-based data
(edge-based split) for Busybox: In (a), visualizations for three three-month timeframes
from 2003-03-08 until 2003-12-07 is shown. In (b), visualizations for three three-month
timeframes from 2011-06-07 until 2012-03-07 is shown. In (c), visualizations for three
three-month timeframes from 2019-09-06 end of record is shown.
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Figure A.14: The cumulative function for the three-month timeframe length of the mail-based data
(edge-based split) for Busybox: In (a), visualizations for three three-month timeframes
from 2003-03-08 until 2003-12-07 is shown. In (b), visualizations for three three-month
timeframes from 2011-06-07 until 2012-03-07 is shown. In (c), visualizations for three
three-month timeframes from 2019-09-06 end of record is shown.
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(c)

Figure A.15: The cumulative function for the three-month timeframe length of the commit-based data
(edge-based split) for OpenSSL: In (a), visualizations for three three-month timeframes
from 2002-02-23 until 2002-11-24 is shown. In (b), visualizations for three three-month
timeframes from 2011-02-23 until 2011-11-24 is shown. In (c), visualizations for three
three-month timeframes from 2019-05-26 until end of record is shown.
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Figure A.16: The cumulative function for the three-month timeframe length of the mail-based data
(edge-based split) for OpenSSL: In (a), visualizations for three three-month timeframes
from 2002-06-13 until 2003-03-14 is shown. In (b), visualizations for three three-month
timeframes from 2009-12-13 until 2010-09-13 is shown. In (c), visualizations for three
three-month timeframes from 2017-06-13 until end of record is shown.
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Figure A.17: The cumulative function for the three-month timeframe length of the commit-based data
(edge-based split) for QEMU: In (a), visualizations for three three-month timeframes
from 2003-05-21 until 2004-02-19 is shown. In (b), visualizations for three three-month
timeframes from 2011-08-20 until 2012-05-20 is shown. In (c), visualizations for three
three-month timeframes from 2019-11-19 until end of record is shown.
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Figure A.18: The cumulative function for the three-month timeframe length of the mail-based data
(edge-based split) for QEMU: In (a), visualizations for three three-month timeframes
from 2003-12-19 until 2004-09-18 is shown. In (b), visualizations for three three-month
timeframes from 2011-06-19 until 2012-03-19 is shown. In (c), visualizations for three
three-month timeframes from 2019-09-19 until end of record is shown.
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Figure A.19: The comparison between powerlaw-fit exponent 𝛼 and preferential attachment for Busy-
box: In (a), the graph for the commit-based data for timeframes of a three-month length is
shown. In (b), the graph for the mail-based data for timeframes of a three-month length
is shown.
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Figure A.20: The comparison between powerlaw-fit exponent 𝛼 and preferential attachment for
OpenSSL: In (a), the graph for the commit-based data for timeframes of a three-month
length is shown. In (b), the graph for the mail-based data for timeframes of a three-month
length is shown.
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Figure A.21: The comparison between powerlaw-fit exponent 𝛼 and preferential attachment for QEMU:
In (a), the graph for the commit-based data for timeframes of a three-month length is
shown. In (b), the graph for the mail-based data for timeframes of a three-month length
is shown.
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Figure A.22: The comparison between activity and preferential attachment for Busybox: In (a), the
graph for the commit-based data for timeframes of a three-month length is shown. In
(b), the graph for the mail-based data for timeframes of a three-month length is shown.
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Figure A.23: The comparison between activity and preferential attachment for OpenSSL: In (a), the
graph for the commit-based data for timeframes of a three-month length is shown. In
(b), the graph for the mail-based data for timeframes of a three-month length is shown.
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Figure A.24: The comparison between activity and preferential attachment for QEMU: In (a), the
graph for the commit-based data for timeframes of a three-month length is shown. In
(b), the graph for the mail-based data for timeframes of a three-month length is shown.
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