
Universität Passau
Fakultät für Informatik und Mathematik

Master Thesis

A Case Study on
Feature-Aware Verification

Stefan Boxleitner

October 11, 2011

Advised by
Dr.-Ing. Sven Apel

Boxleitner, Stefan:
A Case Study on Feature-Aware Verification
Master Thesis, Universität Passau, 2011.

Abstract

In this thesis, we report of a case study on feature-aware verification. Feature-
aware verification is the formal verification of a feature-oriented software system on
a feature-modular basis. Feature-modular verification means, that specifications are
assigned to a particular feature and use feature-local knowledge only. That con-
cerns the features’ awareness of other features in a particular product of a software
product line. Feature-local knowledge means, that a feature is only aware of fea-
tures that it depends on. The verification process includes software model checking,
in particular CPAChecker is used. We evaluate the feasability of feature-aware
verification by means of an e-mail system case study, which is based on Hall’s
specification of an email system from [Hal05]. Thereby we detect undesired feature
interactions by feature-modular specifications.

Contents

1 Introduction 6

2 Prerequisites 8
2.1 Feature-Oriented Software Development 8

2.1.1 Feature Models . 9
2.1.2 FeatureHouse . 10

2.2 Feature Interactions . 13
2.3 Software Model Checking . 14

3 The E-mail System 15
3.1 “Fundamental Nonmodularity in Electronic Mail” 15
3.2 Architecture . 17
3.3 Implementation . 18

3.3.1 Control Flow and Composition Order 26
3.4 Feature Interactions in the E-mail System 30

3.4.1 Scenarios and Variability . 30
3.4.2 Feature Interactions . 31

4 Feature-Aware Verification 42
4.1 Feature Modular Specification . 42
4.2 Observer Automata . 43
4.3 Verification Process . 43
4.4 Specifications in the E-mail System 45

4.4.1 EncryptMessage and DecryptMessage 45
4.4.2 SignMessage and VerifySignature 47

5 Results and Conclusion 50
5.1 Related Work . 52

Eidesstattliche Erklärung 57

4 A Case Study on Feature-Aware Verification

List of Figures

2.1 A feature model of a simple car. [AK09] 9
2.2 A Java feature artifact and its FST representation 10
2.3 Superimposition of two FSTs . 11
2.4 Java method overriding . 12

3.1 EFCs arranged to a compound EFC [Hal05] 17
3.2 Feature Model of our E-mail System 18
3.3 Control flow on sending an e-mail message 21
3.4 The compound EFC client [Hal05] 27
3.5 Examples of valid composition orders for a full feature configuration 28
3.6 Excerpt of a client configuration . 29
3.7 Features determine architecture and scenario basis 31
3.8 Interaction AddressBook vs. EncryptMessage 32
3.9 Interaction SignMessage vs. VerifySignature 33
3.10 Interaction SignMessage vs. ForwardMessages 34
3.11 Interaction EncryptMessage vs. DecryptMessage 35
3.12 Interaction EncryptMessage vs. VerifySignature 36
3.13 Interaction EncryptMessage vs. AutoResponder 37
3.14 Interaction EncryptMessage vs. ForwardMessages 38
3.15 Interaction DecryptMessage vs. AutoResponder 39
3.16 Interaction VerifySignature vs. ForwardMessages 40

4.1 An observer automaton, monitoring a program 44
4.2 Prohibit information leaking in EncryptMessage 46
4.3 Prohibit inconsistent key state in DecryptMessage 46
4.4 Prohibit decrypt failure . 47
4.5 Prohibit inconsistent key state in VerifySignature 48
4.6 Enforce signer/sender consistency in VerifySignature 48
4.7 Prohibit sending of verified signatures in VerifySignature 49

A Case Study on Feature-Aware Verification 5

Chapter 1

Introduction

The development of software systems is a demanding task. There are many develop-
ment paradigms that try to minimize the effort of programming while maximizing
maintainability.
Software product lines and the related paradigm of feature-oriented programming

adopt a concept that is known in industrial engineering for a long time. In order
to serve the widest possible group of customers, products are produced in many
different forms. There are, for example, cars for families that provide a lot of
storage capacity or cars for offroad usage that provide a four-wheel drive. Industrial
engineers try to find commonalities in these products. Consider a database product
line that supports large scale storage system, as well as the embedded systems
of a car. Despite the wide variety of requirements, there are commonalities like
data structures or a layered architecture. A great advantage of software product
lines is the reusability of these commonalities. The development costs have to be
paid only once. In feature-oriented software development, these commonalities are
called features. A software product is a subset of all existing features in a software
product line. A product of the abovementioned database product line that fits the
requirements of a large scale storage system may contain features for transaction or
backup support, whereas a database for embedded systems should rather be slim
and fast and thus may not require backup support.
A common problem in feature-oriented software development lies in the influence

that features exercise over each other. The behavioral modification of a feature by
another feature is called feature interaction. Although feature interactions are not
necessarily undesired, a feature interaction may alter a software system’s behavior
in an undesired way. The manual detection of undesired feature interactions is
costly and difficult, as every valid feature combination may introduce new critical
feature interactions. The automatic detection of critical feature interactions would
be desireable.
In this thesis we introduce the approach of feature-aware verification. It provides

6 A Case Study on Feature-Aware Verification

a methology to verify software product lines by means of formal verification. In
particular, we use so-called observer automata to formulate specifications on a
feature-modular basis. That is, the specifications are created by means of feature-
local knowledge only. Feature-locality is a concept that concerns the features’
awareness of each other in a feature configuration. Feature-local knowledge restricts
features to be aware of other features, they depend on.
We evaluated feature-aware verification by means of a case study that is based

on Hall’s specification of an e-mail system in [Hal05]. The case study comprises an
e-mail system product line that contains a number of undesired feature interactions.
We are able to successfully detect these feature interactions in a subset of Hall’s
original specification by means of feature-aware verification.

Structure

Chapter 2: Prerequisites gives an insight into the concepts behind the topic:
feature-oriented software development, feature interactions and software
model checking.

Chapter 3: The E-mail System describes our case study in detail. As intro-
duction to the e-mail system topic, it summarizes Hall’s work from [Hal05].
Then it describes the architecture and implementation of our system, struc-
tured by the particular features. We give an overview of the feature interac-
tions, we tried to detect by our approch and introduce our scenario concept.

Chapter 4: Feature-Aware Verification introduces our approach on feature-
aware verification. It explains the roles of feature-modular specifications and
local knowledge. Then the concept of observer automata and the verification
process in our e-mail system is described. Finally the chapter lists up our
specifications and their assignement to particular features.

Chapter 5: Results and Conclusion summarizes the thesis and gives informa-
tion to further research that is related to ours.

A Case Study on Feature-Aware Verification 7

Chapter 2

Prerequisites

In this chapter, we give an outline of concepts and tools that were used in our e-mail
system case study. Section 2.1 introduces feature-oriented software development
and FeatureHouse. Section 2.2 provides a definition and examples for feature
interactions. Section 2.3 gives a brief introduction to software model checking.

2.1 Feature-Oriented Software Development
Apel and Kästner give an overview of feature-oriented software development
in [AK09]. Feature-oriented software development (FOSD) is a programming
paradigm, which defines the construction, customization, and synthesis of large-
scale software systems. The core concept thereby is the feature.

“A feature is a unit of functionality of a software system that satisfies
a requirement, represents a design decision, and provides a potential
configuration option.” [AK09]

FOSD provides a view that arranges a software system by its features. This ar-
rangement enables the generation of tailored software by selecting a subset of all
features that fits a certain environment best. The valid subsets form a software
product line (SPL).
Features are not just manifested in a software system’s observable bahavior. They

describe commonalities and variabilities in the analysis, design, and implementa-
tion. FOSD is geared towards a clear mapping between a feature and its represen-
tation in every phase of the software development process:

Domain Analysis Domain analysis defines a set of features to use in the product
line. It sets the scope of the domain. Developers decide wheter a feature should be
included in a domain. It may be reasonable to exclude a feature because one can’t
afford the means (time, money) of its implementation. The developers also collect

8 A Case Study on Feature-Aware Verification

2.1 Feature-Oriented Software Development

Transmission

Automatic Manual

Pulls Trailer Engine

ElectricGasoline

Car

mandatory

optional

OR

XOR

Body

Figure 2.1: A feature model of a simple car. [AK09]

information about the releations between features. For example, a feature themes
may depend on a feature graphical user interface. There are more details on
the relations of features in Section 2.1.1

Domain Design and Specification Domain design and specification defines the
essential structural and behavioral properties of a software product line by means
of a formal or informal specification and/or modeling language. These properties
are an important part of the e-mail system case study. They are discussed in detail
in Chapter 4.

Domain Implementation Domain implementation typically creates a set of
modular feature artifacts. Feature artifacts encapsulate the implementation per
feature. It is necessary to make features explicit in code, in order to provide a
clear mapping between a features and artifacts. There are languages like Jak or
FeatureC++ that extend existing languages (Java and C++) with feature-based
meachanisms.

Product Configuration Product configuration is the selection of a set of fea-
tures. The user selects the features that fit his use case best. Then a generator
traces the artifacts that are related to the feature selection and merges them into
a software product.

2.1.1 Feature Models

We use the feature models that Batory describes in [Bat05]. Feature models express
features and their relations among each other. A feature model reduces the set of
all possible feature combinations to a subset of valid feature combinations.
It is common methology to organize features into a tree, called a feature diagram,

where nodes are representing features. Nodes that have childs represent compound
features. The relationships between parent and child features are expressed by the
notation, given in the box to the right in Fig. 2.1. The figure also contains a model
of a car product line. Every car needs a body, a transmission, and an engine. A car
may have the ability to pull a trailer. The transmission can either be automatic or
manual. The engine can be powered by gasoline, electric or by both, then being a
hybrid electric vehicle.

A Case Study on Feature-Aware Verification 9

Chapter 2 Prerequisites

1 package EmailSystem;
2
3 public class Client {
4 private String name;
5
6 public String getName() {
7 return name;
8 }
9

10 public void incoming(Email email) {
11 deliver(email);
12 }
13
14 //...
15 }

EmailSystem

Client

incoming getName name

Base

Figure 2.2: A Java feature artifact and its FST representation

Relations that don’t fit in the tree structure are called cross-tree constraints.
In order to express these constraints, feature models usually contain propositional
logic apart from feature diagrams. For example, a car that can pull a trailer should
have a lot of power, which is only achieved by a gasoline powered engine. Formal:
the feature Pulls Trailer implies Gasoline.

2.1.2 FeatureHouse

The e-mail system case study is built by means of FeatureHouse. Apel, Kästner,
and Lengauer introduced FeatureHouse in [AKL09]. FeatureHouse is based
on the language-independent model of superimposition, presented in [AL08].
With the FSTComposer, FeatureHouse provides a tool for feature composi-

tion. Feature composition is the process of merging the feature artifacts of a valid
set of features into a product.

Feature Structure Trees

FSTComposer transforms the language-specific feature artifacts into a language-
independent representation, the feature structure tree (FST). Every feature is
mapped to exactly one FST. FSTs can express any feature artifact with a hier-
archical structure. The root of an FST represents the feature itself. The other
nodes represent the artifacts’ structural elements. Every node has a name and a
type. For example, a Java artifact reflects this hierachical structure in its packages,
classes, methods, etc. A XHTML artifact possibly consists of chapters, sections,
paragraphs.
Figure 2.2 shows a Java feature artifact and its FST representation for a feature

Base. The FST contains nodes for packages, classes, methods and fields but not for

10 A Case Study on Feature-Aware Verification

2.1 Feature-Oriented Software Development

=
EmailSystem

Client

incoming getName name

Base

EmailSystem

Client

incoming decrypt

DecryptMessage

EmailSystem

Client

incoming getName name decrypt

BaseDecryptMessage

Figure 2.3: Superimposition of two FSTs

statements or expressions like an abstract syntax tree. Apel and Lengauer chose
this particular grain of breakdown for Java to simplify the whole process while
being still fine enough for a reasonable composition. However they point out that a
coarser or finer grain would also be conceivable. The language elements that are too
fine granular are included in the leaf nodes of the FST, which are called terminals
(grey in the figure). The inner nodes are called nonterminals.

Superimposition

Superimposition is a binary operator that maps two FSTs R, B to another FST,
denoted as R •B. The two arguments of superimposition have a different meaning.
R has stands for a refinement, an increment in functionality, B stands for an exist-
ing base. An arbitrary number of features can be composed by superimposition in
a step-wise way. As FSTs are representations for feature artifacts, superimpostion
is an implementation of feature composition. Apel et al. analyzed the algebraic
properties of superimposition in [Ape+08]. Because of the associativity the evalua-
tion order has no influence on the result. But the composition order is crucial, due
to noncommutativity. The expression A •B •C has in general a different meaning
than C •B •A.
In FeatureHouse, the features to compose and their feature composition order

are explicitly given in a text file. Every line contains the name of a feature. The
composition order is determined by the line order. A file that contains

1 C
2 A
3 B

is interpreted as the expression B •A •C. That is, feature C is refined by feature
A. The composition is then refined by feature B.
Superimposition of two FSTs starts with the composition of the root nodes.

Nodes are composed according to the following set of rules:

A Case Study on Feature-Aware Verification 11

Chapter 2 Prerequisites

DecryptMessage
1 public class Client {
2 public void incoming(Email email) { decrypt(email); original(email); }
3 }

Base
1 public class Client {
2 public void incoming(Email email) { deliver(email); }
3 }

DecryptMessage • Base
1 public class Client {
2 public void incoming__wrappee__Base (Email email) { deliver(email); }
3 public void incoming(Email email) {
4 decrypt(email); incoming__wrappee__Base(email);
5 }
6 }

Figure 2.4: Java method overriding

Nonterminals Two nonterminals r, b are composed into a node c by cloning r.
The children of r, b are cloned and set as children of c. If r has a child cr and b
a child cb, so that cr has the same name and type than cb, then cr, cb have to be
composed first. The result cc is then set as child of the resulting node c. In Fig. 2.3,
for example, the nodes Client in feature DecryptMessage and Client in feature
Base are composed in that way.

Terminals The composition of two terminals has to be treated specially, because
of the included language-specific information. In Fig. 2.3 the nodes incoming in fea-
ture Base and DecryptMessage are composed in that way. Generally speaking,
there has to be a custom composition rule for every type of nonterminal.
Method overriding is a composition rule for Java methods. Composition is done

by overriding the method body of the basis by the method body of the refinement.
The keyword original can be used to call the original method within the refined
method body. Note the analogy to Java inheritance and the usage of the keyword
super. This mechanism is implemented by wrappers. If there is a call to an over-
ridden method, the method is kept in the FST under a new name, and the original
call is renamed appropriately to meet this new name.
Figure 2.4 illustrates this process. It shows the source code of a class Client that

includes a method incoming in the features Base and Decrypt. The resulting class
contains a method incoming that is identical to incoming in feature Decrypt, except
that the call to original is replaced by a call to a so-called wrappee. The wrappee
contains the original method body of feature Base.
The terminal composition of similar structures in other languages, like functions

12 A Case Study on Feature-Aware Verification

2.2 Feature Interactions

in C can also be done be method overriding. Thus, the actual number of composition
rules for terminal composition is de facto lower, than the number of nonterminal
FST node types.

2.2 Feature Interactions

Keck and Kühn gave a survey on feature interactions in [KK98]. The feature in-
teraction problem has its roots in the telecomminications systems of the 80s. The
meaning of the term feature in telecomminications systems is slightly different from
the concept that is depicted in Section 2.1. Bellcore, for example, defined feature
as a “unit of one or more telecommunications or telecommunications management
based capabilities a network provides to a user”. In telecomminications systems a
feature rather resembles a service. In [Cal+03] the terms feature and service are
used synonymical.
Zave provides an FAQ sheet about feature interactions on her website [Zav99].

A feature interaction occurs, when one or more features modifiy another feature,
concerning its behavior in the overall system. That is, a feature behaves different
in combination with one or more other features, than without them. The difficulty
lies in the detection of potential feature interactions and in their classification as
desired or undesired. The following examples come from [Zav99].

Examples In telephony, there are busy situations when someone is on the phone
with someone else. There are features that handle busy situations, such as voice
mail or forward. A priority system regulates the behavior of the overall system at
an incoming call when the connection is busy. For instance, a call is forwarded,
since forwarding has a higher priority than voice mail. Then the expected behavior
of voice mail is modified by the feature forwarding, as it stays idle. Nevertheless,
this behavior of the overall system is desired in that way, the occuring feature
interaction is desired.
In another example, there are the participants Bob and Carol. Bob forwards all

calls to Carol. Carol has a feature Do not disturb activated, which prevents others
from disturbing her. A third party calls Bob, who forwards the call to Carol.
Carol’s Do not disturb isn’t applied to forwarded calls, so she is in fact disturbed.
Thus, the behavior of Do not disturb is modified by forward. In this case the overall
system’s behavior is unwanted, this feature interaction is undesired.
The last example contains the users Alice, Bob and Carol. Alice is forwarding

to Bob, Bob is forwarding to Carol. What is the desired behavior, when Alice is
called? Should the call be forwarded to Carol? Considering Alice is absent, Bob
is Alice’s secretary, currently using the phone of Carol, then the desired behavior
would be to forward the call to Carol. If Bob is on vacation, Alice is temporarily
using his office, and Carol is the secretary of Bob, the desired behavior would be to
not forward the call. Only calls directly to Bob should be forwarded to his secretary
then.

A Case Study on Feature-Aware Verification 13

Chapter 2 Prerequisites

Feature interactions can’t always be clearly classified as desired or undesired.
There are authors that don’t distinguish between desired and undesired feature
interactions at all.

2.3 Software Model Checking
Software model checking is a subarea of model checking that considers software
systems. Model checking is an approach in the field of formal verification. In
contrast to informal methods like unit tests, formal verification delivers a proof,
that a system behaves as expected. Baier and Katoen give an overview of model
checking in their textbook [BK08].

Modeling Model checking is based on models that are mathematically precise
descriptions of a system’s behavior. These models are either generated directly from
the system’s source code in a programming language like C or from an abstract
description in a modeling language. They are generally expressed by means of
finite state automata. States represent the current values of variables, transitions
represent statements.
A system’s specification defines it’s requirements, that is, what the system should

do. For example, there should be no deadlock scenarios, or buffer overflows. These
requirements can be formulated as properties. A safety property, for example,
expresses that something should never happen. A liveness property specifies that
something should happen finally. These properties can be formally described by
temporal logic. Temporal logic is an extension to propositional logic. It contains
operators that concern the system’s behavior over time.

Model Checking Model checking is the process of verifying, that a certain prop-
erty is valid in every state of a system’s model. In mathematical terms, this process
decides, if the system’s description is a model of the temporal logic formula, repre-
senting the system’s properties.
The number of states that are needed to aquire a precise model of the system

may exceed the amount of available computer memory. The verification is valid
for a model, not for the system itself. If the model of the system is inaccurate, the
assertions of the model checking process may not apply to the system.

14 A Case Study on Feature-Aware Verification

Chapter 3

The E-mail System

Our case study is built upon an e-mail system, introduced by Hall in [Hal05].
Hall describes a product line and feature interactions by means of AT&T domain
knowledge. We adopted the basic structures of Hall’s e-mail system, and built our
own by means of the general purpose language C.

3.1 “Fundamental Nonmodularity in Electronic Mail”
As stated in Section 2.2, the understanding of features in the telecommunications
industry is slighly different to our’s. As he is from the telecommunications industry,
Hall’s perspective on features is coined by the service concept. Hall implements the
e-mail system in his own specification language P-EBF, which is included in the
ISAT tool suite.

E-mail Feature Components (EFCs) Hall’s e-mail system consists of modular
components that encapsulate features. They are called e-mail feature components
(EFCs). EFCs have a common interface with a fixed set of input and output ports
for message processing.
Hall’s system consists of ten EFCs:

1. AddressBook allows the user to assign one or more e-mail addresses to an
alias. An e-mail message with an alias as receiver is sent to every e-mail
address, that is assigned to the alias.

2. SignMessage allows the user to digitally sign messages by means of public-
key cryptography.

3. EncryptMessage encrypts sensible parts of messages, that is, subject and
body. This is done by means of public-key cryptography. If there is a public-
key provisioned for the receiver of an e-mail, the e-mail is encrypted by it.

A Case Study on Feature-Aware Verification 15

Chapter 3 The E-mail System

4. DecryptMessage is the counterpart of EncryptMessage. It decrypts a
message by the use of a private key. That private key must be the dual to
the key that was used to encrypt the e-mail.

5. VerifySignature is used to verify a signature that has been applied by
SignMessage. Verification is conditioned by the presence of the sender’s
public key.

6. AutoResponder can be provisioned with an automatic response to incoming
messages. This behavior is useful, for example, when a user is on vacation.
The automatic response then informs everyone, who sends an email, of that
circumstance.

7. ForwardMessages allows forwarding of all incoming messages to a provi-
sioned e-mail address.

8. RemailMessage is used to send messages anonymously. When a user sends
a message to the remailer, the remailer replaces several fields in the message.
The actual receiver is provisioned in the e-mail body, for example, in the
first line. The sender field is replaced with a pseudonym. RemailMessage
holds a mapping between original senders and pseudonyms. Thus, responses
to anonymous messages can be delivered to the original sender.

9. FilterMessages allows to discard messages that match one of certain pat-
terns. In particular, these patterns are suffixes of e-mail addresses that are
provided by the user.

10. MailHost holds a list of user names. Received messages are either delivered
to one of the users in the list or sent further on. When the receiver of an
incoming message doesn’t exist in the user list, the sender of the message is
notified of that circumstance.

Compound EFCs EFCs are combined to complex structures by arranging them
into a network and connecting their ports. These compound EFCs form the actual
participants of the e-mail system: client, post office and remailer.
Figure 3.1 shows the compound EFC post office. One can see the flow of a mes-

sage that arrives at the post office, in particular at the input port outgoing. The
message proceeds through the EFCs FilterMessages and MailHost. According
to, whether the message is dedicated to a user of the MailHost, the message is
delivered, or sent further on. The message proceeds through the EFCs Filter-
Messages and MailHost. According to, whether the message is dedicated to a
user of the MailHost, the message is delivered, or sent further on.

16 A Case Study on Feature-Aware Verification

3.2 Architecture

Figure 3.1: EFCs arranged to a compound EFC [Hal05]

3.2 Architecture

We built our e-mail system by means of FOSD, which is introduced in Section 2.1.
Basically, we transformed EFCs into features. Although many ideas of Hall’s e-mail
system were inherited, there are also notable differences.

Distributed System A real e-mail system would have a distributed architecture.
Each participant would potentially reside physically on a different host. There
would be a separate process, with its own namespace for every participant. Since
CPAChecker does not support model checking of distributed systems, our system
is technically limited to one process. A direct consequence is, that the participants
in our system share one namespace.
Hall’s component-based architecture allows him to configure each instance of a

participant individually. In our approach all instances of a participant share the
same set of features at composition time. For example, if a feature configuration
contains AutoResponder, every instance of client in the system is provisioned
with that feature. However, most features occupy the possibility to disable its
functionality at runtime. For example, if AutoResponder is not provisioned
with an autoresponse, the feature has no influence on the overall system. Thus, a
participant de facto still can be configured different from the others at setup time
of the system.

Simplifications Our system was designed for verifiability by model checking.
Thus, we had to impose restrictions on the usage of certain language elements. We
will amplify that in Chapter 5. In order to reduce the overall effort, we decided to
constrain our system to one of the three participants: the client. Thus, the features
that introduce or refine the other participants, i.e. RemailMessage, MailHost,
and FilterMessages don’t occur in our system.

A Case Study on Feature-Aware Verification 17

Chapter 3 The E-mail System

EmailSystem

Base

KeyManagement

EncryptMessage

DecryptMessage

AddressBook

SignMessage

VerifySignature

AutoResponder

ForwardMessages

Figure 3.2: Feature Model of our E-mail System

Additional Features Appart from Hall’s EFCs, our e-mail system introduces
two additional features:

1. Base contains the obligatory basic client functionality. That includes oper-
ations, such as sending or receiving messages. It introduces data structures
for messages and the client.

2. KeyManagement handles storage and generation of keys for public-key
cryptography. We extracted this cross-cutting concern from the features
EncryptMessage, DecryptMessage, SignMessage, and VerifySigna-
ture and avoid code scattering and code duplication. Modularization of
cross-cutting concerns is a benefit of FOSD.

Feature Model Figure 3.2 shows the feature model of our e-mail system. Apart
from Base, all features are optional. The features EncryptMessage, De-
cryptMessage, SignMessage, and VerifySignature depend on the func-
tionality of KeyManagement. Since the features EncryptMessage and De-
cryptMessage can’t be used individually in a practical way, they determine each
other in our model. The same applies to SignMessage and VerifySignature.
These cross-tree constraints are represented as dashed edges from a feature to its
dependence.

3.3 Implementation
In contrast to Hall, who used the specification language P-EBF to implement his
system, we use the C language for our e-mail system. The idea is to bring our
e-mail system closer to a real system by means of a general purpose language.

18 A Case Study on Feature-Aware Verification

3.3 Implementation

Base The feature Base introduces the participant client. We chose a structure
as representation for it, because it allows us to model a state for the client, which
is refineable by other features.

1 struct client
2 {
3 char ∗name;
4 };

The initial content of the struct client is simply the client’s name.
Base also introduces the model of an e-mail message. We take the latest RFC

for electronic mail [Res08] as basis. An e-mail message is divided in a header
and a body. The body contains the actual message text. The header contains
information about sender, receiver, subject, etc. of the message and is extendable.
In an actual e-mail message, there is no guarantee, that the information in the
header is genuine. For example, one could omit information about the sender or
provide fake information. The information that is used for delivery of the message is
located in an envelope, like in a letter. This envelope is part of the SMTP protocol
that is described in an RFC [Kle08], too. SMTP data, including for example the
sender, also is not necessarily genuine. We decided to omit the SMTP envelope
and assume, that the information about sender and receiver in the e-mail message
header is genuine.
Since other features introduce new fields to the message header, we model the

e-mail message as refineable struct, too.
1 struct email
2 {
3 int id;
4 struct client ∗from; struct client ∗to;
5 char ∗subject; char ∗body;
6 };

In contrast to an actual e-mail message, where the information is serialized into a
string, our system models the e-mail message as structured data. This simplification
reduces the complexity of the system from the model checking view. The fields from
and to are pointers to actual clients. The field id is important to identify e-mail
messages that are mechanically created and related to another message.
If a feature, for example, duplicates an e-mail message, edits some of the fields

and sends it further on, then the id should stay the same. Thus, two messages with
the same id are related to each other. Since we didn’t find a language mechanism
in C to enforce this behavior, we kept this behavior as convention for implementing
other features. There are two functions for creating e-mail messages:

1 struct email ∗createEmail (struct client ∗from,
2 struct client ∗to, char ∗subject, char ∗body);

is used to create a new e-mail message with a new id,
1 struct email ∗cloneEmail (struct email ∗msg);

A Case Study on Feature-Aware Verification 19

Chapter 3 The E-mail System

creates a clone of an e-mail message, preserving the id.
There are four functions that model the input and output ports of Hall’s EFCs

for the participant client.

1 void
2 incoming (struct client ∗client, struct email ∗msg)
3 {
4 deliver (client, msg);
5 }
6
7 void
8 outgoing (struct client ∗client, struct email ∗msg)
9 {

10 mail (client, msg);
11 }

All of them have an pointer to a client and a pointer to a message as parameters.
The parameter client represents the client, on which the function is invoked. The
parameter msg is the e-mail message that is to be processed. The input ports
ports are incoming for arriving messages, and outgoing for messages that are to be
sent. The output ports are deliver for passing the message to the user, and mail for
passing a message to the network. In Base, the messages from the input ports are
directly passed to the output ports. That is, there is no further processing of these
messages.
The function for sending user-created messages is:

1 void
2 sendEmail (struct client ∗sender,
3 struct client ∗receiver, char ∗subject, char ∗body)
4 {
5 struct email ∗email = createEmail (sender, receiver, subject, body);
6 outgoing (sender, email);
7 }

At first, an e-mail message is created, then there is a call to the function outgoing
in the context of the sender. As stated above, the message is directly passed to the
function mail:

1 void
2 mail (struct client ∗client, struct email ∗msg)
3 {
4 incoming (msg−>to, msg);
5 }

Then there is a call to the funtion incoming in the context of the receiver of the
message. As claimed above, incoming directly passes the message on to deliver,
which presents the message to the user. That is, the message is printed to the
command line.
Figure 3.3 gives an exemplary overview of the control flow, when sending an e-

mail message. A client Rjh sends an e-mail message to the client Bob. The messages

20 A Case Study on Feature-Aware Verification

3.3 Implementation

Bob

rjh

mail
(bob, message)

incoming
(rjh, message)

outgoing
(bob, message)

deliver
(rjh, message)

send
(rjh, bob, "subject", "body")

Figure 3.3: Control flow on sending an e-mail message

passes the context of Bob with its functions outgoing and mail, and arrives then at
the context of Rjh, passing the functions incoming and deliver.

ForwardMessages ForwardMessages forwards all incoming messages to a
client, which can be specified. Therefore, this feature refines the struct client by a
field forwardReceiver, which is a pointer to a client.

1 struct client
2 {
3 struct client ∗forwardReceiver;
4 };

If there is no forwardReceiver specified, that is, forwardReceiver is null, forwarding
of messages is disabled and ForwardMessages doesn’t affect the e-mail system’s
behavior.
If a forwardReceiver is provided, the function forward clones the incoming e-mail

message, and replaces sender and receiver fields in the clone. As stated above, it is
crucial for the verification of the system, that the message id of the clone is identical
to the original message. Then the clone of the message is passed to outgoing.

1 void
2 forward (struct client ∗client, struct email ∗msg)
3 {
4 if (!client−>forwardReceiver)
5 return;
6 struct email ∗clone = cloneEmail (msg);
7 clone−>to = client−>forwardReceiver;
8 clone−>from = client;
9 outgoing (client, clone);

10 }

A Case Study on Feature-Aware Verification 21

Chapter 3 The E-mail System

The call to forward takes place before the rest of original function incoming. This
is implemented by means of the keyword original.

1 void
2 incoming (struct client ∗client, struct email ∗msg)
3 {
4 forward (client, msg);
5 original (client, msg);
6 }

The refined function incoming first calls forward and then processes the message
further by its original functionality.
Consider the following example that involves the three clients Bob, Rjh, and

Chuck: Rjh has forwarding to Chuck activated. Bob sends a message to Rjh. The
message is forwarded to Chuck. The command line output of the program is:

1 deliver at chuck: id=0, from=rjh, to=chuck, subject=subject, body=body, isReadable=1
2 deliver at rjh: id=0, from=bob, to=rjh, subject=subject, body=body, isReadable=1

The processing of the forwarded message happens within the control flow of the
original message’s incoming mail processing. Thus, the forwarded message is deliv-
ered to Chuck (line 1) before the original message is finally delivered to Rjh.

AutoResponder The feature AutoResponder enables a client send an auto-
matic response to the sender of every incoming message. Therefore the struct
client is extended by a field autoResponse of type char * that stores the response.
As in ForwardMessages, the functionality can be disabled by setting this field
to NULL. The function autoRespond is called from a refined function incoming, like
the function forward in ForwardMessages.

1 void
2 autoRespond (struct client ∗client, struct email ∗msg)
3 {
4 if (!client−>autoResponse || !isReadable(msg))
5 return;
6 struct email ∗response = cloneEmail (msg);
7 response−>from = client;
8 response−>to = msg−>from;
9 response−>subject = concat ("auto␣response␣to␣", msg−>subject);

10 response−>body = client−>autoResponse;
11 outgoing (client, response);
12 }

Since the response message contains the subject line of the original message, the
two messages are related. Thus the automatic response message is created as clone
from the original incoming message.

AddressBook The feature AddressBook provisions the client with the possi-
bility to send e-mail messages to previously defined address book entries, also called
aliases. Therefore, the struct client is refined by introducing a field addressBook. It

22 A Case Study on Feature-Aware Verification

3.3 Implementation

points to a data structure that stores the aliases. We use an existing implementation
of a singly linked list 1 for that purpose.
The address book entries map an identifier, represented as an integer, to a list

of clients. For example, there may be an address book entry 5, which maps to Bob
and Chuck.

1 struct addressBookEntry
2 {
3 int alias;
4 NODE ∗address;
5 };

AddressBook introduces a separate function to send e-mail messages to aliases.
1 void sendEmailAlias (struct client ∗sender, int alias,
2 char ∗subject, char ∗body);

The function looks up the given alias in the address book. Then it creates an e-mail
message for the first corresponding client and passes the message to the function
outgoing. After that, a clone of that message is sent outgoing for every additional
client that is included in the alias. Thus, all outgoing messages from a call to
sendEmailAlias have the same id.

KeyManagement The feature KeyManagement introduces a basic infrastruc-
ture for public-key cryptography. Public-key cryptography depends on key pairs
that consist of a private key and a public key. The private key is kept secret at the
owner, while the public key is distributed among all clients that want to participate
in public-key cryptography with the owner of the corresponding private key. Thus,
every client needs to store his own private key and the public keys of other clients.

KeyManagement therefore refines the struct client.
1 struct client
2 {
3 NODE ∗keyring;
4 int privateKey;
5 };

It introduces a field privateKey to store the private key of the client. Keys in our
system are represented by numbers, in particular an integer value, instead of a
string. Integers are easier to handle by model checkers, because of their finite value
range.
The field keyring is a list of keyring entries. Keyring entries are modeled as a

struct that contains a pointer to the owner of the key and the public key itself.
1 struct keyringEntry
2 {
3 struct client ∗owner;
4 int publicKey;
5 };

1http://en.literateprograms.org/Singly_linked_list_(C)

A Case Study on Feature-Aware Verification 23

http://en.literateprograms.org/Singly_linked_list_(C)

Chapter 3 The E-mail System

The generation of a key pair is done by the function generateKeyPair.

1 void
2 generateKeyPair (struct client ∗client, int seed)
3 {
4 client−>privateKey = seed;
5 }

Our system absracts from the complex mechanisms that are used to generate a real
key pair from a random seed. We simply set the private key to the given seed itself.
The corresponding public key is identical to the private key. Note, that this is only
simplyfication that has nothing to do with symmetric cryptography.
When a client changes his private key and doesn’t notify a corrensponding client

about this change, the corresponding client has an invalid public key. KeyMan-
agement therefore introduces a function that checks whether a public key and
private key form a valid key pair.

1 int isKeyPairValid (int publicKey, int privateKey);

EncryptMessage EncryptMessage enables the client to encrypt outgoing
messages by means of public-key cryptography. In real electronic mail, this func-
tionality can be achieved, for example, by Pretty Good Privacy (PGP) [Cal+07] or
Secure and Multipurpose Internet Mail Extension (S/MIME) [RT10]. The process
of enrypting a message is done by means of the receiver’s public key. Encrypted
messages can’t be processed by other features, before they are decrypted.
In our e-mail system, the function outgoing is refined analogous to the refinement

of incoming in ForwardMessages:

1 void
2 outgoing (struct client ∗client, struct email ∗msg)
3 {
4 encrypt (client, msg);
5 original (client, msg);
6 }

Thus, every message that is sent outgoing is processed by the function encrypt.

1 void
2 encrypt (struct client ∗client, struct email ∗msg)
3 {
4 NODE ∗foundKeyringEntry =
5 list_find (client−>keyring, findKeyringEntry, msg−>to);
6 if (foundKeyringEntry)
7 {
8 msg−>encryptionKey =
9 ((struct keyringEntry ∗) foundKeyringEntry−>data)−>publicKey;

10 msg−>isEncrypted = 1;
11 }
12 }

24 A Case Study on Feature-Aware Verification

3.3 Implementation

The function encrypt looks for a keyring entry that contains the public key of the
message’s receiver. If there is such an entry, the message is encrypted by means of
the found key. If no entry is found, the message is not encrypted.
The process of encrypting a message is simplified to setting a flag. Therefore,

the struct email is refined by introducing a field isEncrypted.
In S/MIME, the decryption of an encrypted message would fail, if a wrong key

was used for decryption. In order to model this behavior, the key that was used for
encryption is also encapsulated in the struct email.

DecryptMessage The feature DecryptMessage tries to decrypt incoming
messages that are encrypted. The process of decrypting a message is done by
means of the receiver’s private key. The function decrypt is integrated in the mes-
sage processing by a refinement of incoming.

1 void
2 decrypt (struct client ∗client, struct email ∗msg)
3 {
4 if (msg−>isEncrypted == 1 && msg−>encryptionKey == client−>privateKey)
5 {
6 msg−>encryptionKey = 0;
7 msg−>isEncrypted = 0;
8 }
9 }

As described above, the message can only be decrypted, if the decryption key is
valid, that is, identical to the encryption key. Decryption is done by unsetting the
isEncrypted flag.

SignMessage SignMessage adds a signature to e-mail messages. Digital sig-
natures are typically created from an encrypted hash value of a message. Unlike
the encryption of messages, the encryption of the hash value is done by means of
the sender’s private key. PGP and S/MIME, as mentioned above, provide, besides
from the encryption of messages, also support for creating and verifying digital
signatures of messages.
Similar to EncryptMessage, SignMessage reduces the signature in our sys-

tem to a flag, which is introduced in the struct email.
1 struct email
2 {
3 int isSigned;
4 int signKey;
5 };

The function sign is called for all outgoing messages.
1 void
2 sign (struct client ∗client, struct email ∗msg)
3 {
4 if (!client−>privateKey)

A Case Study on Feature-Aware Verification 25

Chapter 3 The E-mail System

5 return;
6 msg−>signKey = client−>privateKey;
7 msg−>isSigned = 1;
8 }

As long as the client provides a private key, outgoing messages get a signature.
The verification of a signature can fail, similar to the decryption of a message. For
example, when the receiver of the message has a wrong public key. To model this
behavior, the key that was is used to sign the e-mail message is included in the
message.

VerifySignature The feature VerifySignature enables the client to verify the
digital signatures of SignMessage. The verification of digital signatures requires
the sender’s public key.
All incoming messages are processed by the function verify.

1 void
2 verify (struct client ∗client, struct email ∗msg)
3 {
4 if (!msg−>isSigned)
5 return;
6 NODE ∗foundKeyringEntry = list_find (client−>keyring, findKeyringEntry,
7 msg−>from);
8 if (foundKeyringEntry
9 &&

10 isKeyPairValid (((struct keyringEntry ∗)
11 foundKeyringEntry−>data)−>publicKey, msg−>signKey))
12 {
13 msg−>isSignatureVerified = 1;
14 }
15 }

Only messages that have a signature, can be verified. The function verify looks
for a keyring entry of the message’s sender. If the sender’s public key is available,
there is a check for usability of this key for verifying the signature. The key that
was used to sign the message and the found public key of the sender have to be
compatible, that is, identical in our system.

3.3.1 Control Flow and Composition Order

Feature selection, as explained in Section 2.1, is not sufficient to create a valid prod-
uct in Hall’s component based architecture. The selected EFCs need to be arranged
and connected by means of their predefined interfaces into a e-mail message-passing
network in a further configuration step.
Figure 3.4 shows the layout and the message flow inside the compound EFC

client. Incoming e-mail messages are processed by the EFCs DecryptMessage,
VerifySignature, AutoResponder, ForwardMessages and are then deliv-
ered. Outgoing e-mail messages are processed by the EFCs AddressBook, Sign-
Message, EncryptMessage and then sent on.

26 A Case Study on Feature-Aware Verification

3.3 Implementation

Figure 3.4: The compound EFC client [Hal05]

In order to arrange and connect the EFCs correctly, knowledge about the seman-
tics of EFCs is necessary. DecryptMessage, for example, has to be placed first in
the line of incoming message processing in the client, because encrypted messages
have to be decrypted before they can be processed by other EFCs. There may
be EFCs, where the placement is not necessarily distinct. AutoResponder and
ForwardMessages, for example, could be switched without changing the systems
behavior.
Our system models arrangement and connection of EFCs by means of feature

implementation and composition order. The feature Base introduces the functions
incoming and outgoing. In their unrefined form, incoming directly calls deliver and
outgoing directly calls mail.
Every feature that occurs in Fig. 3.4 as EFC, integrates its additional functional-

ity in our system by refining either incoming or outgoing. Thereby all features follow
the same pattern: there is a call to an additionally introduced function before a call
to original. The feature ForwardMessages, for example, introduces a function
forward and refines the function incoming:

1 void
2 incoming (struct client ∗client, struct email ∗msg)
3 {
4 forward (client, msg);
5 original (client, msg);
6 }

We maintain the incoming and outgoing message processing order of the EFCs
by imposing a constraint on the composition order of features: if an EFC A is
placed after another EFC B in a processing chain, then the corresponding feature
A has to be placed before the corresponding feature B in the composition order.
Note, that this is only possible here, because all features follow the same pattern
at refining either incoming or outgoing.
As notation for feature A is placed before feature B in the composition order,

A Case Study on Feature-Aware Verification 27

Chapter 3 The E-mail System

1 Base
2 KeyManagement
3 EncryptMessage
4 SignMessage
5 AddressBook
6 ForwardMessages
7 AutoResponder
8 VerifySignature
9 DecryptMessage

1 Base
2 KeyManagement
3 ForwardMessages
4 AutoResponder
5 VerifySignature
6 DecryptMessage
7 EncryptMessage
8 SignMessage
9 AddressBook

1 Base
2 AddressBook
3 KeyManagement
4 ForwardMessages
5 AutoResponder
6 VerifySignature
7 DecryptMessage
8 EncryptMessage
9 SignMessage

Figure 3.5: Examples of valid composition orders for a full feature configuration

we write A < B. The incoming mail processing determines the following set of
constraints for the composition order:

ForwardMessages < AutoResponder
AutoResponder < VerifySignature

VerifySignature < DecryptMessage

The outgoing mail processing determines another constraint:

EncryptMessage < SignMessage

The feature AddressBook is omitted here because its functionality is not part
of the outgoing mail processing.
Since Base is a mandatory feature, all other features may be syntactically de-

pendent on it, for example by refining the functions incoming of outgoing. Thus we
impose another constraint: for every feature A that is different from Base applies:

∀A : Base < A

These constraints form an order among the features in our system, which deter-
mines correctness of composition orders. Since the order is only partial, there may
be multiple valid composition orders for a certain feature selection. Consider an e-
mail system that contains all available features. There are many valid composition
orders for this configuration that fulfill the abovementioned constraints. Figure 3.5
lists up three of them.
We demonstrate the effect of composition order and our refinement pattern on

a smaller feature configuration, that contains only a subset of all features: There
is a client that contains the features Base, AutoResponder and ForwardMes-
sages. Following the abovementioned constraints, we have to compose our set of
features in the following order:

1 Base
2 ForwardMessages
3 AutoResponder

28 A Case Study on Feature-Aware Verification

3.3 Implementation

1 void
2 incoming__wrappee__Base (struct client ∗client,
3 struct email ∗msg)
4 {
5 deliver (client, msg);
6 }
7
8 void
9 incoming__wrappee__Forward (struct client ∗client,

10 struct email ∗msg)
11 {
12 forward (client, msg);
13 incoming__wrappee__Base (client, msg);
14 }
15
16 void
17 incoming (struct client ∗client, struct email ∗msg)
18 {
19 autoRespond (client, msg);
20 incoming__wrappee__Forward (client, msg);
21 }

Figure 3.6: Excerpt of a client configuration

Figure 3.6 shows the code that is generated by FeatureHouse based on this
feature selection and composition order. We list only the part that concerns the
call sequence. When we omit the wrappees, the call sequence upon calling incoming
is autoRespond, forward, deliver, which matches the incoming message processing of
Hall’s system.
In addition the linear processing chains, Fig. 3.4 contains two cross connections.

The output port mail of the EFC AutoResponder and ForwardMessages is
connected to the input port outgoing of SignMessage. That is, the EFC Ad-
dressBook is skipped for outgoing messages of these EFCs.
Making the manifestations of a function in a particular feature callable for other

features is difficult in FeatureHouse. The introduction of a hook function out-
goingSignMessage that is called in the outgoing refinement of SignMessage makes
the outgoing manifestation of SignMessage callable for other features. However,
the features that use this hook, fall into syntactic dependence to SignMessage.
We decided to ommit the hook, altough a call to outgoing in the implementation

of the features AutoResponder and ForwardMessages enters the outgoing
mail processing chain at different position, than in Hall’s original specification.
Figure 3.4 highlights these differences in the e-mail message processing by means of
red color. Fortunately, the functionality of the feature AddressBook is not part
of the outgoing mail processing in our system. Thus, this deviation in design has
no effect on the system’s behavior.

A Case Study on Feature-Aware Verification 29

Chapter 3 The E-mail System

3.4 Feature Interactions in the E-mail System

3.4.1 Scenarios and Variability

In our case study, we try to reproduce the interactions that Hall lists up in [Hal05].
For every interaction, he gives an example scenario that causes the corresponding
undesired behavior. The interaction EncryptMessage vs. AutoResponder, for
example, is given as follows:

“Bob sends an encrypted message to Rjh who decrypts it, and who
has his autoresponder provisioned. (rjh has no encryption key for Bob
provisioned.) The autoresponse message includes the (now decrypted)
subject line of the original message, so information is leaked because the
autoresponse is transmitted as plain text over the network.” [Hal05]

In order to reproduce these interactions, we created a scenario basis in the context
of Hall’s descriptions of feature interactions. This scenario basis contains common-
alities among all scenarios. It is determined by participants and occurring events.

Participants Hall mentiones the clients rjh, Bob, and an unnamed third party,
which we named Chuck. Our scenario basis contains a structure for each of them.

1 struct client ∗bob;
2 struct client ∗rjh;
3 struct client ∗chuck;

Events Every scenario comprises a sequence of input events to our system. We
model these events as parameter-less functions. The event Bob sends a message to
Rjh, for example, is implemented as:

1 void
2 bobToRjh ()
3 {
4 char ∗subject = "subject";
5 char ∗body = "body";
6 sendEmail (bob, rjh, subject, body);
7 }

Subject and body of the e-mail message are filled with a placeholder value. Then
the message is sent by sendEmail.
Every event can be associated with a particular feature. The event bobToRjh,

for example, corresponds to the feature Base, as its implementation is completely
based on functions that Base introduces. Thus, we decided to let features refine the
scenario basis by introducing or refining events. Figure 3.7 illustrates this matter
exemplarily. Vertically, it shows the feature Base and the feature KeyManage-
ment, which is representative for features that model an EFC. Along the horizontal
axis, there are the software artifacts client.h and test.h, representants of architecture

30 A Case Study on Feature-Aware Verification

3.4 Feature Interactions in the E-mail System

Base
client.h

Architecture

KeyManagement int
isKeyPairValid (int publicKey, int privateKey);

int
 findKeyringEntry
 (void *listdata, void *searchdata);

void
 generateKeyPair
 (struct client *client, int seed);

...

void sendEmail (struct client *sender,
 struct client *receiver,
 char *subject, char *body);

...

test.h
Scenario basis

void bobAddPublicKeys ();

void rjhAddPublicKeys ();

void chuckAddPublicKeys ();

void bobKeyChange ();

void rjhKeyChange ();

void bobToRjh ();

void rjhToBob ();

...

Figure 3.7: Features determine architecture and scenario basis

and scenario basis. The intersections between features and software artifacts denote
the features’ impact on architecture and scenario basis. The feature KeyManage-
ment, for example, introduces a number of functions, such as generateKeyPair to
the architecture, and - based on these functions - user-input-simulating functions,
such as bobKeyChange to the scenario basis.
As senarios comprise sequences of input events, our system represents scenarios as

a list of calls to the abovementioned user-input-simulating functions of the scenario
basis. The example scenario from above translates to the following program:

1 bobKeyAdd ()
2 rjhSetAutoRespond ()
3 bobToRjh ()

3.4.2 Feature Interactions

The following section gives an overview of undesired feature interactions from Hall’s
descriptions that we were able to reproduce in the context of our system. For every
interaction we present an event sequence that triggers the undesired behavior in
the context of our system. In particular, this is a short program that consists of
calls to the abovementioned user-input-simulating functions.
Every interaction is illustrated by a figure that contains the participants and

the involved features. In addition to that, the descriptions contain the system’s
command line output for the scenario. The output is generated by the feature
Base, when the functions mail and deliver are called.

A Case Study on Feature-Aware Verification 31

Chapter 3 The E-mail System

Bob
- has public key of rjh
- doesn't have public key of Chuck

AddressBook

EncryptMessageto rjh

EncryptMessage
to Chuck

rjhencrypted

Chucknot encrypted

Figure 3.8: Interaction AddressBook vs. EncryptMessage

AddressBook vs. EncryptMessage

1 bobAddPublicKeys ();

Bob has an address book entry that includes Rjh and Chuck.
2 bobSetAddressBook ();

Bob knows Rjh’s public key, but not Chuck’s.
3 bobToAlias ();

Illustration: Fig. 3.8. Bob sends an e-mail message to the address book entry
that includes Rjh and Chuck (bobToAlias). The feature AddressBook generates
a separate message for every receiver, that is, Rjh and Chuck. Since both messages
have the same content, they are related. As mentioned in Section 3.3, messages that
are related, must have the same identifier. This identifier becomes more important
in Chapter 4, when characteristics, as relationship of messages, need to be detected.
Both messages pass the feature Encrypt. The message to Rjh is encrypted,

since Bob has Rjh’s public key. The message to Chuck is not encrypted, since Bob
doesn’t have Chuck’s key. Hence two messages that are related, are transmitted
both encrypted and as plain text. Command line output:

1 mail at bob: id=0, from=bob, to=chuck, subject=subject, body=body, isReadable=1
,isEncrypted=0, encryptionKey=0

2 mail at bob: id=0, from=bob, to=rjh, subject=subject, body=body, isReadable=0
,isEncrypted=1, encryptionKey=2

One can see, there are two messages sent by client Bob with the same identifier.
One of them is encrypted (isEncrypted=1), the other is not (isEncrypted=0). This
is a violation of the security goal of the feature Encrypt.

SignMessage vs. VerifySignature

1 rjhAddPublicKeys ();

32 A Case Study on Feature-Aware Verification

3.4 Feature Interactions in the E-mail System

Bob
- changed his key pair

rjh
- was not notified of key change
- still has old key of Bob
- can't verify the signature

SignMessage VerifySignaturesigned with new key

Figure 3.9: Interaction SignMessage vs. VerifySignature

Rjh knows Bob’s public key.
2 bobKeyChange ();

Bob changes his key pair. Thus, the old public key is invalid from now on. However,
Rjh is not notified of the key change.

3 bobToRjh();

Illustration: Fig. 3.9. Bob sends a message to Rjh. Bob’s SignMessage signes the
message with the new key. Rjh’s VerifySignature can’t verify the signature of
the message, because Rjh’s keyring entry for Bob is outdated and invalid. Command
line output:

1 mail at bob: id=0, from=bob, to=rjh, subject=subject, body=body, isReadable=1 ,isSigned=1,
signingKey=4 ,isSignatureVerified=0

2 deliver at rjh: id=0, from=bob, to=rjh, subject=subject, body=body, isReadable=1 ,isSigned=1,
signingKey=4 ,isSignatureVerified=0

One can see, that the message is signed by Bob, but is delivered to Rjh without a
verification (isSignatureVerified=0).
The problem is, that Rjh can’t decide whether the message was altered during

transmission, or Bob changed his key. According to Hall, this behavior is undesired.

SingMessage vs. ForwardMessages

1 chuckAddPublicKeys ();

Chuck knows Bob’s public key. Rjh doesn’t know Bob’s public key.
2 rjhEnableForwarding ();

Rjh sets Chuck as forward target. That is, all incoming messages are forwarded to
Chuck.

3 bobToRjh ();

Illustration: Fig. 3.10. Bob sends a message to Rjh. The message is signed by
Bob before trasmission to Rjh. Rjh can’t verify the signature, since he doesn’t

A Case Study on Feature-Aware Verification 33

Chapter 3 The E-mail System

Bob

rjh
- doesn't have Bob's public key
- can't verify the signature
- forwards incoming messages to Chuck

Chuck
- knows Bob's public key
- can't verify signature

SignMessage ForwardMessages

signed by Bob

VerifySignature

signed by Bob

Figure 3.10: Interaction SignMessage vs. ForwardMessages

have Bob’s public key provisioned. Then Rjh forwards the message to Chuck. The
message’s signature remains unaffected. Since Rjh, the sender of the forwarded
message, doesn’t match the original creator of the signature, Chuck’s verification of
the message fails. The undesired behavior at this point is, that Chuck can’t verify
the signature, although he knows the public key of the signature’s original creator.
Command line output:

1 mail at bob: id=0, from=bob, to=rjh, subject=subject, body=body, isReadable=1 ,isSigned=1,
signingKey=1 ,isSignatureVerified=0

2 mail at rjh: id=0, from=rjh, to=chuck, subject=subject, body=body, isReadable=1 ,isSigned=1,
signingKey=2 ,isSignatureVerified=0

3 deliver at chuck: id=0, from=rjh, to=chuck, subject=subject, body=body, isReadable=1
,isSigned=1, signingKey=2 ,isSignatureVerified=0

4 deliver at rjh: id=0, from=bob, to=rjh, subject=subject, body=body, isReadable=1 ,isSigned=1,
signingKey=1 ,isSignatureVerified=0

The forwarded message (lines 2-3) arrives at its destination before the original
message (lines 1,4), since ForwardMessages executes the complete delivery of
the forwarded message, before it is passed on. The output shows, that the signature
is present all the time, but is never verified.

EncryptMessage vs. DecryptMessage

1 bobAddPublicKeys ();

Bob knows the public key of Rjh.

2 rjhKeyChange ();

34 A Case Study on Feature-Aware Verification

3.4 Feature Interactions in the E-mail System

Bob
- was not notified of key change
- still has old key of Bob

rjh
- changed his key pair
- can't decrypt message

EncryptMessage DecryptMessageencrypted with old key

Figure 3.11: Interaction EncryptMessage vs. DecryptMessage

Rjh changes his key pair. Similar to Section 3.4.2, Bob is not aware of that change
and thinks, his keyring entries are up to date.

3 bobToRjh ();

Illustration: Fig. 3.11. Bob sends a message to Rjh. As Bob falsely thinks, he
has a valid public key for Rjh, the message is encrypted before transmission to
Rjh. Rjh can’t decrypt the message, because he changed his key pair in the mean-
time. According to Hall this behavior of not being able to decrypt the message is
undesired.
Command line output:

1 mail at bob: id=0, from=bob, to=rjh, subject=subject, body=body, isReadable=0
,isEncrypted=1, encryptionKey=2

2 deliver at rjh: id=0, from=bob, to=rjh, subject=subject, body=body, isReadable=0
,isEncrypted=1, encryptionKey=2

One can see, that the transmitted message is encrypted (line 1: isEncrypted=1).
The message can’t be decrypted before delivery and remains unreadable (line 2:
isReadable=0).

EncryptMessage vs. VerifySignature

1 bobAddPublicKeys ();
2 rjhAddPublicKeys ();
3 rjhKeyChange ();

The procedure here is almost the same as in interaction EncryptMessage vs.
DecryptMessage. The difference is, that message signing is also involved here.
In order to verify messages that are signed by Bob, Rjh knows Bob’s public key
(line 2).

4 bobToRjh ();

Illustration: Fig. 3.12. When Bob sends a message to Rjh, the decryption fails,
as explained above. In this particular interaction, the verification of the message
therefore also fails, because the message is still encrypted.
The undesired behavior in this case is Rjh’s inability to verify the message, al-

though he has a valid keyring entry for Bob.

A Case Study on Feature-Aware Verification 35

Chapter 3 The E-mail System

Bob
- was not notified of key change
- still has old key of Bob

rjh
- changed his key pair
- can't decrypt message
- thus can't verify signature

EncryptMessage

DecryptMessage

- encrypted with old key
- signed

VerifySignature

- encrypted with old key
- signed

Figure 3.12: Interaction EncryptMessage vs. VerifySignature

Command line output:
1 mail at bob: id=0, from=bob, to=rjh, subject=subject, body=body, isReadable=0

,isEncrypted=1, encryptionKey=2 ,isSigned=1, signingKey=1 ,isSignatureVerified=0
2 deliver at rjh: id=0, from=bob, to=rjh, subject=subject, body=body, isReadable=0

,isEncrypted=1, encryptionKey=2 ,isSigned=1, signingKey=1 ,isSignatureVerified=0

The message is signed, when transmitted to Rjh, but the signature still is not
verified when delivered to Rjh (isSignatureVerified=0).

EncryptMessage vs. AutoResponder

1 bobAddPublicKeys ();

Bob knows the public key of Rjh, Rjh doesn’t know the public key of Bob.
2 rjhSetAutoRespond();

Rjh’s auto response functionality is enabled.
3 bobToRjh ();

Illustration: Fig. 3.13. Bob’s EncryptMessage encrypts the message before its
transmission to Rjh. Rjh’s DecryptMessage succesfully decrypts the message
and passes it on. AutoResponder creates an automatic response to the mes-
sage which contains the subject of the original message. Therefore, the automatic

36 A Case Study on Feature-Aware Verification

3.4 Feature Interactions in the E-mail System

Bob
- knows public key of rjh

rjh
- auto responder enabled
- doesn't know Bob's public key

EncryptMessage

DecryptMessage

encrypted

EncryptMessage

plain text

AutoResponder
plain textplain text

Figure 3.13: Interaction EncryptMessage vs. AutoResponder

response is related to the original message and has the same identifier. The auto-
matic response is passed to Rjh’s EncryptMessage. It is not encrypted before
transmission, since there is no keyring entry for Bob.
Thus, the automatic response, which contains the subject of the original message,

is transmitted as plain text. Again, the security goal of EncryptMessage is
violated.
Command line output:

1 mail at bob: id=0, from=bob, to=rjh, subject=subject, body=body, isReadable=0
,isEncrypted=1, encryptionKey=2

2 mail at rjh: id=0, from=rjh, to=bob, subject=auto response to subject, body=I am not available.,
isReadable=1 ,isEncrypted=0, encryptionKey=0

3 deliver at bob: id=0, from=rjh, to=bob, subject=auto response to subject, body=I am not
available., isReadable=1 ,isEncrypted=0, encryptionKey=0

4 deliver at rjh: id=0, from=bob, to=rjh, subject=subject, body=body, isReadable=1
,isEncrypted=0, encryptionKey=0

Original message (line 1) and automatic response (line 2) have the same identifier.
The autoresponse contains the original subject ("subject") in its own subject line
and is not encrypted (isEncrypted=0).

EncryptMessage vs. ForwardMessages

1 bobAddPublicKeys ();

Bob knows Rjh’s public key.
2 rjhEnableForwarding ();

Rjh forwards all incoming messages to Chuck.

A Case Study on Feature-Aware Verification 37

Chapter 3 The E-mail System

Bob
- knows public key of rjh

rjh
- auto responder enabled
- doesn't know Bob's public key

EncryptMessage DecryptMessage

 encrypted

EncryptMessage

Chuck

 plain text

ForwardMessages

 plain text

 plain text

Figure 3.14: Interaction EncryptMessage vs. ForwardMessages

3 bobToRjh ();

Illustration: Fig. 3.14. Bob sends a message to Rjh. Bob’s EncryptMessage
encrypts the message before transmission to Rjh.
Rjh succesfully decrypts the message and passes the message on to For-

wardMessages. ForwardMessages generates a second message. This gener-
ated message has the same subject and body, as the original message. Consequently
the generated message is related to the original one. Both messages have the same
identifier. The generated message is passed to Rjh’s EncryptMessage, which
doesn’t encrypt the message due to the missing keyring entry for Chuck.
The forwarded message is transmitted as plain text to Chuck. Again, the security

goal of EncryptMessage is violated, since the same content is transmitted both
encrypted and as plain text over the network.
Command line output:

1 mail at bob: id=0, from=bob, to=rjh, subject=subject, body=body, isReadable=0
,isEncrypted=1, encryptionKey=2

2 mail at rjh: id=0, from=rjh, to=chuck, subject=subject, body=body, isReadable=1
,isEncrypted=0, encryptionKey=0

3 deliver at chuck: id=0, from=rjh, to=chuck, subject=subject, body=body, isReadable=1
,isEncrypted=0, encryptionKey=0

4 deliver at rjh: id=0, from=bob, to=rjh, subject=subject, body=body, isReadable=1
,isEncrypted=0, encryptionKey=0

38 A Case Study on Feature-Aware Verification

3.4 Feature Interactions in the E-mail System

Bob
- was not notified of key change
- still has old key of Bob

rjh
- changed his key pair
- can't decrypt message
- thus can't create an automatic response

EncryptMessage

DecryptMessage

encrypted with old key

AutoResponder

encrypted with old key

Figure 3.15: Interaction DecryptMessage vs. AutoResponder

The identifiers of original message and forwarded message are identical. The original
message is encrypted (line 1: isEncrypted=1), the forwarded message is not (line 2:
isEncrypted=0).

DecryptMessage vs. AutoResponder

1 bobAddPublicKeys ();
2 rjhKeyChange ();
3 rjhSetAutoRespond();

This interaction is strongly related to the interactions EncryptMessage vs. De-
cryptMessage and EncryptMessage vs. VerifySignature. Again there is
an unannounced key change of Rjh, so Bob’s keyring entry for Rjh is invalidated
without his knowledge. Additionally, Rjh has his automatic responder enabled.

4 bobToRjh ();

Illustration: Fig. 3.15. Bob sends a message to Rjh. When the message arrives at
Rjh’s DecryptMessage, it can’t be decrypted, because it was encrypted which
with an invalid key. The AutoResponder can’t generate an automatic response,
since the subject line of the still encrypted message is not readable. The failure of
DecryptMessage causes the AutoResponder to fail, too.
Command line output:

A Case Study on Feature-Aware Verification 39

Chapter 3 The E-mail System

Bob

rjh
- auto responder enabled
- knows Bob's public key

SignMessage VerifySignature
 signed by Bob

ForwardMessages

Chuck
- doesn't know rjh's public key
- can't verify messages signed by rjh

 signature verified

 signature verified

Figure 3.16: Interaction VerifySignature vs. ForwardMessages

1 mail at bob: id=0, from=bob, to=rjh, subject=subject, body=body, isReadable=0
,isEncrypted=1, encryptionKey=2

2 deliver at rjh: id=0, from=bob, to=rjh, subject=subject, body=body, isReadable=0
,isEncrypted=1, encryptionKey=2

One can see, that there is no automatic response generated or sent. Only the
original message appears.

VerifySignature vs. ForwardMessages

1 rjhAddPublicKeys ();

Rjh knows Bob’s public key.
2 rjhEnableForwarding ();

Rjh forwards all incoming messages to Chuck.
3 bobToRjh ();

Illustration: Fig. 3.16. Bob sends a message to Rjh. Bob signs the message and
transmits it to Rjh.
As Rjh knows the public key for Bob, he successfully verifies the signature of the

message. The successful verification is indicated as flag to the message. In order
to sustain the message identifier, ForwardMessages clones the forward message
from the original message. This cloned message also contains the indication flag for
successful verification of the message.

40 A Case Study on Feature-Aware Verification

3.4 Feature Interactions in the E-mail System

When the forward message is transmitted to Chuck, he falsely believes, that the
signature of the forwarded message was sucesfully verified. But in fact the signature
was not verified and the message could have been altered on transit from Rjh to
Chuck.
Command line output:

1 mail at bob: id=0, from=bob, to=rjh, subject=subject, body=body, isReadable=1 ,isSigned=1,
signingKey=1 ,isSignatureVerified=0

2 mail at rjh: id=0, from=rjh, to=chuck, subject=subject, body=body, isReadable=1 ,isSigned=1,
signingKey=2 ,isSignatureVerified=1

3 deliver at chuck: id=0, from=rjh, to=chuck, subject=subject, body=body, isReadable=1
,isSigned=1, signingKey=2 ,isSignatureVerified=1

4 deliver at rjh: id=0, from=bob, to=rjh, subject=subject, body=body, isReadable=1 ,isSigned=1,
signingKey=1 ,isSignatureVerified=1

The forwarded message (lines 2-3) contains the flag that indicates the successful
verification of a message (isSignatureVerified=1) at time of transmission (line 2) and
of delivery (line 3).

A Case Study on Feature-Aware Verification 41

Chapter 4

Feature-Aware Verification

In this chapter, we introduce the approach of feature-aware verification. Given
a software product line and a specification, we invstigate possible specification
violations by means of software model checking. In particular, we focus on one
class of specification violations: feature interactions, as described in Section 2.2.
However our approach is not restricted to feature interactions.

4.1 Feature Modular Specification

As stated in Section 2.1, a software product line consists of features. In our ap-
proach we assign specifications explicitly to features. Thus, we gain a degree of
modularization, where properties like feature traceability are preserved among the
feature artifacts of the specification.

Local Knowledge Properties in the specification of a certain feature only have
a restricted knowledge of the overall system. The knowledge is restricted to imple-
mentation details of the feature itself, and the presence of other features that the
feature is dependent on, according to the feature model. If one regards the feature
model in Fig. 2.1 again, local knowledge of feature Pulls Trailer includes, for
example, the assumption, that the feature Body exists, but not what other features
exist in a feature configuration.
Althought the specifications are restricted to local knowledge, their violation

can indicate a feature interaction, because the verification is done after feature
composition. Considering, for example, a text processing system. The feature Base
reads a text and outputs it. The feature Translate En translates an arbitrary text
into English, Translate De translates a text into German. Both features depend
on Base and are developed in isolation. The specification of Translate En
dictates, that the outputted text has to be English. Note, that no assumptions
about the actual feature configuration or other features have to be made. The

42 A Case Study on Feature-Aware Verification

4.2 Observer Automata

specification of Translate En only refers to the invocaton of a function output,
which is located in the feature Base.
Considering a feature configuration, that contains both Translate En and

Translate De. Any text that is input is translated into English first, then trans-
lated into German and finally output.
The specification of feature Translate En is violated by Translate De, al-

though the specification was created without knowledge of Translate De.

4.2 Observer Automata

The specifications in our approach are expressed by observer automata. Beyer et
al. introduced them in [Bey+04]. Observer automata have their own set of states,
which is independent of the observed program. They are executed in parallel to the
observed program without altering it. The edges of observer automata consist of
syntactic patterns. State transistions in the observed program may trigger a state
transition in the observer automaton. Such a transition in the observer is made,
when there is an outgoing edge from the current state that matches the current
transistion in the observed program. Typically, an automaton contains states that
indicate a violation of the specified property.
Figure 4.1 illustrates this behavior. The automaton model to the left repre-

sents the text processor from the example above. The observer automaton on the
right contains the specification of Translate En. The state v indicates a spec-
ification violation. One can see, that the automaton model of the text processor
contains auxiliary code that actually doesn’t belong to the text processor, but to
the specification of the feature Translate En. In particular, that is the check se-
quence bewteen state 5 and 7/8. This additional functionality has no influence on
the behavior of the text processor but is necessary for the specification of feature
Translate En. Our approach contains a methology that weaves this auxiliary
code into the system to verify. This concept is explained briefly in Section 4.3 and
in detail in Speidel’s work [Spe11].
These automata have similarities to the pointcut and advice model in aspect-

oriented programming, for example AspectJ [Kic+01]. Pointcuts are also based on
syntactic pattern matching. Aspects have their own states and advices can be
instrumented to make state transitions.

4.3 Verification Process

For our case study, we use a particular specification language to express the spec-
ifications in our system. Speidel describes this specification language for observer
automata in [Spe11]. The specification language is intended to verify programs in
the C programming language. However, this limitation to C is not by concept but
by the choice of CPAChecker as model checking tool.

A Case Study on Feature-Aware Verification 43

Chapter 4 Feature-Aware Verification

Automaton model
text processor

Specification
as observer automaton
feature Translate En

1

2

 in

3

 translate
 (Translate En)

4

 translate
 (Translate De)

5

 ready to output

6

 check
 (Translate En)

7

 text is english
 (Translate En)

8

 text is not english
 (Translate En)

9

 out out

1

2

 check
 (Translate En)

 text is english
 (Translate En)

v

 text is not english
 (Translate En)

Figure 4.1: An observer automaton, monitoring a program

44 A Case Study on Feature-Aware Verification

4.4 Specifications in the E-mail System

In Speidel’s approach, the observer automata are woven into the program code.
The model checker then verifies the reachability of states that indicate a specifi-
cation violation. An interaction is deemed to be detected, when a specification is
violated in the respective scenario that reproduces the interaction.

4.4 Specifications in the E-mail System

To proof the feasibility of the approach of feature-aware verification, we created
specifications that allow us to detect the feature interactions, we listed up in Sec-
tion 3.4.2.
Every specification is assigned to a particular feature. In order to maintain

feature modularity, the specifications are restricted to local knowledge only.
These specifications were initially created as observer automata in a graphical

representation. Speidel translated these automata into his specification language.
For a better understanding, we present these specifications in their initial graphical
form.
Cosidering the example automaton from Fig. 4.1, observer automata here are

given in a modified form. In order to maintain clarity, they are simplified and
already contain parts of Speidel’s specification language.
In addition to pattern matches, the state transistions are conditioned by com-

pound statements, which include propositional logic.
As the automata are woven into the observed program, it is possible to spec-

ify arbitrary declarations and statements for a state transition. Speidel calls this
concept action block.
The propositional expressions and the action blocks are evaluated in a context

that is generated by the respective pattern. A pattern match on a function, for
example, generates an environment, where the function’s parameters are accessible
by the propositional expressions and the action block.

4.4.1 EncryptMessage and DecryptMessage

As EncryptMessage and DecryptMessage depend on each other in the feature
model, they are treated together.

Prohibit information leaking

Observer automaton in Fig. 4.2. This specification prohibits information leaking,
by forbidding the transmission of two related messages both encrypted and as plain
text.
The motivation for the concept of related messages should become clearer now.

Two messages are related, if one message is derived from the other automatically
and carries sensitive information of the original message. Sensitive information can
be the subject line, the body or parts of them.

A Case Study on Feature-Aware Verification 45

Chapter 4 Feature-Aware Verification

pattern(before mail(client, msg))
 && msg->isEncrypted
 && !contains(encrypted, msg->id)
 action{add(encrypted, msg->id)}

pattern(before mail(client, msg))
 && !msg->isEncrypted
 && !contains(n_encrypted, msg->id)
 action{add(n_encrypted, msg->id)}

v

pattern(before mail(client, msg))
 && !msg->isEncrypted
 && contains(n_encrypted, msg->id)

pattern(before mail(client, msg))
 && msg->isEncrypted
 && contains(encrypted, msg->id)

Figure 4.2: Prohibit information leaking in EncryptMessage

v

 pattern(before decrypt(client, msg))
 && msg->isEncrypted
 && !isKeyPairValid(msg->encryptionKey, client->privateKey)

Figure 4.3: Prohibit inconsistent key state in DecryptMessage

Concerning the automaton, all transmitted messages are monitored. When a
message is sent encrypted, its identifier is stored in a data structure for encrypted
message identifiers. When a message is sent as plain text, its identifier is stored in
a data structure for unencrypted message identifiers.
When a message is sent unencrypted and its identifier is already stored in the data

structure for encrypted message identifiers, then messages of the same relation class
were transmitted first encrypted and then as plain text. When a message is sent
encrypted and its identifier is already stored in the data structure for unencrypted
message identifiers, then messages of the same relation class were transmitted first
as plain text and then encrypted. In both cases a violation is detected.

Prohibit inconsistent key state

Observer automaton in Fig. 4.3. This specification prohibits inconsistent key states
during the decryption of messages. The automaton therefore monitors the calls to

46 A Case Study on Feature-Aware Verification

4.4 Specifications in the E-mail System

v

 pattern(after decrypt(client, msg))
 && msg->isEncrypted

Figure 4.4: Prohibit decrypt failure

decrypt and verifies, wheter the key that was used to encrypt the message and the
key that is used to decrypt the message, form a valid key pair. If that is not the
case, there is a transistion to the violation state.

Prohibit decrypt failure

Observer automaton in Fig. 4.4. The local knowledge in feature DecryptMessage
includes the fact that messages, whose decryption fails, can’t be processed further.
Thus, this specification forbids this state. When a message is still encrypted after
the execution of decrypt, the specification is violated.

4.4.2 SignMessage and VerifySignature

SignMessage and VerifySignature also depend on each other in the feature
model. They are treated together, too.

Prohibit inconsistent key state

Observer automaton in Fig. 4.5. This specification prohibits inconsistent key states
during the verification of messages. The automaton therefore monitors the calls to
verify. When verify is called for a signed message and the local keyring contains a
key for the sender of the message, there is a check whether the key that was used to
sign the message and the keyring entry form a valid key pair 1. When they don’t,
there is an inconsistent key state.

Enforce signer and sender consistency

Observer automaton in Fig. 4.6. Sender and signer of a message have to be the
same entity, otherwise VerifySignature can’t determine the matching keyring

1The last two clauses in the state transistion are strongly simplified for reasons of readability.
The actual expressions contain nested function calls with two and more parameters and a cast.

A Case Study on Feature-Aware Verification 47

Chapter 4 Feature-Aware Verification

v

 pattern(before verify(client, msg))
 && msg->isSigned
 && keyring_entry_for_sender_exists ()
 && keyring_entry_forms_valid_key_pair_with_signing_key ()

Figure 4.5: Prohibit inconsistent key state in VerifySignature

v

 pattern(before verify(client, msg))
 && msg->sender->privateKey == msg->signingKey

Figure 4.6: Enforce signer/sender consistency in VerifySignature

48 A Case Study on Feature-Aware Verification

4.4 Specifications in the E-mail System

v

 pattern(before mail(client, msg))
 && msg->isSignatureVerified

Figure 4.7: Prohibit sending of verified signatures in VerifySignature

entry to verify a signature. When the private key of the message’s sender and the
key that was used to create the signature are identical, this property is guaranteed.

Prohibit sending of verified signatures

Observer automaton in Fig. 4.7. A verified signature is only valid within a partici-
pant in the e-mail system. Thus, the transmission of messages that have a verified
signature flag is not allowed.

A Case Study on Feature-Aware Verification 49

Chapter 5

Results and Conclusion

We built an e-mail system that is based on Hall’s work in [Hal05] as part of our
case study. Hall implemented his system by means of a formal verification language
that is part of his Interactive Specification Acquisition Tools (ISAT) tool suite, our
system is built on the general purpose programming language C.

Technical Problems Technical hurdles prevented us from realizing the complete
system. CPAChecker, the tool we primary used in our approach, is an academic
project and still under development. It does not support all elements of the C
language. In particular, dynamic memory allocation isn’t fully integrated yet. This
problem came to light, while implementing the features AddressBook and Key-
Management, which use list structures for data handling. Although we were able
to work around this issue, we decided to ommit post office and remailer, because of
this issue. As both participants would have included a user account management,
an extensive use of dynamic data structures in the implementation would have been
likely. Thus, our system includes only one of the originally three participants.

E-mail Feature Components (EFCs) and Features Every EFC is associ-
ated to a particular participant. As our system contains the participant client only,
we ommited an implementation of the EFCs that concern post office and remailer.
Expressed in numbers, our system contains seven of ten EFCs from Hall’s system.
Since two of the three ommited EFCs contain only basic functionality of the respec-
tive participant - RemailMessage for the remailer and MailHost for the post
office - we implemented almost all features that actually increment the functionality
of a participant. Table 5.1 gives details on the differences between our system and
Hall’s.

Feature Interactions The abovementioned restriction of our system to the client
as the only participant strongly limits the number of interactions that are repro-

50 A Case Study on Feature-Aware Verification

Table 5.1: Comparison between our system and Hall’s system at a glance

Our system Hall’s system
Implementation General purpose lan-

guage (C)
Formal specification lan-
guage (ISAT tool suite)

Participants Client Client, post office, re-
mailer

Features / EFCs AddressBook,
SignMessage,
EncryptMessage,
DecryptMessage,
VerifySignature,
AutoResponder,
ForwardMessages,
Base,
KeyManagement

AddressBook,
SignMessage,
EncryptMessage,
DecryptMessage,
VerifySignature,
AutoResponder,
ForwardMessages,
RemailMessage,
FilterMessages,
MailHost

Table 5.2: List of feature interactions in our system and Hall’s system

A
dd

re
ss

B
oo

k

Si
gn

M
es

sa
ge

E
nc

ry
pt

M
es

sa
ge

D
ec

ry
pt

M
es

sa
ge

V
er

if
yS

ig
na

tu
re

A
ut

oR
es

po
nd

er

Fo
rw

ar
dM

es
sa

ge
s

R
em

ai
lM

es
sa

ge

F
il

te
rM

es
sa

ge
s

M
ai

lH
os

t

AddressBook 0/0 0/0 1/1 0/0 0/0 0/0 0/0 0/1 0/0 0/0
SignMessage 0/0 0/0 0/0 0/0 1/1 0/0 1/1 0/1 0/0 0/0
EncryptMessage 0/0 0/0 0/0 1/1 1/1 1/1 /1 1 0/1 0/0 0/0
DecryptMessage 0/0 0/0 0/0 0/0 0/0 1/1 0/0 0/0 0/0 0/0
VerifySignature 0/0 0/0 0/0 0/0 0/0 0/0 1/1 0/0 0/0 0/0
AutoResponder 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/1 0/1
ForwardMessages 0/0 0/0 0/0 0/0 0/0 0/1 0/1 0/2 0/1 0/1
RemailMessage 0/0 0/0 0/0 0/0 0/2 0/2 0/0 0/0 0/1 0/1
FilterMessages 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
MailHost 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/1 0/0

A Case Study on Feature-Aware Verification 51

Chapter 5 Results and Conclusion

ducible at all. Particularly the participants post office and remailer are involved in
16 of overall 27 interactions that Hall found. There are two further interactions that
manifest themselves in infinite message loops. We did not investigate this matter
further under the aspect of the abovementioned technical problems. But with the
exception of these two, our system is able to reproduce all interactions that concern
the implemented subset of participants and EFCs.
Table 5.2 gives an overview of found feature interactions. The figures represent

the number of feature interactions found for a pair of features. The first one stands
for our system, the second one for Hall’s system. For example the figures 1/1 in
the first line express, that Hall found one interaction, that involves the features
AddressBook and EncryptMessage and our system is able to reproduce this
interaction. The table is not symmetrical over the diagonal, because Hall’s naming
convention for feature interactions. In his component-based view of features, an
e-mail message has to pass the EFC A before the EFC B in a scenario that triggers
the feature interaction A vs. B.

Specifications In order to detect feature interactions using feature-aware ver-
ification, we created specifications for particular features that have feature-local
knowledge only. These specifications allow us to detect all reproducible interac-
tions. Table 5.3 gives an overview of all specifications and the interactions that
can be detected with them. One can see, that serveral specifications cover more
than one interaction, because they are not necessarily suited to detect one paricu-
lar interaction. The fact, that we were able to assign all specifications to security
relevant features (SignMessage and VerifySignature or EncryptMessage
and DecryptMessage) is noteworthy. Our specifications seem to protect mainly
security properties.

Unexploited Variability The e-mail system context offers still unexploited vari-
ability in the generation of scenarios. Our scenario basis contains only a small
number of participants. A real-world e-mail system is scalable and there may be
many interactions that only occur in large scale scenarios with a large number of
participants. This matter could be a starting point for further research in this area.

5.1 Related Work
The last section exemplary lists up projects that are to a certain extent related to
the work of this thesis.

Software Product-Line Group The Software Product-Line Group at the Uni-
versity of Passau does further research on safety in software product lines at this
thesis’ time of origin. There is another promising implementation of our e-mail
system in Java, for which the Java Pathfinder 1 is used a model checking solution.

1http://babelfish.arc.nasa.gov/trac/jpf

52 A Case Study on Feature-Aware Verification

http://babelfish.arc.nasa.gov/trac/jpf

5.1 Related Work

Table 5.3: Specifications and coverage of detected interactions

Specifications

E
nc

ry
pt

M
es

sa
ge

/
D

ec
ry

pt
M

es
sa

ge

Si
gn

M
es

sa
ge

/
V

er
if

yS
ig

na
tu

re

Interactions Pr
oh

ib
it
in
fo
rm

at
io
n
le
ak

in
g

Pr
oh

ib
it
in
co
ns
ist

en
t
ke
y
st
at
e

Pr
oh

ib
it
de

cr
yp

t
fa
ilu

re

Pr
oh

ib
it
in
co
ns
ist

en
t
ke
y
st
at
e

En
fo
rc
e
sig

ne
r
/
se
nd

er
co
ns
ist

en
cy

Pr
oh

ib
it
se
nd

in
g
of

ve
rifi

ed
sig

na
tu
re
s

AddressBook vs. EncryptMessage ×
EncryptMessage vs. AutoResponder ×
EncryptMessage vs. ForwardMessages ×
EncryptMessage vs. DecryptMessage ×
EncryptMessage vs. VerifySignature ×
DecryptMessage vs. AutoResponder ×
SignMessage vs. VerifySignature ×
SignMessage vs. ForwardMessages ×
VerifySignature vs. ForwardMessages ×

A Case Study on Feature-Aware Verification 53

Chapter 5 Results and Conclusion

Being developed by the National Aeronautics and Space Administration (NASA),
the Java Pathfinder seems to be a mature tool that carries out few or no restri-
cions to the Java code to verify. This alternative system extends ours and fully
implements Hall’s specifications of an e-mail system from [Hal05].

Verification at Specificaton Level There is further research done on detection
of feature interactions at specification level. That is, the examined systems are
formulated by means of a formal specification language in contrast to our system,
which is implemented in the general purpose language C. One might argue that a
general purpose language rises the level of realism. However, our system still is an
approximation that abstracts from many aspects of a real e-mail system.
The work of Li, Krishnamurthi, and Fisler [LKF02; FK01] and Jouve, Gall, and

Coudert [JGC05] is examplary for that.

54 A Case Study on Feature-Aware Verification

Bibliography

[AK09] Sven Apel and Christian Kästner. “An Overview of Feature-Oriented
Software Development”. In: Journal of Object Technology 8.5 (2009),
pp. 49–84.

[AKL09] Sven Apel, Christian Kästner, and Christian Lengauer. “FEATURE-
HOUSE: Language-independent, automated software composition”. In:
ICSE. IEEE, 2009, pp. 221–231. isbn: 978-1-4244-3452-7.

[AL08] Sven Apel and Christian Lengauer. “Superimposition: A Language-
Independent Approach to Software Composition”. In: Software Com-
position. Ed. by Cesare Pautasso and Éric Tanter. Vol. 4954. Lecture
Notes in Computer Science. Springer, 2008, pp. 20–35. isbn: 978-3-540-
78788-4.

[Ape+08] Sven Apel et al. “An Algebra for Features and Feature Composition”.
In: AMAST. Ed. by José Meseguer and Grigore Rosu. Vol. 5140. Lecture
Notes in Computer Science. Springer, 2008, pp. 36–50. isbn: 978-3-540-
79979-5.

[Bat05] Don S. Batory. “Feature Models, Grammars, and Propositional For-
mulas”. In: SPLC. Ed. by J. Henk Obbink and Klaus Pohl. Vol. 3714.
Lecture Notes in Computer Science. Springer, 2005, pp. 7–20. isbn:
3-540-28936-4.

[Bey+04] Dirk Beyer et al. “The Blast Query Language for Software Verifica-
tion.” In: SAS. Ed. by Roberto Giacobazzi. Vol. 3148. Lecture Notes in
Computer Science. Springer, 2004, pp. 2–18. isbn: 3-540-22791-1.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking.
MIT Press, 2008, pp. I–XVII, 1–975. isbn: 978-0-262-02649-9.

[Cal+03] Muffy Calder et al. “Feature interaction: a critical review and considered
forecast”. In: Computer Networks 41.1 (2003), pp. 115–141.

[Cal+07] J. Callas et al. OpenPGP Message Format. RFC 4880 (Proposed Stan-
dard). Updated by RFC 5581. Internet Engineering Task Force, Nov.
2007. url: http://www.ietf.org/rfc/rfc4880.txt.

A Case Study on Feature-Aware Verification 55

http://www.ietf.org/rfc/rfc4880.txt

Bibliography

[FK01] Kathi Fisler and Shriram Krishnamurthi. “Modular verification of
collaboration-based software designs”. In: ESEC / SIGSOFT FSE.
2001, pp. 152–163.

[Hal05] Robert J. Hall. “Fundamental Nonmodularity in Electronic Mail”. In:
Autom. Softw. Eng. 12.1 (2005), pp. 41–79.

[JGC05] Helene Jouve, Pascale Le Gall, and Sophie Coudert. “An Automatic
Off-Line Feature Interaction Detection Method by Static Analysis of
Specifications”. In: FIW. Ed. by Stephan Reiff-Marganiec and Mark
Ryan. IOS Press, 2005, pp. 131–146. isbn: 1-58603-524-X.

[Kic+01] Gregor Kiczales et al. “An Overview of AspectJ”. In: ECOOP. Ed.
by Jørgen Lindskov Knudsen. Vol. 2072. Lecture Notes in Computer
Science. Springer, 2001, pp. 327–353. isbn: 3-540-42206-4.

[KK98] Dirk O. Keck and Paul J. Kühn. “The Feature and Service Interaction
Problem in Telecommunications Systems. A Survey”. In: IEEE Trans.
Software Eng. 24.10 (1998), pp. 779–796.

[Kle08] J. Klensin. Simple Mail Transfer Protocol. RFC 5321 (Draft Standard).
Internet Engineering Task Force, Oct. 2008. url: http://www.ietf.
org/rfc/rfc5321.txt.

[LKF02] Harry C. Li, Shriram Krishnamurthi, and Kathi Fisler. “Verifying cross-
cutting features as open systems”. In: SIGSOFT FSE. 2002, pp. 89–98.

[Res08] P. Resnick. Internet Message Format. RFC 5322 (Draft Standard). In-
ternet Engineering Task Force, Oct. 2008. url: http://www.ietf.org/
rfc/rfc5322.txt.

[RT10] B. Ramsdell and S. Turner. Secure/Multipurpose Internet Mail Exten-
sions (S/MIME) Version 3.2 Message Specification. RFC 5751 (Pro-
posed Standard). Internet Engineering Task Force, Jan. 2010. url:
http://www.ietf.org/rfc/rfc5751.txt.

[Spe11] Hendrik Speidel. “A Specification Language for Observer Automata in
Feature-Oriented Verification”. MA thesis. Universität Passau, 2011.

[Zav99] Pamela Zave. FAQ Sheet on Feature Interaction. 1999. url: http://
www2.research.att.com/~pamela/faq.html (visited on 03/21/2011).

56 A Case Study on Feature-Aware Verification

http://www.ietf.org/rfc/rfc5321.txt
http://www.ietf.org/rfc/rfc5321.txt
http://www.ietf.org/rfc/rfc5322.txt
http://www.ietf.org/rfc/rfc5322.txt
http://www.ietf.org/rfc/rfc5751.txt
http://www2.research.att.com/~pamela/faq.html
http://www2.research.att.com/~pamela/faq.html

Eidesstattliche Erklärung
Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit selbstständig
und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die
aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche
kenntlich gemacht. Die Arbeit wurde bisher in gleicher oder ähnlicher Form keiner
anderen Prüfungskommission vorgelegt und auch nicht veröffentlicht.

Ort, Datum Stefan Boxleitner

	Introduction
	Prerequisites
	Feature-Oriented Software Development
	Feature Models
	FeatureHouse

	Feature Interactions
	Software Model Checking

	The E-mail System
	DBLP:journals/ase/Hall05
	Architecture
	Implementation
	Control Flow and Composition Order

	Feature Interactions in the E-mail System
	Scenarios and Variability
	Feature Interactions

	Feature-Aware Verification
	Feature Modular Specification
	Observer Automata
	Verification Process
	Specifications in the E-mail System
	EncryptMessage and DecryptMessage
	SignMessage and VerifySignature

	Results and Conclusion
	Related Work

	Eidesstattliche Erklärung

