
Bachelor’s Thesis

I M P R O V I N G A N A LY Z A B I L I T Y O F L I B R A RY
I N T E R A C T I O N S I N VA R A - T O O L - S U I T E

simon lichtnecker

March 12, 2021

Examiner: Prof. Dr.-Ing. Sven Apel
(Chair of Software Engineering I)

Advisor: Florian Sattler, M.Sc.
(Chair of Software Engineering I)

Chair of Software Engineering
Faculty of Computer Science and Mathematics

University of Passau

Simon Lichtnecker: Improving Analyzability of Library Interactions in VaRA-Tool-Suite, © March
2021

It’s been true in my life
that when I’ve needed a mentor,

the right person shows up.

— Ken Blanchard

Dedicated to my family, my girlfriend,
and all the incredible people,

who have supported me and my work.

D E C L A R AT I O N

Hiermit bestätige ich, dass ich diese Bachelorarbeit selbstständig und ohne Benutzung an-
derer als der angegebenen Quellen und Hilfsmittel angefertigt habe und alle Ausführungen,
die wörtlich oder sinngemäß übernommen wurden, als solche gekennzeichnet sind. Ich habe
diese Bachelorarbeit in gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde
vorgelegt.

Passau, March 12, 2021

Simon Lichtnecker

A B S T R A C T

Software projects grow larger and become more complex as they evolve. This development
makes it increasingly difficult to estimate the impact of code changes on other parts of the
program. This problem becomes more apparent when the projects include library code.
The LLVM-based software analysis framework VaRA tackles this problem by analyzing
data flow interactions between commits and reporting them to the user. The computed
interaction data can be visualized to understand the impact of commits on other parts of
the program and to illustrate their development over time.
One application that is able to visualize this interaction data is called VaRA-Tool-Suite.
However, it currently lacks the ability to utilize and visualize interaction data that stems
from commits of different libraries. This constraint limits its use cases, since many projects
include other libraries, which in turn introduce more commits.
To solve this problem, we extend the scope of VaRA-Tool-Suite to commits that originate
from multiple libraries. Furthermore, we introduce a set of new visualizations that are able
to depict interactions between library commits on different levels of detail and illustrate
their development over time. We demonstrate the usefulness of our visualizations on three
different projects, where the first one is a small hand-crafted example project, to showcase
interesting scenarios, and the other two are real-world projects.

v

C O N T E N T S

1 introduction 1

1.1 Goals . 1

1.2 Overview . 1

2 background 3

2.1 Git . 3

2.1.1 Commits . 3

2.1.2 Blame . 4

2.1.3 Submodules . 5

2.2 Plotting Libraries . 5

2.2.1 Matplotlib . 5

2.2.2 Plotly . 7

2.2.3 Graphviz . 7

2.3 Variability-aware Region Analyzer . 9

2.4 VaRA-Tool-Suite . 10

2.4.1 Benchbuild . 11

2.4.2 BlameReport . 12

3 improving vara-tool-suite’s library interaction analysis 14

3.1 Extending VaRA-Tool-Suite’s Commit Lookup to Libraries 14

3.2 Utilizing BlameReport Data . 15

3.3 Implementation of VaRA-Tool-Suite’s Library Interaction Plots 18

3.3.1 Fraction Plot . 18

3.3.2 Sankey Plot . 19

3.3.3 Degree Plot . 20

3.3.4 Graphviz Plot . 22

4 evaluation 24

4.1 Case Studies . 24

4.1.1 Elementalist . 24

4.1.2 GNU Grep . 25

4.1.3 GNU Gzip . 25

4.2 Operationalization . 26

4.3 Results . 26

4.3.1 Elementalist . 26

4.3.2 GNU Grep . 31

4.3.3 GNU Gzip . 36

4.4 Discussion . 41

4.5 Threats to Validity . 42

4.5.1 Blame Interaction Detection . 42

4.5.2 Layout Engine . 42

5 related work 43

6 concluding remarks 44

6.1 Conclusion . 44

vi

contents vii

6.2 Future Work . 44

6.2.1 Graphviz Viewer . 44

6.2.2 Coloring Nodes and Edges . 45

6.2.3 Blame Diff Interactions . 45

bibliography 46

L I S T O F F I G U R E S

Figure 2.1 A sectional overview of Matplotlib figure components. 6

Figure 2.2 Example of DOT source code (on the left) that generates the directed
graph (on the right) containing two cluster subgraphs. 8

Figure 2.3 Overview of the VaRA-Tool-Suite pipeline. 11

Figure 3.1 Example database layout that stores blame library interactions with
their corresponding revision, base hash, base library name, interact-
ing hash, interacting library name, and amount. 17

Figure 3.2 Example database layout that stores blame library interactions with
their corresponding revision, base library name, interacting library
name, degree, amount, and fraction. 17

Figure 3.3 Example Fraction Plot of the project GNU grep over 109 revisions
showing the distribution of fractions that stem from blame interac-
tions between the libraries grep and gnulib. 19

Figure 3.4 Example Sankey Plot depicting one revision of the project GNU grep
by showing the blame interactions between the libraries grep and
gnulib with different color saturations indicating different interaction
degrees. 20

Figure 3.5 Example Degree Plot of the project GNU grep over 109 revisions
showing the partition of degrees that stem from blame interactions,
where the base hash originates from the library grep and the inter-
acting hashes from library gnulib. 21

Figure 3.6 Graphviz Plot depicting one revision of the demo project Elemental-
ist, showing the blame interactions between commits that are grouped
into cluster subgraphs of Elementalist and its libraries fire_lib and
water_lib. 23

Figure 4.1 Possible order of visualizations. 24

Figure 4.2 Fraction plot of project Elementalist over 2 revisions. 27

Figure 4.3 Sankey plot of project Elementalist of revision e64923e69e. 28

Figure 4.4 Sankey plot of project Elementalist of revision 5e8fe1616d. 29

Figure 4.5 Degree plot of project Elementalist over 2 revisions. 30

Figure 4.6 Graphviz plot of project Elementalist of revision 5e8fe1616d. 31

Figure 4.7 Fraction plot of project GNU grep over 109 revisions with its code
churn. 32

Figure 4.8 Sankey plot of project GNU grep of revision 3c381d05ed. 33

Figure 4.9 Sankey plot of project GNU grep of revision 56bad7471d. 34

Figure 4.10 Degree plot of project GNU grep over 109 revisions with its code churn. 35

Figure 4.11 Graphviz plot of project GNU grep of revision adfe8bb24c. 36

Figure 4.12 Fraction plot of project GNU gzip over 24 revisions with its code churn. 37

Figure 4.13 Sankey plot of project GNU gzip of revision 89181137b9. 38

Figure 4.14 Degree plot of project GNU gzip over 24 revisions with its code churn. 39

viii

Figure 4.15 Graphviz plot of project GNU gzip of revision 89181137b9. 40

Figure 4.16 Graphviz plot of project GNU gzip of revision 89181137b9 only with
blame interactions that contain commit a0defda0c1. 40

L I S T O F TA B L E S

L I S T I N G S

Listing 2.1 Example of a Git commit object. 4

Listing 2.2 Example of a git blame annotated code part with the commit hashes
(left column) followed by author names, times in UNIX format, and
the actual code with corresponding line numbers (right column). . . 4

Listing 2.3 The .gitmodules file of the GNU Bison parser generator containing
two submodule entries (gnulib and autoconf) with the their path and
url. 5

Listing 2.4 Example section of a BlameReport of project GNU Gzip with its base
and interacting hashes and their corresponding amounts. 13

A C R O N Y M S

VaRA Variability-aware Region Analyzer

VaRA-TS VaRA-Tool-Suite

ix

1
I N T R O D U C T I O N

During the development of a software project, new lines of source code are constantly
added, increasing its size and complexity. This makes it increasingly difficult for developers
to predict how a particular change in the code will affect other parts of the program. Unex-
pected interactions between code parts can lead to bugs that are particularly hard to find in
a large code base. This problem becomes worse when source code is contributed by more
than one person. That is especially the case when projects contain code from other projects
that are included as libraries. With VaRA (Variability-aware Region Analyzer), one is able
to analyze the data flows between source code instructions to gain information about the
interactions between different program parts. Additionally, if a project and its libraries are
Git repositories, VaRA can relate the interactions between them to the commits that introduce
their interacting source code instructions.
Since it is difficult to interpret this interaction data, we want to visualize the interactions
between commits. The auxiliary application of VaRA, called VaRA-TS, serves this purpose
well. However, its visualizations are currently limited to interactions between commits that
originate from the same Git repository. We believe that it is critical to also include the inter-
actions of library commits into the visualizations of VaRA-TS to get a better understanding of
the entire software project. These visualizations help researchers and developers, e.g., to find
commits that impact the project in an unexpected way or to illustrate the development of
commit interactions over time. Additionally, one is able to visualize dependencies between
commits of the main program and its libraries and commits of the libraries themselves.

1.1 goals

Our goal is to improve the analyzability of library interactions in VaRA-TS by visualizing
interactions between commits, regardless of whether those commits stem from the main
repository or its including libraries. These visualizations can be used by researchers and
developers to get a visual impression of data flows between interacting commits, regardless
of whether the commits stem from the same or different libraries. We propose a concept
of accessing and persisting the interaction data that results from the data-flow analysis
of VaRA, in combination with its VaRA-TS. Furthermore, we use this data to create a set of
four library aware interaction plots that allow users of VaRA-TS to inspect the interactions
between multiple libraries at different levels of detail.

1.2 overview

In Chapter 2, we introduce the essential background of this thesis. We describe the dis-
tributed version-control system Git and the plotting libraries we use to implement our
visualizations. We also explain the features of VaRA and its auxiliary application VaRA-TS

that are most important to us. In Chapter 3, we present our improvements to the library

1

1.2 overview 2

interaction analysis of VaRA-TS that include an extension of the commit lookup to libraries
and the concepts of persisting the data of BlameReports in appropriate database layouts.
Furthermore, we introduce the reader to the implementations and concepts of our blame
library interaction plots. We evaluate our work in Chapter 4, by creating our visualizations
on a set of case studies, summarize the results, discuss them, and illustrate the factors
that could endanger the validity of our approaches. In Chapter 5, we mention work that is
related to ours. Finally, we conclude our work in Chapter 6 and preview possible extensions
to our work.

2
B A C K G R O U N D

In this chapter, we introduce the distributed version-control system Git. Next, we give a
deeper insight in our used Plotting Libraries. Last, we explain the Variability-aware Region
Analyzer framework and the VaRA-Tool-Suite.

2.1 git

In this section, we introduce Git, a distributed version-control system. The development
of a software project includes different tasks, where many can be reduced to a basic set of
actions like adding, deleting, or modifying files. Applying any of these actions results in a
new version of the project’s state, which cannot be easily undone or kept track of without a
version-control system. Git, as such a system, provides a memory-efficient way of tracking
all project versions and their contents. This is achieved by saving the complete history of
modifications done to the project. A project with all its files that is under version-control, is
called a repository. Each version of this repository can then be searched, accessed, and rolled
back to.
As a developer, one is very likely to collaborate with other people on the same project. This
collaboration can lead to problems if they are not using a version-control system and start
editing the same files simultaneously. Git tackles this issue with the concept of a repository
clone. By cloning a repository one gets a complete copy of it, which can be modified and
treated in the same way as the original one. By doing so, the clone keeps a reference to its
origin. File changes are then made to each developer’s own local clone and do not interfere
with changes made to local clones of other developers.
After modifying the local clones they usually need to be synchronized at some point in
the development process to gain a common project state again, which could be further
distributed. By integrating local file changes into the origin repository instance, Git tries to
merge the current repository state with the new one. Changes that do not interfere with
each other can be handled by Git automatically. In cases where conflicting files have to be
merged, e.g., the same line of code in a file got edited, Git asks the developer to resolve the
conflict.
After all files have been merged the origin repository is again in a consistent state and other
developers can now integrate the new state into their local clones.

2.1.1 Commits

One of Git’s core concepts is the commit that resembles a snapshot of the project’s current
state. The creation of a commit incorporates changes of the project into the repository and
stores a snapshot of the new state of the project at this time. Further changes of the project
can be incorporated into its repository as new commit, with the currently referenced commit
as parent commit. A series of commits represents the history of the project, where each

3

2.1 git 4

commit by itself is enough to get the full state of the project at the time a commit was made.
A commit is uniquely identifiable within one repository by its SHA1 or SHA256-checksum,
called commit hash. One can choose a commit to view the changes that it incorporated into
the repository and use it to revert the project to the previous state at the time the commit
was created. A series of new commits can then be added to the repository with this commit
(the commit one reverted to) as parent commit. A commit in its textual representation
contains a line about its tree object, its parent commit, its author and committer.
An example commit is shown in Listing 2.1. Line 1 contains a reference to its tree object,
which points to the project’s snapshot. It consists of one or more hashes that refer to either
a file or subtree. Line 2 contains the commit hash of the commit’s predecessor. Line 3 and 4

contain information about the author and committer with their name, e-mail address and
time (in the UNIX format). The author of a commit is the person who originally made the
file change. The committer is the person who applied the commit to the repository. Line
6 contains the commit message, which is a short descriptive text of the changes that this
commit introduces.

1 tree 8af77d117b923eec332c3b43781be1ae24f72811

2 parent 6ba631b2f38cbf0175fb70adbe5a358d7940bdb5

3 author Simon Lichtnecker <simon@example-mail.com> 1610895177 +0100

4 committer Florian Sattler <florian@example-mail.com> 1610898241 +0100

5

6 Example commit message

Listing 2.1: Example of a Git commit object.

2.1.2 Blame

The git blame command facilitates a developer’s insight on how project files progress over
time. By passing a file of interest git blame annotates each line with the commit hash
and author name that modified the line last. This feature is especially useful if questions
about a specific code part arise and its author or introducing commit has to be determined.
Listing 2.2 shows a short section of an example blame annotation. For example, the commit
f1bc62b9 by Sebastian Böhm in year 2020 was the last change that edited line 4.

2 704f3e73 (Simon Lichtnecker 2019-11-09 23:41:22 +0100 2) import os

3 2a6bfbbe (Florian Sattler 2019-01-15 23:45:26 +0100 3) import re

4 f1bc62b9 (Sebastian Böhm 2020-05-07 17:28:29 +0200 4) import typing as tp

Listing 2.2: Example of a git blame annotated code part with the commit hashes (left column)
followed by author names, times in UNIX format, and the actual code with corresponding
line numbers (right column).

2.2 plotting libraries 5

2.1.3 Submodules

Incorporating code from external sources into a software project is a common practice in
the software development process. The access to other code sources from within a project
alleviates its development, saves time, and extends its functionality. To integrate a project
into another one, the foreign project could simply be copied and stored as subdirectory. This
approach has the drawback that it is cumbersome to integrate each update of the foreign
project into the other one. To combine the above mentioned benefits of a Git repository with
the inclusion of foreign projects and the option to easily update them, Git has the concept
of submodules.
Including another repository as submodule adds it to the repository as a subdirectory.
Submodules are like every Git repository in a defined state, which is the current commit
they are referencing. Submodules have a reference to their original source location. This
allows developers to get the latest commits of the foreign source. As the full commit history
of the submodule can be accessed, each version of it can be used in the main repository. For
example, this can be beneficial if the main repository wants to skip newer versions of the
submodule for compatibility reasons.
By adding the first submodule Git creates a .gitmodules file in the repository. Each submodule
that is added creates a mapping entry in this file that contains a path and an url.
Listing 2.3 shows, as an example, the .gitmodules file of the project GNU Bison, which
contains two submodules (gnulib and autoconf). The entry of the submodule gnulib (line
1) includes its file path (line 2) relative to the main repository. The url (line 3) specifies the
remote location from which it was originally cloned.

1 [submodule "gnulib"]

2 path = gnulib

3 url = git://git.savannah.gnu.org/gnulib.git

4 [submodule "submodules/autoconf"]

5 path = submodules/autoconf

6 url = git://git.sv.gnu.org/autoconf.git

Listing 2.3: The .gitmodules file of the GNU Bison parser generator containing two submodule
entries (gnulib and autoconf) with the their path and url.

2.2 plotting libraries

This section introduces the plotting libraries that we use to implement out different kinds of
plots in Section 3.3. We begin with the Matplotlib library, followed by Plotly, and Graphviz.

2.2.1 Matplotlib

Matplotlib [5] is a 2D graphics environment used to generate high-quality images in Python.
We use its MATLAB, state-based interface in all of our Matplotlib based plots, which is
encapsulated in the pyplot module. Hence, this subsection covers only the pyplot interface.

2.2 plotting libraries 6

The general idea behind the MATLAB-oriented interface is that its functions change a
figure’s state while preserving a reference to its new state across function calls. The access
to the figure’s state throughout the whole program simplifies plot adjustments without the
need of passing the figure to every function. Figures contain one or more axes, which are
the point of reference for most of the plot elements, like the coordinate system, plot type,
and legend. A sectional overview of some of the most important figure parts is shown in
Figure 2.11.
Matplotlib refers to the word ’axes’ as the data space or generally speaking the complete
plot with all its including plots, e.g., the red and blue line plots in Figure 2.1. Therefore,
axes must not be confused with the term ’axis’, which refers to, e.g., the x-, y-, or z-axis of
the Cartesian coordinate system.
Besides multiple plots on the same axes, one can add multiple axes to the same figure. The
positions of axes are determined by the grid of the figure. The grid groups the figure’s
plotting area in rows and columns, which are modifiable in their number and used as
reference point of an axes’ position.
After arranging the axes on the grid, one is able to generate plots of different types and
treat them independently. After the plot generation, the user is able to view and export the
whole figure with all its axes.

Figure 2.1: A sectional overview of Matplotlib figure components.

1 Available online at https://matplotlib.org/3.3.3/tutorials/introductory/usage.html#figure-parts; vis-
ited on January 21st, 2021.

https://matplotlib.org/3.3.3/tutorials/introductory/usage.html#figure-parts

2.2 plotting libraries 7

2.2.2 Plotly

The Python graphing library Plotly2 follows the concept of interactive plots. The interaction
with plots after their generation is beneficial to represent extra information, e.g., via tooltips,
rearrange elements to improve their readability, or even display animations. Furthermore,
besides many basic plot types, Plotly also offers more advanced ones, like various 3-
dimensional charts and supports more than 40 different chart types in total. The plots are
rendered per default in the web browser where the user is able to download them. By using,
e.g., the library Kaleido3, one is able to generate static images locally in the first place.
To create a Figure that is later rendered as chart in the browser, one must define the plotting
data with its plot type. The layout of the resulting plot can be specified by, e.g., using the
autosize (determines the plot size automatically) option, to fit the plot in the web browser.
If the user wants more control about the plot’s layout and appearance, they can set the
corresponding options explicitly.

2.2.3 Graphviz

The representation of structural information in the form of (directed) graphs is a common
way to visualize data, like networks, data-flows, or dependencies in general. A popular
graph visualization tool that serves this purpose well is Graphviz [2], which offers a variety
of tools to build, manipulate, and render graphs. Graphviz provides implementations of
common graph layouts and their access through various interfaces. We use its correspondent
Python library to build our Graphviz Plots, which is a wrapper for creating graphs in the
DOT4 language.
A graph or directed graph (digraph) in DOT consists of the main components node, edge,
and optionally subgraph. Subgraphs build a semantic group of nodes and their corre-
sponding edges within a graph. This allows one to reference the elements of the subgraph
altogether for further modification. Furthermore, attributes can be added to the subgraph
that then apply to all contained elements. This is especially useful when the contents of one
subgraph have to be distinguishable from those of others.
Interpreting, arranging, and drawing graphical and textual elements is done by so-called
layout engines. While this term can vary in the field of application, we use it in the context of
displaying graphs. There exist many layout engines to represent different kinds of graphs,
like directed or undirected graphs that can be drawn with, e.g., the engines dot [4] and
fdp [3].
Subgraphs beginning with the name ’cluster’ are treated specially by most of the Graphviz
layout engines, like dot and fdp. Cluster subgraphs are no native part of the DOT language
but induce engines that are sensible to this keyword to draw a rectangle around the corre-
sponding subgraph. This groups subgraph elements visually together and tells the layout
engine that they must be treated as unit.
Figure 2.2 shows an example of a Graphviz digraph with its source code, written in the
DOT language, and utilizing the dot engine. The subgraphs foo and bar are defined as

2 Available online at https://plotly.com/python/; visited on January 26th, 2021.
3 Available online at https://github.com/plotly/Kaleido; visited on January 26th, 2021.
4 Available online at https://graphviz.org/doc/info/lang.html; visited on January 27th, 2021.

https://plotly.com/python/
https://github.com/plotly/Kaleido
https://graphviz.org/doc/info/lang.html

2.2 plotting libraries 8

cluster subgraphs (line 3 and 11). The dot engine interprets this notation and draws a
rectangle in their defined style around them. Node a in foo interacts with node a in bar

and vice versa. The nodes are distinguished by their unique names in line 8 and line 15,
but can have the same label as seen in line 18 and line 19. Labels are used to explicitly set
the displayed name of graph elements, like subgraphs or nodes. If not used, the displayed
name of, e.g., the nodes a1 and a2 would be the same as their definition name, which is
often undesirable when the only difference between these nodes is their membership in a
subgraph. To give another example, the color attribute in line 5 and 13 is used to apply a
color to the whole subgraph area, excluding the node area, which is defined as different
color.
In the latter analysis, the Graphviz library allows us to write Python code that gets translated
into DOT and is finally drawn by our layout engine fdp to produce our Graphviz Plot.

1 digraph G {

2

3 subgraph cluster_foo {

4 label = "foo";

5 color = lightgrey;

6 style = filled;

7 node [style=filled, color=white];

8 a1 -> b;

9 }

10

11 subgraph cluster_bar {

12 label = "bar";

13 color = blue;

14 node [style=filled];

15 a2 -> c;

16 }

17

18 a1 [label=a]

19 a2 [label=a]

20 a1 -> a2

21 a2 -> a1

22 x -> c

23 }

Figure 2.2: Example of DOT source code (on the left) that generates the directed graph (on the right)
containing two cluster subgraphs.

2.3 variability-aware region analyzer 9

2.3 variability-aware region analyzer

In this section, we introduce the Variability-aware Region Analyzer (VaRA), which is a
software analysis framework based on the LLVM Compiler Infrastructure (LLVM)5. VaRA

can perform different types of analyses on a given software project. One of these analyses
is the BlameAnalysis, which is especially relevant to us, as it generates the information
we need for our implementations in the latter sections. To understand the concept of the
BlameAnalysis, it is important to know what the basics of control-flow and data-flow
analyses are.
Control-flow analysis aims to determine the order in which program instructions are evaluated.
A set of program statements that is definitely executed directly after each other can be
grouped together as a basic block. To visualize how control flows through a program, it can be
represented as directed graph where a node is such a basic block, and an edge, starting from
a basic block, connects to a basic block that may be evaluated next. This representation is
called control-flow graph. Data-flow analysis collects information about a program by analyzing
how variables change across edges in a control-flow graph and aggregates the collected data
along the control flow. To give an example of a data flow that is detected by the data-flow
analysis, one may write a function that takes a number, increases its value by one and
returns it. Then this function gets called and the returned value assigned to a variable. First,
this results in a data flow from the instruction of the assignment to the called function, as
we pass our number as parameter to it. Second, this number is increased by the function
and gets returned to the instruction of the assignment, which results in a data flow from
the function, back to the instruction of the variable assignment.
The control-flow and data-flow analysis are types of static program analyses, which means
that they can be performed without executing the program. Now, the BlameAnalysis, which
is implemented on top of a data-flow analysis, aims to find interactions between commits
for all source code files of the analyzed project. These interactions result from data flows
between instructions. Each instruction in the source code can be mapped, similar to git

blame, to the commit that introduced the code for which the instruction is created. The
BlameAnalysis is then able to relate the data-flow information between the instructions to
its corresponding commits. This relation is used by the BlameAnalysis to report interacting
commits that contain such data flows from one commit to another. We call an interaction
from one commit to one or more commits, a blame interaction.
The BlameAnalysis of VaRA detects the blame interactions of a software project by combining
its data-flow analysis with git blame annotations. The next section explains how the
BlameAnalysis is used with the VaRA-Tool-Suite, and introduces a way of persisting the
analysis data in a file. [6, 8]

5 Available online at https://llvm.org/; visited on January 28th, 2021.

https://llvm.org/

2.4 vara-tool-suite 10

2.4 vara-tool-suite

Researchers often have to invest a lot of time in the process of setting up the projects and the
analyses they want to perform on them. Analyzing a new project or changing the analysis
method restarts this time-consuming process, as the requirements of the analysis or projects
can change. While some work a researcher has to perform cannot be reduced or optimized,
essential steps in the analysis pipeline, like defining projects and experiments, analyzing
multiple project states, persisting analysis results and evaluating them, can.
We introduce VaRA-TS6, a software application that aids users of VaRA in setting up their
own experiments and to make experimenting on projects easier. VaRA-TS offers a consistent
interface for many steps of an analysis pipeline by abstracting redundant operations.
Analyses with VaRA require a working installation on the user’s system. VaRA-TS accelerates
this installation process by downloading, building, and finally installing VaRA automatically.
Analyzing software projects requires researchers to download, configure, and compile them
often numerous times. This process is error-prone and often tedious. The project interface of
VaRA-TS tackles this issue by allowing the user to define each step of this process separately
with the aid of helper methods. Once defined, all steps can be run automatically by VaRA-TS.
Adding new projects is easy, as the structure of a project definition never changes. Analog to
project definitions in VaRA-TS, the implementation of experiments also has a fixed structure.
Similar to project definitions, the experiment interface offers methods that cover necessary
steps in an analysis and hides redundant ones from the user. Furthermore, the projects
and experiments of VaRA-TS are defined independently, which allows a user to arbitrarily
combine them.
After adding a project to VaRA-TS, a user is not limited to run experiments on only one
version of the project. Some analyses require to be run on many versions of a project, e.g.,
to gain information about the project’s development over time. For this reason, VaRA-TS

provides a way to sample an arbitrary number of project revisions, if the project is a Git
repository. When sampling the revisions of a repository’s commit history, VaRA-TS stores the
sampled commit hashes in a text file, called CaseStudy. If specified, the generated CaseStudy

file can be passed to an experiment run of VaRA-TS. This allows VaRA-TS to perform the
experiment on each of the project states that are listed in the CaseStudy file. After executing
an experiment, the results are collected in a text file, called report.
Reports are usually specific to the type of experiment data they are storing. Therefore,
VaRA-TS allows a user to define a report’s structure that contains their analysis results
in a later easily accessible and condensed way. Helper functions for common tasks, like
deriving report names from their corresponding experiment and accessing reports are
already provided by the report interface of VaRA-TS. After the experiment data is persisted
in a report file it can be evaluated in the form of a plot. Implementing a plot can be divided
into the parts of retrieving the plotting data, building the actual plot, showing the plot, and
saving it for later inspections. To facilitate the retrieval of plotting data, VaRA-TS provides
a database layout that is used to aggregate the data of multiple reports. If the underlying
report data does not change, the database can be reused without the need of aggregating
the data again. VaRA-TS alleviates the creation of new plots by providing a plot interface that
includes functions to, e.g., retrieve the prior stored data, build multiple plots consistently,

6 Available online at https://github.com/se-sic/VaRA-Tool-Suite

https://github.com/se-sic/VaRA-Tool-Suite

2.4 vara-tool-suite 11

save and display the resulting plot. A schematic overview of the analysis pipeline of VaRA-TS

is shown in Figure 2.3 7. To give an example for a possible analysis pipeline, a user of VaRA-TS

could build a CaseStudy by sampling 20 revision from the already incorporated project
GNU grep. Then they start an experiment, like the GenerateBlameReport experiment on
grep with the passed CaseStudy file. This results in the generation of 20 reports, which for
the GenerateBlameReport experiment, corresponds to 20 BlameReports. By starting a plot,
like the BlameInteractionDegree plot, the BlameReport data is automatically aggregated
and saved in a corresponding database. To generate the final plot image from the data
persisted in a database, one uses the vara-plot tool of VaRA-TS. This tool takes several
arguments, like the name of the analyzed project, the path to the used CaseStudy file, the
type of the plot, which is going to be generated, and an option to either view or store the
resulting image.
VaRA-TS facilitates the work of VaRA users by reducing redundant and error-prone tasks in
the analysis pipeline through various abstractions. Two important interfaces that abstract a
software project and an experiment rely on an underlying application, named Benchbuild
that is introduced in the following subsection.

Figure 2.3: Overview of the VaRA-Tool-Suite pipeline.

2.4.1 Benchbuild

The large-scale empirical-research toolkit Benchbuild [9] aids researchers by facilitating the
preparation and execution of compile-time and run-time experiments. Benchbuild offers
researches a broad spectrum of supported software projects and is able to automatically
download, set up, and compile them. VaRA-TS and Benchbuild are strongly linked, since
the prior one relies on Benchbuild’s definition of a project and runs its experiments with
Benchbuild.
The concept of a project in Benchbuild allows a user to define an abstract representation
of a software project with the aid of helper functions through a consistent interface. After

7 Available online at https://vara.readthedocs.io/en/vara-dev/vara-ts/pipeline-overview.html#

tool-suite-pipeline-overview; visited on March 10th, 2021.

https://vara.readthedocs.io/en/vara-dev/vara-ts/pipeline-overview.html#tool-suite-pipeline-overview
https://vara.readthedocs.io/en/vara-dev/vara-ts/pipeline-overview.html#tool-suite-pipeline-overview

2.4 vara-tool-suite 12

defining the project’s download source and its compilation steps, a user can reuse the
project and Benchbuild performs the defined actions automatically. Running analyses on a
Benchbuild project can be automated by using its experiment interface. An experiment is
a list of actions that are executed on one or more projects that are part of the experiment.
Benchbuild already provides many predefined actions that facilitate the implementation of
experiments. Running analyses on projects is now easy, as the necessary steps to correctly
set up projects and executing analysis actions are performed automatically and can be
adjusted with minimal effort.
VaRA-TS relies on Benchbuild’s abstractions of projects and experiments, which minimize
the necessary work for researchers to perform their analyses. As an example, to run the
experiment GenerateBlameReport of VaRA-TS on the project grep, one only has to run the
command benchbuild run -E GenerateBlameReport grep . The experiment results are
stored in a result file, called BlameReport, which we explain in detail in the following
subsection.

2.4.2 BlameReport

As briefly described in Section 2.4, reports are files that store analysis results that are specific
to the performed experiment type. The BlameReport is such a report and stores condensed
textual information about the results of the GenerateBlameReport experiment.
The GenerateBlameReport experiment of VaRA-TS runs the BlameAnalysis of VaRA that was
introduced in Section 2.3 on the specified project (revisions). The contents of an exam-
ple BlameReport are represented in Listing 2.4, which results from the BlameAnalysis

on the project gzip. The demangled-name in line 581 represents the name of the function
(create_outfile) that was analyzed by the BlameAnalysis. The number of analyzed pro-
gram instructions is represented in line 582. The following line starts the list of blame
interactions that the BlameAnalysis found within this function. These blame interactions
are broken down into the interactions between one base commit, which corresponds to a
base-hash, e.g., line 584, and one or more interacting commits, which correspond to the
interacting-hashes, e.g., line 586. The commits are represented as CommitRepoPairs, which
are combinations of their commit hash, a dash, and the library name they are originating
from. The amount, e.g., in line 587, represents that this exact blame interaction was found 3

times in the analyzed source code. This is important to prevent redundant entries in the
BlameReport and to keep the file as small as possible without losing information.
Since we are interested in relating the blame interactions between commits to their cor-
responding libraries, we can build subgroups of interactions within a blame interaction
that group the interacting-hashes by their library names. To give an example, the blame
interaction starting in line 588 and ending in line 592 can be divided in an interaction
between the base commit in line 588 and the interacting commit in line 590, which originates
from the library gnulib, and an interaction between the base commit in line 588 and the
interacting commit in line 591, which stems from the library gzip. Both of these subgroups
have the same amount as their containing blame interaction, which is 2. Now we are able to
derive important values from the blame interaction data that refer to each of these blame
interaction subgroups.
The first value is the degree of a blame interaction subgroup. It is defined as the number

2.4 vara-tool-suite 13

of interacting-hashes that originate from the same library, grouped by the library name
of their base-hash within one blame interaction. It describes the interaction degree of a
blame interaction, e.g., the number of interactions to other commits, in relation to its base
and interacting libraries. For example, if we consider each of the previously mentioned
subgroups on their own, we find that both contain one interacting-hash, hence they
both have a interaction degree of 1. The second derived value is the fraction of a blame
interaction subgroup. It is calculated by dividing the amount of a blame interaction through
the sum of all amounts that result from building blame interaction subgroups in every blame
interaction entry of the BlameReport. It indicates how large the proportion of one interaction
is in relation to all interactions of a BlameReport.
The presence of an interaction in a BlameReport means that the BlameAnalysis of VaRA

detected a data flow between instructions, whose source code they are originating from, got
added by different commits. Therefore, the listed blame interactions show the presence of
data flows between different commits.

580 [...]

581 demangled-name: create_outfile

582 num-instructions: 142

583 insts:

584 - base-hash: 5ef892a9248e02dac13840f0acefe0fe72605dfa-gzip

585 interacting-hashes:

586 - a979d9c4db0adbf341eb329abaf3560aa12f10fd-gzip

587 amount: 3

588 - base-hash: 5ef892a9248e02dac13840f0acefe0fe72605dfa-gzip

589 interacting-hashes:

590 - 48e0ba6d23bdc0fcad1b620cb410bb0a57684edc-gnulib

591 - 95ace546d3f6c5909a636017f141784105f9dab2-gzip

592 amount: 2

593 [...]

Listing 2.4: Example section of a BlameReport of project GNU Gzip with its base and interacting
hashes and their corresponding amounts.

3
I M P R O V I N G VA R A - T O O L - S U I T E ’ S L I B R A RY I N T E R A C T I O N
A N A LY S I S

In this chapter, we explain how we improve the ability of VaRA-TS to visualize blame
interactions by using an extended commit lookup strategy to create library-aware blame
interaction plots. First, we describe the concept of gathering extended commit lookup data
with the BlameAnalysis of VaRA to determine interactions between libraries. Second, we
introduce our database layouts, in which we store the aggregated library blame interaction
data of BlameReports. Third, we explain how we implement a set of new plots to visualize
the blame interaction data between multiple libraries.

3.1 extending vara-tool-suite’s commit lookup to libraries

Commit-dependent evaluations with VaRA-TS are currently limited to commits that stem
from the same Git repository within a project. As described in Section 2.1.3, many soft-
ware projects depend on library code from external projects that are incorporated as, e.g.,
GitSubmodules. To allow users of VaRA-TS to create analyses that depend on interactions
between a main program and one or more libraries, we explain the concept of using library
related blame interaction data, and describe how we implement this concept.
To better understand how a program and its libraries can interact, it is important to know the
basics about using library code in a project. Projects make use of libraries to reuse resources
from other projects, like already written source code. After including the libraries into a
project, one can access the library functionality by, e.g., calling library functions in the source
code of the project. To create an executable from the main program and its used library
code, one has to compile and link them. Compiling the source code results in individual
object files for the main program and each library. These object files contain the output of
the compiler in the form of machine code. To create a single executable, one has to link
the object files together. By doing so, function references that were not found in the main
object file are searched in the object files of the libraries. When all referenced functions were
found and the object files are successfully linked together, an executable is created. This file
can be executed and contains the combined functionality of the main program and its used
library functions. If the project and libraries are Git repositories, a common way to integrate
the libraries into the project is to add them as Submodules. This allows the incorporation
of multiple libraries as repositories into a project that is managed by a main repository
instance. As introduced in Section 2.3, VaRA is able to detect blame interactions between
commits and report them to the user. This analysis is not limited to the commits of one
repository, but can also detect blame interactions between commits that stem from different
repositories, e.g., the project repository and its library submodules. A user of VaRA can then
analyze the instructions of the source code with the BlameAnalysis and retrieve all blame
interactions between the main repository and its libraries, or between the libraries them-
selves, including their corresponding library names. While VaRA-TS currently does not use

14

3.2 utilizing blamereport data 15

blame interaction data from different libraries, it already implements an experiment that ex-
ecutes the BlameAnalysis of VaRA on a given project, which delivers blame interactions even
between commits of multiple repositories. This experiment is called GenerateBlameReport,
which generates a BlameReport containing the results of the BlameAnalysis. For example,
Listing 2.4 represents the contents of a BlameReport file after analyzing the project gzip.
As represented in, e.g., line 590 and 591, the CommitRepoPairs (commit hash with library
name) already provide information about the origin of a commit. If a user of VaRA-TS wants
to run this experiment on a project with submodules to, e.g., retrieve the blame interactions
with their corresponding library names, they must define each repository in the SOURCE list
of a project. The SOURCE list of a project in VaRA-TS contains a named main repository, which
is defined through the Git interface of Benchbuild and all its submodules that are defined
through Benchbuild’s GitSubmodule interface including a specified name. These interfaces
are used to download, initialize and set up the repositories correctly in relation to each other.
The SOURCE list is used to reference each of the repositories for later identification. Users of
VaRA-TS can now run the GenerateBlameReport experiment on the prior defined project and
receive the resulting BlameReport file. With this file, a user can retrieve the commit hash of a
blame interaction. Additionally, the user is provided with the library name from which the
commit originates. We can use this information to search the library by its specified name
in the SOURCE list and look up the commit that corresponds to its commit hash within this
library. To facilitate the lookup of commits, VaRA-TS already implements a commit lookup
function that takes a commit hash and returns the corresponding commit. This lookup fails
when the passed commit hash does not stem from the repository that was defined first in
the SOURCE list. To solve this problem, we implemented an extension of this commit lookup
function that is able to find commits from any repository in the SOURCE list. This extension
takes a commit hash and also the repository name chosen in the SOURCE list to identify the
repository from which the commit originates. When the repository name is found in the
SOURCE list, the commit that corresponds to the passed commit hash is searched within this
repository and is returned.
We proposed a concept of using the CommitRepoPairs of blame interactions from a BlameReport

to find commits that stem from different repositories. We use this extended commit lookup
strategy to relate blame interactions between commits to their corresponding libraries.

3.2 utilizing blamereport data

Now that we know the concepts of finding blame interactions with VaRA, storing them with
VaRA-TS as BlameReport, and relating the commits of blame interactions to their repositories,
we are able to aggregate the received data in, e.g., a database, and build analyses that
depend on interactions between multiple libraries. Therefore, we introduce the concepts
and benefits of caching aggregated analysis data in databases of VaRA-TS.
It is a common practice to persist analysis data in a database for storage efficiency and
improved accessibility. VaRA-TS already offers an abstraction of a database schema that
allows a user to define their own layout with the help of functions implementing tasks
that most database implementations have in common. When creating a database layout,
it is important to consider the requirements of the applications that access the database.
Knowing in what use cases a database is involved helps to create database designs that avoid

3.2 utilizing blamereport data 16

redundant entries, save only necessary data, and are versatile in their application. Therefore,
we have to clarify our use cases first to create database layouts that satisfy our requirements.
Our use cases are the visualizations of blame interactions between commits that possibly
stem from different repositories, where each visualization focuses on different parts of the
blame interaction data. Since the interaction data is provided by BlameReports, we need to
store them in database layouts that provide the data each specific visualization needs. By
breaking down a blame interaction into its components we can already see what information
could be saved in a database. Looking at the BlameReport of Listing 2.4, we can divide a
blame interaction into 4 parts: the type of commit hash (base-hash or interacting-hash),
the commit hash itself, the library name a commit originates from, and the amount, which is
the number of times this blame interaction was found within a function. In this example
BlameReport, we choose the blame interaction that starts in line 588 and ends in line 592. We
can see that the commit hash 5ef892a in line 588 is of type base-hash and that the commit
hashes 48e0ba6 and 95ace54 in line 590 and 591 are categorized as interacting-hashes.
Furthermore, we notice that the commit hashes in line 590 and 591 stem from the libraries
gnulib and gzip, as denoted at the end of each commit hash. The blame interaction ends
with its amount in line 592. This is the data we need to extract from a BlameReport file and
store it in a database.
A user of VaRA-TS that uses a CaseStudy file in an experiment, like the GenerateBlameReport

experiment, to analyze multiple revisions of a project, will most likely want to persist
all the report data in a single database. Storing and accessing the aggregated data of all
reports in a database class is facilitated by inheriting from the EvaluationDatabase class of
VaRA-TS. By doing so, one must implement a function called _load_dataframe(), which is
used to load and cache a dataframe. Creating a dataframe and caching all report data is
easy with the build_cached_report_table() function, which builds up an automatically
cached dataframe. While the accumulation of report data over multiple reports and their
automatic caching is mostly abstracted by VaRA-TS, the work that remains to implement
our new database is the extraction of analysis data from a report file. VaRA-TS already
provides many functions to extract the report data for various use cases, but we need
a new implementation to receive the CommitRepoPairs (including their library names)
from a BlameReport. For this purpose we created a function that takes a BlameReport

and collects all blame interactions from its analyzed functions. This function returns the
extracted data as a mapping that is similar to the structure of a blame interaction within a
BlameReport. We use this mapping within the database definition to build dataframe rows
that mirror the relation of the base-hash CommitReporPair to each CommitReporPair of the
individual interacting-hashes within a blame interaction. To prevent redundant entries,
we additionally add the amount of the blame interaction to every corresponding blame
interaction row. Using the example of the prior described blame interaction (line 588-592) of
Listing 2.4 results in 2 dataframe rows that are shown in Figure 3.1. As illustrated in the
example database, the base-hash (5ef892a) and its corresponding library name (gzip) is
used for both rows and the interacting-hash of the first row is 48e0ba6 with library name
gnulib and amount 2, and the interacting-hash of the second row is 95ace54 with library
name gzip and amount 2. Since both entries originate from the same BlameReport file, they
are denoted with the same revision hash, for which we have chosen 8d506e2 for example.

3.2 utilizing blamereport data 17

revision base_hash base_lib inter_hash inter_lib amount

0 8d506e2 5ef892a gzip 48e0ba6 gnulib 2

1 8d506e2 5ef892a gzip 95ace54 gzip 2

Figure 3.1: Example database layout that stores blame library interactions with their corresponding
revision, base hash, base library name, interacting hash, interacting library name, and
amount.

Finding blame interactions within a report file that have exactly the same base-hash and
interacting-hashes would lead to duplicated entries. Therefore, the blame interaction gets
only added once in the database, with the amounts of the identical blame interactions being
added together. The proposed layout is able to store very specific information about the
interacting commits within every blame interaction of a BlameReport. Furthermore, we are
able to reuse the cached database if the underlying BlameReport data does not change. To
efficiently access all BlameReport data that we need for our later visualizations, we have to
implement another database layout that slightly varies from the one we described before.
This database layout introduces the columns degree and fraction, which calculate and store
the degree and fraction value of a blame interaction as explained in Section 2.4.2. Database
entries that would result in rows with the same base library name, interacting library name,
and degree within a report, are saved only once and their amounts are added together. This
database layout does not save the commit hashes of the extracted CommitRepoPairs, but
relates their library suffix to their corresponding degree, amount and fraction. This layout
allows us to additionally access the degree and fraction of blame library interactions and
prevents redundant computations in the visualization step by saving the already computed
degrees and fractions. An example of this database layout is depicted in Figure 3.2.

revision base_lib inter_lib degree amount fraction

0 38ae6a4 gzip gzip 13 17 0.133008356

1 38ae6a4 gnulib gzip 10 6 0.001973073

[...] [...] [...] [...] [...] [...] [...]

874 598fbc2 gnulib gnulib 4 303 0.035248953

[...] [...] [...] [...] [...] [...] [...]

Figure 3.2: Example database layout that stores blame library interactions with their corresponding
revision, base library name, interacting library name, degree, amount, and fraction.

We conclude with our last database layout that is similar to the layout represented in
Figure 3.1, but saves the difference between BlameReports. By comparing two BlameReports,
we notice that blame interactions can change in, e.g., their amount. The information about
changing amounts of blame interactions is important to us, as it facilitates our understanding
of the blame interaction’s development. We define blame interactions that change from a

3.3 implementation of vara-tool-suite’s library interaction plots 18

BlameReport to the next successive BlameReport of a unique and total order as blame diff

interactions and save the differences of their amounts in our blame diff database.

3.3 implementation of vara-tool-suite’s library interaction plots

Visualizing analysis data makes its interpretation easier and allows one to represent infor-
mation in an intelligible and condensed way. This section introduces the implementations
of our plots that are able to represent blame interactions between multiple libraries. First,
we describe our Fraction Plot, which represents an overview of the distribution of ingoing
and outgoing library interactions over a range of specified project revisions. Second, we
explain the details of our interactive Sankey Plot that we use to get a deeper insight in the
library interactions of specific project revisions. Third, we illustrate a new implementation
of the Degree Plot that visualizes the degree of blame library interactions between 2 libraries
over multiple project revisions. Last, the concept of a detailed blame interaction plot is
implemented in the Graphviz Plot that represents interactions of specific project revisions
on the level of their interacting commits.

3.3.1 Fraction Plot

To help researches analyze the proportions of blame interactions between libraries, we
implemented the Fraction Plot in VaRA-TS.
This plot is used in combination with a CaseStudy file to illustrate the distribution of
blame interactions between multiple libraries over time. Furthermore, the plot is split
into 2 subplots, where the upper part represents the outgoing interactions, and the
lower part shows the ingoing (incoming) interactions of the interacting libraries for
each of the project revisions. We define an outgoing interaction of a commit as a blame
interaction that originates from this (base) commit and targets another (interacting) commit.
Correspondingly, we define an ingoing (incoming) interaction of a commit as a blame
interaction that originates from another (base) commit and targets this (interacting) commit.
The plot is used to facilitate the identification of all interacting libraries of the analyzed
project, while providing information about their fraction ratio.
We implemented the Fraction Plot with the Matplotlib library as represented in Figure 3.3.
The x-axis consists of the truncated commit hashes originating from the selected CaseStudy.
These commit hashes (revisions) are in a total and unique order that is similar to the output
order of the git log command. The y-axis is split into two subplots (axes) with individual
y-axes that relate to the fraction ratio of outgoing and ingoing interactions. Each subplot
contains a legend that maps the library names to the color that is used to mark the area of
the resulting stackplot. This plot allows us to see the distribution of all blame interactions
among the libraries. As the example shows, the values that are denoted as stacked areas
always add up to 1. That means that the visualized libraries together take part in all found
blame library interactions. We implemented this plot by creating a class that inherits from
the Plot interface of VaRA-TS, which allows us to easily access the saved BlameReport data
and facilitates the implementation of its view and save functionality. To generate a plot,
e.g., the Fraction Plot, a user of VaRA-TS uses the vara-plot tool, which takes several
arguments, like the path to the CaseStudy file and the name of the concrete plot.

3.3 implementation of vara-tool-suite’s library interaction plots 19

Figure 3.3: Example Fraction Plot of the project GNU grep over 109 revisions showing the distribution
of fractions that stem from blame interactions between the libraries grep and gnulib.

3.3.2 Sankey Plot

We continue with a plot that allows researchers to select a specific project revision and view
the blame interactions between libraries in more detail. The idea behind the Sankey Plot is to
visualize blame interactions between multiple libraries of one specific project revision in an
easily interpretable way. Furthermore, the degree of a blame interaction is encoded into the
plot to help a researcher understand with how many commits a base commit interacts.
An example Sankey Plot is shown in Figure 3.4, which illustrates the blame interactions
between 2 libraries (grep and gnulib). The revision for which we created the plot is depicted
in the top left corner of the plot. The left side of the plot depicts the library names of
the base-hashes an interaction originates from. The right side shows the library names
of their corresponding interacting-hashes. Each color is assigned to a library to identify
their blame interactions more easily. The color saturation of a blame interaction encodes
the degree that we mentioned earlier, where the saturation increases with the degree level.
Blame interactions can occur between commits of the same library, which is depicted
in the example Sankey Plot by visualizing interactions between libraries that have the
same name on the left and right side. The width of a blame interaction line represents
its fraction value, which is the proportion of the interaction’s amount relative to the total
amount of all interactions. We implemented this plot within VaRA-TS using the Python library
of Plotly, which allows us to view this plot also interactively in the browser. Users of
VaRA-TS can generate this plot in two different ways. By passing the -view argument to the
vara-plot tool, they can select a specific project revision to render the plot interactively in
the browser. This allows a user to move the library bars vertically to rearrange the blame
interactions. Furthermore, additional information is displayed for blame interactions over
which the mouse curser hovers. This extra information contains the concrete values of

3.3 implementation of vara-tool-suite’s library interaction plots 20

a blame interaction’s fraction ratio in percent and its degree. Users that are interested
in multiple Sankey Plots over a range of revisions can pass a corresponding CaseStudy

file and omit the -view flag. This results in the generation of individual plots for every
revision of the CaseStudy file. Plotting multiple revisions is especially useful to analyze the
development of blame library interactions over time.

Figure 3.4: Example Sankey Plot depicting one revision of the project GNU grep by showing the
blame interactions between the libraries grep and gnulib with different color saturations
indicating different interaction degrees.

3.3.3 Degree Plot

We introduce our Degree Plot of VaRA-TS that allows researchers to get a more detailed insight
in the proportions of different degree levels of blame interactions that stem from 2 specified
libraries within a project. Using one of the proposed plots from the prior sections facilitates
the identification of all interacting libaries. However, the blame interactions of some libraries
might be of special interest to a researcher and appear more important than others. To filter
these blame interactions and visualize the ratio of their different interaction degrees in
more detail, we implemented the Degree Plot.
With this plot we can depict the development of blame interaction degrees and their ratio
over a range of revisions. In comparison to the prior Degree Plot, we are not limited to
interactions between commits of the same repository, but can choose the libraries we are
interested in. Furthermore, a user of VaRA-TS can select one of the chosen libraries as a base
library (base_lib) and the other one as interacting library (inter_lib). This results in a

3.3 implementation of vara-tool-suite’s library interaction plots 21

plot that only considers blame interactions, where base commits stem from the selected
base library and the corresponding interacting commits stem from the selected interacting
library. As illustrated in Figure 3.5, we analyze the project grep, where grep is selected
as base library and gnulib is chosen as interacting library. The x-axis labels of the Degree

Plot mark the analyzed revisions of the passed CaseStudy file. The y-axis represents the
fraction values of the different degrees within a revision. Similar to the Fraction Plot, we
implemented this stackplot with the Matplotlib library that consists of stacked areas, where
each area with a certain color denotes the fraction value of blame interactions that share
the same interaction degree. The legend shows the found interaction degrees, which are
mapped to colors that relate a certain degree level to the area that denotes its fraction

ratio. The fraction value in this plot refers to the amount of blame interactions that share
the same degree, which is divided by the total amount of all blame interactions that were
found between base commits of the selected base library and interacting commits of the
selected interacting library. To visualize the degrees and their fraction ratio development
over time, users of VaRA-TS have to pass a CaseStudy file to the vara-plot tool. Furthermore,
one has to specify the base_lib and interacting_lib after the plot name to filter the blame
interactions of interest.

Figure 3.5: Example Degree Plot of the project GNU grep over 109 revisions showing the partition
of degrees that stem from blame interactions, where the base hash originates from the
library grep and the interacting hashes from library gnulib.

3.3 implementation of vara-tool-suite’s library interaction plots 22

3.3.4 Graphviz Plot

To take an in depth look into the blame interactions of one specific project revision, we
introduce our Graphviz Plot of VaRA-TS. This plot visualizes every blame interaction including
its interacting commits as directed graph. The interacting commits are grouped by their
libraries from which they originate. Building these clusters of commits based on their library
names facilitates the identification of blame interactions within libraries or between them.
To visualize blame interactions in detail, we represent the interacting commits as nodes
and the interactions between them as directed edges. The direction of an edge mirrors the
relation of base and interacting commits, where the edge starts from the blame interac-
tion’s base-hash and points to its interacting-hash. We implemented this plot using the
Graphviz library and generated an example Graphviz Plot that is shown in Figure 3.6. The
top middle of the plot states the chosen project revision (bd693d7bc2). Commits are grouped
by the library they are originating from, which is illustrated as red rectangle around each
cluster. The number near an edge indicates the amount of times this exact blame interaction
was found. Users of VaRA-TS can enable or disable the amounts represented as edge weights,
or select a threshold that removes edges from the graph that have a weight less than the
threshold. Depending on the size and desired layout of the Graphviz Plot, it is useful to
choose different layout engines. Therefore, users of VaRA-TS can choose between several
layout engines, such as dot and fdp. While dot can arrange smaller numbers of nodes
and edges very clearly, it takes much more computation time, unlike fdp. To counter the
disadvantage of fdp’s somewhat cluttered rendering of large graphs, we pass additional
graph attributes to fdp, namely splines=True, overlap=False, and nodesep=1. These at-
tributes prevent edges from crossing nodes, inhibit node overlaps, and specify the distance
between edges that interact with the same node. This improves the plot’s readability, while
preserving most of fdp’s performance benefits. Furthermore, one is able to either visualize
the blame interactions of one revision, as already shown in the example plot, or generate
a plot of the blame diff interactions that result from comparing the current revision
with its previous revision. These blame diff interactions can either be plotted on top of
the current blame interactions or being visualized as standalone plot. To reduce the size
of a Graphviz Plot to the blame interactions of a specific commit, a user is able to pass
a commit by its hash to the plot. This leads to the generation of a plot where only the
blame interactions are shown that contain the chosen commit as base or interacting hash.
Additionally, one can either visualize the blame interactions of one revision by passing the
-view flag to the vara-plot tool and specifying a concrete project revision, or omit the flag
and pass a CaseStudy file, which creates individual plots for every of its contained revisions.

3.3 implementation of vara-tool-suite’s library interaction plots 23

Figure 3.6: Graphviz Plot depicting one revision of the demo project Elementalist, showing the blame
interactions between commits that are grouped into cluster subgraphs of Elementalist
and its libraries fire_lib and water_lib.

4
E VA L UAT I O N

In the previous chapter, we described how we use blame interaction data between multiple
libraries and how we build new visualizations in VaRA-TS to illustrate these blame library
interactions. In this chapter, we evaluate how our visualizations improve the analyzability
of library interactions in VaRA-TS by running them on a set of Case Studies. Therefore, we
evaluate the following research questions.

• RQ1: Are our proposed illustrations useful to visualize blame interactions between
multiple libraries?

• RQ2: Are our proposed illustrations useful to visualize the development of blame
library interactions over time?

An example order in which our visualizations can be created to move from a high level
overview to the details of blame interactions is shown in Figure 4.1, although this order can
be changed as desired by the user.

Figure 4.1: Possible order of visualizations.

4.1 case studies

This section introduces the case studies that we use to evaluate our different blame library
interaction plots. The first CaseStudy is our small demo project Elementalist that represents a
project with multiple interacting libraries. Our second CaseStudy is the real-world software
project GNU Grep, which allows us to sample many revisions of its commit history from a
uniform distribution. Last, we use the real-world software project GNU Gzip and focus on
newer revisions of its commit history by sampling from a half-normal distribution.

4.1.1 Elementalist

The implementations we described in the previous chapter require that we continually test
our source code and its outcomes for validity. To build a controlled environment where we

24

4.1 case studies 25

are able to evaluate the results of our implementations on a small sample set, we created
the demo project Elementalist.
Elementalist is desgined to include 3 external libraries, called fire_lib, water_lib and
earth_lib to simulate blame library interactions between Elementalist and the other li-
braries, and additionally between earth_lib and water_lib. The source code of the main
program and the libraries is written in C++. To ensure that the creation of the necessary
project files is reproducible, we use the automation tool Ansible1. Ansible facilitates the
repeated setup of our project files and their modification with an executable configuration
file. With Ansible, we build our main program Elementalist and its external libraries
fire_lib, water_lib, and earth_lib as repositories and create commits that result in
blame interactions between them. Then, we incorporate Elementalist and its libraries in
VaRA-TS as project, where we define Elementalist as main repository and the 3 libraries
as GitSubmodules. After this setup, we are able to continually run experiments, like the
GenerateBlameReport experiment, on our demo project to create a few example BlameRe-
ports that we use to test our databases and visualizations. For our evaluation, we select two
project revisions, where the first revision (e64923e69e) results only in blame interactions
between the main repository Elementalist and the libraries fire_lib and water_lib. The
second revision (5e8fe1616d) adds a commit, which introduces the earth_lib library that
interacts with Elementalist and additionally with the library water_lib. We choose these
revisions as they allow us to evaluate two important cases. The first revision corresponds to
the case where blame interactions occur only between the main program and its libraries.
The second revision illustrates the case where blame interactions also arise between the
libraries themselves.

4.1.2 GNU Grep

GNU grep2 is a command line tool written in C that is used to find text patterns in a file
and print the lines that match that pattern. We choose grep as CaseStudy since it includes
an additional library, called gnulib. Furthermore, the large number of commits in grep’s
commit history allows us to sample many revisions for our analysis. In total, we sample 109

revisions from a uniform distribution.

4.1.3 GNU Gzip

GNU gzip3 is a popular program for file compression and decompression written in C. We
choose gzip as CaseStudy since it includes the same library as our prior CaseStudy GNU
Grep, which is gnulib. Since gzip and grep both include gnulib as library, we can compare
the two projects more easily. In total, we sample 24 revisions from gzip’s commit history
from a half-normal distribution. The choice of this distribution allows us to sample primarily
more recent revisions from the commit history with comparatively smaller gaps between
the commits, as opposed to sampling from the uniform distribution of the CaseStudy grep.

1 Available online at https://www.ansible.com/; visited on February 19th, 2021.
2 Available online at https://www.gnu.org/software/grep/; visited on February 27th, 2021.
3 Available online at https://www.gnu.org/software/gzip/; visited on March 2nd, 2021.

https://www.ansible.com/
https://www.gnu.org/software/grep/
https://www.gnu.org/software/gzip/

4.2 operationalization 26

4.2 operationalization

This section describes the necessary steps one has to take to generate our blame inter-
action plots that we use to answer our research questions RQ1 and RQ2. To visualize a
project over multiple revisions that is already incorporated in VaRA-TS, we first have to
create a CaseStudy, like the Case Studies of the prior section. To sample multiple revi-
sions and store them in a CaseStudy file, we use the vara-cs gen command of VaRA-TS

and define the location of our resulting CaseStudy, choose our sampling method, which
is either the UniformSamplingMethod or the HalfNormalSamplingMethod, pass the name of
the project we are interested in, and specify the number of revisions we want to sam-
ple. Next, we run Benchbuild to generate a BlameReport for each of the revisions we
sampled in our CaseStudy. For that, we specify our CaseStudy in VaRA-TS and run the
command benchbuild run -E GenerateBlameReport our-project , where ’our-project’
is the name of the project we choose to analyze. Finally, we choose one of our blame
interaction plots and pass it to the vara-plot tool of VaRA-TS with the additional arguments
we want to set for this plot. Depending on the plot, this results in the creation of either one
plot file that considers all revisions of the specified CaseStudy or in individual plot files for
every revision.

4.3 results

In this section, we evaluate our visualizations on the prior defined Case Studies and gather
the results to answer our research questions RQ1 and RQ2 in Section 4.4. We start by
analyzing the project Elementalist, then we proceed with GNU Grep and finish with GNU
Gzip.

4.3.1 Elementalist

We begin our evaluation by generating two BlameReports based on our Elementalist
CaseStudy with the GenerateBlameReport experiment of VaRA-TS. We select the revisions
e64923e69e (1) and 5e8fe1616d (2) from our CaseStudy for our evaluation. Revisions that
are of special interest to us are assigned a number to reference them more easily.
By looking at the Fraction Plot in Figure 4.2, we immediately notice the differently sized
and colored areas that illustrate the fraction ratios of the main program and its interact-
ing libraries. The fractions of Elementalist (color dark blue) take the biggest part of the
outgoing interactions, as well as the ingoing interactions on both revisions. This pre-
dominant area results from our design of the main program of Elementalist that contains
most of the function calls, which result in bidirectional blame interactions between commits
of the main program itself and the other libraries. We further notice that the fraction value
of the library earth_lib (color cyan) is 0 at revision e64923e69e (1) for both subplots and
around 0.1 at revision 5e8fe1616d (2). This means that blame interactions of earth_lib are
first found in revision 5e8fe1616d (2) and since both subplots show a fraction value higher
than 0 at this revision, we know that this library contains outgoing as well as ingoing

interactions. As the earth_lib library is added, we notice a decrease in the fraction

values of all other libraries, since the total amount of blame interactions increases with the

4.3 results 27

addition of the earth_lib interactions.
While we now know what libraries interact in general and what proportions of blame
interactions these libraries have from a high level perspective, we cannot identify which
libraries are specifically interacting. This leads us to the Sankey Plot, which we use to depict
the interactions between libraries more precisely.

Figure 4.2: Fraction plot of project Elementalist over 2 revisions.

We continue with our Sankey Plots for the revisions e64923e69e (1) and 5e8fe1616d (2),
which are shown in Figure 4.3 and Figure 4.4. Starting with the plot of revision e64923e69e

(1), we first notice that all interacting libraries, which we found with the prior plot at this
revision, are also depicted in this plot as vertically aligned bars of different colors. The left
side shows the base libraries Elementalist, fire_lib, and water_lib, meaning that all base
commits of the detected blame interactions stem from these libraries, the right side denotes
the libraries that contain the corresponding interacting commits. Blame interactions are
visualized as lines between the library bars and are drawn in the color of their base library.
We can approximate the fraction value by looking at the width of a blame interaction,
which increases with its corresponding fraction value. Furthermore, we notice the different
color saturations in, e.g., the interaction from Elementalist to Elementalist, which denotes
its interaction degree. Moreover, we can inspect the precise fraction and degree value, by
rendering the plot interactively in the browser. Looking at the middle of the Elementalist

interaction with the highest degree, we can trigger an information box by hovering over it
with our mouse, which is depicted in our example as small white frame. This box shows
the blame interaction’s exact fraction ratio of 7.69% and its degree of 2. In contrast to our
Fraction Plot, we are now able to determine the specific libraries that are interacting and
get a clearer image of their interaction proportions. Now we can see that for the revision
e64923e69e (1) only Elementalist interacts with fire_lib and water_lib. Furthermore,
we immediately notice that blame interactions between Elementalist and the other libraries
are bidirectional, which means that some commits of Elementalist interact with commits

4.3 results 28

of fire_lib and water_lib as base library and vice versa.

Figure 4.3: Sankey plot of project Elementalist of revision e64923e69e.

Let us now consider the second plot of revision 5e8fe1616d (2), which is illustrated in Fig-
ure 4.4. As mentioned in a prior section, this revision adds another commit to Elementalist,
which adds function calls of earth_lib into the main program that in turn call a function
of the library water_lib. We can now inspect the blame interactions that are introduced by
this commit by comparing the two plots. The newly added library earth_lib (color gray)
can be easily identified as we notice that there are now 3 library bars and one main program
(Elementalist) bar on the left and right hand side. As the blame interactions between
Elementalist (color green) and all other libraries are detected, they get illustrated as green
lines from the Elementalist bar to every of the library bars, including the new library
earth_lib. We further notice that earth_lib also interacts with the library water_lib (color
blue), which means that interactions between the libraries themselves are also detected
and correctly drawn. Comparing the two plots, we also notice a change in the color of the
Elementalist to Elementalist interaction. The darkened green indicates an increase of
the interaction degree compared to the prior revision e64923e69e (1). This is additionally
depicted in the hover info, which allows us to determine an increase from the interactions
degree 2 (e64923e69e (1)) to degree 3 (5e8fe1616d (2)).
With this plot, we are able to determine blame interactions and their corresponding libraries
more precisely than with the Fraction Plot. The comparison of the interaction degree that
we did by hand proves to be inefficient when we already know the libraries of the blame
interactions we are interested in. Therefore, to visualize the degree development of blame
interactions between two known libraries and over multiple revisions, we use our Degree
Plot. This allows us to illustrate the changes of interaction degrees over time, similar to the

4.3 results 29

development of fractions in the Fraction Plot.

Figure 4.4: Sankey plot of project Elementalist of revision 5e8fe1616d.

We proceed with the Degree Plot that is depicted in Figure 4.5. We choose Elementalist

as base library and also as interacting library, since we saw in the prior plot that the degree

of a blame interaction between commits of Elementalist changed. At first glance, we notice
that blame interactions with the degree 1 make up the majority in both revisions, which
is illustrated as white area. Furthermore, we are able to see that revision e64923e69e (1)
already contains blame interactions of degree 2. We can spot an interesting development of
the represented degrees. When we compare the two revisions, we notice that as the revision
5e8fe1616d (2) is introduced, the degree increases from 2 to 3, while the proportion of
blame interactions with degree 1 increases from around 0.85 to about 0.9.
Now that we know what libraries are interacting and how the fractions and degrees of
their blame interactions develop, we can take an in depth look into the interactions of one
specific revision using our Graphviz Plot.

4.3 results 30

Figure 4.5: Degree plot of project Elementalist over 2 revisions.

We can inspect the interactions of revision 5e8fe1616d (2) in more detail by generating
our Graphviz Plot, which is illustrated in Figure 4.6. This graph is drawn with the layout
engine fdp, to which we pass the additional graph attributes mentioned in Section 3.3.4,
which improve the general readability. We clearly see the interacting commits that are
represented as hashes and the libraries they originate from as red rectangles. Blame interac-
tions between Elementalist and its libraries, as well as the interactions between earth_lib

and water_lib, can be determined by following the ingoing and outgoing edges. Since
this graph is rather small, we choose to also display the amount of a blame interaction, as
denoted by the edge labels. The detailed depiction allows us to determine that each library
consists of only one interacting commit. Furthermore, we see that Elementalist contains
5 commits that either interact with each other or with the other libraries. Looking at the
amounts of Elementalist’s interactions, explains its predominant fraction value within
the Fraction Plot.

4.3 results 31

Figure 4.6: Graphviz plot of project Elementalist of revision 5e8fe1616d.

4.3.2 GNU Grep

We continue our evaluation by generating 109 BlameReports with our GNU Grep CaseStudy.
We use the CaseStudy of the project grep as our first real-world example.
The large number of project revisions in our CaseStudy allows us to generate a Fraction Plot,
which is depicted in Figure 4.7 that illustrates the development of grep’s fraction ratios

over a larger period of time compared to the Fraction Plot of our previous evaluation.
The commit date of the revisions ranges from December 2011 (1ca631f8e3) to January 2021

(6b454dc20d). We immediately notice a new dimension in the plot, which is shown at the
bottom as subplot with its own y-axis. This subplot represents the code churn of the main
repository at each revision. It shows the difference of code changes between two successive
revisions, where the insertions are illustrated as green color and the deletions as red color.
These code changes (diff) between revisions are calculated by using the git diff command,
which we use to show the number of source code lines that changed between two commits.
The y-axis represents the total number of line insertions for values bigger than 0 and the
total number of line deletions for values less than 0. VaRA-TS already implements the code

churn subplot and allows us to easily integrate it in every Matplotlib based plot, like our
Fraction Plot. Furthermore, this subplot adds a prefix to each revision on the x-axis, where
each prefix number stems from a total and unique order of all revisions. We are now able to
measure the impact of a revision based on its code insertions and deletions, which helps us

4.3 results 32

to interpret the development of grep more precisely. Looking at the code churn, we notice
that, e.g., revision 7f91ae570b (1) introduces more than 1000 code insertions and even more
code deletions. We interpret this nearly balanced change as a commit that moves more
than 1000 lines of code to another location, which results in deletions for the lines where
the code used to be and insertions for its new location. Besides smaller changes for nearly
every of the shown revisions, we notice that revision e499436616 (2) has a similar impact on
grep as the prior mentioned one. As illustrated in the upper two subplots, we immediately
see the two interacting libraries grep and gnulib. We benefit from the large number of
project revisions, as we get a bigger picture of the libraries’ fraction development. While
we notice that the distribution of fractions of ingoing interactions varies rather little
for both libraries, the ratio of their outgoing interactions changes noticeably. By looking
at the revision 56bad7471d (4), we see that gnulib now contains most of the outgoing

interactions, where in all previous revisions grep makes up the largest part. This major
change in the outgoing interactions could result from larger changes in the code that this
revision introduces. Therefore, we look at the code churn at this specific revision and notice
that this commit deletes many lines of source code. We can relate these two observations to
each other and infer that the deletions occur in files of grep and result in a comparatively
larger distribution of outgoing interactions of the library gnulib.

Figure 4.7: Fraction plot of project GNU grep over 109 revisions with its code churn.

4.3 results 33

We proceed our evaluation with two Sankey Plots, which are illustrated in Figure 4.8
and Figure 4.9. The plots depict the blame interactions between grep and gnulib in more
detail, where the first plot visualizes the revision 3c381d05ed (3) committed on September
2, 2016, which adds a new option for anchored searches in grep. The second plot of
revision 56bad7471d (4) committed on October 2, 2016, makes some small changes after a
new release of grep. We choose these two revisions as we already noticed an interesting
change of the outgoing interactions between these two in the prior described Fraction

Plot. To view the changes between two or more successive Sankey Plots, we benefit from
the internal numeration of each revision that we already see as prefix of the Fraction

Plot’s revisions. The ascending numbers before each revision allow us to view and search
generated plots, like the Sankey Plots according to their total order. Therefore, it is easy
to view the predecessor of the revision 56bad7471d (4), in which we are also interested
in. Looking at both plots, we instantly see that both grep and gnulib interact as base and
interacting library with each other. The first plot of revision 3c381d05ed (3) shows that most
of the blame interactions originate from library grep, which is denoted by the size of the
red lines’ width. Now we compare this distribution with the following revision’s plot. We
can clearly see that the bigger part of all blame interactions now originates from the library
gnulib and not grep anymore. While we already noticed this development in our Fraction
Plot, we are now able to inspect each blame interaction precisely and with a focus only on
the revisions that are of interest to us. This development could be due to the new release of
grep that got introduced somewhere between revision 3c381d05ed (3) and 56bad7471d (4).

Figure 4.8: Sankey plot of project GNU grep of revision 3c381d05ed.

4.3 results 34

Figure 4.9: Sankey plot of project GNU grep of revision 56bad7471d.

We depict the development of interaction degrees between the chosen libraries grep

(base library) and gnulib (interacting library) as Degree Plot in Figure 4.10. In contrast to
our evaluation of Elementalist, we immediately notice the large number of interaction
degrees in the plot’s legend that reaches its peak at degree 53. Furthermore, we use our
code churn subplot again to relate the impact of code insertions and deletions to the
degrees of the upper subplot. We notice a general tendency of increasing degrees over
time. Comparing the highest degree of the first revision with the highest degree of the last
revision shows an increase in its degree of around 40. Moreover, the small changes of the
degrees around revision 7f91ae570b (1) and revision e499436616 (2) affirm our assumption
that the comparatively balanced changes of code insertions and deletions at these revisions
arise from moving big code parts to another location. In contrast, revision e1ca01be48 (5)
with a similar code churn pattern seems to introduce lines of code that result in blame
interactions with a relatively high degree of around 22.

4.3 results 35

Figure 4.10: Degree plot of project GNU grep over 109 revisions with its code churn.

We continue with our last visualization for grep, which is illustrated in Figure 4.11

as Graphviz Plot, drawn with the layout engine fdp. The depicted plot shows all blame
interactions between commits of the libraries grep and gnulib of the revision adfe8bb24c

(second revision in Fraction and Degree Plot). We instantly notice that this visualization
of only one grep revision is more crowded and less clearly than, e.g., the evaluated revision
of our Elementalist project. Grep contains as one of our real-world projects many blame
interactions that result in this rather complex view. Additionally, we see that a subset
of the shown blame interactions are colored orange, which denotes that these are blame
interactions that changed in their amount from the previous to the current revision, which we
refer to as blame diff interactions (orange colored edges). While it is hard to interpret
all blame interactions of this plot as a whole, we can use the blame diff interactions as
indicator of how much impact the current revision has on the previous revision. For example,
the large number of orange blame diff interactions tells us that the current revision has
a rather big impact on the previous revision. Furthermore, this plot illustrates that most
of the blame interaction changes this revision introduces, concern the library gnulib and
not blame interactions between commits of grep. By zooming into the graph, we notice that
the blame diff interactions contain two numbers near their edge. The first number is
the amount of the current revision as already denoted by the labels of unchanged blame

4.3 results 36

interactions. The second number in brackets states the difference of the blame interaction’s
amount to the previous revision.

Figure 4.11: Graphviz plot of project GNU grep of revision adfe8bb24c.

4.3.3 GNU Gzip

We proceed with our GNU Gzip CaseStudy by generating 24 BlameReports for our evalua-
tion.
The resulting Fraction Plot that is illustrated in Figure 4.12 shows that the interacting li-
braries gzip and gnulib have outgoing and ingoing interactions. We immediately notice
the similar subplots of outgoing and ingoing interactions that represent a fraction dis-
tribution of around 75% for gzip and around 25% for gnulib. Furthermore, the represented
plot shows no significant changes in the proportions of fractions in both subplots over
time, which means that our revisions do not introduce source code commits that lead
to significantly less or more blame interactions. As the fraction areas in both subplots
for each of the libraries seem to be nearly identical, we infer that the largest part of the
outgoing interactions of gzip are also its own ingoing interactions. This also applies
for the library gnulib. Based on these observations we can interpret that either most of the
blame interactions occur between commits of the same library and not between commits of
different libraries, or that the distribution of blame interactions that occur between these
libraries are nearly equal. Looking at the code churn at the bottom affirms our observation
that the fraction ratio’s change over time is rather small, since no major source code
changes are detected between the revisions. Even revision 7a6f9c932 (1) and be0c5581e3 (2)
that represent the biggest change of inserted and deleted source code lines do not change the
fraction ratio noticeably. Due to the samples that origin from a half-normal distribution
as mentioned in Section 4.1.3, we get more recent revisions that are relatively close in their
commit time. Therefore, the changes in code are rather small compared to revisions that
stem from a uniform distribution. Our Fraction Plot correctly shows only minor changes

4.3 results 37

in the fraction values because only small changes in code are made between the newer
revisions.

Figure 4.12: Fraction plot of project GNU gzip over 24 revisions with its code churn.

We proceed with our Sankey Plot by visualizing the revision 89181137b9 (3) that is
shown in Figure 4.13. As illustrated in the plot, we see the blame interactions between
gzip and gnulib as well as their different degrees denoted by their color saturation. Our
first observation is that gzip and gnulib interact not only with each other, but also with
themselves, where the blame interactions between commits of gzip build the biggest part
of all interactions. Furthermore, with the detailed view of our Sankey Plot, we can now
verify if one of our assumptions that we had in the prior Fraction Plot, regarding the
similar fraction distribution between outgoing and ingoing interactions, is correct. Our
first guess that there is no significant number of blame interactions between the libraries
proves to be wrong, as we see that gzip interacts in noticeable amounts with gnulib and vice
versa. In contrast, our second assumption turns out to be true, as we notice that the amount

of blame interactions that stem from gzip and interact with gnulib is nearly identical
to the amount of blame interactions that originate from gnulib and interact with gzip.
The balanced amount of blame interactions between these libraries results in the fraction

ratios of similar size in both of our Fraction Plot subplots.

4.3 results 38

Figure 4.13: Sankey plot of project GNU gzip of revision 89181137b9.

To visualize the development of interaction degrees, we generate our Degree Plot, which
is represented in Figure 4.14. We choose gnulib as base library and gzip as interacting
library to illustrate blame interactions that origin from library commits and target interacting
commits of the main program gzip. By looking at the plot, we instantly notice that similar
to our Fraction Plot, the degrees and their fraction ratio do not change significantly
over time. Furthermore, we see that the majority of blame interactions over all revisions has
the degree 1, which is depicted as white area. The highest degree of all revisions is 14. By
zooming into the plot at revision 89181137b9 (3), we notice a small change in the fraction

distribution of the degrees. We have already investigated this revision in our prior Sankey
Plot and use it in our next plot to get a more in depth look.

4.3 results 39

Figure 4.14: Degree plot of project GNU gzip over 24 revisions with its code churn.

We conclude our evaluation of gzip with a Graphviz Plot drawn with the layout engine
fdp that is illustrated in Figure 4.15 and visualizes the revision 89181137b9 (3). We notice that
this plot has a comparable complexity to the Graphviz Plot of the project grep, even though
there are less blame interactions in total. All blame interactions between the commits of
gzip and gnulib are represented with their amount near their edge. We again use the blame

diff interactions illustrated as orange edges to find the blame interactions that changed
in their amount from the previous revision to the current. We observe that the impact of
the current revision on previous revision measured by their blame diff interactions is
rather small, compared to the one we saw in the Graphviz Plot of the CaseStudy grep. This
minor impact is expected, as we already know from the previous plots that the fractions,
degrees, and code changes are hardly noticeable.

4.3 results 40

Figure 4.15: Graphviz plot of project GNU gzip of revision 89181137b9.

We notice that the commit a0defda0c1 at the top of the gnulib cluster is involved in
many of the blame diff interactions. It is hard to follow the blame interaction edges of
one specific commit to another, therefore we choose the commit a0defda0c1 and generate
a Graphviz Plot that filters all interactions that involve this commit. The resulting plot
represented in Figure 4.16 is much clearer and easier to interpret. Now we can see that this
commit has a rather big impact on the previous revision’s blame interactions compared to
the other commits of the complete Graphviz Plot.

Figure 4.16: Graphviz plot of project GNU gzip of revision 89181137b9 only with blame interactions
that contain commit a0defda0c1.

4.4 discussion 41

4.4 discussion

In this section, we answer our research questions and discuss the results of our evaluation.
To answer RQ1 and RQ2, we look at the different visualization types that we evaluated
before. We can choose between four different plots, where each plot covers a specific level
of detail and is used to represent certain attributes of blame interactions, like their degree
or fraction value. The Fraction Plot illustrates blame library interactions with a focus on
their fraction development over time and provides the names of all interacting libraries
through its legend. Our Sankey Plot depicts the concrete interacting libraries with their
blame interactions of one specific revision and creates individual plot files for all revisions
of a CaseStudy. Blame interactions are visualized by drawing lines of different colors and
widths according to the library colors and the distribution of their fractions. The plot is
able to illustrate interactions between a main program and its libraries and also interactions
between libraries themselves. The Degree Plot groups blame interactions between two
specified libraries by their degree and represents the development of their fraction ratios
within these groups over time. With our Graphviz Plot, we are able to display libraries, their
commits, and their interactions of one project revision as directed graph. Interactions are
denoted as directed edges between nodes that represent commits. These blame interactions
can either occur between commits within one library, which is denoted as edges that do
not cross their library rectangle, or between commits of different libraries. No prior plots of
VaRA-TS are able to represent blame interactions between multiple libraries.

Our proposed illustrations prove useful for visualizing the interactions between
multiple libraries, with each illustration having a different focus on the interactions
and their libraries. This leads us to accept RQ1.

Furthermore, the Fraction Plot and Degree Plot are able to illustrate multiple project
revisions and their development over time by passing a CaseStudy. Even the plots that
generate one plot file for a specific revision, like the Sankey Plot or Graphviz Plot can be
used to generate multiple numbered plot files that one can render in a file viewer to pass
through them sequentially and get a better understanding of the project’s progression over
time.

Our proposed illustrations prove useful for visualizing the development of blame
interactions over time, with two illustrations depicting them over a range of revisions
and the other two illustrating each revision specifically that can be viewed sequentially
to achieve a similar effect. This leads us to accept RQ2.

By comparing the Graphviz Plot of our Elementalist project with the Graphviz Plot

of grep and gzip, we notice that the clarity of these plots is strongly dependent on the total
number of blame interactions the represented revision has.
One way to tackle the issue of their decreased readability is to additionally draw the
blame diff interactions in the plot like we did in our evaluation of grep and gzip. This
gives one a general idea of how much impact the represented revision has on the prior
one. Furthermore, we are able to generate a Graphviz Plot that puts its focus on blame

4.5 threats to validity 42

interactions that involve only one specific commit and makes the blame interactions of the
specified commit more readable, by omitting all other blame interactions.
Overall, our evaluation shows that our plots are able to visualize blame interactions in
projects with multiple interacting libraries, like the Elementalist project and also projects
with many specified revisions, like grep and gzip. Users of VaRA-TS can generate the different
visualizations to first get an overview of a project’s development over time and then proceed
with plots that illustrate a specific revision or commit of interest more precisely.

4.5 threats to validity

This section introduces the factors that could endanger the validity of our evaluation results.
We start by explaining a possible threat regarding our blame interactions and proceed with
a possible limitation of the validity of our Graphviz Plot results regarding their layout.

4.5.1 Blame Interaction Detection

The data we base our visualizations on depends on the findings of data flows between source
code instructions and their corresponding commits. The data-flow analysis we use to gather
these blame interactions is conducted by VaRA. While our concepts and visualizations are
independent of the correctness of this analysis, it is worth mentioning that our visualization
results may vary, if the data-flow analysis of VaRA changes.

4.5.2 Layout Engine

The arrangement of nodes and edges in our Graphviz Plots strongly depends on the used
layout engine. While a different layout is often desirable when choosing another layout
engine, it is also possible that a different layout results from the same layout engine when
we rerun the plot generation on the same data. This factor of randomness can lead to
different arrangements of the nodes and edges of our Graphviz Plots, which limits the
reproducibility of our visualizations.

5
R E L AT E D W O R K

To the best of our knowledge, there is no previous work that has visualized the data flows
between source code instructions that stem from commits of multiple libraries, represented
on the level of their interacting commits.
However, Mysore et. al [7] presented visualizations of data flows through multiple layers of
abstractions on the example of a network server program. Their representation resembles
our Graphviz Plot, as they grouped the interacting processes, their modules, and their
inner functions in clusters that are enclosed by rectangles and illustrated the data flow
interactions between them as edges. These groups look similar to our clusters of commits
that are drawn inside the rectangle that corresponds to the library they are originating from.
Furthermore, they illustrated the ingoing and outgoing data flows as edges that connect
to dots and circles, similar to the directed edges that denote the blame interactions in our
Graphviz Plot.
Additionally, we found that Wongsuphasawat et. al [10] visualized the underlying data flows
between components of a machine learning model from a high level view. The grouping of
these components resembles the clustering of commits in our Graphviz Plot. Furthermore,
their visualized data flows are illustrated in a flow layout, which allows them to encode
additional information in an edge’s stroke width. This layout is similar to our Sankey Plot,
which is also a type of flow diagram that encodes the amount of our blame interactions in
its stroke width.
Behnamghader et. al [1] proposed their commit-impact analysis, which distinguishes commits
in impactful and non-impactful commits and analyzes them on certain metrics to gain
information about the quality and development of software projects. Similar to the data-
flow analysis of VaRA, they use various tools to perform large-scale static code analyses
on commits that stem from software projects written in Java. A major difference to our
work lies in their scope of analyzed revisions, which is determined by their definition of
impactful commits in the context of their commit-impact analysis. Impactful commits are
described as commits that have an impact on the main module (module that contains most
of the project’s source code) of the software project in terms of their defined metrics, like
project size, complexity, and security vulnerabilities. Therefore, included modules with less
source code than the main module are ignored in this analysis. In the context of our work,
this would mean that we ignore interactions between library (smaller module) commits
(as they are not considered impactful), and visualize only commits that interact with our
main repository (main module). However, we do not follow this approach because we
consider the interactions between libraries in our visualizations relevant to facilitate the
understanding of how a software project evolves and to estimate the impact of commits in
the main repository and its libraries.

43

6
C O N C L U D I N G R E M A R K S

In this chapter, we conclude the thesis by summarizing our approaches to visualize the
blame interactions between multiple libraries and providing possible approaches to further
improve the presented visualizations.

6.1 conclusion

In this thesis, we presented four different plots that allow users of VaRA-TS to visualize blame
interactions between multiple libraries, since prior visualizations of VaRA-TS are limited to
blame interactions between commits of the same library.
To gather the necessary data, one needs to relate the commits of blame interactions to their
corresponding libraries, we proposed a concept of using the BlameReport data of VaRA to
extend the commit lookup of VaRA-TS. Furthermore, we described our database layouts, in
which we cache the extracted blame interaction data for easier access and reusability. We
then explained the concepts and implementations of our blame library interaction plots that
allow us to show the development of blame interactions between multiple libraries over
time, with different emphasis on their attributes.
We evaluated our approaches on three different software projects, where the first one was a
small demo project called Elementalist, and the other two were the real-world projects GNU
grep and GNU gzip. We found that our plots were able to illustrate the blame interactions
between multiple libraries in different ways that facilitate a researcher’s understanding of
the underlying data flows, and that they could be used to represent the development of
different attributes of blame interactions over time.

6.2 future work

6.2.1 Graphviz Viewer

The current representation of our Graphviz Plots is rather hard to read when we visualize
revisions with many blame interactions. Therefore, we would like to use programs that
allow us to import the underlying DOT file and visualize them more clearly. Many of these
programs do currently not support DOT graphs that contain large amounts of nodes and
edges, or they result in a similar representation like ours. To increase the readability of
these graphs, we would like to illustrate them as three-dimensional graph, where one can
inspect the blame interactions more clearly, or find a new layout that, e.g., removes the
space-consuming edges without loosing information about the commits that are interacting.
Additionally, we want to use graph viewers that support XML based file formats, like
GraphML. This means that we have to adapt our current implementation of the Graphviz

Plot to additionally generate graph files in the GraphML format.

44

6.2 future work 45

6.2.2 Coloring Nodes and Edges

The nodes and edges of our current Graphivz Plot are all the same color, disregarding
the color of blame diff interactions. This makes it hard to follow specific edges to their
corresponding nodes to find interacting commits. Therefore, we would like to color blame
interactions and their corresponding nodes differently to make them easier to distinguish
from others in the plot.

6.2.3 Blame Diff Interactions

The labels of our blame diff interactions are currently limited to the amount of the
current revision and the difference of the amount to the previous revision. At the moment,
we do not discern if this difference to the previous revision is an increase or decrease of
the blame interaction’s amount. Therefore, we want to implement this differentiation of the
blame diff amount in our edge labels to better understand the impact of a revision on its
predecessor.

B I B L I O G R A P H Y

[1] P. Behnamghader, R. Alfayez, K. Srisopha, and B. Boehm. “Towards Better Under-
standing of Software Quality Evolution through Commit-Impact Analysis.” In: 2017
IEEE International Conference on Software Quality, Reliability and Security (QRS). 2017,
pp. 251–262. doi: 10.1109/QRS.2017.36.

[2] John Ellson, Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and Gordon
Woodhull. “Graphviz and dynagraph – static and dynamic graph drawing tools.” In:
GRAPH DRAWING SOFTWARE. Springer-Verlag, 2003, pp. 127–148.

[3] Emden R. Gansner. “Drawing graphs with Graphviz.” In: (2009). Available online at
http://www.ammd.ch/1.pdf.

[4] Emden R. Gansner, Eleftherios Koutsofios, and Stephen North. “Drawing graphs with
dot.” In: (2015). Available online at https://www.graphviz.org/pdf/dotguide.pdf.

[5] J. D. Hunter. “Matplotlib: A 2D graphics environment.” In: Computing in Science &
Engineering 9.3 (2007), pp. 90–95. doi: 10.5281/zenodo.4268928.

[6] Julian Breiteneicher. “Enhancing Program Analysis with Git Metadata in VaRA.”
Masterarbeit. Germany: University of Passau, 2019.

[7] Shashidhar Mysore, Bita Mazloom, Banit Agrawal, and Timothy Sherwood. “Under-
standing and Visualizing Full Systems with Data Flow Tomography.” In: Proceedings
of the 13th International Conference on Architectural Support for Programming Languages
and Operating Systems. ASPLOS XIII. Seattle, WA, USA: Association for Computing
Machinery, 2008, pp. 211–221. isbn: 9781595939586. doi: 10.1145/1346281.1346308.
url: https://doi.org/10.1145/1346281.1346308.

[8] Florian Sattler. “A Variability-aware Region Analyzer in LLVM.” Masterarbeit. Ger-
many: University of Passau, 2017.

[9] Andreas Simbürger, Florian Sattler, Armin Größlinger, and Christian Lengauer. Bench-
Build: A large-scale empirical-research toolkit. Tech. rep. Available online at https://
www.fim.uni-passau.de/fileadmin/dokumente/fakultaeten/fim/forschung/mip-

berichte/MIP-1602.pdf. Technical Report MIP-1602, Faculty of Computer Science
and Mathematics, 2016.

[10] K. Wongsuphasawat, D. Smilkov, J. Wexler, J. Wilson, D. Mané, D. Fritz, D. Krishnan,
F. B. Viégas, and M. Wattenberg. “Visualizing Dataflow Graphs of Deep Learning
Models in TensorFlow.” In: IEEE Transactions on Visualization and Computer Graphics
24.1 (2018), pp. 1–12. doi: 10.1109/TVCG.2017.2744878.

46

https://doi.org/10.1109/QRS.2017.36
http://www.ammd.ch/1.pdf
https://www.graphviz.org/pdf/dotguide.pdf
https://doi.org/10.5281/zenodo.4268928
https://doi.org/10.1145/1346281.1346308
https://doi.org/10.1145/1346281.1346308
https://www.fim.uni-passau.de/fileadmin/dokumente/fakultaeten/fim/forschung/mip-berichte/MIP-1602.pdf
https://www.fim.uni-passau.de/fileadmin/dokumente/fakultaeten/fim/forschung/mip-berichte/MIP-1602.pdf
https://www.fim.uni-passau.de/fileadmin/dokumente/fakultaeten/fim/forschung/mip-berichte/MIP-1602.pdf
https://doi.org/10.1109/TVCG.2017.2744878

	Dedication
	Declaration
	Abstract
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms

	1 Introduction
	1.1 Goals
	1.2 Overview

	2 Background
	2.1 Git
	2.1.1 Commits
	2.1.2 Blame
	2.1.3 Submodules

	2.2 Plotting Libraries
	2.2.1 Matplotlib
	2.2.2 Plotly
	2.2.3 Graphviz

	2.3 Variability-aware Region Analyzer
	2.4 VaRA-Tool-Suite
	2.4.1 Benchbuild
	2.4.2 BlameReport

	3 Improving VaRA-Tool-Suite's Library Interaction Analysis
	3.1 Extending VaRA-Tool-Suite's Commit Lookup to Libraries
	3.2 Utilizing BlameReport Data
	3.3 Implementation of VaRA-Tool-Suite's Library Interaction Plots
	3.3.1 Fraction Plot
	3.3.2 Sankey Plot
	3.3.3 Degree Plot
	3.3.4 Graphviz Plot

	4 Evaluation
	4.1 Case Studies
	4.1.1 Elementalist
	4.1.2 GNU Grep
	4.1.3 GNU Gzip

	4.2 Operationalization
	4.3 Results
	4.3.1 Elementalist
	4.3.2 GNU Grep
	4.3.3 GNU Gzip

	4.4 Discussion
	4.5 Threats to Validity
	4.5.1 Blame Interaction Detection
	4.5.2 Layout Engine

	5 Related Work
	6 Concluding Remarks
	6.1 Conclusion
	6.2 Future Work
	6.2.1 Graphviz Viewer
	6.2.2 Coloring Nodes and Edges
	6.2.3 Blame Diff Interactions

	 Bibliography

