
Bachelor’s Thesis

S O F T WA R E VA R I A B I L I T Y O V E R T I M E

understanding the evolution of revision histories through

data-flow interactions

simon jonas friedel

July 24, 2023

Advisors:
Sebastian Böhm Chair of Software Engineering
Florian Sattler Chair of Software Engineering

Examiners:
Prof. Dr. Sven Apel Chair of Software Engineering

Prof. Dr. Jan Reineke Real-Time and Embedded Systems Lab

Chair of Software Engineering
Saarland Informatics Campus

Saarland University



Simon Jonas Friedel: Software Variability Over Time , © July 2023



Erklärung 

 

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine 
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe. 

 

Statement 

 

I hereby confirm that I have written this thesis on my own and that I have not used 
any other media or materials than the ones referred to in this thesis 

 

 

 

Einverständniserklärung 

 

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in 
die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird. 

 

Declaration of Consent 

 

I agree to make both versions of my thesis (with a passing grade) accessible to the 
public by having them added to the library of the Computer Science Department. 

 

 

 

 

Saarbrücken,______________________ _____________________________                  
                             (Datum/Date)                                        (Unterschrift/Signature)
            

            

        

 

                                                                                                                                                                     





A B S T R A C T

The complexity and number of developers of software projects make judging the impact a
change has on the overall system difficult because changes can affect seemingly unrelated
parts and developers of the system. Recently, the use of data-flow analysis has been
suggested to improve the understanding of the impact of changes. By mapping commit
data to a data-flow graph, we can extract semantic links between commits and authors from
a data-flow analysis. Up to now, commit interactions have been mainly applied to snapshots
of projects, i.e., analyzing only a specific revision. However, software projects change over
time and so does their data-flow structure. For example, a functionality may be sparsely
used when it is introduced, but over time it is adopted throughout the project and becomes
a central part. To fully understand the impact of changes, we need to consider the entire
revision history of a project.

We investigate how data-flow-based commit interactions change over time, and how they
differ from the traditional high-level metric of lines of code for the analysis of software
evolution. We find that changes to commit interactions of a commit occur without direct
changes to the lines of the commit. Furthermore, the amount of interactions that change
with a new revision does not correlate with their size. Additionally, we investigate how
these metrics evolve when viewed from an author level. Here we find that the lines and
interactions of authors change in a similar manner. However, we observe some authors
that contribute proportionally many interactions despite only contributing few lines to the
project.

v





C O N T E N T S

1 Introduction 1

1.1 Goal of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 3

2.1 Version Control Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Software Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Commit Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Socio-Technical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.5 Commit Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Methodology 9

3.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Operationalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 Revision Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.2 Commit evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.3 Author interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Evaluation 15

4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.1 Revision Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.2 Commit Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.3 Author Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.1 Revision Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.2 Commit Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.3 Author Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Related Work 29

6 Concluding Remarks 31

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

a Appendix 33

Bibliography 35

vii



L I S T O F F I G U R E S

Figure 2.1 Example of git blame output from gzip. . . . . . . . . . . . . . . . . . . 4

Figure 4.1 Scatterplot comparing the impact and size of revisions. . . . . . . . . 17

Figure 4.2 Violin plot showing the distribution of revision impact. . . . . . . . . 18

Figure 4.3 Distribution of relative change to interactions per line. . . . . . . . . 19

Figure 4.4 Plots comparing the evolution of lines and interactions of individual
commits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 4.5 Area plots comparing the evolution of author contributions. . . . . . 23

Figure 4.6 Plots comparing changes in interaction and lines of commits. . . . . 24

Figure 4.7 Example of immediate rework of a commit. . . . . . . . . . . . . . . . 26

Figure A.1 Area plots comparing the contribution of authors to the lines and
interactions of libssh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

L I S T O F TA B L E S

Table 3.1 Over view table of our subject projects. . . . . . . . . . . . . . . . . . 11

Table 4.1 Pearson correlation of the impact of a revision to various metrics. . . 16

Table 4.2 Categories of commits with high impact. . . . . . . . . . . . . . . . . 18

Table 4.3 Categories of commits with high change in interactions per line. . . 21

A C R O N Y M S

IR Intermediate Representation

VCS Version Control System

LOC lines of code

viii



1
I N T R O D U C T I O N

Over the last 20 years, software projects have experienced an increase in complexity and the
teams and communities that develop them have grown rapidly. The high complexity and
number of developers in software projects make judging the impact a change has on the
overall system difficult, as changes can affect seemingly unrelated parts and developers of
the system. This can lead to an increase in bugs, as developers are not always able to grasp
the entire impact of the change they introduce [19]. Furthermore, changes that affect the
code of other developers require coordination with them [9] to prevent duplication of work
or breaking code.

To better understand the interactions between authors and changes in a project, Sattler
et al. [21] have proposed a combined approach of data-flow analysis and repository mining
called SEAL. With this approach, they are able to detect small but central changes to the code
base [21] using a combination of data-flow and repository information. Furthermore, they
are able to infer interactions between developers which can be used to facilitate developer
collaboration. However, their approach currently lacks an evolutionary component. That is,
SEAL currently only analyzes specific revisions of projects, but does not incorporate a notion
of time. However, software projects are dynamic systems, which change frequently and
continuously over time [17]. When revisions are made to a software project the interactions
between parts of the system change. For example, functionality which is central to the
project now, may have been only a peripheral part when it was introduced. This means the
impact of a commit can change over time and we need to consider the revision history of a
software project to fully understand the effects of changes.

Building on their work, we use SEAL to analyze a multitude of revisions throughout
the lifetime of a software project. From this, we can analyze changes to the interactions
between commits within in the history of a software project. Our goal is to identify patterns
in the history of software projects that were not visible before. For this, we investigate
multiple aspects of the evolution of commit interactions. First, we examine the impact of
revisions on the commit interactions of a system. Because commit interactions are based
on the data-flow in a software project, we can use them to detect the parts of a project
affect by a change. Furthermore, we can use the changes in commit interactions to find the
affect commits and developers. We investigate how the centrality of individual commits
changes over time. Changes to the centrality of a commit are interesting, as a functionality
introduced by the commit, which becomes more central to the project, may then be used in
environments it was never intended for. Understanding how the commit interactions and
therefore centrality of a commit evolve can help us detect such changes. We also investigate
how the contributions of authors to the interactions of a project change and how this differs
from their contributions to lines of code (LOC). While we observe a severe difference between
the commit interactions and LOC of a commit, both in impact and evolution. We find only
few differences in the evolution of contributions by authors.

1



2 introduction

1.1 goal of this thesis

In this thesis, we investigate how changes influence the data-flow structure of a project and
how the interactions between commits in the data-flow graph change over time as a result
of that. This could reveal interesting patterns in the development of software projects which
are not visible in high-level metrics, as data-flow-based commit interactions are tied to the
semantics of code. We explore the revision history of projects using data-flow-based commit
interactions in order to better understand the relations and impact of commits and authors
within a project. For this, we analyze multiple revisions throughout the lifetime of various
projects using SEAL and calculate the changes in data-flow-based commit interactions. We
further compare these to changes in a traditional metric of software evolution, LOC, to
understand what new insights can be gained from changes to commit interactions.

Our goal is to highlight interesting findings in the changes to data-flow-based commit
interactions, such as revisions that change the interactions in a software project drastically,
or major changes to the interactions of a commit without changing the code of the commit.
Through our work, want to provide a basis for future studies on the evolution of commit
interactions. For this, we investigate patterns, which emerge when analyzing changes in
commit interactions, as well as outliers which break these patterns. To find potential causes
for these patterns and outliers we perform qualitative analysis on them. While we are not
able to rigorously identify what causes the patterns we discuss what factors may influence
them to provide a basis for further studies.

1.2 overview

First, we provide background on the various concepts and terms that are necessary to
understand this thesis in Chapter 2. In Chapter 3, we introduce our research questions
and discuss how we intend to answer them. We then present our results in Chapter 4 and
discuss and interpret our results. Afterwards, we discuss potential threats to the validity of
our findings. Chapter 5 provides an overview of related work from the related fields and
previous works. In Chapter 6, we present a conclusion and lay out future work that arises
from the answers to our research questions.



2
B A C K G R O U N D

In this chapter we provide background on various concepts needed to understand this thesis.
First, we explain Version Control Systems (VCSs), what they are, how they are used and how
we use them to recover past states and changes of software projects. We also provide an
introduction to the field of software evolution, and key findings from it which influence our
work. We then introduce and explain the concept of data-flow-based commit interactions
which we use in our analysis. Next, we provide an overview of the field of socio-technical
analysis and the concept of developer roles. Lastly, we explain the commit types we use to
categorize commits in our qualitative analysis.

2.1 version control systems

Most software projects are not developed by a single author, but many, which often are
not working from the same location. To manage changes from multiple authors Version
Control Systems are employed. Most VCSs work by recording changes in a repository. These
changes are generally not saved every x amount of time, but whenever a developer commits
to a change they made. Because of this, such a change is referred to as a commit. A commit
generally consists of a few changed lines and represents an addition or change of a single
closed functionality. To manage them each commit is assigned an identifier. Because each
commit represents the change from a prior state or revision to a new one we can use them
to build every revision of a software project from an initial revision. To accomplish this, we
only need the initial revision of a software project which can also be seen as a change from
a blank state, and the order of commits. Because a revision is constructed from a series of
commits, the last commit in this series can be used to represent and identify the revision.
This also means that the order of commits we store to build revisions represents the history
of the software project and can be used to restore–checkout–any revision. To use this order,
in which revisions appear in the history of a software project, in our analysis, we assign
each revision a TimeID t. The TimeID is a sequential number starting with 0 at the initial
revision and counts up with each following revision.

To help developers to manage these changes most VCSs attach metadata to each commit.
This metadata generally consists of a message stating the intention of the change, the
timestamp when the change was made and the author who made the change. While there
are many VCSs which are used for software development, the most prevalent especially in
the open-source community is git [6].

git git is a distributed VCS, meaning it uses not a single central repository, but every
developer has their own local repository. These repositories can be synced using a server
which hosts the repository. Each developer can then copy–clone–this remote repository,
upload–push–their changes and later download–pull–changes others made. The repositories
of open-source software projects are, as the name implies, publicly available. We use this to

3



4 background

Commit Author Timestamp Code

1884 33ae4134 (Jean-loup Gailly 1993-08-19) if (trunc != NULL) {

1885 3ea7fe86 (Jim Meyering 2010-02-03) do {

1886 3ea7fe86 (Jim Meyering 2010-02-03) trunc[0] = trunc[1];

1887 3ea7fe86 (Jim Meyering 2010-02-03) } while (*trunc++);

1888 3ea7fe86 (Jim Meyering 2010-02-03) trunc--;

1889 33ae4134 (Jean-loup Gailly 1993-08-19) } else {

1890 3ea7fe86 (Jim Meyering 2010-02-03) trunc = strrchr(name, PART_SEP[0]);

1891 3ea7fe86 (Jim Meyering 2010-02-03) if (!trunc)

1892 3ea7fe86 (Jim Meyering 2010-02-03) gzip_error (" internal error ");
1893 3ea7fe86 (Jim Meyering 2010-02-03) if (trunc[1] == ’\0 ’) trunc--;

1894 33ae4134 (Jean-loup Gailly 1993-08-19) }

1895 33ae4134 (Jean-loup Gailly 1993-08-19) strcpy(trunc, z_suffix);

Figure 2.1: Example of git blame output from gzip. Each line is annotated with the commit which last
changed it, the author of the commit and the time of the commit.

clone the repositories of the project we analyze and access their histories. Like most VCS git

assigns an unique identifier to each commit. For this, it uses a 40 digit SHA-hash, in this
thesis we use an abbreviated form of 10 digits. It also provides the general metadata to a
commit.

Additionally, git provides git blame, a tool, which can be used to query the ownership
or blame data of each line of a project at the currently checked out revision. This blame
data contains the commit which last changed the line, the author of the commit and the
timestamp of when the commit was made (cf. Figure 2.1). From this, we get the lines of
a commit which we use to analyze the changes in LOCs as well as to construct commit
interactions. To differentiate between commits as units of code, i.e., the lines which were
last changed by the commit and points in time we refer to the points in time as revisions
and units of code as commits.

2.2 software evolution

Software systems are constantly changing and evolving. We investigate what changes to
data-flow-based commit interactions can provide to improve the understanding of software
evolution. Software evolution has been a topic of research for at least the past 50 years. In
this time a set of observations known as Lehman’s Laws of Software Evolution [16, 17] have
been established. While these observations have been based on the evolution of industrial
projects, they have been found to generally hold for open-source software projects [7].
Lehman’s laws state, among other things, that a software project experiences continuous
changes, growth and increases in complexity over time. This means a software project is
never finished and requires effort after its deployment. Furthermore, the constant changes
in software introduce errors and security vulnerabilities [10] which need to be addressed
further increasing the development effort. In fact, studies estimate the cost of maintenance
for a software project to be 70% to 90% of its total cost [15]. To reduce this cost we need to



2.3 commit interactions 5

understand how software evolves to be able to better guide the maintenance of software
projects [23].

To study the evolution of software we need a measure of time, in the field of software
evolution there are two approaches to measure time. One considers releases as steps in
time, i.e. versions of a project which have been declared by the developers to complete some
larger change. The other considers each revision in a VCS as a step in time. In this work
we consider revisions as steps in time because even minor changes can greatly affect the
data-flow-based commit interactions of a software project.

Software evolution traditionally focused on changes in high-level metrics like module
count and LOC [7]. More recently ideas of integrating semantic information, e. g., function
calls [23] were introduced.

2.3 commit interactions

We explore how commit interactions, which represent semantic connections between regions
of code change and how they may help improve our understanding of software evolution.
The concept of commit interactions combines high-level data from the VCS with a low-level
data-flow analysis. In our work we use this to analyze changes in the data-flow structure of
projects.

Commit interactions are extracted from the data-flow between code regions associated with
commits.

commit regions Code regions are an abstraction used to combine blocks of code using
commonalities. Most often code regions are used to group code in blocks which represent a
functionality. However, we use the blame data to group the lines, i. e., we build blocks of
code which belong to the same commit. For example, in Figure 2.1 we would build 5 regions
of code one for line 1884 associated with 33ae4134, one from l. 1885 to l. 1888 associated
with 3ea7fe86, another in line 1889 again associated with 33ae4134 and so on. We then use
data-flow analysis to find which regions interact with each other through data-flow.

data flow & taint analysis Data-flow analysis is used to prove facts about a
software system by analyzing connections in a program that are caused by the exchange of
data. For example, when a variable X is assigned a value by one part of a software program
and later read by another, data has flown between the instructions. Further any code that is
influenced by the value of X directly or indirectly, for example, by a prior decision made
based on the value of X, is part of the data-flow of X. This results in a graph structure with
instruction as nodes and edges representing the data-flow. This representation is used by
SEAL to infer commit interactions.

A method to extract the data-flow from a program is taint analysis. Taint analysis works
by tracking values that have been tainted by one or multiple sources through a program. For
our analysis any declaration of a variable is a source as we are interested in all interactions
between instructions. By tracing the path of these tainted values through the program we
find instructions that interact with a tainted value and there for with the sources of this
value.



6 background

seal SEAL is an approach to combine low-level program analysis with high-level reposi-
tory information introduced by Sattler et al. [21]. The approach is based on a compiler’s
Intermediate Representation (IR), an abstraction layer used in most modern compilers and
static analysis tools. First, the instructions in the IR need to be annotated with the commit,
which introduced them. These annotations are the later used to reconstruct the commit
regions in the IR. For this, the compiler queries git-blame during the compilation to find the
last change for each source-code line. The commit hash of the last change of a line is attached
to the corresponding instructions. The resulting annotated program files are then analyzed
by a static taint analysis encoded in Interprocedural Distributive Environment (IDE)[22].
IDE is a framework to build a context- and flow-sensitive, interprocedural data-flow analysis.
Based on the data-flow graph provided by the taint analysis and the blame annotations on
the instructions of the IR, data-flow interactions between commits can be extracted. Commit
interactions are defined such that two commits c1, c2 interact with each other if there are
instructions i1, i2 between which data flows, and i1 belongs to c1 and i2 to c2. As there can
be multiple instructions of two commits between which data flows, there can be multiple
interactions between two commits. We define the commit interactions ic1 of a commit c1 as
the sum of all interactions between c1 and other commits cx. The commit interactions of a
commit c then represent the number of data-flow connections to other commits. Changes to
the code of these commits affect the commit interactions of c. Using this we can detect the
commits which are indirectly affected by a change.

2.4 socio-technical analysis

Socio-technical studies are concerned with the relations between the stakeholders of a
software project. A major focus for socio-technical studies is the open source community,
as they often lack traditional coordination mechanisms [19]. This means structure within
developer relations are more of an emergent phenomenon than a strictly planned one.

Using commit interactions and the metadata provided by the VCS we can infer interactions
between authors. The interactions between developers and the collaboration between them,
is a focus of socio-technical research. Understanding how developers collaborate and what
problems they face in their collaboration, helps to guide future development. Because the
development in the open-source space is not managed by a corporate environment, the roles
within a project are not clearly defined. Regardless, there are still role structures we can
observe. These roles are often not clear, especially to new authors starting to contribute to a
project [2]. However, understanding the roles of different authors is necessary to collaborate
with them.

developer roles A categorization of core and peripheral developers has been estab-
lished over the years [12]. Core developers are characterized by consistent, and dedicated
involvement in the project. They often have a major influence on decisions within a project
and possess extensive knowledge of the systems architecture [19]. In contrast, peripheral
developers show more irregular and sporadic contributions. The majority of contributors
on a project are peripheral developers, there are often only a few core developers. However,
these core developers are responsible for most of the work performed on project [19]. We
investigate how the commit interactions of authors evolve and how their contribution to



2.5 commit types 7

the overall interactions compares to the contribution to the LOCs of a project. From this we
examine if commit interactions of authors could provide a new view on author roles.

2.5 commit types

Changes made to a software project fulfill different functions. For example, some changes
correct errors in the system, others introduce new functionality or improve functionality.
This could influence the impact on the commit interactions of the system and the evolution
of the interactions of the change. To investigate this, we categorize the commit we investigate
in our qualitative analysis. For this, we use the categories specified by Conventional commits1.

As software projects often are a collaborative effort it is important to clearly label the
intention and function of a change. Conventional commits is a specification for the format of
commit messages. Among other things, it specifies two commit types:

• fix: correction of a bug in the codebase.

• feat: introduction of a new feature.

Additional types which are often used and recommended include:

• build: changes to the build system or external dependencies.

• refactor: code changes that do not affect functionality.

• perf: improvements to performance.

• test: addition or correction of tests.

Studies on commit classification [8, 20] find similar categories. For example, they categorize
commits as, corrective, feature additions, nonfunctional, perfective and preventive. Cor-
rective commits are fixes–fix–, feature additions add new functionality–feat–, perfective
encompasses both performance improvements and refactors, non functional incorporate
build changes and preventive commits change or add tests. While there is not much dif-
ference between these classifications we use the categories of Conventional commits because
we want to differentiate between refactors to reduce complexity and changes to improve
performance. Additionally, some of our subject projects already use Conventional commits to
specify their commits.

1 https://www.conventionalcommits.org/en/v1.0.0/ (visited 15.07.23)





3
M E T H O D O L O G Y

We want to investigate what patterns emerge when we analyze the evolution of commit
interactions throughout the history of software projects. For this, we investigate how commit
interactions change over time in 12 open-source projects from various domains. We consider
the evolution of commit interactions as well as interactions between authors which can be
inferred from commit interactions. First, we look at patterns in the evolution of commit
interactions on a project-wide level to understand what insights can be gained from the
changes to the data-flow structure of a software project. We then study the evolution of
individual commits, to understand if, and how the evolution of the interactions of a commit
relates to the changes in the LOC of the commit. Afterwards, we investigate the evolution of
interactions when viewed on an author level. With this, we want to see if the observations
from the first research questions hold, and if commit interactions may provide insights into
the evolution of author roles.

3.1 research questions

Changes in commit interactions could provide a new view on software evolution because
they represent connections between parts of a project based on the semantics of code. This
means, we are able to observe how changes to a part affect the rest of a project, and how
the connections between parts of a project change over time. Understanding when and
how commit interactions change could help us improve the understanding of software
evolution and the impact of changes. Our goal is to investigate how changes to commit
interactions and LOC differ from each other and what factors could facilitate changes in
commit interactions. With this we want to build an understanding of the possibilities commit
interactions offer as an evolutionary metric, and what new insights can be gained from
them.

revision impact Changes introduced by a revision can vary greatly in size, from single
lines to hundreds of lines. At first glance, the size of a revision could seem to be a decent
metric to measure the impact of the revision on the data-flow structure of the program. But
small changes can have a large impact on a software system. For example, fixing the date
issue of software systems before the year 2000, which was caused by date fields generally
storing just the year and the decade, because the century had always been the same since
the invention of computers. At first glance, this is a simple fix of extending the date field by
two digits to accommodate the century, but such a small change effects every usage of such
fields which were often not apparent [3]. This means we need to consider the centrality of
the lines, affected by a change, in the data-flow structure of the program in order to judge
the impact of the change.

This is related to the field of Change Impact Analysis which aims to predict the impact
of changes to judge the work needed to implement it and identify affected parts of a

9



10 methodology

system [4, 18]. Some techniques from this field incorporate semantic information to estimate
the impact of changes [18]. However, using changes in commit interactions to determine
the impact of a change would also provide direct information on the authors whose code
would be affected by the change. We address the following research question, to investigate
what insights can be gained from a impact metric based in commit interactions:

RQ. 1: How do changes affect the interactions of all commits?

To answer this question, we investigate how an impact metric for revisions, derived from
changes in commit interactions, relates to the size of the textual change the revision
introduces and what other factors may influence the impact of a revision on the commit
interactions of a project. We further investigate the patterns that emerge in the change
history of projects when analyzing the impact of revisions on commit interactions, to find
new insights on the effects of revisions, gained from the changes in commit interactions.

commit evolution Software projects are complex systems with many interconnected
parts, which change over time and with them the project. Commit interactions provide a
view on the semantic connections between the parts of a software project. Understanding
how the connections between parts of a project evolve, could help to guide the maintenance
of software projects. For example, when the interactions of a commit drastically increase, i. e.,
its functionality is used more often throughout the project, it may be useful to reexamine
the functionality. As it may now be used outside of its intended use case, which could
introduce bugs. Over the lifetime of a commit its interactions may change as revisions are
made to the commit’s code or the rest of the code base.

We investigate the evolution of the commit interactions of individual commits to find
when and why their interactions are affected and how changes to the code of a commit
relate to the changes in interactions. Additionally, we are interested in cases where the code
of a commit is reworked without affecting the interactions of the commit, as this means the
parts responsible for the interactions were not changed. This could provide insights how
the impact or centrality of commits evolves over time. We address the issue of changes in
the centrality of commits in our second research question.

RQ. 2: How do the interactions of individual commits change over time?

To answer this question we analyze the changes and evolution of commit interactions
and lines of individual commits. From this, we intend to find interesting patterns in the
comparison of the evolution of commit interactions and lines. These patterns could help us
understand which parts of a software project become more central and interconnected and
what parts tend to lose their connections.

author interactions Interactions between commits can be helpful to understand
changes to the structure of a software project. But to better understand the development
process, we also need to consider who introduced the commits. By grouping commits by
their author, we can analyze the evolution of interactions between authors. We want to
understand how changes to the interactions between authors happen, what causes them,
and how the amount of interactions of an author relates to the size of their contribution
to the code-base. When projects evolve and change, so do the roles and participation of



3.2 operationalization 11

Project Domain LOC Commits Authors Analyzed Revisions

bzip2 Compression 6 866 168 24 96

brotli Compression 40 837 1 106 100 56

file UNIX utils 19 708 4 530 8 168

grep UNIX utils 5 304 2 205 46 234

gzip Compression 8 121 605 17 48

htop UNIX utils 30 018 2 827 193 292

lepton Compression 72 445 968 31 105

libpng File format 74 646 4 199 78 163

libssh Protocol 99 866 5 482 143 0

lrzip Compression 18 296 978 31 103

lz4 Compression 21 035 2 971 164 82

xz Compression 38 441 1 866 32 137

Table 3.1: Overview table of our subject projects.

developers (cf. Section 2.4). Joblin, Apel, and Mauerer [12] find that the core developers of a
project generally remain stable, while peripheral developers tend to contribute irregularly.
However, they also observe core developers leaving a project and peripheral ones rising to
the role of a core developer. Their approach uses a heuristic-based metric to find semantic
connections between artifacts, i. e., parts of a project which depend on and affect each
other. The interactions between developers we infer from commit interactions contain actual
semantic connections.

Core developers are often responsible for most of the work performed on a project. This
means we would expect them to contribute the majority of lines and interactions of a project.
We address the relations of developer contributions in our third research question.

RQ. 3: How do author contributions to the interactions of a project change over time?

To answer this question we analyze the contribution to the overall interactions of a project
from each author. We then compare this to their contributions to the lines of a project. With
this we aim to understand what new insights commit interactions can provide to the concept
of author roles.

3.2 operationalization

To evaluate our research questions, we analyze 12 open-source software projects (cf. Ta-
ble 3.11) from various domains. For our analysis, we first sample a set amount of revisions
from each project excluding any revisions we cannot analyze due to bugs in the projects or
outdated build requirements we are unable meet. For brotli, lepton, lrzip and lz4 we
start with 50 revisions, because they have relatively short histories or we cannot analyze

1 Metrics taken on 19.07.2023



12 methodology

early parts of the history. For gzip, we could only analyze the last 48 revisions because
prior revisions require an outdated dependency we are unable to provide in our build
environment. For bzip2, we sampled the entire history but are only able to analyze 96

revisions, because of bugs in bzip2. For all other projects, we started with an initial sample
of 100 revisions. After we analyzed the sampled revisions we resample additional revisions
for all projects to avoid spurious findings caused by the choice of revisions. We sample an
additional revision between revisions that show drastic changes in our data but are not
direct neighbors in the VCS. This process is repeated until we either smooth out the changes
or find the revisions causing them. Revisions for which our analysis failed were removed,
resulting in a total of 1610 revisions we analyze. Each revision is analyzed using SEAL to
gather the data-flow-based commit interactions. Additionally, we collect data on the number
of lines belonging to each commit at the analyzed revisions using git’s blame tool. From
this, we get the amount of interactions ic,r and number of lines lc,r for each commit c at all
sampled revisions r.

3.2.1 Revision Impact

To answer our first research question (RQ. 1), we analyze changes in the number of
interactions each commit is involved in. For this, we calculate the changes in commit
interactions for every commit between each sampled revision and its predecessor. This
gives us one value per revision r and commit c that represents how much the interactions
involving c changed in r compared to the previous sampled revision. Using these changes,
we calculate an impact score for each revision. We define this impact score as the number of
commits whose interactions were affected by changes since the last revision relative to the
total amount of commits.

Definition 1. The commit interactions based impact of a revision. This metric indicates how many
parts of a project are affected by a change.

Impact(r) =
Commits which were affected by changes from r

All commit which contribute to the code at r

To relate the impact of a revision to its size we also need to calculate the churn of the
revision, i. e., the total number of lines, which are changed by the revision. From this, we
can calculate the relative change in LOC as the ratio of churn of a revision and the total LOC

at this revision.

Definition 2. The churn of a revision.

Churn(r) = ∑
c

∣∣l(c, r)− l(c, r − 1)
∣∣

RelativeChurn(r) =
Churn(r)
∑c l(c, r)

We then calculate the correlation coefficient between the RelativeChurn of a revision and its
impact for each project. We use the Pearson correlation coefficient because we are interested
in the linear relation between these metrics. From this we want to see how much the amount
of changed lines affect the impact of a revision. We also calculate a metric for the number of
changed interactions similar to the RelativeChurn.



3.2 operationalization 13

Definition 3. The relative changes in interactions a revision causes.

InteractionChange(r) =
∑c

∣∣i(c, r)− i(c, r − 1)
∣∣

∑c i(c, r)

We again calculate the correlation of this metric to the Impact of a revision, to see how
much they align.

Another factor which might affect the impact of a revision is its age within the project’s
history, to investigate this effect we calculate the correlation between a revisions impact and
its TimeID. The TimeID is a sequential number assigned to each revision according to their
order in the history of a project (see Section 2.1). We also perform a qualitative analysis on
the 100 revisions with the highest impact, for which we also analyzed the revision directly
prior in the VCS (i. e., we have the exact revision causing the change.). From this, we aim to
find potential factors for their high impact. We investigate the author and commit message
of the revisions as well as the changes which were introduced by the revision. We are
interested in whether the author of the revision is one of the main authors of the project.
For this, we use the 80th percentile threshold for the number of commits of each author,
because this is widely used as a simple metric to determine author roles [11]. From the
commit message and code changes introduced by a revision we categorize the revisions as
bug fixes, feature additions, performance improvement, refactors or maintenance. These
categories are mostly based on the Conventional Commits specification (cf. Section 2.5), as
this is also used by some of our projects and provides an intuitive categorization. However,
we group the addition of tests and changes to the build system as a maintenance category
as we found few commits in these categories and the cause for the high impact of these
revisions is similar. Through this, we want to find potential patterns which may cause
revisions to have a high impact. For example, one could imagine revisions, that fix a bug in
central functionality to have a high impact on interactions with a very small impact on LOC.
We perform the same categorization on 100 randomly selected to be able to compare our
results.

3.2.2 Commit evolution

To answer RQ. 2, we analyze the relation between changes to the LOC of a commit and
changes to the number of interactions it is involved in. We are mostly interested in commits
with a divergent evolution of commit interaction and LOC. To find commits that have a
divergent evolution we calculate how the interactions per line of commits change. We
calculate the interactions per LOC for each commit at each revision.

Definition 4. Interactions per line of code.

s(c, r) =
i(c, r)
l(c, r)

To be able to better compare the changes in s, we then normalize s to the interactions per
line of each commits at its introduction and calculate the change between sampled revisions.

Definition 5. The normalized change of s.

s∆(c, r) = (
s(c, r)
s(c, c)

)− (
s(c, r − 1)

s(c, c)
)



14 methodology

We then investigate commits that drastically increase or decrease in interactions per line.
For this, we use the sum of s∆ over a commits lifetime as a metric for the divergence of
interactions and lines of commit over its lifetime.

Definition 6. The divergence between the lines and interactions of a commit.

d(c) = ∑
r

s∆(c, r)

We more closely examine commits below the 5% and above the 95% quantile for d of each
project. This gives us 72 commits, which experience drastic changes in their interactions per
line compared to other commits in their project. For these commits, we examine the evolution
of the interactions and lines of these commits directly, and perform a qualitative analysis on
them by investigating their commit message and change as well as who introduced them.
We use this to categorize the commits like for Section 3.2.1 and use the categorization of
the randomly selected revisions we performed to calculate an expected distribution for this
sample.

3.2.3 Author interactions

To answer RQ. 3, we aggregate the commit interactions by the authors of the commits
at each revision, to get the total interactions for each author. As before, we calculate the
number of LOC of each author at every revision we analyze. We then normalize the number
of interactions and LOC of each author to the total interactions and size of the project at
each revision. This gives us the relative contribution of each author to the respective metric
of the project. Furthermore, it removes any changes caused by the growth of the project
and enables us to detect changes in the impact of each author on the software project.
Changes to an author’s share of overall interactions that are not reflected in the size of
their contribution could indicate changes to the role of the author. As this indicated that
the existing code of the author or their new contributions became more or less central to
the project. We compare the evolution of the contributions of an author to the lines and
interactions of a project. Through that, we aim to identify interesting instances of change
in these metrics. We also investigate how the contributions to interactions and lines of
authors relate to each other. Authors, who only contribute to very few lines of a project,
but have larger contribution to the interactions of the project could be of interest. These
authors contribute only in small ways to the project so they would be classified as peripheral
developers, but because of the high centrality of their code they are more important to the
project than most peripheral developers.



4
E VA L UAT I O N

In this chapter, we present the results of our evaluation and answer our research questions.
First, we present the results for each research questions. Afterwards, we discuss and
interpret the results. In the end, we discuss potential threats to the validity that arise from
our experiment design.

4.1 results

We analyze over 1600 revisions across 12 projects to understand how commit interactions
change and evolve over time. We first look at the effect of changes on each project. We then
investigate how the interactions of individual commits change over time. Lastly, we focus
on the interactions of authors to find what we can learn about changes in author roles.

4.1.1 Revision Impact

We want to understand how the impact of a revision on the interactions of a project differs
from the size of code changes it introduces. Furthermore, we want to understand what other
factors influence the impact a revision has on the software project. For this, we calculate the
changes in interactions and LOC for each commit between revisions.

To investigate if there is a direct relation between the churn of a revision and its impact,
we calculate the Pearson correlation coefficient between RelativeChurn(r) and Impact(r) of a
revision. Table 4.1 shows the correlation we calculate for each project and over all revisions.
A high positive correlation would indicate that revisions that change large parts of their
project have a high impact. While the corelation vastly differs between projects the highest
correlation coefficient we find is in lepton with 0.6. For one project–bzip2–we calculate a
slightly negative correlation coefficient, which would indicate that smaller revisions have
high impact, but with an absolute value smaller than 0.05. Over half of our projects show
an absolute value of the correlation coefficient of less than 0.2. Overall we observe a slight
positive correlation of 0.134. This shows that there is only a small correlation between the
size of a revision and its impact. This means the impact of a revision does not depend on its
size and other factors have more influence.

To investigate how our Impact score relates to the number of changed interactions, we
calculate the correlation coefficient between the Impact and InteractionChange of revisions.
We find an even greater difference between project for this correlation. For brotli, file,
gzip, libssh and lrzip we calculate a high correlation coefficient of over 0.8. This indicates
that in these projects revisions that change a large portion of commit interactions generally
have a high impact. In contrast, htop, libpng and xz show a relatively low correlation of
less than 0.5, indicating that the Impact of a revision does not depend on the number of
interactions it changes.

15



16 evaluation

Projects TimeID InteractionChange RelativeChurn

brotli −0.028 0.870 0.555

bzip2 −0.070 0.765 −0.018

file −0.082 0.954 0.248

grep −0.066 0.707 0.149

gzip −0.370 0.937 0.077

htop 0.038 0.466 0.151

lepton −0.426 0.612 0.599

libpng −0.181 0.468 0.444

libssh −0.016 0.806 0.168

lrzip −0.035 0.890 0.184

lz4 −0.039 0.707 0.602

xz −0.273 0.219 0.132

overall — 0.3381 0.134

Table 4.1: Pearson correlation of the Impact of a revision to various metrics. A negative correlation
with TimeID indicates, older revisions have a higher Impact. InteractionChange measures the
number of changed interactions, a high positive correlation indicates that revisions which
change many interactions also have a high impact. RelativeChurn measures the size of a
change, a high positive correlation would indicate larger revisions to have more impact.

We also calculate the correlation between the impact of a revision and its TimeID, which
is a sequential number assigned to each revision with the initial revision being assigned 0.
A high negative correlation would indicate that early revisions have a higher impact. Again,
the highest correlation is observed in lepton with −0.64. This again indicates that the age
of a revision does not greatly affect its impact.

We find that 90% of revisions change less than 1% of the LOC of their project, while their
impact can vary greatly. Figure 4.11 shows the Impact of revisions on the overall project in
relation to their RelativeChurn. Here we see an accumulation of revisions which have a very
small impact and change less than 0.5% of the projects lines. This accumulation contains
revisions from all projects. We find some revisions which change over 1% of lines but have
no impact on the interactions. These revisions mostly belong to file. There are two more
regions with a high number of revisions, one at an impact of slightly more than 50% and
one between 80% and 90%. These two accumulations mostly contain revisions from different
projects. We observe relatively few revisions with an impact between 20% and 50%.

Figure 4.2 shows the distribution of the impact of revisions for each project, with the
overall distribution as a kernel density estimation on the margin. Overall, we observe a
bimodal-distribution for the impact of revisions, with the least frequent impact around 40%.
We find that most projects follow a bimodal-distribution with one mode at 0% impact. The
location of the second mode as well as the width of the modes varies between projects. gzip

1 The plot excludes a few commits, that have a very large RelativeChurn and can be considered outliers(e. g., large
scale code reformating). We use Tukey’s fence(k = 3) to exclude these outliers, this removes data point which
lie over k times the interquartile range above the third quartile.



4.1 results 17

0.0 0.2 0.4 0.6 0.8 1.0

Impact

0.000

0.005

0.010

0.015

0.020

R
el

at
iv

eC
hu

rn

BROTLI

BZIP2
FILE

GREP

GZIP

HTOP

LEPTON

LIBPNG

LIBSSH

LRZIP

LZ4
XZ

Figure 4.1: Scatterplot comparing the Impact and RelativeChurn of revisions. The margins show kernel
density estimations for the metrics. Point in the lower left corner represent revisions that
have little impact and change few lines. Overall, most revisions change few lines, but
their impact varies greatly.

and bzip2 show almost no revisions with an impact of more than 1%. lz4 shows more of a
tri-modal distribution with a mode of 50% and another at 80%.

To find potential factors that cause a revision to have a high impact we perform a qualitative
analysis on 100 revisions with the highest impact, where we found the exact revision causing
the change. For this, we examine the author of the revision as well as its commit message
and the change it caused. Of the 100 revisions we examined, 82 were made by one of the
main authors of the project, this is close to the distribution we find for the 100 randomly
selected revisions of 88 revisions made by a main author. We then categorize the revisions
to see if the type of change influences its impact. Table 4.2 shows the number of revisions
we found for each category, as well as the distribution we found from a 100 randomly
selected revisions. Of the 100 revisions with high impact 44 implement a bug fix, e. g.,
revision 1a604a05a52 of htop. 17 were identified to add a new feature, for example, revision
19d86fb9a63 of brotli. We found 18 revisions that refactored some part of the project, e. g.,
9365ed65364 of grep, 14 performed some type of maintenance, e. g., 3909cddc8e5 from gzip,
2 made changes in order to improve performance, e. g., a9477d1e0c6 in xz, 4 contained
changes from multiple categories.

2 Message:"BUGFIX: behavior of ’F’ (follow) key was broken, also affecting the persistence of mouse selections. Closes
#3165065."

3 Message:"Merge-in SharedDictionary feature (#916)"
4 Message: "grep: prepare search backends for thread-safety To facilitate removing mutable global state from search backends,

. . . "
5 Message: "maint: update gnulib to latest; also update bootstrap and init.sh"
6 Message: "liblzma: SHA-256: Optimize the way rotations are done. . . . "



18 evaluation

BROTLI BZIP2 FILE GREP GZIP HTOP LEPTON LIBPNG LIBSSH LRZIP LZ4 XZ

Projects

0.0

0.2

0.4

0.6

0.8

1.0

Im
pa

ct

Figure 4.2: Violin plot showing the distributions of the Impact of revisions on commit interactions.
The margin contains the overall distribution over all projects.

Category RandomSelection High Impact

bug fix 34 45

feature 10 17

refactor 15 18

maintenance 37 14

performance 3 2

multiple 0 4

Table 4.2: Table shows the categorization of commits with a high impact. RandomSelection shows
the distribution we got from 100 randomly selected revisions.



4.1 results 19

BROTLI BZIP2 FILE GREP GZIP HTOP LEPTON LIBPNG LIBSSH LRZIP LZ4 XZ

Projects

0
10−1

100

101

C
ha

ng
e

in
in
te
ra
ct
io
n
s

li
n
es

Figure 4.3: Violin plot of the change of interactions per line relative to the ratio at introduction of
each commit by project. Dotted line represents no change over the life-time of a commit.

4.1.2 Commit Evolution

As a project evolves, code that was introduced by a commit is often rewritten and then
belongs to a new commit. Similarly, the interactions of a commit change over time as the
functionality it introduced is adopted more widely or superseded by other code. Figure 4.3
shows the distribution of the divergence d for the evolution of lines and interactions of
commits for each project. We find that for the majority of commits the ratio of interactions
per LOC remains relatively stable over the commits lifetime. In htop, file, lrzip and lepton

we observe a wide spread of evolutions. For the other projects we mostly find a large mode of
commits, which experience little to no change, and a few commits which change drastically.
While we observe an overall trend of a slight increase of interactions per LOC, the extrema
of change are almost equally positive and negative. We find multiple commits which almost
stop producing interactions at some point in time, while some lines of the commit remain.
This drop in interactions does not always occur with change to the commits lines is made.
For example, the number of interactions of htop@855d9eaf9a (see Figure 4.4a) drop from
roughly 250 to nearly 0, while there are no changes made to its code. We also find examples
where it does coincide with a change to the lines of the commit, e. g., htop@cb297af848

(see Figure 4.4b) where we observe a rework which removes all but one line of the commit,
this removes all but 8 of the previously 1400 interactions. For most commits, we observe
an increase of interactions in periods with no change to the lines of the commit. However,
some commits show extreme growth in interactions even when their lines are reworked. For
example, in the evolution of htop@93f091c47e shown in Figure 4.4d, we observe a growth
form around 1000 interactions to 5000 interactions.

We also observe multiple commits with an evolution similar to Figure 4.4c, which shows
the evolution of file@ace9da574a. Here we observe regular and often drastic reworks of



20 evaluation

Revisions
0

250

500

750

1000

1250

1500

1750

In
te

ra
ct

io
ns

0

5

10

15

20

25

30

35

40

Li
ne

s

(a) htop 855d9eaf9a, interactions disappear with-
out change to lines.

Revisions
0

200

400

600

800

1000

1200

1400

In
te

ra
ct

io
ns

0

1

2

3

4

5

6

7

8

Li
ne

s

(b) htop cb297af848, interactions disappear with
change to lines

Revisions
0

20

40

60

80

100

120

In
te

ra
ct

io
ns

0

20

40

60

80

100

120

Li
ne

s

(c) file ace9da574a, interactions remain stable but
lines are continously reworked

(d) htop 93f091c47e, the lines disappear initially
but are the stable while the interactions in-
crease.

Figure 4.4: Plots comparing the evolution of lines and interactions of individual commits.



4.1 results 21

Category RandomSelection Increasing Decreasing

bug fix 12, 24 12 15

feature 3.6 3 2

refactor 5.4 12 15

maintenance 13.32 5 3

performance 1 4 1

Table 4.3: Table shows the categorization of commits with high change in interactions per line.
RandomSelection shows the distribution we would expect based on 100 randomly selected
revisions.

their lines while their interactions remain mostly unaffected by that change. In the commits
with this behavior, we find multiple instances where the code of a commit is reworked,
immediately after its introduction. Further investigation shows that such reworks are mostly
performed by the main author of the project.

We then perform a qualitative analysis on 72 commits which represent the 5% of commits,
of each project, with the highest increase and decrease in interactions per LOC. We categorize
the commit based on their commit message and the change they implement (cf. Table 4.3)
to find potential relations between the type of change and the divergent evolution. We find
the majority of commits with a high change in interactions per line to be bug fixes and code
refactoring. We found 5 commits which add a new feature, 3 with increasing interactions per
line. 8 of the commits performed a form of maintenance 5 of them increased in interactions
per line and another 4 with increasing and one with decreasing interactions per line made
some performance improvement.

4.1.3 Author Interactions

Software projects are often developed by multiple authors. Over time the authors and their
contributions to the the project can change. We use the ownership data attached to commits
to infer the interactions of authors from the commit interactions of a software project. With
this, we investigate the changes in the author contributions to the interactions of a project.

Most of our projects are maintained by a single author with very small contributions
by others. Because of this, we focus on grep, htop and libssh which have more diverse
contributions. Figure 4.5 compares the contributions of authors to the lines and interactions
of htop and grep. Each area plot shows the relative contributions from authors for one of
the metrics and projects. We find that changes to the contributions of an author are generally
reflected in both metrics.

While the main author of a project generally has the highest contribution for both the
lines and interactions of a project, their relative contribution to the interactions of the project
is often higher. For peripheral developers we mostly observe the contribution to the lines of
the project to be larger than to the interactions. However, for some peripheral authors we
observe a substantially higher contribution to the interactions of the project. For example,
in grep Jim Meyering contributes roughly 10% of the interaction but less than 1% of lines.



22 evaluation

Similarly, Atis Adamantiasdis has roughly 25% of lines of libssh but around 50% of the
interactions, while Anderson Toshiyuki, for example, contributes roughly 7% of the lines
but only 1% of interactions.

The overall distribution of contributions remains mostly stable for each author, with only
small changes, but we also find instances where the contributions in lines and interactions
of authors drastically change. For example, we observe a change in htop when Christian
Göttsche starts contributing to the project, and their contribution quickly grows to 40%
of the interactions (cf. Figure 4.5a) of htop. This coincides with a documented change in
main author from Hisham Muhammad to Christian Göttsche and others7. In the beginning,
we find that Hisham Muhammad has 80% of lines but almost 100% of interactions. When
Christian Göttsche takes over as a main author their lines only grow to 20% of the project but
they quickly take over almost 40% of the interactions, while other authors gain contribution
in lines but not as much in interactions. A similar change in the contributions can be
observed for grep where Paul Eggert becomes the author with the most contributions to
lines and interactions, replacing Alain Magloire and Paolo Bonzini (cf. Figure 4.5b). This
change is more pronounced in the change in contributions to the lines.

4.2 discussion

In this section, we discuss our results and highlight insights that we gained from our work.

4.2.1 Revision Impact

We want to understand which factors influence the impact of a revision on the data-flow
structure of a project. For the traditional metric, LOC we find only a low correlation between
the size of a change in LOC and its impact on the commit interactions of the system. This
indicates that some lines have a higher impact on the project than others. This can also be
seen in Figure 4.6, which shows the changes to the LOCs and interactions of each commit
in a project. While we see some cases where changes to lines and interactions of a commit
happen at the same time, this is not the case in general. This indicates that there could
be two types of code regions, central and peripheral ones, where small changes to central
code affect the interactions of most of the project. This aligns with the findings of our
qualitative analysis where we find that 37 of the 44 bugfixes, with high impact, implement
small changes to central parts of the respective projects. On the contrary, large changes to
peripheral code may not even affect the commits whose lines where changed. This can also
be seen in Figure 4.1 where we find multiple revision with little to no impact, which change
relatively large parts of the project.

This categorization in central and peripheral code is also reflected in the distribution of
the impact of revisions shown in Figure 4.2. Here we find a bimodal distribution in most
projects, the first mode around 0% impact could represent changes to peripheral code, and
the second mode with a high impact represents changes to central code.

7 Authorship declaration of htop: https://github.com/htop-dev/htop/blob/main/AUTHORS (Last visited
14.07.23)



4.2 discussion 23

(a) htop

(b) grep

Figure 4.5: Area plots comparing the evolution of author contributions to the lines and interactions.
Authors with a maximum contribution of less than 10% in both metrics are grouped as
other.



24 evaluation

Interactions Lines

file

Revisions

8136d
4a3b9
1c03e
9aca4
3ea3b
e029e
74c3f
81aa9
f2f2f
dc3e2
e3a7a
e4ca0
b9bb8
ed101
89f96
fbb70
5d6b8
aba36
8af6e
c2238
90018
73653
27b4e
86b2b
a6e00

C
om

m
its

−102

−101

−100

−10−1

−10−2

0

10−2

10−1

100

101

102

Revisions

8136d
4a3b9
1c03e
9aca4
3ea3b
e029e
74c3f
81aa9
f2f2f
dc3e2
e3a7a
e4ca0
b9bb8
ed101
89f96
fbb70
5d6b8
aba36
8af6e
c2238
90018
73653
27b4e
86b2b
a6e00

C
om

m
its

−102

−101

−100

−10−1

−10−2

0

lrzip

Revisions

6dcce
29b16
8dd9b
7287a
94673
9499a
66429
7eabb
fca5d
ae633
f8752
dfcce
f81f8
cfd69
f225f
c1364
87fe6
b48c3
5a627
3cfb9
9a351
ad20a
25718
4f1ad
eb9e6
c873e

C
om

m
its

−104

−103

−102

−101

−100

−10−1

−10−2

0

10−2

10−1

100

101

102

103

104

Revisions

6dcce
29b16
8dd9b
7287a
94673
9499a
66429
7eabb
fca5d
ae633
f8752
dfcce
f81f8
cfd69
f225f
c1364
87fe6
b48c3
5a627
3cfb9
9a351
ad20a
25718
4f1ad
eb9e6
c873e

C
om

m
its

−102

−101

−100

−10−1

−10−2

0

Figure 4.6: The plots show changes in the interactions or lines of commits caused by revisions. The
x-axis represents the revisions we sampled as points in time, the y-axis shows the commits
of which we find some contribution at the points in time. Each cell then represents the
change in the metric for a commit compared to the previous revision.



4.2 discussion 25

One factor we examine is the age of a revision, we find that there is also no correlation
between the impact and age of a revision. This could relate to Lehman’s forth Law, which
states that the work performed on a project remains invariant over time (i. e., while the
project growths and increases in complexity the work performed on it remains constant).

Because we only sample additional revisions in regions where we observe a changes
in interactions, the steps between revisions with low impact are often large. Additionally,
because we measure the change in interactions per commit, we detect changes even if
the total number of interactions remains constant. This means there are large regions in
time where changes do not affect the interactions of the project. One cause for these low
impact regions could be the release of a new version, for example, when all features of a
new version are added and only minor changes are made to polish them for release. For
example, at the start of the first large region with low impact revisions in file we find
revision b293f9899338 which introduces version 5.04 of file. This again indicates that the
location and other factors of a change within the projects architecture affects its impact
more, than the size of the change. While we find that the impact of revisions follows a
bimodal distribution for most projects, the exact shape of this distribution drastically varies
between projects. Similarly, the correlation between the size of a revision and its impact,
while generally low, also shows drastic differences between project. Furthermore, we would
expect the number of changed interactions and the impact of a revision to correlate, but we
find multiple projects for which we calculate only a small correlation coefficient. This could
be caused by architectural differences, as in a monolithic design changes would be more
likely to have a high impact, while in a highly modular design with only a small core part
the impact of changes would most often be restricted to the affected module.

Our qualitative analysis shows that for the most part the simple categorization does
not have much relation to the impact of a revision. However, we observes much fewer
revisions performing maintenance and a few more feature additions, refactors, and bugfixes,
than in the randomly selected revisions. This is expected, because, for example, changes to
documentation would also be maintenance, but do not change any code lines and therefore
do not affect commit interactions.

In conclusion, we find most revisions either have little to no effect on the commit
interactions of a project or greatly affect them. The size of a revision has very little influence
on its impact, so does the age. Our simple categorization also shows only small differences
to a random sample, indicating that the factors influencing the impact of a revisions are
more complex.

4.2.2 Commit Evolution

Changes to the interactions of commits do generally not occur as a result of changes to
their lines. We want to understand how the interactions of commits evolve and what factors
might facilitate a divergent evolution from their lines.

We find that for most commits the ratio of interactions per LOC remains relatively stable
with only a slight overall increase. This slight increase is expected, as Lehman’s Laws (cf.
Section 2.2) state that projects are constantly growing and increasing in complexity. The
growth of a project would mean that the overall interactions of a project also increase and

8 Message: "welcome to 5.04"



26 evaluation

Figure 4.7: Figure shows the evolution of gzip@7a6f9c9c32 which implements compatibility with a
new hardware acceleration. The changes of this revision are directly reworked by Paul
Eggert, aligning the changes to the style of the project. While this changes most of the
lines, the majority of interactions of the original commit remain.

with that the interactions of individual commits. Similarly an increase in complexity could
cause an increase in interactions within a project as a higher complexity is often related to
more interconnections within a program.

While the number of interactions and LOC do not drastically diverge for most commits,
we are interested in cases where they do. Divergent evolution of interactions and LOC of a
commit occur as an overall increasing or decrease of interactions per LOC.

We find two types of commits which show an overall decrease in interactions per LOC. One
which behaves like htop@cb297af848 (cf. Figure 4.4b), where a change in interactions occurs
with a change in lines. For these changes the lines that caused the majority of interactions
are reworked of removed, while the remaining lines produce little to no interactions. In
contrast, we find commits where the interactions shrink without a change in LOC, for
example htop@855d9eaf9a (cf. Figure 4.4a). This means the functionality implemented by
the commit loses importance. When this occurs because the functionality was superseded
by something, the drop in interactions could be used to detect this and notify the authors
of the remaining usages. A complete removal of interactions would then indicate that the
remaining lines are basically dead code and could potentially be removed.

For commits which show an overall increase of interactions per line, we again find two
basic types.

Commits that increase in interactions while their lines are mostly unchanged, this is the
expected behavior when a project grows. We see this behavior in most commits for periods
with no changes to their lines, but in some cases like htop@93f091c47e we observe an
extreme increase in interactions. These commits are most likely in parts of the project that
experience few changes, but are central, or become central to the growing project. When
projects grow and new functionality is added, this increases the interactions with central
code as the code that was central before is most likely also used by the new functionality.

The other type we observe, are commits that shrink in LOC but stay constant in interactions
or even grow, e. g., file@ace9da574a shown in Figure 4.4c. For these commits the central
LOC seem to remain while the rest is reworked. Instances of this can be found as commits,
which are reworked immediately after their introduction, here we observe that often the
control flow is changed but the central behavior is untouched. For example, in Figure 4.7
we see a change by Ilya Leoshkevich, implementing new compatibility with a hardware



4.2 discussion 27

accelerator. This change is immediately reformated and changed by Paul Eggert to use the
style of the project. While the rework changes many of the lines it does not seem to affect
the central lines, as the majority of interactions remain. These reworks are often made by
the main author, as they posses deeper knowledge of the project.

Our qualitative analysis shows that commits which introduce a bug fix or refactor a part
of the project make up most of the commits with large changes in their interactions per LOC.
Overall, this result is close to the distribution we expect based on our random sample. With
the only difference, that we find fewer maintenance commits than in the random sample,
which is expected, and more commits which refactor parts of the code. For commits which
increase in interactions per LOC we also find a few more commits that improve performance,
while this is not statistically significant because of our low sample size, it could be that
after a functionality is improved it becomes more widely used in the project resulting in
an increase of interactions. We further observe only small differences between commits
which increase in s and those which decrease in s. This further indicates that these simple
categories do not relate to the divergent evolution of interactions and lines of a commit.

In conclusion we find, the interactions and lines of commits to evolve in a similar manner
for most commits, with only a slight increase in interactions per lines across all projects.
However, we find some commits for which the evolution of interactions and lines diverges
drastically. In these divergent evolutions we often observe changes to the interactions of
a commit which are not related to a change in its lines. Our qualitative analysis again
shows only small differences to the random sample, indicating that the type of commit we
categorize has no influence on the evolution of the commit.

4.2.3 Author Interactions

We observe that changes to the contributions of an author in interactions and lines generally
evolve somewhat similar to each other but their compositions can differ greatly. The main
authors often have a higher share of interactions than lines. We also observe many of the
peripheral authors to contribute a sizable share in lines but almost no interactions, this
indicates that the contribution on interactions of an author may be a useful measure to
differentiate between core an peripheral authors. However, we also find some authors with
comparatively small contributions to the lines of a project and sizable contributions to its
interactions. These cases, like Jim Meyering in grep and Atis Adamantis in libssh, are most
likely authors which contribute to the core of a project in small ways. In the case of Jim
Meyering this is most likely because they are also involved in other gnu projects which
share core parts so they have a good understanding of the architecture of the project. Atis
Adamantis shows the behavior we could expect from a core developer, who mostly works
on the core of the project, which may be a small part in lines of the project but interacts
with virtually every aspect of the project.

In the change of main authorship in htop from Hisham Muhammad to Christian Göttsche
we observe that Christian Göttsche quickly contributes to over 40% of interactions while
only contributing around 20% of lines, this indicates a change in development structure,
as the contribution in lines becomes more diverse while the contribution of interactions
remains mostly from Hisham Muhammad and Christian Göttsche. We observe a similar
change in grep where Paul Eggert becomes the author with the highest contribution in lines



28 evaluation

and interactions. But this change is more pronounced in the contributions to of lines. This
could be caused by a slower change, as the contribution of Paul Eggert grow over multiple
years while the change in htop takes only around half a year.

We find that the contributions of authors to the lines and interactions of a project generally
evolve similarly. However, we observe instances of drastic change one of which we can relate
to a change in ownership of a project. The main author of each project often contributes
more to the interactions of a project than they contribute to the lines. The other authors
generally have a very small contribution to the interactions of a project. However, we observe
two authors which show a relatively large contribution to the interactions of a project while
contributing only few lines.

4.3 threats to validity

internal validity Since our analysis requires the compilation of the project, we
are limited to analyzing buildable revision of projects. This means, that older revisions,
especially before the first release of a project, can often not be analyzed. Similarly revisions
containing major bugs that break the build system can also not be analyzed.

Because we initially sample only 50 to 100 revisions per project, we miss large parts of the
history of each project. Large changes we detect between sampled revisions could be caused
by multiple smaller changes. To combat this, we sample additional revisions in between
data points with large changes. Changes which happen and are mitigated between sampled
revisions are difficult to detect this way. To combat this, we always consider changes to the
metrics on a commit level as these are more volatile than the overall project.

external validity The expensiveness, especially in regards to memory consumption
of the analysis, limits our scope to smaller software projects. This may introduce anomalies,
especially with project consisting of a single main author with few others contributing in
small ways. Larger projects with many authors often have a more complex structure and
a higher need for collaboration. This influences the architecture of the project as well as
the development structure. It could be that there are stricter rules on the form of commits
which could influence how these changes impact the system.

The limit of our project selection to only C/C++ based projects limits the generalizability
of our observations, as other languages often employ different programming paradigms.
The paradigm of a language affects the architecture of projects and therefore the data-flow
structure. This could change our observations as a different data-flow structure could cause
commit interactions to change in different ways.

These issues are important for future studies, since we aim to only explore the possibilities
of the approach. While our insights may not be generally applicable, we demonstrate that
data-flow-based commit interactions present a useful metric to study the evolution and
development of software projects.



5
R E L AT E D W O R K

In this chapter we provide an overview of related work from related fields and previous
works.

commit interactions Sattler et al. [21], proposed the concept of commit interaction
as a combination of high-level repository information with low-level semantic information.
By adding commit information from the VCS to nodes of a data-flow graph the data-flow
connections between commits can be extracted. They show that the resulting graph of data-
flow based commit interactions can provide a useful metric for code and author centrality.
They have used this to analyze individual revisions of projects, we build on that by exploring
the capabilities of the approach for the analysis of revision histories.

The evolution of software projects has been a subject of research in many fields studying
different aspects of software projects.

architectural evolution Architectural decay is a generally recognized phenomenon
in the study of software architecture. Despite its prevalence there is relatively little empirical
data on the nature of architectural changes, which may lead to decay [14]. Behnamghader
et al. [1] investigated the evolution of software architecture using multiple approaches.
They found, semantic based architecture views to produce more accurate results. Commit
interactions may provide a useful metric to analyze the architectural changes of a project as
they provide semantic interactions with high-level repository information. For example, we
expect a revision which impacts the interactions of many commits to be an architectural
change. And it could be that architectural decay coincides with and overall increase in
interactions between commits which did not interact before. Understanding how and when
the data-flow interactions in a project change could therefore provide new insights in the
architectural evolution of software projects.

software repository mining . Mining Software repositories(MSR) consists of gather-
ing, modeling, and exploiting the data produced by developers and other stakeholders in
the software development process as they create a software system [5]. Kagdi, Collard, and
Maletic [13], investigated a wide range of approaches to software repository mining with
the focus on software evolution. They found, that the majority of current MSR approaches
operate either the physical level (e. g., system,subsystems, directories, files, lines) or at a
fairly high level of logical/syntactic entities (e. g., classes). Using data-flow interactions
as an additional source of data could provide additional information, since they are tied
directly to the semantics of code. Zimmermann et al. [24] investigated coupling between
entities in a software project, by analyze which parts of a project are changed together,
using textual changes. They find their approach to produce helpful information to guide
developers on changes which may be necessary given an intended change. One aspect they
highlight as a potential improvement is to incorporate program analysis as an additional

29



30 related work

data source, in order to find semantic coupling between changes. Commit interactions could
provide such data, as they represent semantic coupling between code regions. The evolution
of commit interactions could also provide an insight into indirect coupling, by analyzing
which commits are generally affect together.

software evolution The field of software evolution studies evolutionary patterns in
software projects. They often use high-level metrics [13], such as the file, module and line
count [7] to analyze the history of projects. In contrast to these high-level approaches, we
analyze how the data-flow structure in a software project evolves. This gives deeper insights
into the effect and role of changes in the overall project, as we can detect changes to the
semantic connections between regions.

socio-technical research . Socio-technical studies aim to understand the relations
between code authors and the organizational structure of the development process [12].
One aspect of relations between developers is artefact coupling, as it creates dependencies
between developers [12]. Joblin, Apel, and Mauerer [12] investigate evolutionary trends in
the organizational structure of software projects. They extend a classical approach, for the
study of developer relations, which assumes a relation when two developers edit the same
code region, with semantic-artefact coupling information. From these extended relations
they study evolutionary changes in an developer network. They define a classification for the
roles of developers based on their node degree in this network. Using commit interactions
to extrapolate interactions between authors also provides a view on semantic coupling
relations between developers. We investigate how the data-flow interactions between code of
different authors evolve. For this we mostly focus on the amount of interactions a developer
is involved in, this is very similar to the node degree described by Joblin, Apel, and Mauerer
[12].

change impact Understanding the impact a change has on a software system is
important to judge the work required to implement the change [4]. The field of impact
analysis tires to: "identify the potential consequences of a change, or estimate what needs
to be modified to accomplish a change [4]". Many techniques to provide such estimates
have been developed. These approaches use a variety of metrics from high-level models of
the architecture of a system to low-level call graph information [18]. Studying the impact
of past changes may help us improve our understanding and predictions of the impact of
future changes. We use changes in commit interactions to build an metric for the impact of
revisions, in order to hopefully provide additional information on the impact of changes.



6
C O N C L U D I N G R E M A R K S

6.1 conclusion

We analyzed 1610 revision across 12 open source projects from different domains, in order
to explore how commit interactions change over time. From this, we want to investigate
what insights a impact metric based on commit interactions can provide, how the commit
interactions of individual commits evolve and what commit interactions provide when
viewed on an author level.

We find that there is very little correlation between the size of a revision and its impact
on the data-flow structure of the software project. While most revisions have small impact
on the lines of a project, they have either little to no impact on the interactions of the project
or affect large parts. This indicates that there are central and peripheral parts of a project.

When investigating changes to individual commits we find that generally the amount
interactions increases when code remains unchanged. For most commits this effect is minor.
However, there cases in which the interactions drastically increases over the lifetime of the
commit. In contrast, we also find commits which nearly stop interacting with the rest of
the code base despite having lines remaining. These changes often happen independent of
changes to the lines of the commit. This indicates that there are regions which experiences
drastic changes in usage.

By grouping commit interactions by the authors of the commits we can analyze the
interactions of authors. This shows that while the evolution of the contribution to lines and
interactions of authors follows similar trends, there are differences which could relate to the
roles of authors. Especially drastic changes in author roles like a change of the main author
of a project show that commit interactions may be a useful metric to analyze changes in
author roles. Furthermore, we find authors which contribute to the interactions pf a project
in a sizable fashion, with only a small contribution in lines of code. These authors do not
fully fit the categorization of core and peripheral authors as they do not contribute in large
amounts, but in central locations which would indicate a somewhat deep knowledge of the
project.

Overall we find that analyzing software evolution through data flow based commit
interactions provides new information and patterns which are not found in traditional
high-level metrics.

6.2 future work

We show the potential of data-flow-based commit interactions as a tool to analyze software
evolution. While we find patterns in the evolution of commit interactions, our qualitative
analysis shows that the causes of these patterns are not obvious, and are most likely rooted
in more complex structures like the architecture of a project or socio-technical relations
between authors. The connections between these factors and the evolution of commit

31



32 concluding remarks

interactions requires further research. Additionally, an analysis of a wider variety of projects
especially larger ones and projects based in languages other than C and C++ may reveal
very different patterns. Because the development structure of larger project may greatly
affect how commit interactions evolve. Similarly, different programming paradigms of other
languages would most likely also affect our findings, as the programming paradigm of a
language and project often shape its architecture.

While commit interactions present a useful metric when analyzing the evolution of
software projects, it is difficult to measure continuous changes to a single part with them.
Because, when a change is made to the code of a commit the code is no longer associated
with that commit. Including a region metric which is more static over time like function
scopes could help with this.



A
A P P E N D I X

Figure A.1: Area plots comparing the contribution of authors to the lines and interactions of libssh.
We see that of the 4 authors with the most contribution Anderson T.S. has a comparatively
small contribution to the interactions of the project. In contrast Aris A. contributes around
20% of the lines but roughly 40% of the interactions of libssh. The contributions of the
other authors are similar between lines and interactions.

33





B I B L I O G R A P H Y

[1] Pooyan Behnamghader, Duc Minh Le, Joshua Garcia, Daniel Link, Arman Shahbazian,
and Nenad Medvidovic. “A large-scale Study of Architectural Evolution in Open-
Source Software Systems.” In: Empirical Software Engineering (2017), pp. 1146–1193.

[2] Thomas Bock, Nils Alznauer, Mitchell Joblin, and Sven Apel. “Automatic Core-
Developer Identification on GitHub: A Validation Study.” In: ACM Trans. Softw. Eng.
Methodol. (2023).

[3] S. Bohner. “Impact analysis in the software change process: a year 2000 perspective.”
In: 1996 Proc. of Int. Conf. on Software Maintenance (ICSM). IEEE, 1996, pp. 42–51.

[4] S. Bohner and R.S. Arnold. Software Change Impact Analysis. IEEE Computer Society
Press, 1996.

[5] M D’Ambros and Romain Pierre Julien Robbes. “Effective Mining of Software Reposi-
tories.” In: IEEE Computer Society, 2011, pp. 598 –598.

[6] N. Deepa, Prabadevi B, Krithika Lb, and B.Deepa. “An analysis on Version Control
Systems.” In: 2020, pp. 1–9.

[7] Israel Herraiz, Gregorio Robles, Jesús M. Gonzalez-Barahona, Andrea Capiluppi, and
Juan F. Ramil. “Comparison between SLOCs and Number of Files as Size Metrics for
Software Evolution Analysis.” In: Conf. Software Maintenance and Reengineering (CSMR).
IEEE, 2006, 8 pp.–213.

[8] Abram Hindle, Daniel M. German, and Ric Holt. “What Do Large Commits Tell Us? A
Taxonomical Study of Large Commits.” In: Proc. Int. Working Conf. on Mining Software
Repositories (MSR). Association for Computing Machinery, 2008, 99–108.

[9] Claus Hunsen, Janet Siegmund, and Sven Apel. “On the Fulfillment of Coordination
Requirements in Open-Source Software Projects: An Exploratory Study.” In: Empirical
Softw. Engg. (2020), 4379–4426.

[10] Emanuele Iannone and Fabio Palomba. “The Phantom Menace: Unmasking Security
Issues in Evolving Software.” In: 2022 IEEE Int. Conf. on Software Maintenance and
Evolution (ICSME). 2022, pp. 612–616.

[11] Mitchell Joblin, Sven Apel, Claus Hunsen, and Wolfgang Mauerer. “Classifying
Developers into Core and Peripheral: An Empirical Study on Count and Network
Metrics.” In: Proc. of the 39th Int. Conf. on Software Engineering (ICSE). IEEE Press, 2017,
164–174.

[12] Mitchell Joblin, Sven Apel, and Wolfgang Mauerer. “Evolutionary Trends of Developer
Coordination: A Network Approach.” In: Empirical Software Engineering (EMSE) (2015).

[13] Huzefa Kagdi, Michael L. Collard, and Jonathan I. Maletic. “A Survey and Taxonomy
of Approaches for Mining Software Repositories in the Context of Software Evolution.”
In: J. Softw. Maint. and Evol.: Research and Practice 19.2 (2007), pp. 77–131.

35



36 bibliography

[14] Duc Minh Le, Pooyan Behnamghader, Joshua Garcia, Daniel Link, Arman Shahbazian,
and Nenad Medvidovic. “An Empirical Study of Architectural Change in Open-Source
Software Systems.” In: IEEE, 2015, pp. 235–245.

[15] M.M. Lehman. “Programs, life cycles, and laws of software evolution.” In: Proceedings
of the IEEE 68 (1980), pp. 1060–1076.

[16] M.M. Lehman. “Laws of software evolution revisited.” In: Software Process Technology.
Springer Berlin Heidelberg, 1996, pp. 108–124.

[17] M.M. Lehman and L.A. Belady. Program evolution: processes of software change. Academic
Press Professional Inc., 1985.

[18] Steffen Lehnert. “A review of software change impact analysis.” In: 2011.

[19] Audris Mockus, Roy Fielding, and James Herbsleb. “Two Case Studies of Open
Source Software Development: Apache and Mozilla.” In: ACM Transactions on Software
Engineering and Methodology (2002), pp. 309–346.

[20] Christoffer Rosen, Ben Grawi, and Emad Shihab. “Commit Guru: Analytics and Risk
Prediction of Software Commits.” In: Proc. Joint Meeting on Foundations of Software
Engineering (ESEC/FSE). Bergamo, Italy: Association for Computing Machinery, 2015,
966–969.

[21] Florian Sattler, Sebastian Böhm, Philipp Schubert, Norbert Siegmund, and Sven Apel.
“SEAL: Integrating Program Analysis and Repository Mining.” In: ACM Transactions
on Software Engineering and Methodology (TOSEM) To appear (2023).

[22] Sagiv Shmuel, Reps Thomas, and Horwitz Susan. “Precise Interprocedural Dataflow
Analysis with Applications to Constant Propagation.” In: TAPSOFT ’95: Theory and
Practice of Software Development. Springer Berlin Heidelberg, 1995, pp. 651–665.

[23] Guowu Xie, Jianbo Chen, and Iulian Neamtiu. “Towards a better understanding of
software evolution: An empirical study on open source software.” In: Int. Con. on
Software Maintenance (ICSM). IEEE, 2009, pp. 51–60.

[24] Thomas Zimmermann, Peter Weibgerber, Stephan Diehl, and Andreas Zeller. “Mining
Version Histories to Guide Software Changes.” In: Proc. Int. Conf. Software Engineering
(ICSE). IEEE, 2004, pp. 563–572.


	Abstract
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Goal of this Thesis
	1.2 Overview

	2 Background
	2.1 Version Control Systems
	2.2 Software Evolution
	2.3 Commit Interactions
	2.4 Socio-Technical Analysis
	2.5 Commit Types

	3 Methodology
	3.1 Research Questions
	3.2 Operationalization
	3.2.1 Revision Impact
	3.2.2 Commit evolution
	3.2.3 Author interactions


	4 Evaluation
	4.1 Results
	4.1.1 Revision Impact
	4.1.2 Commit Evolution
	4.1.3 Author Interactions

	4.2 Discussion
	4.2.1 Revision Impact
	4.2.2 Commit Evolution
	4.2.3 Author Interactions

	4.3 Threats to Validity

	5 Related Work
	6 Concluding Remarks
	6.1 Conclusion
	6.2 Future Work

	A Appendix
	 Bibliography

