
Bachelor’s Thesis

L A B E L I N G C O M M I T S A S B U G F I X I N G A N D
F I X I N D U C I N G : S T R AT E G I E S A N D

E X P E R I M E N T S

simon fedick

Monday 21
st June, 2021

Advisor:
Florian Sattler Chair of Software Engineering

Examiners:
Prof. Dr. Sven Apel Chair of Software Engineering

Prof. Dr. Jens Dittrich Big Data Analytics Group

Chair of Software Engineering
Saarland Informatics Campus

Saarland University

Simon Fedick: Labeling Commits as Bug Fixing and Fix Inducing: Strategies and Experiments, ©
June 2021

Erklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement

I hereby confirm that I have written this thesis on my own and that I have not used
any other media or materials than the ones referred to in this thesis

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in
die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken,______________________ _____________________________
 (Datum/Date) (Unterschrift/Signature)

A B S T R A C T

Automatically identifying known software bugs and their causes is one of the most crucial
topics in software engineering research, as it enables the development of bug prediction
models. Many software engineering researchers have attempted to solve this problem
using the Sliwerski-Zimmermann-Zeller (SZZ) approach and proposed many improvements
to the original structure since then. However, most SZZ implementations are restricted
to projects using certain version control and issue tracking systems or even restricted to
certain programming languages. The VaRA-Tool-Suite (VaRA-TS), as a framework that offers
research tools available for any given project, represents a use case of SZZ where exactly
this problem becomes obvious: Being able to extract the changes that fix or introduce bugs
from a project is essential, but being able to provide bug detection strategies independent of
a project’s language or issue tracking system also is.
In this thesis, we implement an approach to SZZ that satisfies the needs of VaRA-TS and
features improvements over the original SZZ approach where possible using two different
fix detection strategies and corresponding introduction detection strategies. While one
strategy offers more accurate data for projects using the issue tracking system integrated in
GitHub, the other strategy always applies independently of the language or issue tracking
system used. In the end, we evaluate our implementation by comparing it to other known
fix detection strategies, such as the keyword matching strategy in the original SZZ approach,
as well as to the open-source implementation SZZUnleashed. As a result, we see that our
approach manages to generate more accurate bug data than the default SZZUnleashed
version and that it is justified to only keyword match the first line of a commit message
during the process.

v

C O N T E N T S

1 introduction 1

1.1 Goals . 2

1.2 Contributions . 2

1.3 Overview . 2

2 background 3

2.1 Version Control and Issue Tracking Systems 3

2.1.1 Version Control Systems and the Usage of Git 3

2.1.2 Issue Data . 5

2.2 The Original SZZ Algorithm . 6

2.2.1 Classifying Changes as Fixes . 6

2.2.2 How Changes Can Induce Fixes . 8

2.3 Enhancements to the SZZ Algorithm . 10

2.3.1 Line Annotation Strategies . 10

2.3.2 Cosmetic Changes . 12

2.3.3 History of Insertion-Only Fixes . 13

2.4 VaRA-Tool-Suite . 13

2.4.1 The Project Interface . 14

2.4.2 The Provider Interface . 14

3 implementation 15

3.1 The Interfaces . 15

3.1.1 The Bug Provider . 15

3.1.2 PygitBugs and RawBugs . 16

3.2 Finding Fix-Inducing Commits . 17

3.2.1 Searching by Issue Events . 17

3.2.2 Searching by Commit Messages . 18

3.3 Finding Introducing Commits . 18

3.3.1 Commit Message Bugs . 19

3.3.2 Issue Event Bugs . 19

3.4 SZZUnleashed as Research Tool . 21

4 experiments 23

4.1 Evaluation Metrics . 23

4.1.1 Earliest Bug Appearance . 23

4.1.2 Future Impact of Changes . 24

4.1.3 Realism of Bug Introduction . 24

4.1.4 Criteria for the Manual Inspection . 25

4.2 Projects Used . 25

4.3 Comparing Keyword Matching Strategies . 26

4.4 Bug Provider vs. SZZUnleashed . 28

5 evaluation 29

5.1 Results . 29

5.1.1 Keyword Matching Strategies . 29

vii

viii contents

5.1.2 Bug Provider vs. SZZUnleashed . 32

5.2 Discussion . 33

5.2.1 Keyword Matching Strategies . 34

5.2.2 Bug Provider vs. SZZUnleashed . 35

5.3 Threats to Validity . 36

6 concluding remarks 37

6.1 Summary . 37

6.2 Future Research . 38

6.2.1 Enhancing Fix Detection Based On Issue Events 38

6.2.2 Implementing a Simple Documentation Change Filter 38

6.2.3 Finding Introducers for Insertion-Only Fixes 38

bibliography 39

L I S T O F F I G U R E S

Figure 2.1 Change Referencing a Bug Number 7

Figure 2.2 Second Phase of SZZ . 9

Figure 2.3 Candidates for Fix-Inducing Commits 9

Figure 2.4 Annotation Graph Example . 11

L I S T O F TA B L E S

Table 4.1 Statistics of Inspected Projects . 25

Table 5.1 Fix Evaluation on Gravity (2018-2021) 30

Table 5.2 Introduction Evaluation on Gravity (2018-2021) 30

Table 5.3 Fix Evaluation on OpenVPN (2020-2021) 31

Table 5.4 Introduction Evaluation on OpenVPN (2020-2021) 31

Table 5.5 Fix Evaluation on Gzip (2013-2021) . 31

Table 5.6 Introduction Evaluation on Gzip (2013-2021) 31

Table 5.7 SZZ Comparison on Gravity . 32

Table 5.8 SZZ Comparison on OpenVPN . 33

Table 5.9 SZZ Comparison on Gzip . 33

L I S T I N G S

Listing 2.1 Example Git Log . 4

Listing 2.2 Example of an Insertion Only Fix . 13

Listing 3.1 Interface of the Bug Provider . 16

Listing 3.2 Issue Event Filtering . 17

Listing 3.3 Commit Message Filtering . 18

Listing 3.4 PyDriller Blame Dictionary . 19

Listing 3.5 Classifying Candidates Found by PyDriller 20

Listing 3.6 Suspect Classification . 21

ix

1
I N T R O D U C T I O N

Automatically identifying known software bugs and their causes is one of the most crucial
topics in software engineering research. The motivation behind automatically detecting
the exact changes to a project that fixed or introduced bugs to the system is enabling
bug prediction, and consequentially partial automation of code review. Many approaches
to the automated classification of code changes have already been made, but fixing and
introducing changes are very challenging to exactly pin down since intended behavior of
another software system is nearly impossible to grasp in an automated context. Additionally,
since manually labeling thousands of code changes with whether they actually fixed or
introduced bugs is extremely infeasible, the correctness of such algorithms also is hard to
confirm. Therefore, automated bug detection needs to put trust in the developer’s own
documentation on unwanted behavior that occurred during development. Although this is
prone to produce inaccurate results, it is also a necessity to understand what the bugs of a
project truly are.
State-of-the-art research mostly relies on the rule-based bug detection algorithm SZZ
(Sliwerski-Zimmermann-Zeller) developed by Sliwerski et al. [12]. This algorithm relies
on scanning the meta-data of code changes for keywords that indicate fixes and, starting
from there, traces the code locations of fixes back to their original introduction. As the most
well-known approach to this problem, many researchers have reproduced SZZ’s results
and found improvements to the original detection for fix-inducing changes. For instance,
Williams et al. [15] and Kim et al. [3] proposed improvements to the tracing of modified lines
across an entire history of changes, while Williams et al. [15] and Neto et al. [7] refined the
approach for certain languages by identifying changes that do not alter the behavior of the
system and hence should be neglected when looking for introducing changes. Remeli [10]
also introduced an SZZ variant that is able to find introducing changes for bug fixes that do
not modify the previous state of the code but only add entirely new lines to the structure.
Knowledge about problematic revisions of a software system that entailed one or even
multiple fixes as well as the revisions that fixed a bug can also be decisive for explaining
unusual code interactions throughout the history of changes. The framework VaRA-TS
(Variability-aware Region Analyzer Tool-Suite) offers various tools to analyze such interac-
tions between code regions through experiments, as well as visualize the results of those
experiments. However, VaRA-TS employs no means to determine the exact changes that
introduced or fixed bugs thus far. Using already established SZZ variants to resolve this
is infeasible since most SZZ approaches only work for certain programming languages or
on certain platforms that track the issues of a project, whereas VaRA-TS features a wide
variety of issue tracking systems and languages. Implementing an easy method to detect
these changes can significantly enhance the analysis of code interactions that previously
missed context during future experiments. Hence, this motivates us to implement a method
for VaRA-TS to access these changes conveniently, using an own variant of SZZ that fits the
needs of the Tool-Suite.

1

2 introduction

1.1 goals

Our goal is to provide VaRA-TS with an SZZ approach that can be applied to all projects
and provides bug data for all tools in the Tool-Suite. We aim to include improvements
over the original algorithm where possible, yet our main priority is for the bug data to
be available on any project with any issue tracking system, so we dismiss improvements
that would otherwise restrict us in that aspect. Thus, we want to be able to detect bugs
using only the information given by commit messages, since not every VaRA-TS project
uses the same issue tracking system, and not every issue tracking system provides us with
data regarding reported bugs in the same way. Furthermore, we want to evaluate our bug
provider implementation in comparison to other alternatives using different fixing and
introducing change detection methods.

1.2 contributions

We implement a bug provider for VaRA-TS, which is an interface that enables easy access
to all bug fixing changes and their respective introducing changes on any given project. It
employs a strategy to detect bug fixing changes by matching keywords in the description
of changes, a non-mandatory fix detection strategy that detects fixes by the resolution of
GitHub issues, in case the given project uses that API, and a strategy to detect introducing
changes depending on the strategy that their fix has been found by. In addition to this,
we carry out an analysis of our bug provider implementation in comparison to both the
original fix detection method of the first SZZ approach as well as the introducing change
detection of the open source project SZZUnleashed.

1.3 overview

First, we establish essential background knowledge on version control systems like Git,
issue tracking systems, the most relevant SZZ approaches introduced so far and the VaRA-
Tool-Suite itself in Chapter 2. In Chapter 3, we go into detail about the implementation
of our bug provider. After that, we evaluate our approach by comparing it to other fix
detection approaches and the open source implementation SZZUnleashed by performing
experiments on three VaRA-TS projects. The setup for these experiments is explained in
Chapter 4, while we present and discuss the results in Chapter 5. In the end, we summarize
our findings and propose ideas for future research in Chapter 6.

2
B A C K G R O U N D

In this chapter, we explain the necessary background knowledge needed to understand
the complexities and difficulties behind detecting the fixing and fix-inducing commits of
a project. First off, we introduce basic concepts of version control and issue tracking in
Section 2.1, so that we get a basic understanding of what exactly a change or a commit
means in the context of versioning. As soon as we know those concepts, we talk about the
most relevant approach to detecting the bug fixing and bug introducing changes called SZZ
in Section 2.2. This approach has been reviewed and refined many times over, so we go into
detail about some key problems of the original SZZ algorithm and how to deal with them
in Section 2.3. In the end, we introduce the VaRA-Tool-Suite, the framework for which we
implement our language- and issue tracking system independent bug detection approach in
Section 2.4.

2.1 version control and issue tracking systems

If we want to extract the bug-related changes from an arbitrary project, we need sustainable
information about each and every change that has been made to that project. If we lost
information about changes once their modified lines have been touched again by a more
recent change, we would be unable to reconstruct a lot of useful information, e.g. bug data,
and reverting unwanted changes would also pose an impossible challenge. In order to
meet these requirements, developers often make use of version control systems, the most
well-known and commonly used example being Git.
Apart from the fact that we want to keep track of different versions of a project, we also
need to be able to report and monitor known software errors, functionality that is yet to
be implemented, insufficient documentation and other problems with the software, since
a lot of these problems can occur at once and not every single one can be taken care of
immediately and by the exact person that discovered the issue in the first place. This is what
we need issue tracking systems for.
Issue tracking and version control systems are powerful tools that even are able to cooperate
with each other in some ways. In this section, we get an understanding of these system’s
core functionalities and why they are such an important basis for any fully automated bug
detection algorithm.

2.1.1 Version Control Systems and the Usage of Git

Version Control Systems (VCS) are a widely used method of managing projects. Seeing that
bug detection research heavily relies on the assumption that we have access to different
versions of a project at all times, we need to introduce some basic versioning concepts to
understand how we can meet these requirements. The main VCS we use in this thesis is Git.
Working directories where changes to any file are tracked by Git are called repositories.

3

4 background

$ git log

commit 734713bc047d87bf7eac9674765ae793478c50d3

Author: Scott Chacon <schacon@gmail.com>

Date: Fri Jan 2 18:32:33 2009 -0800

Fix refs handling, add gc auto, update tests

commit d921970aadf03b3cf0e71becdaab3147ba71cdef

Merge: 1c002dd... 35cfb2b...

Author: Scott Chacon <schacon@gmail.com>

Date: Thu Dec 11 15:08:43 2008 -0800

Merge commit ’phedders/rdocs’

commit 1c002dd4b536e7479fe34593e72e6c6c1819e53b

Author: Scott Chacon <schacon@gmail.com>

Date: Thu Dec 11 14:58:32 2008 -0800

Add some blame and merge stuff

Listing 2.1: Example Git Log (from chapter 7.1 in the GitHub docs1)

Changes consist of an arbitrary number of modified lines in their respective files, where
each modification is either an insertion or a deletion. In order to persist modifications, we
can select files that contain modifications and add them to the current repository state to
create a new snapshot of the repository state. These snapshots are called commits in Git
terminology. Since each commit is a complete snapshot, each represents a revision of the
project and therefore is assigned a distict hash consisting of alphanumeric characters as a
means to uniquely identify different revisions. We call the insertions and deletions made
between two such revisions the diff, and the diff of one specific commit usually refers to
the diff between the most recent commit made before this commit, which we call the parent
commit, and the commit itself. The most recent revision of the project is most commonly
called the HEAD (commit).
Commits provide various additional meta-data apart from their insertions and deletions,
for example, they attach a corresponding time stamp of the commit’s creation time and a
committing author, which specifies the developer who added the commit to the project. All
changes made to a project are registered inside the commit history, which can be visualized
using the git log command. The log displays relevant information about the respective
commits, such as the hash, the committing author and the date of the commit. (An example
output of the Git log command can be found in Listing 2.1).
Clean documentation of a project is key to distinguish wanted from unwanted behavior
and hence to be able to identify the bugs of a project. Thus, it is the responsibility of a
committing author to add a respective commit message describing the purpose and contents
of the modifications being made. There are barely any general conventions regarding the

2.1 version control and issue tracking systems 5

structure of these messages, so bug detection heavily relies on the purpose of commits being
properly documented.

2.1.2 Issue Data

Apart from being able to keep track of the version history of a project, developers use
Issue Tracking Systems along with their Version Control Systems as a way to keep track of
software bugs, features that are yet to be implemented and other issues with the software.
Issue Tracking Systems are comparable to the concept of To-Do-Lists, since issues help with
keeping track of various tasks that are still left to be done and issues can be closed once
they have been taken care of, similar to checking off completed tasks on To-Do-Lists.
There is a wide variety of such systems, some popular examples being, e.g., the bug tracking
system BUGZILLA, which was used in the initial version of the SZZ algorithm (more on
this in Section 2.2) and Jira. For the purpose of this thesis, we use the terminology for the
native Issue Tracking System implemented in GitHub.
Unlike the hashes used for commits, issues are usually just enumerated in the order of their
opening date (i.e., the first issue created would be referred to as #1) in order to uniquely
identify them. Issues consist of a title and a description, which elaborates on the problem
and the work that needs to be done to resolve the issue. This can again be split up into a
task list contained in the issue description and so as to resolve the issue, all tasks on the list
need to be taken care of first.
As a means to tell bugs apart from features that are yet to be implemented or missing
documentation, issues can be tagged with an arbitrary number of labels, whereas these
labels can be, e.g., "bug", "important", or the language required to rectify the issue, to only
name a few possibilities. Collaborators on a project can be assigned the task to resolve
certain issues, making them assignees of the issue. As soon as an issue has been resolved,
it can then be put in a closed state (as opposed to the initial open state) as well as reopened.
Furthermore, issues store their initial creation date which also informs us about when the
issue first was reported.
All relevant changes made to an issue are logged by GitHub as so-called issue events,
which are an important concept to take note of for the implementation details described
in Section 3.2.1. Issue events contain all information about the issue they refer to, as well
as the actual type of event (e.g., "closed", "labeled" or "reopened"), a date of when the event
occurred and an optional commit hash. As issue tracking systems are mostly linked to the
version control system of the same project, issue numbers can be referred to inside of a
commit message, triggering a certain type of event. The most interesting event is produced
by closing an issue with a commit, which marks, given that the issue represented a bug, the
version that fixed a bug. A similar non-automated version of this concept has already been
made use of in the initial SZZ implementation with BUGZILLA, see Section 2.2.1.

1 https://git-scm.com/doc

https://git-scm.com/doc

6 background

2.2 the original szz algorithm

The SZZ Algorithm has initially been introduced by Sliwerski et al. [12] and acts as the most
common basis for fully and partially automated bug data extraction algorithms to date. It
aims to identify and provide information about the commits that are related to documented
bugs. These commits always consist of one fixing commit that fixed the corresponding bug,
i.e., the first revision that does not contain the bug, and arbitrarily many fix-inducing commits,
or alternatively introducing commits. The latter type of changes led to their respective fix
being authored, and therefore are considered to be the changes introducing the bug to the
system.
In this section, we will start by taking a look at the original approach introduced by
Sliwerski et al. The algorithm’s concept consists of two essential steps. In the first step, the
algorithm extracts all fixing commits, as described in Section 2.2.1. The code locations of the
modifications made by fixing commits can be traced back to the roots of the fixed problem,
which is what we do during the second phase described in Section 2.2.2.
The bug detection algorithms that are based on the original SZZ approach mostly keep the
structure of these two steps and implemented various improvements to the steps themselves.
We take a further look into the problems with this original approach and how other versions
have dealt with them in Section 2.3.

2.2.1 Classifying Changes as Fixes

The multiple methods used to classify a commit as a fixing commit essentially boil down to
two main strategies: Keyword matching and verifying cross-references to issues. Both of
these strategies heavily rely on the project being thoroughly documented.
A very important thing to note here is that we identify each bug with one single and
unique fix. Since bug reports using issue or bug tracking systems usually do not specify
an associated location in the code, we use the insertions and deletions made by a fixing
commit to find the problematic code regions. Our assumption also means that if a fixing
commit fixed more than a single bug at once, we are not able to distinguish between these
fixes in the associated code regions, thus we assume a bijective mapping between bugs and
fixing commits.
The original SZZ approach made use of confidence levels as a heuristic to decide whether a
commit is to be considered a fix. To be precise, we talk about two different types: syntactic
and semantic confidence levels. When we define the semantic confidence level as sem and
the syntactic confidence level as syn, we consider a commit a fixing commit if and only if
the condition (sem > 1) ∨ (sem = 1∧ syn > 0) is satisfied, i.e., we want a sufficiently large
semantic confidence level or a sufficiently large syntactic confidence level with a semantic
confidence of 1. We discuss the details on how confidence levels were determined in the
following sections.

keyword matching Keyword Matching is the idea of matching regular expressions to
commit messages as a means to find certain descriptive terms indicating the intention of the
respective commit. If certain words are found to be common practice amongst developers
to use in their commit messages when they fixed a bug, we can be more confident that a

2.2 the original szz algorithm 7

commit is a fix if its commit message contains these keywords. This technique even allows
us to use stemming, which describes the process of reducing words to their word stem.
That way, we are able to match regular expressions to all morphologically deductible forms
of a word stem. This is a convenient method to deal with the fact that the tense in which
developers write their commit messages are mostly up to their personal preference. For
example, the regular expression fix(e[ds])? would match to the commit message "fixes
bug #1" as well as "fix bug #1" and "fixed bug #1" and therefore, fit different commit message
styles. Another factor that needs to be accounted for here is capitalized letters, such that
commit messages starting off with "Fixed [...]", which are amongst the examples used in
Chapter 3.2 of Sliwerski et al.’s research [12], would also match. Sliwerski et al. used the
following regular expression to match keywords: fix(e[ds])?|bugs?|defects?|patch

Regular expressions also were used to match numbers and bug numbers inside a commit
message. One way to raise the syntactic confidence level by one was for the commit
message to either contain a keyword listed above or to only contain numbers or bug
numbers. Intuitively, we do this since we assume that other keywords most likely imply
another commit type than a bug fix, even if they are used in relation to numbers and
bug numbers. However, these confidence level rules suggest that commit messages only
containing numbers are most likely an enumeration of bugs fixed by the respective commit.
This technique may even be applied to projects without needing to know the issue tracking
system it made use of, as matching regular expressions to commit messages looking for
certain keywords does not need additional external sources to verify that references refer to
actual bugs.

BugDB

Bug 42233
JUnit code generated for
TestSuite is wrong [JUnit]
...

Change History
1.17 1.18 1.19

Fixed Bug
42233

Link Bugs
with Changes

Figure 2.1: Change Referencing a Bug Number (taken from [12])

issue cross-references Just like we match regular expressions to commit messages
in order to find certain keywords, regular expressions can be used to match issue or bug
numbers in the syntax of the issue tracking system used. In Figure 2.1, we see how a commit
message refers to a bug number that can be found in BUGZILLA’s bug database. We want
to verify these links that can be drawn by extracting the respective bug report data from the
bug database.
Regarding syntactic confidence, Sliwerski et al. used multiple regexes to match different
notations for bug numbers:

• bug[# \t]*[0-9]+

8 background

• pr[# \t]*[0-9]+

• show_bug\.cgi\?id=[0-9]+

• \[[0-9]+\]

If either of these regular expressions found a match, it would be considered a bug number
and raise the syntactic confidence level by one.
In order to make sure bug numbers actually referred to bugs inside the BUGZILLA database,
Sliwerski et al. implemented semantic confidence levels. For semantic analysis, commits are
linked to their respective bug report and form a tuple. Each of these tuples gets its semantic
confidence level raised by one in each of the following cases:

• The bug report has been closed at least once.

• The committing author was assigned to the bug report.

• The short description of the bug report (≈ GitHub issue title) is contained inside the
commit message.

• At least one of the committed files was linked inside the bug report.

These rules for semantic confidence, just like the rules for syntatic confidence, are subject
to potential modifications to match the syntax and functionality, for example, of different
issue tracking systems. Especially the last point refers to BUGZILLA functionality not
implemented for GitHub issues, expressing the need for other rules if we implement this
approach for different issue tracking systems.
Also, note that closing bugs via commit messages is not a feature implemented in BUGZILLA,
so this could not be included as a confidence-raising condition in the original SZZ imple-
mentation while it promises to be a useful tool for our work.

reliance on documentation Without provided documentation in a given software
system, we would be almost fully unable to distinguish expected from unexpected behavior.
Although tests come close to defining the semantics of a project, it is unfeasible to find
bugs by running tests for each revision. On one hand, we cannot assume tests to be defined
around every reported bug, and on the other hand, very few projects reach full test coverage.
Moreover, not all bug fixes are expected to also let the system pass more tests. In some
cases, it can even be the opposite, e.g. if defect code segments could not be reached during
test execution before a certain fix. Thus, we have to rely on what developers document to be
bug fixes if we want to automatically extract bug data.
Bugs being documented in a respective issue tracking system also provides us with more
information in comparison to bug fixes found only through keyword matching, e.g., the
exact date when a bug was reported, which also helps us filter candidates for introducing
commits (cf. Section 2.2.2). That way, we are able to rule out more false positives.

2.2.2 How Changes Can Induce Fixes

Each fix to a bug comes alongside changes that caused the fix to be necessary, i.e. fix
inducing changes. The identification of fixes represents the first phase of the SZZ algorithm,

2.2 the original szz algorithm 9

Figure 2.2: Second Phase of SZZ (taken from [1])

Bug 42233 was reported.

1.14 1.16

b() was
changed

c() was
changed

a() was
changed

1.11 1.18

Fixed Bug
42233

Changed:
a() b() c()

12-Feb-03 23-May-03 10-Jun-03

3-Apr-03

Figure 2.3: Candidates for Fix-Inducing Commits (taken from [12])

while the search for the corresponding fix-inducing changes is referred to as the second
phase. Figure 2.2 illustrates a brief overview of the corresponding steps.
For each fix f identified in the first phase, within the code using the diff provided by
our VCS. Using these locations, SZZ makes use of annotations, which correspond to the
blame output in the case of Git. Applying this command to the parent commit of f (i.e., the
last version without the fix), it provides us with a revision r that was the last commit to
modify line l for each line l that has been touched by the fix itself. These revisions r are
called candidates for fix-inducing changes and are stored in pairs (r, f) containing the fix f
they induced. In the example given in Figure 2.3, the set of such candidate pairs would be
{(1.11, 1.18), (1.14, 1.18), (1.16, 1.18)}. Note that the blame algorithm needs to be applied to
the revision rpre that is the last to not contain the fix since otherwise, f itself would be the
most recent to touch each line l.

Having found all candidates, we assume all candidates to be true fix-inducing changes
in case of a missing corresponding issue link due to the lack of sufficient information, as
implied in Section 2.2.1. While this would not happen in the original SZZ approach by
Sliwerski et al. since the semantic confidence level needs to be at least 1 for a commit to be
considered a fix, the criteria for a fix regarding confidence levels can largely differ among
different SZZ approaches. We need to be aware of this fact when identifying fixes by their
syntactic confidence level only.
However, given the additional information of a linked issue, we are able to further categorize
candidates by comparing their committer date to the report date of the linked issue. In case
a candidate was committed before the bug was reported, we accept the candidate as a true

10 background

introducing commit. In Figure 2.3, this applies to revision 1.11 for the pair (1.11, 1.18). We
declare the remaining candidates as suspects since it is unclear whether these revisions are
related to the bug at all if they happened only after the bug became known. The original
SZZ algorithm divided these suspects into weak suspects, hard suspects and partial fixes using
the following criteria:

• (r, f) is called a partial fix, iff r is a fix.

• (r, f) is called a weak suspect, iff there is a fix f ′ such that (r, f ′) is a non-suspect
candidate.

• (r, f) is called a hard suspect, iff it can neither be classified a weak suspect nor a
partial fix.

Each commit r in a pair (r, f) that is not considered a hard suspect at the end of the suspect
classification is considered a true introducing commit. Weak suspects get redeemed since
the candidate has other evidence of being fix-inducing, while partial fixes are considered
previous attempts at fixing the bug or a related bug, and therefore also get redeemed. Hard
suspects, however, have no redeeming factor and thus, we assume them to be unrelated to
the fix.

2.3 enhancements to the szz algorithm

The original SZZ algorithm provides a first approach to mine Git repositories for meaningful
bug data. However, the algorithm had some significant weaknesses to be improved upon,
some of them have already been suggested in the paper by Sliwerski et al. [12] itself. Since
the classification criteria for introducing and fixing commits are purely dependent on
documentation and do not consider the modified code itself, there are multiple ways to
improve upon the original SZZ algorithm. In this section, we elaborate on the problems of
SZZ and enhancements that can counter them.

2.3.1 Line Annotation Strategies

The annotation feature by CVS used in phase 2 of the original SZZ approach can be
implemented in entirely different ways for other version control systems, as not all version
control systems compute the diff of commits in the same way. Even more problematic is that
the diff feature of version control systems does not always compute an accurate mapping of
lines across revisions. While the diff and blame tools implemented in Git provide options
that are sensitive to lines being moved across a file, less modern annotate features by version
control systems like CVS, which was used in the original SZZ algorithm, only used to
observe the history of certain line numbers and can lose track of moved lines that way. For
example, when annotating a commit ra, the diff of other revisions r0, ..., ra−1 with ra does not
consider the history of particular lines in between revisions r0, ..., ra−1. Therefore, there are
various approaches aiming to deal with this problem and provide improved line number
mappings.
Kim et al. [3] developed a solution called Annotation Graphs. These graphs introduce each
line in a certain revision as a separate node, and compute how lines are being moved

2.3 enhancements to the szz algorithm 11

Figure 2.4: Annotation Graph Example (taken from [1])

between consecutive changes, such that in a revision pair (ra, rb) where rb is the next change
based on ra, we add an edge between lines la of revision ra and lb of revision rb if lb resulted
from modifications being made to la or if la = lb. An example of such annotation graphs can
be seen in Figure 2.4. Here, while lines 0-3 in hunk (A) stay at the same position across all
three revisions, the lines of hunk (B) added in revision 2 have no parent node and therefore
are assumed to be newly inserted. The lines 4-6 of revision 1 are moved accordingly in
revision 2. If new lines 16 and 17 were added after revision 3, they also would not be
associated with the lines deleted in hunk (C). Using this data structure, the inverse direction
of these edges can be used to find the history of individual lines across revisions, improving
the accuracy of search algorithms for fix-inducing changes.
The key problem with annotation graphs, however, is that it can be inaccurate at keeping
track of moved lines in larger hunks of modifications even between two consecutive revisions,
which is why Williams et al. later introduced a different approach called probabilistic line
number mapping [14] [15]. This approach tracks lines per-class and per-method, assigning
each pair of lines between consecutive revisions an edge weight determined by a heuristic
method. These edge weights are computed using the normalized Levenshtein [5] edit
distance, which is computed by dividing the actual edit distance by the maximum edit
distance that would be possible. Since there are edge weights for each respective pair of lines,
the mapping can then be computed by applying any algorithm that solves the minimum
weight bipartite matching problem, as we want to minimize the edit distance for lines to be
as similar as possible; Williams et al., in particular, used the Kuhn-Munkres approach to
compute the perfect matching [4]. In order for entirely different lines not to get mapped to
each other in case no better matching is available, for example to avoid deleted lines of the
first revision getting matched with newly inserted lines in the second revision, only edges
under a certain edge weight threshold are considered for the graph on which to compute
the matching.

12 background

2.3.2 Cosmetic Changes

Another problem that arises when ignoring the meaning of the lines we analyze in the
second phase of SZZ is that we sometimes consider changes fix-inducing that were purely
cosmetic, while the true culprit was a non-cosmetic change that happened to the same line
earlier. A change is for example considered a cosmetic change if it satisfies at least one of
these conditions:

• The commit refactored function names, e.g., renaming the definition and each usage
of function foo() to bar() .

• The commit refactored variable names, in the same manner as function names.

• The commit reordered or refactored function parameters, in the same manner as
variable names.

• The commit modified a comment.

• The commit modified whitespaces or indentations.

• The commit modified import statements.

Note that this list is not necessarily exhaustive, as cosmetic changes can be defined in
different ways. For instance, Fowler [9] defines refactoring as any kind of change that
improves the design, but does not temper with the external behavior of the software system.
Moreover, he suggests there are 63 different types of refactorings and provides an elaborate
list of all types.
In the SZZ approach by Williams et al. [15], they use a tool specialized in recognizing
these patterns inside Java projects called DiffJ2. This tool can produce a diff that is not
purely textual, but rather detects Java syntax patterns and categorizes each modification
into various modification types, producing a Java-aware diff. When using this diff algorithm,
the blame algorithm that is used to detect the most recent change being made to each line
in the fixing commit can blame the most recent commit that was not a cosmetic change
according to DiffJ.
A different approach to this problem was introduced by Neto et al., who named it refactoring-
aware SZZ (RA-SZZ) [7]. Similar to the method by Williams et al., RA-SZZ relies on
RefDiff [11], which also is coined as a tool that produces refactoring-aware diff outputs.
The tool supports the languages Java, JavaScript and C and claims to detect 13 different
types of cosmetic changes according to the refactoring types of Fowler [8]. During later
research, Neto et al. suggest that RefDiff produces an insufficiently accurate diff output
and therefore, they include the tool RefactoringMiner, which was developed by Tsantalis et
al. [13], into RA-SZZ [8]. RMiner claims to detect the 15 types of refactoring changes that
are most common in practice and proves higher accuracy when compared to RefDiff. In
the updated RA-SZZ method, Neto et al. incorporate both RefDiff and RMiner into their
introducing commit pruning and manage to improve the accuracy of their second phase
approach that way.
Many kinds of refactoring operations are claimed to be rather infeasible to detect in fully

2 https://github.com/jpace/diffj

https://github.com/jpace/diffj

2.4 vara-tool-suite 13

1 int foo(E e){

2

3 e.bar();

4 }

- int foo(E e){

+ if(e != nullptr)

- e.bar();

- }

Listing 2.2: Example of an Insertion Only Fix

automated bug detection, such as semantically equivalent changes. For example, changing a
line such as int x = 2 + 2; into int x = 4; would be considered a semantically equiv-
alent change, however without any means to run a deep semantical analysis, researchers
are yet to find a reliable filtering method for these types of refactoring operations.

2.3.3 History of Insertion-Only Fixes

The original second phase of the SZZ algorithm bases on the assumption that a fix entails
only modifications to faulty lines since a change ri is only considered fix-inducing if the fix
r f modified lines that revision ri previously modified. However, there are fixes that require
only insertions of new lines. In the example illustrated in Listing 2.2, we assume a parameter
e of Type E that can potentially be a nullptr , and therefore not accounting for that fact

when calling the function e.bar() is a defect. The fix only needs to add an if-statement to
the previous line to account for this fact, though. Bugs of this kind do not need to be fixed
in the same line in which they were introduced.
While in such a case, the original SZZ approach would blame commits that modified the
line that previously had the same line number as the newly inserted line, the line number
mappings described in Section 2.3.1 would most likely not detect a predecessor to the newly
inserted line and thus, the fix would have an empty set of fix-inducing changes. The thesis
by Remeli [10] examines this phenomenon and finds that for the project HIVE, around
28.91% of bug-fixing commits are insertion-only fixes and as such, they have an empty set
of fix-inducing commits. As a solution, they propose an SZZ variant called Enhanced SZZ.
This approach, while being one of the more modern SZZ approaches working with Git as
VCS (which provides a cross-revision line number mapping similar to the approaches in
Section 2.3.1 by default), also incorporate RefDiff to filter out cosmetic changes. In order
to deal with insertion-only fixes and track the last changes to lines surrounding the fixing
insertions, they also include one line above and below inserted lines to the blame algorithm.
In Listing 2.2, this would mean to also look into the last revisions touching line 1 and 3,
since the insertion was in line 2.

2.4 vara-tool-suite

The Variability-aware Region Analyzer Tool-Suite (or short: VaRA-TS) is a framework
for researchers that provides a selection of various pre-configured projects that can be
automatically compiled, as well as a wide variety of tools that enable running experiments
on these projects. VaRA-TS makes running experiments more convenient for researchers
by offering helpful tools to automate different configuring, compiling and analyzing steps

14 background

and working them into a single experiment abstraction. VaRA-TS is a public project that
can be found on GitHub3. The implementation that we developed during this thesis, as it
is described in Chapter 3, was contributed to VaRA-TS and can also can be found in the
repository.

2.4.1 The Project Interface

The Project interface is an abstract representation of a software project that contains
information which we need to be able to use in experiments and encapsulates the possibilities
how VaRA-TS can interact with a project. As such, the interface offers information on how
to checkout, configure and build the project behind it. If we want to run experiments on
an arbitrary project, it needs a corresponding Project decleration in the Tool-Suite that
satisfies the specifications of the interface first.
Furthermore, the project interface offers additional information about the concrete software
project, such as a link to the repository, the repository’s name and the group behind that
project, so researchers can access this information during experiments. This information can
then be used by the provider abstraction to compute additional meta-information that can
then again be used for experiments.

2.4.2 The Provider Interface

Results of experiments run by VaRA-TS can be visualized in many different ways, such
as graphs and tables, depending on the information that the researcher needs and how
they need it to be presented. Oftentimes, extraordinary data points when analyzing code
interactions can be explained further when annoted with meta-information, such as CVE
and bug data. In this case, the provider interface corresponding to the exact type of data
needed can offer this information to the experiment that lacks it.
The main purpose of a concrete Provider implementation is to provide additional infor-
mation about a given project. For example, the CVEProvider can give us information about
all publically known CVEs (i.e., cybersecurity vulnerabilities) of a project. Such a provider
can also be realized for bug data, so the BugProvider that we want to implement offers
data about all bugs and the revisions that introduced and fixed them. We elaborate on the
exact functionality offered by the BugProvider interface in Section 3.1.1.

3 https://github.com/se-sic/VaRA-Tool-Suite

https://github.com/se-sic/VaRA-Tool-Suite

3
I M P L E M E N TAT I O N

In this section, we describe and explain our approach to incorporating an implementation
of SZZ into the VaRA-Tool-Suite using the Provider interface. Our main goal for the
BugProvider class implementation is for it to be a reusable interface that can be used by all

kinds of experiments to provide bug data for any given project. We elaborate on the different
options this interface offers in Section 3.1, as well as on how exactly we represent the bug
datatype in the Tool-Suite. The exact methods that we use to find bugs by their fixing
commits, i.e., the first phase of SZZ will be expanded on in Section 3.2, while we explain the
second phase of our algorithm in Section 3.3. With the integration of our implementation
into the VaRA-Tool-Suite and the reusability for multiple purposes come some limitations
regarding the introducing commit filtering, which is why we were not able to include all
SZZ improvements into our bug provider yet. Therefore, we included the open-source
implementation SZZUnleashed into the Tool-Suite as an additional research tool. However,
there were some adjustments to the original implementation that we had to make in order
to get the tool to work with the Tool-Suite, which is what we cover in Section 3.4.

3.1 the interfaces

First off, we want to take a look at the possibilities how we can interact with our provider
and what information we can obtain from it and take a deeper look at the implementation
realizing these interfaces afterward.

3.1.1 The Bug Provider

The BugProvider offers various functions that grant access to bug data depending on
the use case, similar to other existing Provider classes in the Tool-Suite, such as the
CVEProvider . After the provider has been created using the class of the project to analyze,

various functions can be called that offer two different types of output formats for bug data
each, depending on the information needed. Apart from the possibility to output all bugs of
a project, we provide filter functions that enable searching for certain bugs by introducing
or fixing commits. A sketch of the interface can be found in Listing 3.1.
Furthermore, when calling the get_provider_for_project method to create the bug
provider, it will automatically check whether it uses Git as version control system, as well as
if is a GitHub project in order to ensure whether the IssueEvent list offered by the GitHub
API can be used to find bugs that are related to a respective GitHub issue.

15

16 implementation

Listing 3.1: Interface of the Bug Provider

class BugProvider(Provider):

def find_all_pygit_bugs(self) -> tp.FrozenSet[bug.PygitBug]:

[...]

def find_all_raw_bugs(self) -> tp.FrozenSet[bug.RawBug]:

[...]

def find_pygit_bug_by_fix(self, fixing_commit: str)

-> tp.FrozenSet[bug.PygitBug]:

[...]

def find_raw_bug_by_fix(self, fixing_commit: str)

-> tp.FrozenSet[bug.RawBug]:

[...]

def find_pygit_bug_by_introduction(self, introducing_commit: str)

-> tp.FrozenSet[bug.PygitBug]:

[...]

def find_raw_bug_by_introduction(self, introducing_commit: str)

-> tp.FrozenSet[bug.RawBug]:

[...]

3.1.2 PygitBugs and RawBugs

The output format for bugs in the bug provider divides itself into two classes PygitBug

and RawBug , which mainly differ in the information they provide about the fixing and fix
inducing commits. While a RawBug only provides either of these as string representations
of commit hashes, a PygitBug provides them as Commit objects from the Pygit2 library1,
which contain more details about the commit, such as the commit message, the author
and the committer date. Aside from the fixing commit and a set of associated introducing
commits, both bug interfaces also contain the optional attributes issue_id representing
the number of the associated issue, creationdate representing the date when the issue has
been created and resolutiondate representing the date when the issue has been closed, in
case there is a corresponding GitHub issue. These attributes are None if the bug has been
found through commit messages only.
Since the RawBug class is the more abstract interface version of a PygitBug , a PygitBug

additionally offers a method that converts itself to a RawBug , in case the supplementary
information from the Pygit2 library is not needed or should be capsulated.
Note that since in this context, we understand a bug as a structure that maps one fixing
commit to all of its introducing commits, our algorithm is structurally slightly different to
the original SZZ algorithm, which outputs pairs of one fixing and one introducing commit

1 https://www.pygit2.org/

https://www.pygit2.org/

3.2 finding fix-inducing commits 17

each, but allows fixing commits to occur multiple times. This implies not considering bug
fixes without introducing commits as bugs, which our implementation allows.

3.2 finding fix-inducing commits

The BugProvider implements the first phase of the SZZ algorithm by combining the
results of multiple fix detection approaches. First, in case the project repository is a GitHub
repository, we download all IssueEvent s from the GitHub API and filter them for the
events that closed issues representing a bug, as described in Section 3.2.1. Otherwise, we can
always additionally find fixing commits by matching regular expressions to all messages in
the commit history, even if the project has no remote repository on GitHub, which means
that we are unable to work with issue data. This is what we want to show in Section 3.2.2.
In the end, the results of both approaches are merged by adding all bugs stemming from
issue events into the resulting set, but only adding commit message bugs if their fixing
commit is not already associated with an issue event bug.

3.2.1 Searching by Issue Events

Our first approach to finding fixing commits is by analyzing issue data rather than the
commit history, since the GitHub API offers an openly accessible method to obtain a full log
of a project’s issue events. As opposed to the approach in the original SZZ algorithm, our
implementation does not need to cross-check issue links in the commit messages against
actual issue data, but we rather profit off the way in which issue events are logged by
GitHub. The IssueEvent class provides not only the type of event and the issue it is related
to, but also an associated commit, in case the behavior has been caused by a certain commit.
That way, if a commit closed an issue that was labeled as a bug, we can classify this commit
as bug-fixing purely by analyzing issue data. However, it is important to note that in case
the event type is "closed" , but there is no commit associated with it, we are unable to link
any corresponding bug-fixing commit to the potential bug indicated by the issue event, and
therefore have to neglect it.

Listing 3.2: Issue Event Filtering

def _has_closed_a_bug(issue_event: IssueEvent) -> bool:

if issue_event.event != "closed" or issue_event.commit_id is None:

return False

for label in issue_event.issue.labels:

if label.name == "bug":
return True

return False

The code we use to realize this behavior for some given Issue Event, as it is displayed in
Listing 3.2, is rather simple since the GitHub API provides us with exactly the data that we
need. This method is made use of when creating PygitSuspectTuple objects associated
with the fixing commit, which we explain in detail in Section 3.3.2.

18 implementation

3.2.2 Searching by Commit Messages

As our second fix detection approach, we want to detect bugs using keyword matching on
commit messages, similar to the original SZZ approach [12]. The VaRA-Tool-Suite features
many projects using many different issue tracking systems, so we would need to incorporate
a separate algorithm for each system separately if we would like to include issue tracking
data for each project. Moreover, not every issue tracking system provides an API like GitHub
that we can take advantage of. Thus, we cannot be as strict on semantic confidence levels as
the original SZZ implementation is. As such, the regular expression we use for identifying
bugs cannot be the same as in the original implementation. Commits that reference bug
numbers using GitHub syntax are already covered by the first identification method and
cross-checking references to issues that stem from unknown issue tracking systems is
infeasible, hence we only use regular expressions for keyword matching.
We say that we classify a commit as bug-fixing if its commit message contains the words
"fix", "fixed" or "fixes" (in either lower-case or capitalized notation), which covers the same
commit messages as a part of the regular expression used in the original SZZ notation, i.e.,
fix(e[ds])? . As suggested in the original SZZ implementation [12], we also just look into

the first line of commit messages, assuming that line sums up the main purpose of the
commit and therefore should contain the keyword in case it is a true fix.
By iterating over the whole commit history ordered by time, we check for each commit
whether we want to classify it as bug-fixing using the method shown in Listing 3.3, which
implements the behavior described above.

Listing 3.3: Commit Message Filtering

def _is_closing_message(commit_message: str) -> bool:

first_line = commit_message.partition(’\n ’)[0]

return any([

keyword in first_line.split()

for keyword in [’ f ix ’, ’Fix ’, ’ fixed ’, ’Fixed ’, ’ fixes ’, ’Fixes ’]
])

3.3 finding introducing commits

For the second phase of the SZZ algorithm, we rely on the help of PyDriller
2 to obtain

the diff of a commit and blame the commits which last modified the deleted lines in the
fix (Note that the modification of a line consists of the deletion of the old version and the
insertion of the new version). Thus, the PyDriller library already implements the original
second phase of SZZ aside from suspect classification3. Suspect classification is infeasible
for bugs that we detected using commit messages only, but we are able to do so for bugs
that we found using the issue event method in a similar manner to the original SZZ version.

2 https://pydriller.readthedocs.io/en/latest/index.html

3 https://pydriller.readthedocs.io/en/latest/reference.html?#pydriller.git.Git.get_commits_last_

modified_lines

https://pydriller.readthedocs.io/en/latest/index.html
https://pydriller.readthedocs.io/en/latest/reference.html?#pydriller.git.Git.get_commits_last_modified_lines
https://pydriller.readthedocs.io/en/latest/reference.html?#pydriller.git.Git.get_commits_last_modified_lines

3.3 finding introducing commits 19

Therefore, the algorithm for finding introducing commits works very differently depending
on the method we found the respective fixing commit with.
While many suggestions by other researchers to optimize the second phase of the SZZ
algorithm do help with getting a more realistic estimation of bug-introducing commits,
we were not able to include all enhancements so far. Although we already gain access to
smarter line number mappings by using Git as version control system4, improvements such
as refactoring-aware diff algorithms are challenging to realize in the VaRA-TS environment,
as these improvements are strongly language-dependent and can not be easily implemented
for all languages featured in the Tool-Suite. Moreover, choosing which lines in the diff we
want to blame is not an option when using PyDriller, which means we would need to work
with a more customizable alternative if we wanted to implement the suggestion regarding
insertion-only fixes by Remeli [10].

3.3.1 Commit Message Bugs

Fixing commits that we found through commit messages have a quite straightforward
algorithm for finding their fix-inducing commits, as we are unable to apply further fil-
tering without sufficient information provided by a corresponding issue. The function
create_corresponding_pygit_bug searches, given the name of the project as well as the

fixing commit, all commits that PyDriller can find blaming the diff of the fixing commit.
The output by PyDriller yields a mapping of deleted lines to the respective commit hashes
of the commits that last modified the deleted line. As shown in Listing 3.4, all commits
corresponding to these hashes are added as introducing commits of the bug regardless of
their corresponding line, as the explicit lines of the fixing commit they belong to do not
concern us in this case.

Listing 3.4: PyDriller Blame Dictionary

blame_dict = pydrill_repo.get_commits_last_modified_lines(

pydrill_repo.get_commit(closing_commit)

)

for _, introducing_set in blame_dict.items():

for introducing_id in introducing_set:

introducing_pycommits.add(

project_repo.revparse_single(introducing_id)

)

3.3.2 Issue Event Bugs

In case there is a GitHub issue that the fixing commit relates to, we can apply additional
introducing commit filtering using suspects. While we gather the candidates for introducing
commits in the same manner as shown in Listing 3.4, we do not assume all these commits

4 https://git-scm.com/docs/git-blame/2.31.0

https://git-scm.com/docs/git-blame/2.31.0

20 implementation

to be fix-inducing immediately, but rather divide these commits into suspects and non-
suspect candidates. After that, we can use this information to create suspect tuple objects
as introduced in the following paragraph. As such, the code responsible for finding all
candidates, although structurally similar to the commit message bugs, needs to check for
each candidate whether it is a suspect or not by comparing the committer date of the blamed
commit to the creation date of the issue. We can see how this is implemented in Listing 3.5.

Listing 3.5: Classifying Candidates Found by PyDriller

blame_dict = pydrill_repo.get_commits_last_modified_lines(

pydrill_fixing_commit

)

non_suspect_commits = set()

suspect_commits = set()

for introducing_set in blame_dict.values():

for introducing_id in introducing_set:

issue_date = issue_event.issue.created_at

introduction_date = pydrill_repo.get_commit(

introducing_id

).committer_date

if introduction_date > issue_date:

suspect_commits.add(

pygit_repo.revparse_single(introducing_id)

)

else:

non_suspect_commits.add(

pygit_repo.revparse_single(introducing_id)

)

suspect representation Similar to the structure of our bug classes, we do not
interpret candidates as tuples of a fixing commit and an associated fix-inducing candi-
date. Instead, we create PygitSuspectTuple objects uniquely identified by their fixing
commit, and we distinguish between three candidate sets for the introducing commits:
non-suspects representing candidates that were committed before the issue has been created,
uncleared suspects representing suspects for which we do not know yet whether they are
hard suspects or not and cleared suspects for which we clearly know they are no hard
suspects. Hard suspects get permanently removed from a suspect tuple once identified. This
suspect class offers methods that help with suspect classification, i.e., it offers a method
extract_next_uncleared_suspect that removes one uncleared suspect and returns it, a

method clear_suspect that adds a given suspect which is confirmed to not be a hard
suspect to the cleared suspects, a method is_cleared verifying whether all suspects inside
the suspect tuple have been cleared yet and lastly, a method create_corresponding_bug

that automatically uses its data to create a PygitBug once all suspects have been cleared or
declared as hard suspects.

3.4 szzunleashed as research tool 21

suspect filtering In order to filter the suspects of each suspect tuple after we identified
them, we implement the approach of Sliwerski et al.[12] by checking whether they are weak
suspects or partial fixes. Checking for partial fixes is straightforward in this structure since
we just need to check whether the currently inspected suspect is the fixing commit of any
other suspect tuple. The case for weak suspects is also quite simple to implement, as we
check for each suspect tuple whether the currently inspected suspect is contained in the set
of non-suspects of this tuple.
The implementation details of this filtering method are displayed in Listing 3.6. After a
suspect tuple has been fully cleared, we convert it to a PygitBug (or potentially a RawBug

for output format purposes).

Listing 3.6: Suspect Classification

for suspect_tuple in suspect_tuples:

while not suspect_tuple.is_cleared():

suspect = suspect_tuple.extract_next_uncleared_suspect()

partial_fix = False

weak_suspect = False

partial fix?

for other_tuple in suspect_tuples:

if suspect.hex == other_tuple.fixing_commit.hex:

partial_fix = True

break

weak suspect?

if not partial_fix:

for other_tuple in suspect_tuples:

if suspect.hex in (

non_suspect.hex

for non_suspect in other_tuple.non_suspects

):

weak_suspect = True

break

if partial_fix or weak_suspect:

suspect_tuple.clear_suspect(suspect)

3.4 szzunleashed as research tool

While we are interested in comparing our SZZ approach to other SZZ implementations,
finding suitable reference implementations by other researchers poses quite a challenge.
Most times, we lack the source code or open-source implementations are infeasible to use
due to the fact that their improved diff algorithms only can be used for certain languages,
such as Java. There are few open-source SZZ implementations that are language-independent
and therefore compatible with all projects provided by VaRA-TS, so we cannot use SZZ

22 implementation

variants relying on RefDiff5 or DiffJ6. Hence, we settle for the open-source implementation
SZZUnleashed developed by Borg et al. [1] that pledges to implement the improvements
suggested by Williams et al. [15] except for the usage of DiffJ.
Apart from incorporating SZZUnleashed into VaRA-TS as a research tool, we correct
some of its more severe implementation errors, e.g., there are instances where the original
SZZUnleashed version available on GitHub7 uses == to compare string objects, while in
Java, this operator is used to compare the references of strings to each other rather than their
values. Furthermore, SZZUnleashed can be run with a depth parameter. This parameter aims
to represent the depth of the line mapping method proposed by Williams et al. [15] that we
explained in Section 2.3.1. Due to an implementation error, though, SZZUnleashed does
not only track the lines modified by the original fixing commit but also every line touched
by the commits found on each layer of the search, including many lines not touched by
the fix itself. With the parameter’s default value set to 3, this results in a high number of
commits supposedly unrelated to the fixing commit being blamed. Setting this parameter to
1 should cause it to behave similar to the original SZZ approach [12], but we are interested
in observing the behavior of the default parameter, as well.

5 https://github.com/aserg-ufmg/RefDiff

6 https://github.com/jpace/diffj

7 https://github.com/wogscpar/SZZUnleashed

https://github.com/aserg-ufmg/RefDiff
https://github.com/jpace/diffj
https://github.com/wogscpar/SZZUnleashed

4
E X P E R I M E N T S

In this chapter, we describe the structure and setup of our experiments with our now
complete bug provider implementation. Our main interest here is evaluating the precision
and applicability of our implementation on Tool-Suite projects and comparing the results to
other bug detection approaches.
First, it is important to get an idea about what kind of metrics we can use to compare
different approaches in a meaningful way. Since it is difficult to find ground truth at least
on what introducing commits are, we explore different possibilities for this in Section 4.1.
After that, we take a look at the projects that we run our experiments on and briefly discuss
the decision behind using these Tool-Suite projects in particular, which is what we do in
Section 4.2. In the end, we discuss the comparison of different regular expressions for fix
detection in Section 4.3 and the comparison between our bug detection approach and the
approach of SZZUnleashed in Section 4.4.

4.1 evaluation metrics

Evaluating how well bug detection algorithms actually perform is not a straight-forward
task since for most projects, we are missing ground truth on what exactly the fixing and
introducing commits of each bug in the project are. While a manual inspection of the commit
history can be done for fixing commits if we agree to only examine a certain portion of
the commits (note that VaRA-TS projects can reach from a size of around 600 commits to
about 23,000 commits total), introducing commits are nearly impossible to retrace by hand.
However, we are able to make use of the metrics introduced by Costa et al. [2]. In this paper,
the authors suggest three different metrics to estimate how well a bug detection algorithm
performs without the need of ground truth.

4.1.1 Earliest Bug Appearance

Using earliest bug appearance, we measure how much SZZ disagrees with the estimated
affected versions by the development team. This metric profits off the fact that when using
JIRA as issue tracking system, bugs can get reported along with the versions the bug
affects. The earliest version mentioned in this field would get compared to the earliest
introducing commit of a fixing commit and the introducer found by SZZ would be marked
as incorrect if the introducing commit happened after the earliest affected version given
by the development team. This is infeasible to use in our case since while GitHub allows
referencing commits in an issue, there is no dedicated affected version field that we could
use to analyze this in a meaningful way.

23

24 experiments

4.1.2 Future Impact of Changes

The idea behind the future impact of changes metric is to analyze the bug-introducing commit
data in regards to what fixes were introduced by each single introducing commit and how
realistic it is that the change is actually a bug-introducing change. The core idea here opens
up two possibilities to measure the future impact of a change: The count of future bugs and
the time span of future bugs, where the term future bugs refers to the fixes that a fix-inducing
commit induced later on.
First off, the count of future bugs metric bases on the assumption that introducing commits
are unlikely to introduce many fixes. The findings of a manual verification of SZZ-generated
data by Williams et al. [15] suggest that around 93% of introducing commits only introduce
between 1 and 3 fixes. We, therefore, assume that a bug introducing change that caused
more than three fixes is either an exceptionally problematic change or an error in the
SZZ-generated data. When we analyze the count of future bugs for an entire project, we
measure the percentage of non-suspicious introducing changes, i.e., the changes that are
bug introducing but do not introduce more than 3 bugs.
The time span of future bugs refers to all time spans between the introducing change that
we are analyzing and all the fixes that the change introduced. Here, the idea is that if bugs
introduced to a project usually get fixed rather quickly, strong outliers regarding the time
span between introduction and fix suggest that the introducing change possibly did not
introduce a bug. In order to approximate how likely bug introducing changes are to be
correctly identified by the SZZ algorithm regarding this date difference, we observe how far
it deviates from the median of time spans across the project. As previous work by Leys et
al. [6] could show, computing the median absolute deviation (MAD) around the median usually
yields better results than computing the standard deviation around the mean. Hence, Costa
et al. [2] suggest that an introducing change should be considered realistic regarding the
time span of future bugs if the time span between the introduction and all of its fixes does
not exceed the upper MAD, which is the sum of the median on all of the data and its MAD.
When applying this metric to the whole project, we are interested in the percentage of bug
introducing changes that do not exceed this threshold.
Since it is compatible with bugs found by both commit messages and GitHub issue events,
we are using this metric to measure what fraction of all fix-inducing changes found we can
consider to be realistic.

4.1.3 Realism of Bug Introduction

The realism of bug introduction can be used to analyze the realism of the introducing changes
that were found for a certain fixing commit, i.e., all introducing changes of the same bug.
We assume that for each bug, the sequence of commits that introduced this same bug is
not likely to have large time spans in-between. Thus, we analyze for each fixing commit
whether its set of introducing commits is likely to belong to the same fix or not. In order to
measure this, we consider the median of date differences among the introducing commits
of each fix and once again use the upper MAD to find outliers. In particular, we assume
that the sequence of introducing commits for a certain fix is most likely an error in the
SZZ-generated data if the date difference among the introducing commits exceeds the upper

4.2 projects used 25

MAD.
Just like the future impact of changes, this metric is independent of issue tracking data
(especially independent of JIRA issue tracking data) and can therefore also be used for our
cause.

4.1.4 Criteria for the Manual Inspection

In order to evaluate the detection of fixing commits, it is feasible for us to perform a manual
inspection on at least a portion of each project that we analyze. Using this inspection as
ground truth, we can find the number of true positive, true negative, false positive and false
negative fixing commits that our SZZ implementation generates.
In order to establish a few core rules to follow for the inspection, we first agree on only
considering commits as fixes if they change the project’s behavior and mention a problem
in their commit message (or issue description in case the bug stems from the GitHub issue
interface). Moreover, only if an issue is closed during the time window due to a linked
commit that happened during the time window, we can associate a fixing commit with that
issue. Meta changes such as merge commits also are not considered to be fixing commits in
our inspection.
From now on, we refer to the fixing commits found through this manual inspection as
true fixing commits and compare these true fixes to the fixes that were detected by our
bug detection approaches and were committed during the time window of our manual
inspection.

4.2 projects used

As we do not want to generalize the acquired data over all projects of the Tool-Suite, we
are rather looking to analyze three projects more in-depth in regards to their different
properties. In this section, we discuss the three projects that we settled for in regards to their
size, how they differ from each other and especially what portion of the commit history we
were able to manually inspect for bug fixes. A small overview of the projects used can be
seen in Table 4.1.

Begin of Inspection Inspected Commits True Fixes

Gravity 01/01/2018 325 65

OpenVPN 01/01/2020 459 85

Gzip 01/01/2013 181 52

Table 4.1: Statistics of Inspected Projects

gravity The first project that we are using for our analysis is Gravity
1, which is a

programming language using a parser written in C. This repository currently includes
around 740 commits. After performing a manual inspection on the commit history starting
from January 1st, 2018, we find that around 65 commits of the 320 total commits that we

1 https://github.com/marcobambini/gravity

https://github.com/marcobambini/gravity

26 experiments

performed the inspection on are fixing commits, considering both the commit messages and
issues on GitHub. Gravity uses GitHub as issue tracking system, which makes it interesting
to consider for the analysis as we implemented a fix detection approach via GitHub issue
events.

openvpn For the second project, we take a deeper look at OpenVPN2, which is a large-
scale open source tunneling daemon with considerably rapid development. In total, the
project currently counts around 2900 commits, so we are only able to manually inspect
a small portion of the total project regarding fixing commits. However, even though the
project does not use the GitHub interface for issue tracking, the descriptive multi-line
commit messages offered in this project allow deep insights into the purpose of each
commit. Nevertheless, we can only inspect bugs found by commit messages for this project.
A manual inspection lets us find 85 fixing commits among the 459 commits that have been
authored since January 1st, 2020.

gzip The last project we want to analyze is the compression utility GNU Gzip
3, which is

a smaller-scale project with around 600 commits in total at the time of our analysis. This
project is rather interesting to analyze since the average date difference between each commit
largely deviates from the other two projects, so we expect potentially strongly different
results regarding the date-related metrics we introduced compared to the other projects.
The repository features only about 181 commits since January 1st, 2013, the beginning of
our analysis. Over this time span, we find around 52 fixing commits, most of which are
reported on its debbug bug tracker4 instead of issue tracking on GitHub, but consistent
linking in commit messages to the corresponding bug pages makes double-checking our
manual inspection less error-prone.

4.3 comparing keyword matching strategies

In the first part of our evaluation, we test our own keyword matching strategy against other
fix detection approaches on the three previously selected Tool-Suite projects.

research questions First off, we evaluate how the regular expression used in the
original SZZ, fix(e[ds])?|bugs?|defects?|patch , compares to our bug provider fix de-
tection which assumes that the regular expression fix(e[ds]?) suffices to detect most
fixes. Our manual inspection also leads us to believe that the original convention to only
match keywords in the first line of the commit message might lead us to miss some essential
bug fixes since it is not necessarily a common convention to always put the fact that a
commit fixed an issue in the first line. The commit message might also just summarize the
exact change that has been made in the first line and elaborate on what the issue was and
which bug this change fixes in the further description. Based on this observation, we also
decide to analyze the two keyword matching strategies mentioned before in relation to the

2 https://github.com/OpenVPN/openvpn

3 https://github.com/vulder/gzip

4 https://debbugs.gnu.org/

https://github.com/OpenVPN/openvpn
https://github.com/vulder/gzip
https://debbugs.gnu.org/

4.3 comparing keyword matching strategies 27

bug provider strategy when applied to the entire commit message.

RQ 1.1: Can our approach that reduced the original SZZ regular expression to only the
fix -stemming can also reduce our false positive rate? Also, does the restriction to only

keyword match in the first line of commit messages let us miss out on true fixes, or does
scanning the whole message increase our false positive rate too much?

RQ 1.2: Do different fix detection strategies also influence the estimated realism of the
associated introducing commit sequences, i.e., does detected introducing commit data become
more inaccurate along with its corresponding fix detection strategies when consulting the
Costa et al. [2] metrics?

experiment setup As we are asking two separate questions here, this experiment
divides itself into two parts.
For the first question, we implement the fix evaluation tables, which reports the absolute
number of true positive, false positive, true negative and false negative detected fixing
commits that happened during the same time frame that the manual inspection covers.
Apart from these measurements, we also extract the number of total commits during the
given time window, the total number of true fixes and the total number of fixes detected by
our bug provider. We run this experiment three times, one time each for our own regular
expression, the regular expression used in the original SZZ approach and our regular
expression applied to the entire commit messages.
In order to answer the second question, we implement introduction evaluation tables. The
exact values we are interested in here are the time span of future bugs and the realism of
introduction each given as median of days along with the portion of commits that find
themselves within the respective thresholds, as well as the portion of commits that manage
to stay below the count of future bugs threshold of not more than 3 induced fixes. This
experiment is also run once for each of the three fix detection strategies.

expected results Assuming that the actions mentioned in a commit message (e.g.,
"fixes", "adds", "improves", "implements", "cleans up") are most likely to describe the true
purpose of a commit, keywords such as "patch" or "defect" might not show an equally
strong correlation to the commit actually being a fix. Hence we run the first experiment
in expectation for the original regular expression to match more commits that are no true
fixes, but we also suspect that it might miss true fixes due to the first line constraint that the
keyword matching strategy for the entire commit message should find.
As for the introduction evaluation, we expect more strict fix detection methods to also
slightly lower the realism of introduction and time span of future bugs values, since we
do not expect non-fixing changes to show any correlation in terms of time spans with the
changes that last touched the same lines. Therefore, more wrongly classified fixing commits
could cause some noise in the data.

28 experiments

4.4 bug provider vs . szzunleashed

To investigate how the bug provider approach performs compared with other SZZ imple-
mentations, our second step is to run an experiment on the bug data laid out by each the
provider and the SZZUnleashed research tool [1].

research questions As we already focussed on the first phase of SZZ in the first
experiment and the main difference between our bug provider and SZZUnleashed is the
approach to the second phase, we are mainly interested in comparing the introducing
commit detection methods to each other consulting the metrics suggested by Costa et al. [2]
While SZZUnleashed is coined to implement the improvements suggested by Williams
et al. [15], the customizable depth parameter mentioned in Section 3.4 is not correctly
implemented. We, therefore, consider both the bug data generated when using the default
parameter of 3 and the data generated when using a depth of 1 for our analysis.

RQ 2: Does the depth-of-1 SZZUnleashed version let us find more accurate introducing
commit data than the default parameter? Also, is our bug provider implementation able to
compete with either of the two versions despite not being coined to incorporate the same
improvements?

experiment setup For this experiment, we review the entire repositories in regards to
both fixing and introducing commits as we are not restricted to manually inspected portions
of the commit history here. However, this also means that this setup purely relies on the
metrics that we can use without any ground truth.
We can reuse the introduction evaluation tables implemented for the first experiment
here, running the experiment for the SZZUnleashed implementation with default depth
parameter, SZZUnleashed with a depth of 1 and our bug provider each. Note that we are
using the slightly modified version explained in Section 3.4 for all SZZUnleashed runs.

expected results As SZZUnleashed claims to apply stricter pruning to the introducing
commit candidates found, we usually would expect it to be able to rule out more introducing
commits than the bug provider approach and therefore perform better in regards to the
count of future bugs, but also in regards to the time span of future bugs and realism of bug
introduction assuming that suspicious introducing commits are more likely to be ruled out.
However, due to the flawed implementation of the depth parameter, the depth-of-1 version
should behave similarly to the bug provider implementation.
Nevertheless, we expect three layers of introducing commits to contain too many candidates
that are unrelated to the original fix and as such, we anticipate both SZZUnleashed with a
depth of 1 and the bug provider to outperform the default parameter version.

5
E VA L UAT I O N

In the previous chapter, we elaborated on our experimental setup to evaluate our bug
provider implementation. This chapter is dedicated to presenting our results in Section 5.1
and discussing them afterward in Section 5.2. Additionally, we discuss the potential prob-
lems of our experiments and how they could impair the validity of our work in Section 5.3.

5.1 results

Before being able to answer the research questions we formulated in the previous chapter,
we present the exact values of the SZZ-generated data we acquired. We first present the
keyword matching results relating to RQ 1.1 and RQ 1.2, and then the results of the
comparison between SZZUnleashed and our bug provider relating to RQ 2 for each of the
three projects, respectively. Additionally, we want to keep in mind here that when evaluating
the introduction metrics, we prefer lower median values for each the time span of future
bugs and the realism of bug introduction, while we prefer a higher number of commits
falling under the upper MAD threshold. For the count of future bugs, we prefer a higher
number of bugs falling below the threshold of 3.

5.1.1 Keyword Matching Strategies

First, we run both our fix evaluation and our introduction evaluation algorithm for all three
fix detection approaches, i.e., the bug provider regular expression, the original SZZ regular
expression and the bug provider regular expression applied to the whole commit message,
on each Gravity, OpenVPN and Gzip. In the following, we present our results for each
project separately.

gravity We ran these experiments on all commits that have been committed from
January 1st, 2018 up until June 11th, 2021.
Upon taking a look at the fixing commit evaluation presented in Table 5.1, what instantly
catches our attention here is that the original SZZ regular expression gives us exactly the
same number of correct predictions as our bugprovider regular expression. In addition to
that, we see in the introducing commit evaluation shown in Table 5.2 that the introduction
evaluation also produces the exact same results on both approaches, indicating that they both
ended up finding the exact same fixing commits and consequentially the same introducing
commits.
While applying our approach to the entire commit message slightly reduced the number
of false negatives for the fixing commits from 22 to 17, it increased our false positive
count significantly from 7 to 19. As for the introduction evaluation, the median realism of
introduction, as well as the median time span of future bugs, slightly rose compared to the
other approaches. A slight decrease in commits that stay below the count of future bugs

29

30 evaluation

threshold is also noticeable. In addition to that, a very slight rise in the commit portion
under the upper MAD can be discovered as well, but this is most likely due to the upper
MAD threshold itself rising.

Fixes Found True Positive False Positive True Negative False Negative

Bug Provider 50 43 (66.15%) 7 (2.69%) 253 (97.31%) 22 (33.85%)

Original SZZ 50 43 (66.15%) 7 (2.69%) 253 (97.31%) 22 (33.85%)

Bug Provider
(entire msg)

67 48 (74.85%) 19 (7.31%) 241 (92.69%) 17 (25.15%)

Commits total: 325, True Fixes: 65

Table 5.1: Fix Evaluation on Gravity (2018-2021)

Realism of Introduction Time Span of Future Bugs
Count of Fu-
ture Bugs

Median (Days)
Below Upper
MAD (%)

Median (Days)
Below Upper
MAD (%)

Below Thresh-
old (%)

Bug Provider 167.0 64% 453.5 73.85% 96,92%

Original SZZ 167.0 64% 453.5 73.85% 96,92%

Bug Provider
(entire msg)

181 64.17% 489 76.4% 92.13%

Table 5.2: Introduction Evaluation on Gravity (2018-2021)

openvpn These experiments have been run on all commits to OpenVPN between Jan-
uary 1st, 2020 and June 11th, 2021.
Similar to the results of both our bug provider and SZZ original fix detections on Gravity,
the results for both also are exactly identical for this time frame of the OpenVPN commit
history, as we can see in the fix evaluation in Table 5.3 and the introduction evaluation in
Table 5.4.
The previous observation regarding the bug provider regular expression applied to the
entire commit message appears in an even more extreme manner here. Even though we can
see the false negative rate slightly dropping, the false positive rate strongly rises in return
and way more fixes are found than there are actual true fixes. Interestingly enough, the way
more inaccurate fix detection lowers the median realism of introduction and also makes
the portion of commits below the MAD threshold drop significantly but this can at least
partially be explained by the MAD threshold dropping. Even so, the median time span of
future bugs experiences a sharp rise compared to the other methods by 440 days, which is a
difference of way over a year. This large rise of the MAD most probably explains the portion
of commits below the threshold slightly rising. An insignificantly small drop of 2.06% for
the introducing commits below the count of future bugs threshold also can be observed.

gzip Note that we ran this experiment over around 8 years worth of commit history, from
January 1st, 2013 to June 11th, 2021.
Contrary to Gravity and OpenVPN, there is a slight variation in the data between the
regular expression of our bug provider and the original SZZ regular expression in the fix
evaluation illustrated in Table 5.5. While the original SZZ manages to detect a bug that

5.1 results 31

Fixes Found True Positive False Positive True Negative False Negative

Bug Provider 82 67 (78.82%) 15 (4.01%) 359 (95.99%) 18 (21.18%)

Original SZZ 82 67 (78.82%) 15 (4.01%) 359 (95.99%) 18 (21.18%)

Bug Provider
(entire msg)

141 77 (90.59%) 64 (17.11%) 310 (82.89%) 8 (9.41%)

Commits total: 459, True Fixes: 85

Table 5.3: Fix Evaluation on OpenVPN (2020-2021)

Realism of Introduction Time Span of Future Bugs
Count of Fu-
ture Bugs

Median (Days)
Below Upper
MAD (%)

Median (Days)
Below Upper
MAD (%)

Below Thresh-
old (%)

Bug Provider 968 85.37% 770 64% 97%

Original SZZ 968 85.37% 770 64% 97%

Bug Provider
(entire msg)

863 70.21% 1210 73% 94.94%

Table 5.4: Introduction Evaluation on OpenVPN (2020-2021)

Fixes Found True Positive False Positive True Negative False Negative

Bug Provider 24 21 (40.38%) 3 (2.33%) 126 (97.67%) 31 (59.62%)

Original SZZ 26 22 (46.43%) 4 (3.1%) 125 (96.9%) 30 (53.57%)

Bug Provider
(entire msg)

33 26 (50%) 7 (5.43%) 122 (94.57%) 26 (50%)

Commits total: 181, True Fixes: 52

Table 5.5: Fix Evaluation on Gzip (2013-2021)

Realism of Introduction Time Span of Future Bugs
Count of Fu-
ture Bugs

Median (Days)
Below Upper
MAD (%)

Median (Days)
Below Upper
MAD (%)

Below Thresh-
old (%)

Bug Provider 283 70.83% 1117 64.29% 100%

Original SZZ 283 65.38% 1163 67.74% 96.77%

Bug Provider
(entire msg)

1416 72.73% 1886 66.07% 98.21%

Table 5.6: Introduction Evaluation on Gzip (2013-2021)

32 evaluation

our approach did not find, it also classifies one more commit as a fix that is not truly a
fix. In the introduction evaluation displayed in Table 5.6, we see that for our bug provider
implementation, every introducing commit stays below the threshold of 3 introduced bugs.
Apart from that, we can see very slight deviations between the bug provider and the original
SZZ approach regarding every metric but there is no clear trend for either of these two to
deliver significantly better results.
While we experience a rather small increase of each true positive and false positive fixes for
our regular expression being applied to whole commit messages, the introduction evaluation
table shows a very huge increase of almost three years in the realism of introduction median,
as well as a considerably large increase of almost two years in the time span of future bugs.

5.1.2 Bug Provider vs. SZZUnleashed

For this experiment, we run the introduction evaluation for each Gravity, OpenVPN and
GNU Gzip on each our bug provider, the SZZUnleashed implementation with a depth
parameter of 1 and the SZZUnleashed implementation with its default depth parameter
of 3. This time, we run the experiment on the entire commit history of our projects to get
the true median values of the entire project for our introducing commit metrics. Once again,
we present our results for each project in a separate section.

gravity When comparing the SZZUnleashed version with a depth of 1 to our bug
provider, we can see in Table 5.7 that while our bug provider implementation achieves better
results regarding the realism of introduction and the count of future bugs, SZZUnleashed
outperforms it regarding the time span of future bugs.
The most striking difference however is the difference between these two SZZ versions and
SZZUnleashed with its default depth parameter, since it yields a way higher value for the
realism of introduction and time span of future bugs median each, as well as an expectedly
very low portion of introducing commits that manages to stay within the count of future
bugs threshold.

Realism of Introduction Time Span of Future Bugs
Count of Fu-
ture Bugs

Median (Days)
Below Upper
MAD (%)

Median (Days)
Below Upper
MAD (%)

Below Thresh-
old (%)

Bug Provider 29.0 82.26% 83.0 42.57% 95.05%

SZZUnleashed
(detph=1)

45.0 71.96% 73.0 53.28% 91.8%

SZZUnleashed
(depth=3)

126.0 66.36% 610.5 57.08% 53.21%

Table 5.7: SZZ Comparison on Gravity

openvpn As we can see in Table 5.8, SZZUnleashed with a depth of 1 slightly outper-
forms the bug provider in terms of the time span of future bugs, but the difference in terms
of the count of future bugs is barely recognizable and we can not really see any of the two
algorithms doing significantly better in terms of the realism of introduction, since while the
median of days is lower for SZZUnleashed, more commits stay within the given threshold

5.2 discussion 33

for the bug provider.
Once again, we can see an extremely large dispersion between these variants and the
SZZUnleashed version with a depth of 3. The fraction of introducing changes that still
falls below the count of future bugs threshold drops significantly below half of the total
introducing commits, the realism of introduction median is four times as large and the time
span of future bugs is even five times as large as the values gathered for the bug provider
and the depth-of-1 version.

Realism of Introduction Time Span of Future Bugs
Count of Fu-
ture Bugs

Median (Days)
Below Upper
MAD (%)

Median (Days)
Below Upper
MAD (%)

Below Thresh-
old (%)

Bug Provider 386 81.52% 583 69.77% 94.08%

SZZUnleashed
(detph=1)

365 76.4% 447 70.12% 93.7%

SZZUnleashed
(depth=3)

1237 70.8% 2012.5 69.94% 44.94%

Table 5.8: SZZ Comparison on OpenVPN

gzip As outlined in Table 5.9, the realism of introduction median has a significantly lower
value for our bug provider, while both SZZUnleashed versions obtain the same median.
As for the portion of commits below the upper MAD, the bug provider still outperforms
the depth-of-1 SZZUnleashed version slightly despite having a way lower median, and it
clearly outperforms the depth-of-3 variant by a large amount.
The time span of future bugs is also the lowest for the bug provider implementation and
while the depth-of-1 SZZUnleashed version obtains a median that is around 200 days larger,
the depth-of-3 version even surpasses it by about 1000 days. The portion below the upper
MAD is highest for SZZUnleashed, most likely due to the median being that high.
For the count of future bugs, all three variants do not stray very far away from each other,
but the bug provider scores the largest portion below the threshold of three.

Realism of Introduction Time Span of Future Bugs
Count of Fu-
ture Bugs

Median (Days)
Below Upper
MAD (%)

Median (Days)
Below Upper
MAD (%)

Below Thresh-
old (%)

Bug Provider 361.5 70.97% 1274.5 60.61% 95.45%

SZZUnleashed
(detph=1)

1017.0 67.24% 1470.5 64.2% 92.59%

SZZUnleashed
(depth=3)

1017.0 39.65% 2204.0 73.91% 92.75%

Table 5.9: SZZ Comparison on Gzip

5.2 discussion

In this section, we discuss the results we gathered in regards to the research questions that
we proposed in the last chapter.

34 evaluation

5.2.1 Keyword Matching Strategies

Concerning the fix evaluation, a large portion of the false positives and false negatives can
be explained by observations made during the manual inspection, while the interpretation
of the introduction evaluation is a little more complex. Before trying to answer the two
research questions behind this experiment, we prepone a few general remarks about the
comparison of true fixes against our fix detection approaches.

fix detection vs . ground truth In general, false positives in comparison to the
ground truth can mostly be explained by the keyword "fix" and other morphologically
deducible forms of it being used in different contexts than we would expect them to be used.
For example, "fix" is often used in documentation contexts, while we do not want to consider
changes as fixes if they do not influence behavior. Even though there are improvements to
SZZ producing refactoring-aware diff outputs which can ignore blamed commits that do not
alter behavior, we do not apply the same strategy to incorrectly classified fixes in the first
phase so far. Apart from this, multi-line commit messages tend to mention the state of the
repository before the change and why this commit has been made, so our keywords often
would get mentioned in different contexts, e.g., "added documentation to the fix made by
version x". Since the commit history of OpenVPN yields especially long commit messages,
this is most likely the reason behind the high count of false positives when mapping our
regular expression to entire commit messages.
The false negative rate partly can be cleared up by the fix not being mentioned in the first
line of the commit message, as we could see judging by the false negative rate dropping
when we mapped our regular expression to entire commit messages. However, a certain
portion of false negatives still remains for Gravity and Gzip in particular and the possible
explanations depend on the projects, respectively.
On Gravity, for instance, there are many GitHub issues that describe bugs and were fixed
by some associated commit, but these commits are mostly just linked in the comments on
the issue and did not close the issues themselves. In addition to that, issues on Gravity do
barely use the labeling system and as such, even if an issue was closed by the fixing commit
directly, we could not be entirely certain whether the issue reported an actual bug, missing
documentation or even a feature request.
On Gzip, the project with the highest false negative rate out of the three, we observe that
fixes often just contain a description of the fix without labeling itself as fix and link the
corresponding report of the resolved bug from either the mailing list or the debbug bug
tracker1. Since we do not account for this documentation style with our keyword matching
approach, we miss many true fixes here.
As we can see looking at the different results for our three chosen projects, the best method
to detect exactly the true fixes of a repository very strongly depends on the commit message
and issue labeling conventions of the respective development team and is very hard, if not
impossible to generalize.

1 https://debbugs.gnu.org/

https://debbugs.gnu.org/

5.2 discussion 35

RQ 1.1: For our first question, we wanted to know whether our fix -stemming
approach in the bug provider could reduce the false positive rate of the original SZZ’s
fix detection approach by matching fewer keywords, but at least for the portions of
the projects we considered and manually inspected, this was not the case. There is no
sign of any of both approaches performing better in our results.
To address the second part of this question, the false positive rate when applying
our regular expression to entire commit messages, especially to very long commit
messages, appeared to increase our false positive rate considerably more than it
reduced our false negative rate. Therefore, our data is consistent with the assumption
made by Sliwerski et al. [12] that the first line of a commit message is most descriptive
in terms of its true purpose.

RQ 1.2: This question is tough to answer judging by our results. Although there
is a slight tendency for the more inaccurate keyword matching approach, i.e., the
approach that matches entire commit messages, to score higher (and hence more
unrealistic) median values than the other approaches on the introduction metrics,
this is not really consistent across all three projects. For example, the entire message
approach even scores the lowest median on OpenVPN for the realism of introduction.
Thus, a slight correlation can be observed, but we cannot really attach a bigger
meaning to it using the little data set that we gathered.

5.2.2 Bug Provider vs. SZZUnleashed

When discussing the differences between our bug provider and SZZUnleashed on the
chosen projects, we do not have a ground truth that helps us explain the gathered data, but
there are some important observations to make here regarding our final research question.

36 evaluation

RQ 2: This question essentially boils down to two smaller questions, the first one
being whether SZZUnleashed with a depth parameter of 1 provides us with more
realistic data when consulting the metrics by Costa et al. [2] compared to our bug
provider, since it is coined to prune more introducing commit candidates. While
SZZUnleashed tends to perform better in terms of time span of future changes,
our bug provider tends to perform best regarding the count of future bugs and the
realism of introduction, so our results neither really enable us to prove nor to disprove
this hypothesis. In the end, both algorithms produce bug data that we estimate as
similarly realistic using our introduction metrics.
Nonetheless, the results support our second claim that both versions outperform the
depth-of-3 SZZUnleashed variant. Since it adds two additional layers of introducing
commits to the introducing commit set of the original fix, the count of future bugs
threshold classifies even more than half of all fix-inducing commits as unrealistic
on OpenVPN, which largely deviates from the depth-of-1 approach and our bug
provider never falling below 91% on any project. The time-span of several years
in-between introducing changes of the same fix or an introducing change and its
induced fixes also reflects the intuition that the depth-of-3 variant most likely labels
many changes as bug introducing that never touched the same code regions as the
fix, to begin with.

5.3 threats to validity

Although our results at least partially reflect our intuition, there are some other possible
explanations for our findings.
Starting off, our manual inspection may be inaccurate. While we can assume with confidence
that changes labeled as true fixes by us were seen as fixes by the developers, we have no way
of knowing whether commits that modified behavior but were not implied to be fixes in the
documentation actually did not fix any errors. Since this can only affect false negatives, our
results would otherwise still be accurate.
Furthermore, while the metrics proposed by Costa et al. [2] were verified to be valid metrics
for realism of SZZ-generated data, realism does not necessarily imply whether the data is
incorrect. Sometimes, the anomalies are caused by strong outliers, e.g., in case of the impact
of future changes, the last bug that a single commit introduced could be dormant for several
years and let the commit look like an unrealistic introducing change. While we are unable
to fully replace ground truth using these metrics, it has been shown that the introductions
labeled as unrealistic are more likely to be an error in the SZZ data [2].
Lastly, the number of commits and projects that we analyzed is rather low, threatening
the statistical significance. Our aim was to analyze our bug provider implementation in
comparison with other fixing and introducing commit detection approaches on only a few
projects such that we can provide more in-depth insights. Yet if we wanted to give our
claims more statistical support, we would need to run our experiments on more projects
and gather more data.

6
C O N C L U D I N G R E M A R K S

We conclude our thesis by giving a short recap of what we achieved in the previous chapters
and discussing some ideas on possibilities to further improve our work in the future.

6.1 summary

In this thesis, we implemented a convenient method for the VaRA-Tool-Suite to access bug-
related revisions in order to help support future experiments with additional context. Our
SZZ approach pledged to be accessible for all projects included in the Tool-Suite. To achieve
this, we made it fully independent of the programming language and issue tracking system
used, it just needs the project to use Git as version control system. In our implementation,
we incorporated two fix detection approaches: Fix detection via commit messages and an
optional detection method via GitHub issue events on projects that use the native GitHub
issue tracking system. We based the regular expression used for our fix detection on the
assumption that we do not need to match every keyword contained in the original SZZ
regular expression and consequentially only incorporated deducible forms of the "fix" stem.
The introducing commit detection that we realized with the help of PyDriller adapts to
the fix detection approach used to find the respective fix. It is able to rule out hard suspects
when given issue data corresponding to the fixed bug using the SZZ method. Furthermore,
we incorporated the open-source SZZ implementation SZZUnleashed into VaRA-TS as a
research tool and made some adjustments that fixed issues the original version had.
In the end, we ran experiments in order to test our implementation against other fix detection
algorithms and compared our implementation to SZZUnleashed in regards to the realism
of the data gathered. We manually inspected certain time windows of the three Tool-Suite
projects Gravity, GNU Gzip, and OpenVPN for fixing commits with each of these approaches
and found that while the original and our regular expressions produced very similar results,
we scored way better than SZZUnleashed on default settings when consulting introduction
metrics that can be computed without ground truth. The SZZUnleashed implementation
performed very similar to our bug provider, however, when we told it to not mine for a
larger introducing commit depth than one. In the end, our experiments showed that we do
not need to match for every keyword used in the keyword matching strategy used by the
original SZZ approach [12], but its claim that the purpose of a commit can mostly be found
in the first line of its commit message is backed up by our results.
In conclusion, we managed to achieve our goal to implement an easily reusable bug detection
method for VaRA-TS that can compare to other open-source approaches out there but there
is still much room for improvement left. For example, there are many refactoring changes
that we still are not able to detect, and fix detection largely depends on different commit
message conventions. In the following, we propose a few ideas to address these issues.

37

38 concluding remarks

6.2 future research

During our experiments, we realized some shortcomings of especially our issue event fix
detection algorithm and how we could perform better if we were able to incorporate some
established SZZ improvements into VaRA-TS without losing the advantage of language
independency.

6.2.1 Enhancing Fix Detection Based On Issue Events

There is potential to improve the pruning of introducing commits (since we cannot prune
introducing commits for commit message bugs) by supporting more issue tracking systems
in our bug provider implementation and make the suspect classification we implemented
applicable to as many issue formats as possible. Furthermore, keyword matching the title
and description of issues could help us detecting more issue related fixes since only very
few projects using the GitHub issue interface make use of the labeling feature. In order to
counteract the fact that we can not link closed issues to fixing commits if commits are not
directly closing the issue they fixed, we also could classify changes that happened during
the same time window as the closure of an issue as fixing commits and analyze how often
that assumption turns out to be correct.

6.2.2 Implementing a Simple Documentation Change Filter

Refactoring changes so far have been infeasible to detect in the Tool-Suite environment due
to the language limitations. Some types of refactoring changes, such as changes made to
comments, are not especially challenging to detect, though, since there are very similar and
simple syntactic patterns to comments in every language. Apart from that, changes made
to file types that are no code files, such as .txt -files, also could be feasible to rule out.
Pruning introducing candidates that only changed documentation bears the potential to
improve our introducing commit detection. Moreover, to our knowledge, no bug detection
research so far has ruled out fixing commit candidates that do not change behavior during
the first phase of SZZ and this filter could also help us to include this into our bug detection
approach.

6.2.3 Finding Introducers for Insertion-Only Fixes

As we discussed in Section 2.3.3, Remeli [10] proposed also blaming surrounding lines
of addition-only fixes in order to be able to find introducing commits for fixes without
deletions, but since our bug detection approach uses PyDriller to blame the diff of fixing
commits, we were not able to customize which lines are being blamed, though. By using a
more low-level API that allows us to obtain the diff and blame certain lines of a commit
manually, we could also incorporate this improvement into our bug provider.

B I B L I O G R A P H Y

[1] Markus Borg, Oscar Svensson, Kristian Berg, and Daniel Hansson. “SZZ Unleashed:
An Open Implementation of the SZZ Algorithm - Featuring Example Usage in a Study
of Just-in-Time Bug Prediction for the Jenkins Project.” In: (Mar. 2019).

[2] Daniel Alencar da Costa, Shane McIntosh, Weiyi Shang, Uirá Kulesza, Roberta Coelho,
and Ahmed E. Hassan. “A Framework for Evaluating the Results of the SZZ Approach
for Identifying Bug-Introducing Changes.” In: IEEE Transactions on Software Engineering
43.7 (2017).

[3] Sunghun Kim, Thomas Zimmermann, Kai Pan, and E. Jr. “Automatic Identification of
Bug-Introducing Changes.” In: (Sept. 2006).

[4] H. W. Kuhn. “The Hungarian method for the assignment problem.” In: Naval Research
Logistics Quarterly 2.1-2 (1955), pp. 83–97.

[5] V. Levenshtein. “Binary codes capable of correcting deletions, insertions, and rever-
sals.” In: Soviet physics. Doklady 10 (1965), pp. 707–710.

[6] Christophe Leys, Christophe Ley, Olivier Klein, Philippe Bernard, and Laurent Licata.
“Detecting outliers: Do not use standard deviation around the mean, use absolute
deviation around the median.” In: Journal of Experimental Social Psychology 49.4 (2013).

[7] Edmilson Neto, Daniel Costa, and Uirá Kulesza. “The Impact of Refactoring Changes
on the SZZ Algorithm: An Empirical Study.” In: Mar. 2018.

[8] Edmilson Neto, Daniel Costa, and Uirá Kulesza. “Revisiting and Improving SZZ
Implementations.” In: (Sept. 2019).

[9] Refactoring: Improving the Design of Existing Code. USA: Addison-Wesley Longman
Publishing Co., Inc., 1999.

[10] Mina Remeli. “Enhanced-SZZ: an improved code change labeling algorithm.” MA
thesis. 2019.

[11] Danilo Silva and Marco Tulio Valente. “RefDiff: Detecting Refactorings in Version His-
tories.” In: Proceedings of the 14th International Conference on Mining Software Repositories.
IEEE Press, 2017.

[12] Jacek Sliwerski, Thomas Zimmermann, and Andreas Zeller. “When do changes induce
fixes?” In: ACM Sigsoft Software Engineering Notes 30 (July 2005).

[13] Nikolaos Tsantalis, Ameya Ketkar, and Danny Dig. “RefactoringMiner 2.0.” In: IEEE
Transactions on Software Engineering PP (July 2020), pp. 1–1.

[14] Chadd Williams and Jaime Spacco. “Branching and merging in the repository.” In:
(Jan. 2008), pp. 19–22.

[15] Chadd Williams and Jaime Spacco. “SZZ revisited: verifying when changes induce
fixes.” In: (Jan. 2008).

39

	Abstract
	Contents
	List of Figures
	List of Tables
	Listings
	1 Introduction
	1.1 Goals
	1.2 Contributions
	1.3 Overview

	2 Background
	2.1 Version Control and Issue Tracking Systems
	2.1.1 Version Control Systems and the Usage of Git
	2.1.2 Issue Data

	2.2 The Original SZZ Algorithm
	2.2.1 Classifying Changes as Fixes
	2.2.2 How Changes Can Induce Fixes

	2.3 Enhancements to the SZZ Algorithm
	2.3.1 Line Annotation Strategies
	2.3.2 Cosmetic Changes
	2.3.3 History of Insertion-Only Fixes

	2.4 VaRA-Tool-Suite
	2.4.1 The Project Interface
	2.4.2 The Provider Interface

	3 Implementation
	3.1 The Interfaces
	3.1.1 The Bug Provider
	3.1.2 PygitBugs and RawBugs

	3.2 Finding Fix-Inducing Commits
	3.2.1 Searching by Issue Events
	3.2.2 Searching by Commit Messages

	3.3 Finding Introducing Commits
	3.3.1 Commit Message Bugs
	3.3.2 Issue Event Bugs

	3.4 SZZUnleashed as Research Tool

	4 Experiments
	4.1 Evaluation Metrics
	4.1.1 Earliest Bug Appearance
	4.1.2 Future Impact of Changes
	4.1.3 Realism of Bug Introduction
	4.1.4 Criteria for the Manual Inspection

	4.2 Projects Used
	4.3 Comparing Keyword Matching Strategies
	4.4 Bug Provider vs. SZZUnleashed

	5 Evaluation
	5.1 Results
	5.1.1 Keyword Matching Strategies
	5.1.2 Bug Provider vs. SZZUnleashed

	5.2 Discussion
	5.2.1 Keyword Matching Strategies
	5.2.2 Bug Provider vs. SZZUnleashed

	5.3 Threats to Validity

	6 Concluding Remarks
	6.1 Summary
	6.2 Future Research
	6.2.1 Enhancing Fix Detection Based On Issue Events
	6.2.2 Implementing a Simple Documentation Change Filter
	6.2.3 Finding Introducers for Insertion-Only Fixes

	 Bibliography

