
Department of Informatics and Mathematics

Programming Group

Diploma Thesis

A Description Language for Feature-Oriented

Software Development

Author:

Sebastian Scharinger

12th June 2009

Advisors:

Prof. Christian Lengauer, Ph.D.,

Dr.-Ing. Sven Apel

University of Passau

Department of Informatics and Mathematics

94030 Passau, Germany

Scharinger, Sebastian:

A Description Language for Feature-Oriented
Software Development
Diploma Thesis, University of Passau, 2009.

Contents

List of Figures iii

Table of listings iv

1 Introduction 1

1.1 Problems of Object Oriented Software Design in Product-Line De-
velopment . 2

1.2 Motivation . 3
1.3 Outline . 5

2 Background 7

2.1 Features and Feature Composition 7
2.1.1 General Feature Structure Tree 8
2.1.2 Feature Composition . 9
2.1.3 Feature Interactions . 10

2.2 XML-Schema Basics . 12

3 The FST Description Language 15

3.1 Describing the General FST-Model via XML 15
3.1.1 Type De�nition for Terminal and Non-Terminal Nodes . . 15
3.1.2 De�nition of the Program Description 16

3.2 Extending the General FST-Model for Java Source Code 18
3.2.1 Mapping of Packages, Classes and Interfaces to Non-terminal

Nodes . 18
3.2.2 Mapping of Fields, Constructors and Methods to Terminal

Nodes . 19
3.3 Extending the XML-Description 20

3.3.1 Several Extensions . 20
3.3.2 Type de�nition for Packages, Classes and Interfaces 22
3.3.3 Type de�nition for Fields, Constructors and Methods . . . 22
3.3.4 Example . 24

4 Implementation of a Code Generator for FST-DL-Documents 26

4.1 General Approach to Parse Source Code Artefacts 27
4.2 Parser Tier . 27
4.3 Converter Tier . 28
4.4 Generator Tier . 32

4.4.1 Data Transformations . 33

i

Contents

5 The Application of FST-DL 35

5.1 Representing an XML-Document in a Tree Model 35
5.2 Graphical Visualization of the FST 35

5.2.1 Displaying FST as a Tree 35
5.2.2 Displaying FST as a Graph and Feature Interactions . . . 36

5.2.2.1 Finding Cyclic References between Features . . . 37
5.3 Composition of Features . 38
5.4 Case Studies . 39

5.4.1 GUIDSL . 39
5.4.2 GPL . 40
5.4.3 Violet . 40

6 Summary 42

6.1 Conclusion . 42
6.2 Future Works . 42

Bibliography 44

A Appendix 49

A.1 Additional Graphics . 49
A.2 Additional Listings . 51

ii

List of Figures

2.1 Implementation and FST of the feature StackBase 9
2.2 A FST superimposition Empty •Base = EmptyBase 10
2.3 Pseudo-code of features f1,f2 and f3 11
2.4 Pseduo-code of Programs p1 and p2 12
2.5 Parts of an XML-Schema . 14
2.6 The Typesystem of XML Schema 14

3.1 Both ways of mapping . 20
3.2 The FST-DL type system . 23
3.3 The Document Structure . 23
3.4 The FSTs of the StackBase feature and its extension the StackEle-

mentCount feature. 24
3.5 Implementation of the StackBase feature and its extension the

StackElementCount feature. 25

4.1 The state diagramm of the used automaton 29

5.1 The Tree Representation of a FST-DL Document 36
5.2 The Graph Representation of a FST-DL Document 37
5.3 The Cyclic Reference between Features 38
5.4 Cyclic reference in GUIDSL . 40

A.1 The extract of the UML model of the state machines' classes . . . 49
A.2 The Graph Representation of a FST-DL Document with 88 Features 50
A.3 Representation of GUIDSL features 50

iii

Table of listings

2.1 An example XML document describing the programm from �gure
2.1 . 12

2.2 The schema used in listing 2.1 . 13

3.1 Complex type de�nition of a non-terminal node 16
3.2 Complex type de�nition of a terminal node 16
3.3 Modelling the StackBase elements 16
3.4 De�nition of the root element . 17
3.5 An XML-Document describing the StackBase-example from �gure

2.1 by using the further introduced types and the root element . . 17
3.6 The Typede�nition of the FeatureNodeType 21

4.1 Introduction of the GDeep supercall statement to the parser de-
scription . 28

5.1 The compose method implemented by the composer. 38

A.1 The generated program description for the two FSTs de�ned in
�gure 3.5 . 51

A.2 Part of the generated program description for GarphJak example
shown in �gure 5.1 . 52

iv

Chapter 1

Introduction

Todays software engineering encounters a lot of new facades compared to years
ago. On the one hand lots of software products increase in terms of their func-
tionality, which is often only used to a minor degree by a user. On the other
hand mobile computing and embedded systems assign new tasks, by limitation of
hardware resources like memory capacity, to a software engineer. Both of these
challenges implie the goal to establish customized software products by each of
the mentioned needs. Additionally a high reusability of program components
should be achieved by modularisation and cohesion of these components.
Regarding software products like an comercial database management system
(DBMS) it is outstanding, that these applications ful�ll a bunch of di�erent
requirements due to their assignments. In terms of mobile computing sometimes
lots of the features of these systems are not needed and should be held out, be-
cause of limitation of memory. For example features like transaction management
and query optimazation could be held out because the amount of data stored in
these systems does not justify the amount of resources these features need.
With standard techniques of software engeneering this leads to di�erent imple-
mentations of the same functionality to meet di�erent requests like:

• optimization according to reduce consumption of electricity,

• optimization in performance and

• optimization in use of resources.

One possible solution to this problem is the theory of product-lines and families.
A product-line can be described by1:

A software product line (SPL) is a set of software-intensive systems
that share a common, managed set of features satisfying the speci�c
needs of a particular market segment or mission and that are developed
from a common set of core assets in a prescribed way.

Software Engeineering Institute
Carnegie Mellon University

There are several works, like [Bat00], [Gri00a] and [Gri00b], which are dealing
with creating product lines according to the following principles:

1 This description is taken from the website http://www.sei.cmu.edu/productlines/index.html.

1

1. Introduction

• A code basis with the necessary functionality for all products.

• A set of di�erent features which contains di�erent functionalities and can
be added to the code basis.

• A feature can be necessary, optional or alternatively used.

• A certain product of the SPL can be con�guered and generated by selecting
di�erent features.

The problem is that there is no appropriate technologie to compose the SPL in
the desired quality. The next section deals with this problem in object-oriented
software design.

1.1. Problems of Object Oriented Software

Design in Product-Line Development

To understand the problems which have to be faced in Product-Line Development
two fundamental principles in software design have to be mentioned: separation
of concern and cohesion and modularity

Separation Of Concern

The article [Par72] by D.L. Parnas was one of the �rst which dealt with the
concept of partitioning software in di�erent modules. According to this article
these modules can be written only with little knowlege about the other modules
in a complex software system and this leads to the following bene�ts:

• Managerial: because there is no need knowlege about the other modules
in the system, the development can take place in seperate groups with less
need of communication. This should reduce the amount of time it will take
to create the complete system.

• Product Flexibility: modules can internally be changed, without any
in�uence on the other modules

• Comprehensibility: each module can be tested and reviewed at once.
This makes it easier to track problems.

Parnas did not use the expression of Separation of Concerns in his article, propably
E.W. Dijkkstra was the �rst who formed this expression in [Dij82].
Through the years this was one of the main principles of software development,
although it has changed a little bit in its characteristics. Nowadays the focus
on structuring software into modules moved from strictly technical aspects to
more problem oriented aspects. This means that parts of the software which are
designed to a certain intention should be grouped in an individual module. For
example logging the actions of a user throughout a whole application should be
done by a dedicated module.

2

Chapter 1. Introduction

Cohesion and Modularity

According to [SMC79] cohesiveness is achieved by decoupling the di�erent mod-
ules. To decouple modules it is necessary to reduce the relationship (or bindings)
between di�erent modules, whereas the binding within a certain module should
be maximized. Modularity is then achieved by building coherent and encapsu-
lated units. These units can be understood as mostly independent modules.

These principles of software design cause several problem in SPL development.
The main problems are:

Crosscutting Concerns:

describe a concern which can not be encapsulated in a module. One example for
a crosscutting concern is logging a method call. Even if the logic which does the
logging, e.g. make a console output, can be modularized. It needs extension to all
the methods which should be logged. These methods usually spread throughout
several other modules.

Feature Traceability Problem:

goes along with crosscutting concerns. Because the parts of a crosscutting con-
cerns' source code is placed in di�erent modules of the program. It can hardly
be determined where to �nd the source code of a concern. On the other side it is
hard to determine whether a certain piece of code belongs to the module where
it is found or to a crosscutting concern.

Extensibility Problem:

is dealing with the problem that common design patterns like composite- or visi-
tor -pattern2 can be extended only in one dimension. Every additional dimension
demands changes throught di�erent modules.

Preplanning Problem:

means that increments of a modules can force changes to other modules or even
in the same and therefore must be preplanned.

1.2. Motivation

Due to the problems mentioned in section 1.1 a di�erent way to standard object-
oriented software design must be choosen to develop e�ciently SPLs. There are
lots of successful approaches in composing software artefacts by using superimpo-
sition3 throughout di�erent parts of software design and implementation [OH92]
[Kat93] [VN96] [Pre97a] [HO93] [MH03]. But all these approaches are engaged
only in very explicit parts of software aspects in contrast to the globality of su-
perimposition [AL08].

2 A description of these patterns can be found in [GHJV95].
3 Section 2.1 gives a brief introduction to feature-oriented programming and also to superim-

position.

3

1. Introduction

With [ALB+07] a global de�nition of feature composition using superimposition
is presented. To build a practical toolset based on this de�nition an description
language is needed which recognizes the global theorie. This language should be
both independent from the software artefacts which it describes and independent
of applications which make use of it.
With XML4 these goals can be accomplished as XML is designed as a exchange
format for a variety of data [W3Cb]. There are a lot of bene�ts and usage types
for XML, especially the ones mentioned by [WK03] make it essential for this
purpose:

• Descriptive markup

This point ful�lls two necessary requirements for an exchange format (or
language) which is needed. On the one hand XML is a markup language
so that text (or information5) is always embedded in a certain markup
structure. On the other hand the markup names can freely be choosen
which makes a documents' content and structure both self describing and
understandable by people and machines.

• Hierarchical structuring
As mentioned previously the text in XML documents is structured by
markup tags. Every begin and end markup tag with the same name forms
an element, e.g. 〈myElement〉〈/myElement〉 forms an element calledmyEle-
ment6. All elements belong to a root element (or document element) and
each element can contain other elements itself. This leads to a tree like
structure of elements in an XML document. For this reason XML is perfect
to describe structures like the FST.

• Extensibility and Adaptivity

XML does not force one to use a certain vocabulary, in contradiction to
HTML, so everyone can de�ne himself a vocabulary on which his documents
are based on. So it is possible to de�ne a vocabulary especially on the terms
of FST7.

• Standardization and Openness

XML itself is an open standard so everyone can use it. It is a meta language
to de�ne di�erent types of documents, but each of these documents can
be handled by the same tools8. This makes it possible to describe the
information about an FST independently from any target application, which
might process the information for further usage.

4 Refer to [BPSM+] for a brief introduction.
5 As XML originally was designed for text publishing it contains only markup and text. Text

and information are used synonymously in this context.
6 In this case myElement is also the name of this element.
7 This is usually done by Document Type De�nition (DTD) [W3Cc] or by XML-Schema

[W3Cd].
8 Not every tool can handle the information contained in a certain document, but every tool

which is able to handle documents itself can handle every type of document.

4

Chapter 1. Introduction

• Separation of Content and Presentation

XML was designed to capture semi structured text by using a self de�ned vo-
cabulary for structuring. Each initial representation of an XML-Document
leads to a tree like representation of its structure. The way how this infor-
mation may be processed depends only on the application which uses this
representation. The same XML-Document can be represented or processed
in di�erent ways, e.g. visualization of an FST in section 5.2 or composing
features in section 5.3.

An XML-Document itself does not necessarily need an external de�ned vocabu-
lary or grammar. But without de�ning one it, is only possible to check if such a
document is well formed9. The notion of a well formed document includes only
the fact that it is syntactically and structurally correct in respect of using the
prede�ned symbols for markup and using a tree structure for the elements. Well-
formness of documents does not su�ce to use XML as an exchange format. An
exact grammar and vocabulary for a document is needed so that every applica-
tion can check if a document satis�es the needs of the application.
Such grammars can be de�ned by XML-Schema and each document can then be
checked if it is valid against an XML-Schema. XML-Documents can only be valid
against a DTD or XML-Schema. If none of them exists one can not determine
whether a document is valid or not. There is also a connection between well
formness of a document and validity of a document:

• A not valid document can be a well formed document regardless validity
can not be determined or it is actually not valid.

• A not well formed document can never be a valid document.

Because of the mentioned bene�ts of XML as an exchange language and the abil-
ity to easily verify the validity of a given document with existing XML-Schema
de�nition the desicion was made to desgin a formal description language in a
XML-Schema de�nition. This de�nition, its extension to program language spe-
ci�c elements and the implementation of tools generating and using this language
are subject of this work.

1.3. Outline

This work is structured as follows:

Chapter 2 introduces the main idea of features and feature composition.
As well a basic introduction to XML-Schema is given in this
chapter.

Chapter 3 shows how the formal de�nition of feature structure trees
can be mapped into an XML-Schema de�nition. It also shows

9 Refer to [W3Cb] 2.1 for an exact de�nition of well formed documents.

5

1. Introduction

how this de�nition can be extended to capture the language
speci�c elements of the programming language Java.

Chapter 4 explains how the XML-Shema de�nition can be implemented
into a parser to generate FST-DL-Documents out of Java
source code artefacts.

Chapter 5 shows some example applications build on top the generated
FST-DL-Documents. It also presents three case studies which
were made with the introduced applications.

Chapter 6 summarizes the whole work and gives a short outline for
future works based on this one.

6

Chapter 2

Background

This chapter introduces the main principles and techniques on which this work
is based.
The �rst section shows the main ideas of features their composition and its ap-
pliance in software engineering. Also the idea of feature interactions and their
impact on feature oriented software design are pointed out.
The second section then introduces the basics of XML and XML-Schema which
form the basis of the introduced description language and its applications.

2.1. Features and Feature Composition

Throughout di�erent works related to feature-oriented programming there are
many di�erent de�nitions of what a feature is or should be like1:

A feature is a product characteristic that users and customers view
as important in describing and distinguishing members of the product-
line. A feature can be a speci�c requirement, a selection amongst op-
tional or alternative requirements, or related to certain product char-
acteristics, such as functionality, usability, and performance, or im-
plementation characteristics, such as size, execution platform or stan-
dards compliance.

Martin L. Griss
Implementing Product-Line Features By Composing Component Aspects

This de�nition captures the need for features in product-line development and
what a feature should contain. But it does not de�ne how a feature in�uences a
program or another feature.
There are several other related researches which are dealing with feature re�ne-
ments2 like [Pre97a] [BSR03] [BO92] [HO93] and [KIL+97], but there is no overall
de�nition of a feature. Because this work gives an introduction of an overall de-
scription language for feature-oriented software development, a feature de�nition
is needed which is independent from the underlying re�nement technologies and
captures what a feature is. In [ALB+07] such a de�nition is given by:

1 This quote is taken from [Gri00a].
2 A feature re�nement describes the way how features are modifying underlying programs.

7

2. Background

A feature is a structure that extends and modi�es the structure of
a given program in order to satisfy a stakeholder's requirement, to
implement a design decision, and to o�er a con�guration option.

Sven Apel, Christian Lengauer, Bernhard Möller, and Christian Kästner
An Algebra for Features and Feature Composition

It must be said that a program is the aplliance of two or more features and the
resulting program itself can as well be regarded as a feature. This leads to the
mathematic feature description3:

• : F × F → F p = fn • fn−1 • . . . • f2 • f1

2.1.1. General Feature Structure Tree

Regarding the recursive de�nition of a feature one can see a feature itself contains
a lot of structural information. Therefore a feature is a structure which must be
able to hold the information about modifying the structure of a given program.
Because a program itself can be regarded as a feature it must hold the structure
information about this feature or feature composition.
Although a program does not exist of source code, or source code artifacts in
this case, more than on other artifacts [BSR03] [CHOT99] [AGM+06], this work
is based on describing the structure of source code artifacts as an example for a
program representation which is feature-ready4. The language which is used in
this work, is mainly the object-oriented program language Java 1.4 5 with some
limitations and some extensions.
The fact that source code artifacts contain hierarchically ordered structure ele-
ments, classes belonging to packages, methods belonging to classes and so on,
leads to a tree like representation. This representation is called feature struc-
ture tree (FST). There is a strong connection between an FST, at least if it is
representing code artifacts, and the abstract syntax tree of this artifact. Unlike
the abstract syntax tree the detailed level of information contained in the FST
depends mainly on the further processing 6. Independent of the the detail level
there is always a tree structure composed of inner nodes and leave nodes.
Figure 2.1 shows the implementation of a simple Java class called Stack with two
methods and a �eld. Additionally the associated FST is shown on the right side
of this �gure. In this exapmle each node of the FST has a name and is labled
with a type (package, class, method and �eld), these are necessary informations
for further processing and determination of tree nodes.

3 • denotes the feature composition operator, F denotes a set of features fn and p the result
program.

4 A feature-ready artefact is a hierarchly structured artefact [ALB+07].
5 All informations about the programming language Java and its distributions can be found

at [Sun08].
6 In chapter 5 one can see di�erent applications where each needs a di�erent level of informa-

tion from the FST.

8

Chapter 2. Background

1 package s tack ;
2 class Stack {
3 Vector e lements = new Vector () ;
4 void push (Object ob j e c t) {
5 e lements . add (0 , ob j e c t) ;
6 }
7 Object pop () {
8 return e lements . remove (0) ;
9 }
10 Object top () {
11 return e lements . f i r s tE l emen t () ;
12 }
13 }

(a) The Sourcecode of the StackBase fea-
ture

stack

Stack

push

pop

elements

package

class

method

method

field

(b) The FST of the StackBase feature

Figure 2.1.: Implementation and FST of the feature StackBase

2.1.2. Feature Composition

Now by knowing what a feature and its structual representation, the FST, is it
is possible to de�ne the composition of features via their FSTs.
[ALB+07] proposes to compose features by FST superimposition7, where two
FSTs are superimposed by recursivly superimposing the subtrees starting with
the root. How the superimposition takes place is de�ned informal by [ALB+07]:

The basic idea is that two trees are superimposed by superimposing
their subtrees, starting from the root and proceeding recursively. Two
nodes are superimposed to form a new node (a) when their parents
have been superimposed previously or both are root nodes and (b) when
they have the same name and type. If two nodes have been superim-
posed, the whole process proceeds with their children. If not, they are
added as separate child nodes to the superimposed parent node. This
recurses until all leaves have been processed.

Sven Apel, Christian Lengauer, Bernhard Möller, and Christian Kästner
An Algebra for Features and Feature Composition

Figure 2.2 shows a feature composition using the StackBase-example. The inten-
tion is to add a new method isEmpty which indicates whether the stack is empty
or not and re�nes the method pop, for example to throw an exception when the
stack is empty. The package stack and the class Stack are each merged into
one node containing the superimposition of their child nodes. The new method
isEmpty is added while the re�nement and the base method pop lead to one new
node in the resulting FST. To model this behaviour it is necessary to distinguish
between two types of nodes in a FST: non-terminal and terminal nodes8.

7 Refer to [Bos99] [BSR03] [CM86] [OH92] for further informations about superimposition and
techniques.

8 In [ABKR] these nodes are called compound and atomic. These expressions are synony-
mously used to non-terminal and terminal.

9

2. Background

Figure 2.2.: A FST superimposition Empty •Base = EmptyBase

Non-terminal nodes are the inner nodes of an FST, like Stack in �gure 2.2. A
non-terminal node does not contain any content except its implementation struc-
ture, modelled by the subtree rooted at the non-terminal node and its name and
type.

Terminal nodes are the leaves of an FST. Additionally to its name and type
a terminal node can have, and usually does have, some content which is not
modelled in the FST. It does not necessarily mean that they do not have any
implementation structure below, like a non-terminal node, but in the current
representation of the FST this structure is hidden.
In the Java example packages and classes are modelled as non-terminal nodes
which are merged when their name and type is the same. Fields and methods
are modelled as terminals, for each terminal there must be a speci�c rule how to
superimpose these terminals.

The decision whether a speci�c implementation artifact is represented by a non-
terminal or a terminal node depends on the granularity of the FST and is one
subject of chapter 3. The formal algebraic model of features and their compo-
sition can be found in [ALB+07], where also a full description of features and
composition in general can be found.

2.1.3. Feature Interactions

When composing features the order in which features are composed is very im-
portent [ALB+07] [LBL06] [Bel03] [Pre97b]. The resulting programs p1 and p2

can be di�erent even when they are composed by the same features f1, f2 and
f3 where f3 • f2 • f1 = p1 and f2 • f3 • f1 = p2. Feature f1 introduces a class A
with a method getX() and a �eld x, pseudo-code shown in �gure 2.3(a). Feature
f2, pseudo-code shown in �gure 2.3(b), adds another method setX to class A and
feature f3, pseudo-code shown in �gure 2.3(c), re�nes both methods and adds a
tracing output statement. It depends on the composition mechanism to handle
the fact that a method may not be present. For this example it is assumed that
the • operator is able to re�ne only one method if the other is not present.
The di�erent composing results p1 and p2 are shown in �gure 2.4. While both
methods getX and setX produce an output when they are called in program p1,

10

Chapter 2. Background

class A {
int x ;

int getX () {
return x ;

}
}

(a) Feature f1

class A {

void setX (int newX) {
x = newX ;

}
}

(b) Feature f2

class A {

int getX () {
System . out . p r i n t l n ("called getX") ;
Super ;

}

int setX (int newX) {
System . out . p r i n t l n ("called setX") ;
Super ;

}
}

(c) Feature f3. The keyword Super denots that
the code from the re�ned method replaces this
keyword.

Figure 2.3.: Pseudo-code of features f1,f2 and f3

only the method getX produces an output in program p2.
Interactions between features can be dynamic or static:

Dynamic interaction: always occours at runtime, when data is exchanged be-
tween di�erent features. A feature can re�ne a method and change the return
value of a method, this will a�ect other features when using this method.

Static interaction: always occurs on implementation level. Features are refer-
encing implementation artefacts which are introduced by other features. [ABKR]
de�nes an additional distinction within static interactions. Reference interactions
occur when one feature references another feature9. Structural interactions occur
when one feature re�nes another feature. These interactions can be unidirec-
tional, only feature A references feature B, or biderctional, feature A references
feature B and vice versa.

There are several works, like [CKMRM03] [LBN05], dealing with feature interac-
tions and resolving these interactions. While resolving interactions is not in the
scope of this work, it has to be mentioned, that feature interactions are the cause
of many problems in feature-oriented programming like the feature optionality
problem10 and the fact that the amount of interactions grows exponentially with
the number of features in an SPL.

9 For example a method call from one method in feature A to a method in feature B.
10 Refer to section 5.2.2 for further information on this problem.

11

2. Background

class A {
int x ;

int getX () {
System . out . p r i n t l n ("called getX"

) ;
return x ;

}

void setX (int newX) {
System . out . p r i n t l n ("called setX"

) ;
x = newX ;

}
}

(a) Program p1

class A {
int x ;

int getX () {
System . out . p r i n t l n ("called getX"

) ;
return x ;

}

void setX (int newX) {
x = newX ;

}
}

(b) Program p2

Figure 2.4.: Pseduo-code of Programs p1 and p2

2.2. XML-Schema Basics

According to [Sch] the purpose of an XML Schema is de�ned as:

An XML Schema

• de�nes elements that can appear in a document.

• de�nes attributes that can appear in a document.

• de�nes which elements are child elements.

• de�nes the order of child elements.

• de�nes the number of child elements.

• de�nes whether an element is empty or can include text.

• de�nes data types for elements and attributes.

• de�nes default and �xed values for elements and attributes.

These things are achieved by de�ning elements and their types in the schema
which is the base of a schema de�nition. Therefore this section only deals with
explaining the way to de�ne elements and types, all other possibilities are held
out.

Listing 2.1: An example XML document describing the programm from �gure 2.1
<?xml version="’1.0" encoding=’ISO-8859-1’>
<ProgrammDescription ProgrammLanguage="Java"

xmlns="http://www.scharinger.de/FSTDLSchemata"
xmlns :x s i="http://www.w3.org/2001/XMLSchema-instance"
xs i : s chemaLocat ion="http://www.scharinger.de/FSTDLSchemata.

xsd">
<Class Name="Stack" Package="stack">

<Var iab le>elements</Var iab le>
<Method>push</Method>
<Method>pop</Method>
<Method>top</Method>

</Class>
</ProgrammDescription>

12

Chapter 2. Background

Listing 2.2: The schema used in listing 2.1
<?xml version="’1.0" encoding=’ISO-8859-1’>
<xsd:schema xmlns :xsd :="http://www.w3.org/2001/XMLSchema"

targetnamespace="http://www.scharinger.de/FSTDLSchemata">
<xsd:e l ement name="ProgrammDescription" type="ProgrammDescriptionType"/>

<xsd:complexType name="ProgrammDescriptionType">
<xsd : sequence maxOccurs="unbounded">

<xsd:e l ement name="Class" type="ClassType"/>
</ xsd : sequence>
<x sd : a t t r i b u t e name="ProgrammLanguage" type="ProgrammLanguageType"/>

</xsd:complexType>

<xsd:complexType name="ClassType">
<xsd : sequence>

<xsd:e l ement name="Variable" type="xsd:string" minOccurs="0" maxOccurs="
unbounded"/>

<xsd:e l ement name="Method" type="xsd:string" minOccurs="0" maxOccurs="
unbounded"/>

</ xsd : sequence>
<x sd : a t t r i b u t e name="Name" type="xsd:string" use="required"/>
<x sd : a t t r i b u t e name="Package" type="xsd:string" use="required"/>

</xsd:complexType>

<xsd:s impleType name="ProgrammLanguageType">
<x s : r e s t r i c t i o n base="xs:string">
<xs:enumerat ion value="Java"/>

</ x s : r e s t r i c t i o n>

</xsd:s impleType>
</xsd:schema>

Listing 2.1 shows how the structure of the stack programm in �gure 2.1 could
be modelled in an XML-Document. The listing 2.2 shows the schema which is
the basis for this programm description. It contains some element and attribute
declarations as well as type de�nitions which are explained below.
An XML-Schema document consists mainly of two parts, the element and at-
tribute declaration and the type de�nition.
An element or attribute declaration designates a name and a type to an
element or attribute. This declaration can be global or local. Global elements
are declared within the <xsd:schema> element and local elements within a type
de�nition.
In listing 2.2 the element ProgrammDescription is global whereas all other ele-
ments and attributes are local. In terms of elements this is necessary, because
at least one global element is needed to have a root element in instance docu-
ments11.
A type de�nition like ProgrammDescriptionType describes the content of an
element of this type. The associativity of an element to a type is done within an
element declaration by the type attribute, e.g. <xsd:element name="Programm-
Description" type="ProgrammDescriptionType"/> declares an element with the
name ProgrammDescription and type ProgrammDescriptionType.
The Typesystem of XML-Schema is devided in simple types and complex types.
A simple type allows charactersets and listings or unions of them to be content
of the element. Therefore there are a lot of built-in datatypes de�ned in XML-

11 A document is called an instance document of a certain schema, if the document is valid
against the schema speci�ed in the attribute schemaLocation of the document's root node.

13

2. Background

Schema, for example string used in <xsd:element name="Variable" type=
"xsd:string" ... />.
There is also a mechanism to extend or restrict simple types shown in
<xsd:simpleType name="ProgrammLanguageType"> where the primitive type
string is restricted to the only value Java.
A complex type in contrast allows, that an element is composed of character
content as well as markup content.

Schema

Declaration Definition

Element

Attribute

Simple Type

Complex Type

Figure 2.5.: Parts of an XML-Schema

anyType

Simple Type

Atomic

Builtin

List Union

Complex Type

Sequence Choice All

Figure 2.6.: The Typesystem of XML Schema

14

Chapter 3

The FST Description Language

This chapter introduces the idea of an feature structure tree (FST) and its XML-
Representation.
In section 2.1.1 one can �nd a general de�nition about what an FST is like and
how it can be applied to some speci�c feature languages. This is the basis of the
following sections.
Sections 3.2 and 3.3 show how to extend the general idea of FSTs to a program-
language and application speci�c description language called FST-DL1.
At the end of this chapter one should be able to understand the basic idea of
an FSTs' XML representation. These are the basics of the prototypic imple-
mentation of a parser, shown in chapter 4 to parse Java source code into an
FSTDL-Document.

3.1. Describing the General FST-Model via XML

The general model of an FST, described in the last preceding section, allows it
to build suitable data models for any application dealing with feature oriented
programing or software engineering. As also mentioned in the preceding section,
this general FST-Model �ts to any program artifact which is feature ready. So
the missing thing is an exchange language which expresses the FST-Model of a
certain program artifact and also can be used in every type of application not
constrained by the techniques used in a special application. In order to meet all
these requirements, or at least most of them, an exchange format is necessary
which is independent of a target application and also extensible enough to model
the theory about FST. According to this, the FST-DL was embedded in an XML-
Schema de�nition.

3.1.1. Type De�nition for Terminal and Non-Terminal

Nodes

The de�nition of the feature structure tree in [ALB+07] is keept quite simple
by dividing the di�erent parts in two classes: terminal and non-terminal nodes.
Reproducing this in an XML-Schema is quite simple in the �rst approximation.
To model a basic FST, only two complex type de�nitions are necessary:

1 FST-DL is used as a shortcut for Feature Structure Tree Description Language.

15

3. The FST Description Language

• Non-Terminal

Listing 3.1: Complex type de�nition of a non-terminal node

<xs:complexType name="NonterminalNodeType">
<xs : s equence minOccurs="0" maxOccurs="1">

<xs : c h o i c e minOccurs="0" maxOccurs="unbounded">
<xs : e l ement name="Non-terminal" type="tns:NonterminalNodeType"

minOccurs="0" maxOccurs="1">
</ xs : e l ement>
<xs : e l ement name="Terminal" type="tns:TerminalNodeType" minOccurs="0"

maxOccurs="1">
</ xs : e l ement>

</ x s : c h o i c e>
</ xs : s equence>
<x s : a t t r i b u t e name="Name" type="xs:string" use="required" />

</xs:complexType>

This de�nition ensures that each element has a name-attribute and it en-
sures that it can have an unlimited amount of child nodes bth of Nonter-
minalNodeType- and TerminalNodeType-type.

• Terminal

Listing 3.2: Complex type de�nition of a terminal node

<xs:complexType name="TerminalNodeType">
<x s : a t t r i b u t e name="Name" type="xs:string" use="required" />

</xs:complexType>

An element of the TerminalNodeType-type can therefore only have a name-
attribute but no child elements.

With these two type de�nitions it is possible to model all feature structure trees
de�ned in [ALB+07]. The FST displayed in 2.1 could be expressed with the
following elements2:

Listing 3.3: Modelling the StackBase elements

<tns :Nontermina l Name:"stack" x s i : t y p e="tns:NonterminalNodeType">
<tns :Nontermina l Name:"Stack" x s i : t y p e="tns:NonterminalNodeType">

<tns :Termina l Name:"push" x s i : t y p e="tns:TerminalNodeType"/>
<tns :Termina l Name:"pop" x s i : t y p e="tns:TerminalNodeType"/>
<tns :Termina l Name:"elements" x s i : t y p e="tns:TerminalNodeType"/>

</ tns :Nontermina l>
</ tns :Nontermina l>

3.1.2. De�nition of the Program Description

To build documents representing a FST the de�nition of the root element is still
missing. There is one decission to make, when de�ning the type of the root
element:

• Each Feature Structure Tree should be modelled in its own document.

2 Note that the listing does not describe an XML-Document, only the elements included in a
document. To be an XML-Document a root element and the header must be inserted.

16

Chapter 3. The FST Description Language

Listing 3.4: De�nition of the root element
<xs : e l ement name="ProgramDescription">

<xs:complexType>
<xs : s equence minOccurs="0" maxOccurs="unbounded">

<xs : e l ement name="Feature" minOccurs="1" maxOccurs="unbounded" type="
tns:NonterminalNodeType"/>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>

• Feature Sructure Trees belonging to a certain Software Product Line are
combined in one document to describe the whole product line.

There are several pros and cons for both ways modeling this type. On the one
hand it is much comfortable to build a program based on one single document
then referencing di�erent documents describing whole product lines. On the other
hand the reusability of features would be much better if each is encapsulated in
its own document.
In XML-Schema there is no limitation to de�ne only one element which then can
be a root element of all instance documents. So both ways can be modelled as
legal root elements for instance documents. The �rst intention of this work was
to de�ne a structured language to supply other processing programs with the
necessary informations. Therefore only the second way is in the scope of this
work.
The root element is called ProgramDescription to indicate that it contains all the
Feature Structure Trees that are necessary to describe the whole program. The
de�nition in [ALB+07] does not care about bundling several trees in a descrip-
tion3.
To stay compliant with the de�nition of a FST, the root element de�nition shown
in listing 3.4 is keept quite simple as well. It only consists of a list of NonTermi-
nalNodeType-elements which are called Feature. Note that in the original de�ni-
tion there is no parent node of a FST, but when describing a set of Features in
one document it is easier to distinguish them by making them explicit.
The whole description of the StackBase-example in �gure 2.1 is shown in listing
3.5.

Listing 3.5: An XML-Document describing the StackBase-example from �gure
2.1 by using the further introduced types and the root element

<?xml version="1.0" encoding="iso-8859-1"?>
<tns :ProgramDescr ipt ion xmlns : tns="http://www.scharinger.de/

FOPClassRepresentation" xmlns :x s i="http://www.w3.org/2001/XMLSchema-instance
">

<tns :Fea tu r e Name:"StackBase" x s i : t y p e="tns:NonterminalNodeType">
<tns :Nontermina l Name:"stack" x s i : t y p e="tns:NonterminalNodeType">

<tns :Nontermina l Name:"Stack" x s i : t y p e="tns:NonterminalNodeType">
<tns :Termina l Name:"push" x s i : t y p e="tns:TerminalNodeType"/>
<tns :Termina l Name:"pop" x s i : t y p e="tns:TerminalNodeType"/>
<tns :Termina l Name:"elements" x s i : t y p e="tns:TerminalNodeType"/>

3 The description has nothing to do with the technical way to build up a program using several
Feature Structure Trees which is explained in [ALB+07].

17

3. The FST Description Language

</ tns :Nontermina l>
</ tns :Nontermina l>

</ tns :Nontermina l>
</ tns :ProgramDescr ipt ion>

3.2. Extending the General FST-Model for Java

Source Code

To do some further processing on a Feature Structure Tree, some additional in-
formation about the structure is comfortable or somtimes necessary. Taking the
pop() terminal from the StackBase-example in �gure 2.1 it is not evident that this
represents a method. Even with regard to using only Java examples it can not be
optained if this terminal represents a method or a constructor of the underlying
class. There has to be an additional check to the name of the parent element, to
make sure that this can only be a method and no constructor4.
The following extensions to the basic de�nition of a Feature Structure Tree are
not part of [ALB+07]. This section shows a way to map several parts of Java
source code to the model of FST.

3.2.1. Mapping of Packages, Classes and Interfaces to

Non-terminal Nodes

As mentioned earlier, a non-terminal represents an inner node of the FST with
a name and a type. During the process of superimposition the substructure
of these nodes are subject of the recursive process. The node itself does not
take any changes. In case of packages this perception maps perfect, because the
package structure serves only as a path to �nd the object in the object structure.
Regarding classes and interfaces they represent thier own types and the signature,
e.g. the methods or �elds they contain, are di�erenting factors in terms of object
oriented programming. From the point of view of feature composition they are
only containers. So the mapping will work as following:

• Package: The non-terminal node representing a package is of the type
Package and gets the name of the representing package.

• Class or Interface: The non-terminal node representing a class or inter-
face is of the type Class or Interface and gets the name of the representing
class or interface.

All other criteria of classes or interfaces, like the modi�ers or their implements list
and so on, are left out in this view. Whether these parts are modelled as terminal
nodes or keept as additional information depends on the underlying application
or rule set which is used. It is possible to restrict the superimposition process on
not manipulating the modi�ers of a class, so adding them as a terminal node will

4 A Constructor has always the name of the the class in Java.

18

Chapter 3. The FST Description Language

make no sense. In the scope of this work they are modelled as terminal nodes,
but not explicit mentioned anymore.

3.2.2. Mapping of Fields, Constructors and Methods to

Terminal Nodes

A terminal node's content is subject of modi�cation during the superimposition
process, so these nodes are represented by their type name and content. In the
Java language it is not possible to declare �elds with di�erent types and equal
names on the same level. Therefore it is enough to take the name of the �eld
as the name of its representing node. In case of constructors and methods, the
signature5 must be unique during the whole class or interface. Therefore the
name of representing node is assigned to the signature. Fields, Constructors and
Methods are mapped as:

• Field: The terminal node representing a �eld is of the type Field and gets
the name of the �eld. The content of this node is the whole �eld declaration,
e.g String �eld = "�eld";.

• Constructors and Methods: The terminal node representing a construc-
tor or method is of the type Constructor or Method and gets the signature
as its name. The content of this node is the whole body of the representing
constructor or method.

There are several problems with asigning these objects to terminal nodes:

• These objects also have modi�ers which are modelled as terminal nodes
when regarding classes or interfaces.

• Methods and constructors can have a list of exceptions which are thrown
inside the body. These list can also be a matter of change and therefore
must be modelled as a terminal node.

• The real subject of change in the superimposition process is the content of
these objects and not the object itself6.

Due to this the mapping seems not to be correct and only the content of these
objects can be a terminal node. The objects themselfs must be represented by
non-terminal nodes. As mentioned before it depends only on the granularity
which the underlying application needs. To keep the examples clearly arranged
during the rest of this work, the mapping of �elds, constructors and methods to
terminal nodes will be keept.
Figure 3.1 shows both ways of mappings7. On the left there is the mapping where
�elds, methods and constructors are terminal nodes and the content is included
in this node. On the right hand each content is a terminal node, while the others
are modelled as non-terminal nodes.
5 In the Java language the signature contains the name and the parameter values.
6 Even this depends on the strategy how the composing is implemented.
7 The name of each node is consists of "name":"type".

19

3. The FST Description Language

stack:Package

Stack:Class

push:Method
Content

pop:Method
Content

elements:Field
Content

(a) Mapping with �elds, constructors and
method as terminal nodes

stack:Package

Stack:Class

push:Method

pop:Method

elements:Field

content:Content

content:Content

content:Content

(b) Mapping with �elds, constructors and
method as non-terminal nodes and an ad-
ditional terminal node:Content

Figure 3.1.: Both ways of mapping

3.3. Extending the XML-Description

Extending the XML-Description is analogous extending the general FST-Model.
All newly introduced type de�nitions are derivations of the type de�nitions for
non-terminal and terminal nodes. There are several additional requests on the
structure of FST by the Java language which had to be modelled as well, e.g. a
method body can not contain a regular class de�nition. There are also requests
by the de�nition of the root element of a description element and the FST, e.g.
the root element's children must be feature nodes which are modelled as non-
terminal nodes, but a package node can not have feature nodes as its children.
Also, as mentioned before the lists of exceptions, which a method can throw, are
not part of the terminal and non-terminal de�nitions, but essential for the further
processing. They must be a part of an elements description.
So this section starts with some extensions on the existing types to ensure a
complete and correct representation of the underlying source code. Later on the
extensions of terminal and non-terminal nodes are made to map the di�erent
types in Java. In the end the whole picture of the type structure will be shown
and the StackeBase example will be decoded into the FST-DL.

3.3.1. Several Extensions

To ensure that the allowed types for children are determined by its parent, e.g. a
class can not have a package as its child, some structure types were introduced:

• FirstOrderStructureType

• SecondOrderStructureType

• ClassOrInterfaceStructureType

While FirstOrderStructureType is a direct subtype of NonterminalNodeType and
remaining types are subtyped along the order in the above list, every subtype of

20

Chapter 3. The FST Description Language

Listing 3.6: The Typede�nition of the FeatureNodeType
<xs:complexType name="FeatureNodeType">

<xs:complexContent>
<xs : e x t en s i on base="tns:FirstOrderStructureType">

<xs : s equence minOccurs="1" maxOccurs="1">
<xs : e l ement name="NonterminalNode" type="tns:FirstOrderStructureType"

minOccurs="0" maxOccurs="unbounded"/>
</ xs : s equence>
<x s : a t t r i b u t e name="JavaType" type="xs:string" f i x e d="Feature" use="

required"/>
</ x s : e x t en s i on>

</xs:complexContent>
</xs:complexType>

these types is again a NonterminalNodeType. This makes it possible to control
the structure and to keep the semantic of FST Nodetype System, by allowing only
child elements of a certain structure type.

Since a feature is a central in the program description and a necessary element
while modeling several FSTs in one document it was assumed to the type system.
Listing 3.6 shows the de�nition of the FeatureNodeType. It is an extension to
FirstOrderStructureType and therefore also a NonterminalNodeType. It can have
an unlimited amount of child nodes which must be at least of the FirstOrder-
StructureType. This means all other nonterminal nodes are allowed as children,
while using the StructureTypes.
The attribute JavaType is equivalent to the type information which every non-
terminal and terminal node has in the FST.
All other types presented in the following are desgined equally, so this is the ex-
ample for all other type de�nitions and only massive di�erences are shown explicit
during the rest of this chapter.

To capture all informations included in the described source code some additional
listing types where added. They can be found in some other type de�nitions like
ClassNodeType and so on.

• ImportListType For all imports in a class's header.

• ExtendsListType All extends references of a certain class8.

• ImplementsList All implemented interfaces.

• Modi�erListType All modi�ers of the di�erent objects.

• ThrowsListType All exceptions listed in a throws clause.

• InputListTypeAll input parameters belonging to a constructor or method.

8 Allthough Java does not allow multiple inheritence, this list type was included to capture
the needs of other languages.

21

3. The FST Description Language

There are also three SupercallTypes implemented which are used to indicate
whether a constructor or method contains a supercall. The supercall mecha-
nism is used by the composing tool, refer to section 5.3 on further information,
because they indicate the point where the composition should take place.

• JavaSupercallType To indicate that the terminal contains a supercall
statement to its parent class.

• AheadSupercallType To indicate that the terminal contains a supercall
statement which is used by the AHEAD-Tool Suite to compose features.

• GDeepSupercallType To indicate that the terminal contains a supercall
statement which used by GDeep to compose terminals.

3.3.2. Type de�nition for Packages, Classes and Interfaces

Packages, Classes and Interfaces are all non-terminal nodes in terms of the FST
model, but to capture the Java semantics they are classi�ed in several Structure-
Types.

PackageNodeType is derived from SecondOrderStructureType and allows only
children of this type. This ensures that no FeatureNodeType can be a child el-
ement of a package, but the package itself can be child of a FeatureNodeType.
This implicates also, that classes and interfaces must be at least from this type
otherwise they can not be children of a package and this will not match with the
Java language.

ClassNodeType is derived from ClassOrInterfaceStructureType and so it is pos-
sible to make a class node a child of a package or feature node. The ClassNode-
Type allows only children of the type ClassOrInterfaceStructureType, because it
is possible to de�ne so called inner classes or interfaces. Also the type Termi-
nalNodeType, in order that �elds, constructors and methods can be children of a
class node is allowed

InterfaceNodeType is designed nearly like the ClassNodeType except that it
is not allowed to add a child of the type ConstructorNodeType. Of course the
JavaType-attribute is also di�erent.

3.3.3. Type de�nition for Fields, Constructors and Methods

Because terminal nodes do not have any child elements, the type de�nitions do
not di�er much from the original de�nition. Just the additional information, like
the throws list, is varying.

FieldNodeType is derived from TerminalNodeType and allows two child ele-
ments. The �rst element is the content element, where the whole declaration ist
stored, the second is the type element where the exact Javatype can be stored.

22

Chapter 3. The FST Description Language

NonterminalNodeType

FirstOrderStructureType

SecondOrderStructureTypeFeatureNodeType

ClassOrInterfaceStructureTypePackageNodeType

ClassNodeType InterfaceNodeType

FieldNodeType

ConstructorNodeType

MethodNodeType

TerminalNodeType

Figure 3.2.: The FST-DL type system

ProgramModel

FeatureNode

FeatureNode PackageNode

PackageNodeClassNode InterfaceNode

ClassNode InterfaceNode FieldNode
Content

ConstructorNode
Content

MethodNode
Content

ClassNode InterfaceNode FieldNode
Content

MethodNode
Content

Figure 3.3.: The Document Structure

ConstructorNodeType is derived from TerminalNodeType and allows several
list elements as children: Modi�erList, ThrowsList and InputList. The Content-
child element contains the whole body of the constructor. There is also a list of
SupercallType elements.

MethodNodeType is derived from TerminalNodeType and allows several list
elements as children: Modi�erList, ThrowsList and InputList. The ReturnType-
child elements contain the Java type-reference of the method's return type. The
Content-child element contains the whole body of the constructor. There is also
a list of SupercallType elements.

Figure 3.2 shows a simpli�ed representation of the introduced type system. Fig-
ure 3.3 shows the layout the element structure of possible instance documents
according to the FST-DL schema. All recursive steps ar left out and marked by
italicised names.

23

3. The FST Description Language

3.3.4. Example

For this example the StackBase-example from �gure 2.1 is extended by a second
FST which will introduce a new method to the class Stack. At this point, there is
no discussion how this introduction will take place, it only shows the document
layout of the description document. Figure 3.4 shows the two FSTs which are
used for this example, where (a) is the FST for the StackBase feature and (b) the
FST for the StackElementCount feature. The StackElementCount feature will
add a single method, called getElementCount() to the Stack class which is used
to get the current number of elements stored in the elements �eld. The Source of

stack:Package

Stack:Class

push:Method
Content

pop:Method
Content

elements:Method
Content

(a) The FST of the StackBase feature

stack:Package

Stack:Class

getElementCount:Method
Content

(b) The FST of the StackEle-
mentCount feature

Figure 3.4.: The FSTs of the StackBase feature and its extension the StackEle-
mentCount feature.

these features is shown in �gure 3.5, where (a) belongs to the StackBase feature
and (b) to the StackElementCount.
Listing A.1 shows the complete program description for the example FSTs, gener-
ated by the parser introduced in the next section. What has not been mentioned
yet ist the ID-attribute in each element. This attribute is used by XML to refer-
ence elements throughout the whole document. It can be used by parser to jump
from one element description to another, so it has no impact on the introduced
FST-DL-Description. What can be done is to de�ne some key de�nitions on this
attribute to ensure referential integrity which is used in the FST-DL description
to check references made in the element DissolvedReference, a child element of
ReferenceList. These elements are used resolve feature interactions.
What might be confusing is the fact, that there are only used a few di�erent ele-
ment names for the "main" elements Nonterminal and Terminal. This was done
to keep the connection to the General Feature Structure Tree model where only
these two types exist. The produced documents can therefore easily be mapped
on this original de�nition. Just leaving out the additional information, like the
return type of a method, and removing the xsi:type attribute, leads to a valid
document against the general de�nition.

24

Chapter 3. The FST Description Language

1 package s tack ;
2 class Stack {
3 Vector e lements = new Vector () ;
4 void push (Object ob j e c t) {
5 e lements . add (0 , ob j e c t) ;
6 }
7 Object pop () {
8 return e lements . remove (0) ;
9 }
10 Object top () {
11 return e lements . f i r s tE l emen t () ;
12 }
13 }

(a) The Sourcecode of the StackBase fea-
ture

1 package s tack ;
2 class Stack {
3 int getElementCount () {
4 return e lements . s i z e () ;
5 }
6 }

(b) The Sourcecode of the Stack-
ElementCount feature

Figure 3.5.: Implementation of the StackBase feature and its extension the Stack-
ElementCount feature.

An XML-Parser9 is not able to distinguish between the di�erent types when using
the same element names for di�erent children. For example the child elements of
the Stack class are all Terminal -elements, but they do have di�erent types. To
gain the ability to resolve the exact type of this element the attribute xsi:type is
used. This attribute refers to the type de�nition in the underlying schema which
then is used to evalute the validity of this element declaration.
The whole listing containing the example can be found in the appendix section
A.2 listing 3.5, which contains the example.

9 like Xerces parser [Gro08].

25

Chapter 4

Implementation of a Code Generator for

FST-DL-Documents

This chapter describes the exact implementation of the code generator (frame-
work), which is currently used in the FST-Composer1. The main goal of this
implementation was to create a plugable framework, which produces an FST-
DL document for further processing. The process, resulting in the document
generation, passes through three phases:

• parsing the code-artefacts written in Java language parser tier,

• collecting all the parsing informations and convert them converter tier and

• further data processing and generation of the FST-DL document generator
tier.

Each of this phases should be done by di�erent modules of the framework, so
one can easily replace the implementation of a phase. Therefore the framework is
concieved in a three tier architecture, where each tier models exactly one phase
of the generation process.
The �rst tier is realized by a modi�ed Java parser, the second tier by a mealy
machine2 and the third tier then by a tree model. To accomplish the separation
of the parser tier and the converter tier the facade pattern3 was used. This
pattern ensures that the di�erent tiers communicate by a so called facade class
and therefore it is possible to replace the whole tier by another implementation
without changing the implementation of the other tiers. The facade object is
called Java2XMLConverter it is called by the parser and the passes all the parser
informations to the underlying objects of the state machine model.
The converter tier and the gernerator tier are divided by using two di�erent
object models which do the desired work. So the state machine objects in the
converter tier create several TreeModel objects and pass the processed information
to them. The TreeModel objects then can be used to do further transformations
on the passed data and �nally produce the XML-Document describing the parsed
source code-artefacts.

1 Refer to [Ape] for additional information about the FST-Composer project.
2 Refer to [Mel55] or [HMU00] for further informations on mealy machine and automata theory
3 Refer to [GHJV95] p.185 �. for further information on the facade pattern.

26

Chapter 4. Implementation of a Code Generator for FST-DL-Documents

4.1. General Approach to Parse Source Code

Artefacts

Before introducing the di�erent tiers it must be mentioned how the parser col-
lects the di�erent sourcecode artefacts and builds up one document with all the
included FSTs.
To start the parsing process, an expression �le must be created which is passed
to the parser engine. This �le contains names of all features which should be
parsed in this style:f1 f2 f2...fn

4. The name of a feature in this �le must exactly
match by a �le system directory and the directory must be a subdirectory of the
directory where the expression �le is located. The features themself mus be rep-
resentend by containment hierarchies [BSR03]. All artefacts (code and noncode)
must be contained in a �le system directory and its subdirectories.
The order of the features in the expression �le is necessary to use the resolve
reference option, refer to section 4.4.1 to gain more information on this option,
and also de�nes the order in which the features are composed by the composer.
The parser then starts to parse each artefact that can be found in the feature
directory and its subdirectories by processing the di�erent feature directories in
the given order. Within a folder it simply parsers the existing artefacts in alpha-
betical order.

4.2. Parser Tier

To produce an XML-Description of given source code artefacts, it is necessary to
extract the required information. This information is likely the information in
the abstract syntax tree of this artefact but not in complete deepth. For further
processing only this information is needed:

• The de�nition of a class with its package declaration, import list, modi�ers,
name, extends clause and implements list.

• The de�nition of a interface with its package declaration, importlist, mod-
i�ers, name extends clause and implements list.

• The de�nition of a �eld with its modi�ers, type, name and the assignement.

• The de�nition of a constructor with its modi�ers, input parameter list and
the complete body.

• The de�nition of a method with its modi�ers, return type, name, input
parameter list and the complete body.

Especially when parsing �elds, constructors and methods the information about
the structure of their bodies5 is not necessary. To parse the given Java source

4 This is called the feature expression.
5 In case of �elds the body is the assignment of the �eld.

27

4. Implementation of a Code Generator for FST-DL-Documents

Listing 4.1: Introduction of the GDeep supercall statement to the parser
description

void Orig ina lMethodCal lExpress ion () :
{
}
{

"original" { conve r t e r . gdeepSuperConstructBeginRead () ; conve r t e r . r eadSt r ing ("
original") ; } Arguments () { conver t e r . gdeepSuperConstructEndRead () ; }

}

code the javaCC 4.0 parser generator6 was used. This parser generator comes in
with a complete parser description for the Java 1.5 language speci�cation, which
was used to generate the parser for this work. Allthough this work basses on the
Java 1.4 language speci�cation, this doesn't matter, because all 1.5 speci�c parts
are ignored by the underlying tiers.
To gain the ability of parsing also AHEAD source code artefacts, it was neces-
sary to change the parser to accept the re�nes- keyword, layer statement and the
speci�c supercall statements7.
To notice GDeep supercall statement original(), it was necessary to introduce
a new statement to the parser description. Listing 4.1 shows a part of the ex-
tension to the parser description to recognize the supercall statement. Since the
statement original(...) is like a "normal" methodcall to the parser, it will accept
this statement without this extension. It was only made to be able to indicate
this call in the outcomming document and prevent additional parsing in further
applications.
Listing 4.1 shows also, how the communication with the second tier takes place.
The parser only calls methods on the object converter which is de�ned in the
parsers constructor and is the entry class to the DFA.
Except the extensions on the language structure which is accepted by the parser,
all other extensions are only method calls on the converter object. This is why no
speci�c parser implementation is needed, only the communication interface must
be implemented and called on the desired parts of source code parsing. This is
also the point where it can be controlled how much information will be included
in the generated XML-Description. When there is no need for the concrete body
of methods, then these communication calls are just omitted.

4.3. Converter Tier

Since this tier is used to convert the parsed information into a tree representation,
the states of the used state machine correspond to the states of a parser accept-
ing the artefact language. Because the FST-DL does not contain the complete
structural information of the source code artefact, some states are not necessary.
Figure 4.1 shows the complete state diagramm of the implemented automaton.

6 Refer to the project Homepage [Jav08] for futher information.
7 Refer to [AHE08] for further information on the AHEAD Tool Suite.

28

Chapter 4. Implementation of a Code Generator for FST-DL-Documents

CUS

Pa

Cl

CAPTION

S:

CU:

Pa:

Im:

If:

In:

SI:

Fi:

Me:

AC:

Start
CompilationUnit
Package
Import

Interface
Initializer
StaticInitializer
Field

Method
AnonymiousClass

Class

Constructor

Cl:

Co:

AC

Co

Fi

Im

In

If

SI

Me

e

PackageDefBeginRead

PackageDefEndRead

PackageDefRead

ImportDefBeginRead
ImportDefBeginRead

ImportDefRead

In
te

rfa
c
e

D
e

fB
e

g
in

R
e

a
d

In
te

rfa
c
e

D
e

fE
n

d
R

e
a

d

Class
DefB

eginRead

Class
DefE

ndRead

ClassDefBeginRead/InterfaceDefEndRead

ClassDefEndRead/InterfaceDefBeginRead

InterfaceNameRead
ExtendsDefRead

M
e
th

o
d
D

e
fB

e
g
in

R
e
a
d

M
e
th

o
d
D

e
fE

n
d
R

e
a
d

MethodDefBeginRead

MethodDefEndRead

MethodDefNameRead
MethodDefReturnTypeRead
MethodDefThrowsListRead
SuperConstructBeginRead
SuperConstructsEndRead
FormalParameterListRead

C
o

n
s
tru

c
to

rD
e

fB
e

g
in

R
e

a
d

C
o

n
s
tru

c
to

rD
e

fE
n

d
R

e
a

d

F
ie

ld
D

ef
B
eg

in
R

ea
d

F
ie

ld
D

ef
E
nd

R
ea

d

FieldDefBeginRead

FieldDefEndRead

TypeRead
FieldDefFieldNameRead
FieldDefBracketRead
SuperConstructBeginRead

AnonymiousClassDefEndRead

AnonymiousClassDefBeginRead

A
n

o
n

y
m

io
u

s
C

la
s
s
D

e
fE

n
d

R
e

a
d

A
n

o
n

y
m

io
u

s
C

la
s
s
D

e
fB

e
g

in
R

e
a

d

A
no

ny
m

io
us

C
la

ss
D

ef
E

nd
R

ea
d

A
no

ny
m

io
us

C
la

ss
D

ef
B

eg
in

R
ea

d

ConstructorDefNameRead
MethodDefThrowsListRead
SuperConstrucBeginRead
FormalParameterListRead

S
ta

tic
In

itia
liz

e
rD

e
fB

e
g

in
R

e
a

d

S
ta

tic
In

itia
liz

e
rD

e
fE

n
d

R
e

a
d

InitializerDefBeginRead

InitializerDefEndRead

A
n

o
n

y
m

io
u

s
C

la
s
s
D

e
fB

e
g

in
R

e
a

d

A
n

o
n

y
m

io
u

s
C

la
s
s
D

e
fE

n
d

R
e

a
d

AnonymiousClassDefBeginRead

AnonymiousClassDefEndRead

classNameRead
extendsDefRead
implementsDefRead

Figure 4.1.: The state diagramm of the used automaton

29

4. Implementation of a Code Generator for FST-DL-Documents

To be able to easily add new states and transitions a special design was used
to model the states. An abstract class AbstractAutomatNode contains all transi-
tion methods which can be used in the whole state machine. All other objects
which model a concrete state of this state machine, must extend this class. Per
default each transition method in the AbstractAutomatNode throws in an Unsup-
portedNodeOperationException, so that a concrete state implementation does not
need to care about transitions which are not allowed in this state. All transitions
which are allowed in a concrete state have to be overridden by this class.
Figure A.1 shows an extract of the automaton class model, it does not contain
all the additional �elds and methods each class can have. Also the �gure shows
only the model for two subclasses of the AbstractAutomatNode. It should just
illustrate how the transition methods are implemented.
The AbstractAutomatNode also contains some �elds and methods used by all
subclasses, which can be divided into two groups. The �rst group are �elds and
methods which are used to avoid the parsers necessary lookahead, the second
group is to keep information persistend over statechanges.

Methods to avoid the lookahead

Some informations are passed through the parser before knowing to which state
they will belong. The best example are the modi�ers which are passed through
and it is not known whether they will belong to a class de�nition or a �eld def-
inition. Therefore these informations are collected in the AbstractAutomatNode
in static �elds, so if the state changes, the following state can access these in-
formations and process them. The �elds and methods belonging to this group
are:

• The �eld String currentModi�er and the method String getCurrentMod-
�er(). There is also the method void modi�erRead(String modi�er) which
is de�ned as a transition method in each state to itself, but it is used as
described above to store the modi�er information belonging to the following
state.

• The �eld V ector < String > importedObjects and the methods V ector <
String > getImportedObjects(), void addImportedObject(String importe-
dObject) and void clearLoadedImports(). This �eld and its access methods
are used to manage the imports at the beginning of class and interface
declarations.

• The �eld boolean packageRead and the method boolean packageRead() which
indicates that a package de�nition has been read. This information is nec-
essary when a class or a interface are processed, because a so called Default
Package has to be inserted if a class or interface does not have a package
declaration.

All these �elds and their access methods are modelled with a static modi�er,
so they can be accessed by each subclass and it is not necessary to pass this
information from one state to another by referencing the following state directly.

30

Chapter 4. Implementation of a Code Generator for FST-DL-Documents

Fields and methods to keep information persistend over statechanges

• A �eld AbstractAutomatNode father and the AbstractAutomatNode getFa-
ther() method.

• A static �eld AbstractTreeNode currentTreeNode and the AbstractTreeNode
getCurrentTreeNode() method.

• A �eld ProgrammTreeModel treeModel and the ProgrammTreeModel get-
TreeModel() method.

To understand the meaning and the functioning of these �elds and methods in
this state machine, a closer look at the design of the whole state machine struc-
ture is necessary.
As one can see in �gure 4.1 the shown automaton is not deterministic. For ex-
ample the �eld state has two transitions FieldDefEndRead to di�erent states
Interface and Class. This is also where another speci�c design of the automaton
class modelling snaps in. The automaton has no static structure which is pro-
duced at startup and then held throughout the whole process. It has a tree like
representation where the di�erent objects, representing the states, can appear in
di�erent instances. To come upon a deterministic automaton each state where the
following state can not be determined is cloned as often as the same transitions
are leading away from this state to another. So for example the �eld -state exists
in two instances and the AnonymiousClass-state in �ve instances. To realize this
behaviour, each implemented state knows its possible upcoming states, which are
reached by a xxxDefBeginRead transition. The xxxDefEndRead transition is then
realized by calling the method getFather() which returns the state from which
this state was reached.
Since the automaton holds only one instance of each following state in an internal
�eld it is necessary to keep several references to the generated ProgrammTreeModel.
For example the processing of the whole class de�nition splitts up on di�erent
states. So after the class name, its modi�ers and so on have been read, the parser
might deliver a constructor de�nition. This will force the state machine to switch
to the state Constructor where the upcomming input of the parser is processed.
The constructor information and all upcomming informations about methods and
�ieds have to be added to the ClassTreeNode produced in the Class-state, ther-
fore it is necessary to obtain all the nodes generated in the di�erent states.
To get access to the complete ProgrammTreeModel at the current time, note that
this model changes throughout the whole process. Besides the AbstractTreeNode,
which is modi�ed at a certain time, these �elds and methods were implemented.
These �elds and their access methods represent the internal memory structure
of this automaton. Each state generates a speci�ed TreeNode element which is
added to the ProgrammTreeModel as a child of the currentTreeNode and then sets
the currentTreeNode to the newly generated element. At some places, like the
transition form the Method -state back to the Class-state, the currentTreeNode
is not generated new by the Class-state, but rather the formaly generated node
replaces the current.

31

4. Implementation of a Code Generator for FST-DL-Documents

4.4. Generator Tier

The last phase of the FST-DL document generation process is modelled by a tree
model. This model is produced by the Converter tier and than can be used to
do some further transformations on the given input from the parser. The Pro-
grammTreeModel represents the complete FST structure of the given source code
artefacts and contains also the additional informations like the di�erent Supercall
statement. Each element of the tree model represent exactly one FST node or
additional information element. So the process of producing the XML-Document
is straight forward. Each node knows its representation in the XML-Document
and only �lls in the parsed information where it is necessary.
The technology to produce the XML-Document which used in this tier, is the
Document Object Model de�ned by the W3C in [W3Ca]. It de�nes how XML-
Documents can be accessed by in object oriented program languages. Java ther-
fore de�nes a set of interfaces within the org.w3c.dom package. To process XML-
Documents by the DOM api with Java an additional parser is needed which is
accessible by the Java javax.xml.parsers.DocumentBuilderFactory. In this work
the xerces parser provided by the Appache Software Foundation [Fou08] is used to
generate the XML-Documents. Allthough this parser implementation is used, the
implementation is not limited to this parser because all types which are used, are
taken from the standard java api. Every implementation of a DOM parser which
uses the Java speci�cation can also be used. The Java Api provides a Document-
BuilderFactory which is called to get an implementation of the DocumentBuilder
interface. Which implementation the factory returns can be controlled by several
ways described in the api description of this method.
Not all available parsers will deliver the full function set described in the Java api.
The Xerces parser was choosen, because with this parser it is possible to create
XML-Documents which are validated against a given XML-Schema.This ensures,
that all documents produced by this tier are valid FST-DL documents, otherwise
the parser will generate an exception and will not produce the document.
For the generation process of the FST-DL-Document, only two types from the
api are necessary:

• Document Which represents a whole XML-Document.

• Element Which represents a single XML-Element.

The Document object is produced by the DocumentBuilder, it contains only the
header of a XML-Document. To insert an Element in this document, it must
�rst be created with the createElement methods in a document object. After
�lling the Element with the necessary information it can be directly added to
the Document-object. Than it is the root element of this document, or added
to an other Element, in both ways the method appendChild(...) is used. If the
parser is turned on validation, then it would generate exceptions at this point
when violating element constraints8.

8 For further information on DOM-Parsing in Java please refer to [McL00] or [WK03].

32

Chapter 4. Implementation of a Code Generator for FST-DL-Documents

The generation process starts at the root of the tree steps recursivly through the
whole document. Each node adds its element representation to the document
and then calls its children. The position where the new element should be added
is determined by the method getElementById() in the document object. The ID
attribute is de�ned in the FST-DL as the feature name and the full quali�ed
object name. This is unique over the whole document per de�nition, otherwise
when inserting an element with an existing id, the parser will encounter an error.

4.4.1. Data Transformations

As mentioned earlier, the data is transformed as well in this phase.
One transformation which is implemented is the resolve reference option which is
used to make static feature interactions visible. The idea is to resolve all type and
method references within all features which are contained in the given expression.
References to types and methods belong to code artefacts which are not located
in the given features, for example the standard Java library, are regarded as
unresolvable references. That is because a feature can not re�ne an artefact out
of a third party library, otherwise the source of this library would be a feature
itself and must be declared in the feature expression.
To reduce the complexity of this option, only used types in �eld declaration9,used
types in constructor or in method signatures as well as used types in import lists,
implements clauses, re�nes clauses and throws clauses are regarded. The parser in
its current implementation does not parse any method body, constructor body or
�eld assignment, which would be necessary to resolve all references. The complete
reference resolving is out of the scope of this work beacuse it should only show a
di�erent appliance of the FST-DL.
All the above mentioned type declarations are collected during the parsing process
in the Converter Tier, and passed to the Generation Tier when creating the
di�erent tree nodes. The basis is a simple ruleset based on the rules for feature
composition in [ALB+07] and the Javaconvention on source code, like uniqueness
of quali�ed names in Java:

• The �rst appearance of a type de�nition is the base de�nition. The �rst
appearance results from the parsing order, which is given by the feature
expression.

• All other type de�nitions with the same full quali�ed Java name must be
re�nements of the base de�nition.

• Every use of a certain type reference to the base de�nition. If no such base
de�nition exists it is a unresolvable reference.

• Each resolvable reference gets an entry into the FST-document with an
object-reference to the base de�nition10.

9 �eld assignment is also not included.
10 Therefore every XML-Object in document needs a unique ID.

33

4. Implementation of a Code Generator for FST-DL-Documents

Its not necessary to explain the whole implementation in detail, the main concept
are static datastructures which are accessable from every tree node object and
which are containing unique entries for each type de�nition. Since this parser is
processing artefacts within a feature in alphabetical order and each directory in
a deepth �rst search manner, it is possible that some type references can occur
while the de�nition has not been parsed11. This makes it necessary that the
whole reference resolving process can only be �nished after the parsing process
has �nished.

11 It is even possible, that a feature fn references a type de�nition, which is introduced later
in an feature fn+x.

34

Chapter 5

The Application of FST-DL

To show the appliance of the above introduced FST-DL and the implemented
parser, some applications are included to the FST-Composer.
All of this shown applications use a tree representation of the FST-DL XML-
Document which is introduced in section 5.1.
The �rst applications in this section present a graphical visualization of the FST.
While the tree representation gives a good access to all of the components of
the whole FSTs given by a certain feature expression. The graph representation
gives a �rst impression how the di�erent features interacts with each other. This
section shows also a way to visualize feature interactions and presents a way to
compute, whether a given feature expression is valid or not.
The prece section shows the �rst application which is able to compose features
represented in FST-DL.
At the end of this chapter three case studies are shown where all the implemented
applikations were tested with.

5.1. Representing an XML-Document in a Tree

Model

To represent an XML-Document in Java the same techniques to create this doc-
ument, which were used in chapter 4, can be used again. The DOM-Model of
the document is again produced with the xerces parser. To add all additional
functionality each DOM-Element1 is encapsulated in a so called AbstractFSTDL-
TreeNodeAdapter, following the Adapter Pattern2. Each Type which occurs in
the type attribute of a non-terminal or terminal node element in the FST-DL is
represented by a concrete class extending the abstract Adapter. So it is possi-
ble to enrich the di�erent adapter with individual methods used for example to
display it.

5.2. Graphical Visualization of the FST

5.2.1. Displaying FST as a Tree

Figure 5.1 shows the tree representation of an FST-DL document modeling the
FSTs of GraphJak, an example delivered with the FST-Composer. On the left (1)

1 These are the objects which contain the information of the XML-Element.
2 Refer to [GHJV95] p.139 �. for further information on the adapter pattern.

35

5. The Application of FST-DL

Figure 5.1.: The Tree Representation of a FST-DL Document

one can see the tree representation of the features:BasicGraph, Recursive, Weight,
Color, PrintHeader. A part of the generated FST-DL can be seen in listing
A.2 in the Appendix. While the �rst feature is spread out one can see di�erent
components of this feature and on the right (2) the content of the selected method
node (3).

5.2.2. Displaying FST as a Graph and Feature Interactions

The graph representation is used to show the dependencies between di�erent fea-
tures. As �gure 5.2 (1) shows, each node of the graph represents a feature and
each directed edge represents one or more references for example from feature
Recursive to feature BasicGraph. In fact there are several references from Re-
cursive to BasicGraph as it can be seen at the bottom (2). Additionally to the
graph there is a new tree representation (3), which shows the references between
one feature, in the �rst layer of the tree, and another, the child of a �rst level
feature.
To display the FST-DL Document as a feature an additional library3 was nec-
essary. Addtionally to this a new datamodel is needed which encapsultes the
tree model in a graph model. In the underlying model the references computed
as explained in the section 4.4.1 are added to the tree4. This graph has a very
high complexity and no particial information kann be found while regarding the
graphical representation. Even the choosen representation becomes confusing
when there are a lot of features as �gure A.2 shows5. To reduce complexity all

3 The library used to display a graph in a Java application was the jung-1.7.6.jar found at
http://jung.sourceforge.net/.

4 Listing A.3 shows a part of the generated FST-DL Document, where the references can be
found.

5 Note that these graphs are containing only a fraction of all references.

36

Chapter 5. The Application of FST-DL

Figure 5.2.: The Graph Representation of a FST-DL Document

nodes where consolidated to one node with the name of the feature.
To display the edges and keep the information, which speci�c references contain
in one edge. The references where also moved to the consolidated node keeping
the additional information which former start- and endpoint they had. All edges
are then consolidated to one edge between two feature nodes, but keeping the
access to the single edges they contain.

5.2.2.1. Finding Cyclic References between Features

To compute the cyclic references of a feature graph basicly a Depth First Search
algorithm with classi�cation of edges is used as explained in [CLRS01]. By using
the DFS timestamps and edge classi�cation it is possible to �nd cycles in a feature
graph. If such cycles exist in a graph, then a partital order on the features can
not be obtained, this leads to the feature optionality problem [ABKR] [LBL06]
[Pre97a]. This means that features are recommended in a SPL for syntatic rea-
sons, the absence of one feature will cause a compile time error, rather than for
a semantic reason.
Even though the reference resolving gathers a fraction of all references it was
possible to �nd such a cycle in the FST-Composer examples. Figure 5.3 shows
the cyclic reference(2) between the features Base and UndirectedOnlyVertices in
the GPL example. (2) indicates by turning red, that this reference is one part
of the cycle, whereas (3) lists all involved features. The cyclic reference in this
example is not very critical, because the Base feature is always required and as
a base feature it has always references leading to it. The reference from Base to
UndirectedOnlyVertices results from an import clause in Base which imports a
type introduced in UndirectedOnlyVertices but it is never used throughout Base.

37

5. The Application of FST-DL

Figure 5.3.: The Cyclic Reference between Features

5.3. Composition of Features

The composition of features was implemented by Sven Apel [AL08]. The in-
put of the composition tool is the generated FST-DL by the parser described
in chapter 4. The tool does not take any advantage of resolved reverences, so
this optional functionality can be turned o� for composition. To compose Java
artefacts the di�erent rules for terminal composition (mentioned in section 2.1)
are implemented.
The composer takes two FSTs and then it composes them recursivly with the
compose method shown in listing6 5.1. To walk through the trees the method
�ndChild is used to �nd a child in subtree, located at the current position, with
the same name and type. These two nodes are then composed by the method
compose, if there is no matching child node found the node is added to the result
tree.

Listing 5.1: The compose method implemented by the composer.

stat ic Tree compose (Tree treeA , Tree treeB) {
Node newNode = treeA . node () . composeNode (treeB . node ()) ;
i f (newNode != null) {

Tree newTree = new Tree (newNode) ;
for (Tree chi ldA : treeA . ch i l d r en ()) {

Tree chi ldB = treeB . f i ndCh i ld (chi ldA . name () , chi ldA . type ()) ;
i f (chi ldB != null) newTree . addChild (compose (chi ldA , chi ldB)) ;
else newTree . addChild (chi ldA . copy ()) ;

}
for (Tree chi ldB : treeB . ch i l d r en ()) {

Tree chi ldA = treeA . f indCh i ld (chi ldB . name () , chi ldB . type ()) ;
i f (chi ldA == null) newTree . addChild (chi ldB . copy ()) ;

}
return newTree ;

} else return null ;
}

6 The implementation is taken from [AL08].

38

Chapter 5. The Application of FST-DL

The composition of two nodes is done by the method composeNode. Several
distinctions according to the node type (terminal or non-terminal) and according
to the java type (class, method, �eld etc.) must be made in this method. The
exact composition rules and implementations of all types can be found in [AL08].

5.4. Case Studies

The case studies which always were made in association with Sven Apel and
his implementation of the composer tool were introduced in section 5.3. The
intention was not just to produce FST-DL-Documents above verifying that the
produced documents can be taken as base to compose the di�erent programs.
Because of the strong connection to the composer tool during thie case studies
there were made no other tests concerning the correctness of the composition as
in [AL08] ,so these are not mentioned here again.
The �rst program that was examined was GUIDSL7 which is a graphical pro-
gramming tool developped by Batory [Bat05]. Secondly the Graph Product-Line
(GPL) was examined which is a collection of graph applications, implemented by
Herrejon and Batory [LHB01]. The last study was made on a graphical UML
editor called Violet8 which was refactored into several features by a student.

5.4.1. GUIDSL

GUIDSL is a graphical tool to specify product line con�gurations and constraints
[Bat05]. It consists of 26 di�erent features with only one valid con�guration. Dif-
ferent feature expressions will also lead to a compilable program, but without any
useful functionality. The used GUIDSL artifacts which were used are all written
in the JAK 9 which were composed into a Java program.
The resulting Java program was composed by using all 26 features of the GUIDSL
tool. It consists of 9,050 lines of composed Java code10. The generated FST-DL-
Document contains 34,819 lines. Figure A.3 in section A.1 shows the complete
graphical representation of the GUIDSL features.
While studying this example it points out that the GUIDSL feature descrip-

tion contains also cyclic references which are shown in �gure 5.4. In this cyclic
reference three features are involved kernel, genbali and dgram. There is one bidi-
rectional reference between kernel and genbali and also a cyclic reference because
genbali references dgram and dgram references kernel.

7 The GUIDSL-homepage can be found under http://www.cs.utexas.edu/users/dsb/fopdocs/
guidsl.html.

8 http://sourceforge.net/projects/violet/.
9 JAK is a special Java dialect used by the AHED tool suite [AHE08] for feature-oriented

programming.
10 For comparability of the lines-of-code metric, the composed code was formatted using a

standard Java pretty printer (http://www.jindent.com/). Unlike [AL08] also lines containing
just one character were counted but no comments. Because another pretty printer was used
the lines of codes di�er. This was necessary to compare it with the lines of code of the
FST-DL-Dokument (http://www.csc.calpoly.edu/ jdalbey/SWE/PSP/LOChelp.html).

39

5. The Application of FST-DL

Figure 5.4.: Cyclic reference in GUIDSL

The complete parsing process, resolving references, produce the FST-DL output
and set up the gui with its di�erent datamodels was done in about 5 seconds.

5.4.2. GPL

The code artefacts of the Graph Product-Line are again written in JAK. It coin-
tains 26 features, but only 17 contain source code artefacts, mainly divided into
basic graph features and graph algorithms. Basic graph features are for exam-
ple directed and undirected graphs or weighted and unweighted edges. Included
graph algorithms are depth-�rst search, breadth-�rst search, cycle checking, com-
putation of strongly connected components and so on. Because the di�erent
algorithms requires di�erent types of graphs and there are a lot of di�erent con-
�gurations.
For the case study the same testcases as in [AL08] were used but without the
addaptions to process other artefacts than source code. Of the 10 testcases each
includeds seven to nine features with about 200 - 400 lines of code in the composed
programm. The lines of the FST-DL-Description varied from 1,300 to 2,200. In
each testcase the lines in the description were more than �ve times the lines of
code in the composed program.
Each test case could be done in less than 3 seconds.

5.4.3. Violet

The last case study was the Violet, a graphical UML editor written in Java. It
has been refactored by a student as a class project at the University of Texas
in Austin11. The refactored version of Violet was divided into 88 features with
several functions like di�erent UML diagram types, drag-and-drop and look-and-
feel functionality. The used code base contains 157 classes, implemented by 5,220
lines of Java code. The 10 used test cases included 51 - 88 features and generated
programs with 3,700 to 4,800 lines of code. The produced FST-DL-Documents
had from 14,500 to 19,000 lines. Each test case took about ten seconds with

11 The project was done in the course of the 2006 FOP class at the Department of Computer
Sciences of the University of Texas in Austin.

40

Chapter 5. The Application of FST-DL

parsing, resolving references, generating the FST-DL output and starting up the
gui. Figure A.2 shows the visualization of the FST using all 88 features.

41

Chapter 6

Summary

At the end of this work all the results of this work are summarized and a short
perspective on possible future researchs is given.

6.1. Conclusion

This work shows a general mapping from FSTs into a XML-Schema which con-
tains all the necessary elements to re�ect the structure and behaviour of an FST.
Furtheron a �rst extension to this mapping was done by adding language speci�c
elements to it. So it was possible to represent an FST based on the program
language JAVA in FST-DL.
With the implementation of a parser to produce FST-DL-Documents out of Java
sourcecode a basis for further processing of these FSTs was founded. On top
of the parser implementation several applications were build to enhance feature-
oriented software design.
With the case studies it was shown that the approach with FST-DL is useable
even with programs consisting of 10,000 lines of code. Although the reference
resol�ng was implemented with minimized functionality the case studies pointed
out that feature interactions can be found and also some of the problematic cases
can be detected.

6.2. Future Works

Because of the XML implementation of FST-DL it is possible to create a com-
poser using XML related toolsets like XML-Stylesheet. Which will be a step
forward to make it complete language independent while composing source code
artefacts. Another advantage would be that with XML-Databases the complete
SPL descriptions could be stored. Tehy form a huge feature repository. This
repository then can be queried with standard XML functionality from this com-
poser.
The minimized reference resolving implementation in this work could also be a
major �eld of research. Especially with regards on resolving feature interactions
on base of circle elimination in graphs. Therefore a complete reference detection
mechanism must be found.
With the presented gui to visualize FSTs a �rst step in direction of an editor was
done. The gui could be enhanced to make modi�cations in the feature structure

42

Chapter 6. Summary

or could even build a whole SPL.
This work only introduces a parser for Java language and its' dialect JAK. Ex-
tending the parser and therefore the FST-DL to other languages will be a main
goal for future researches.

43

Bibliography

[ABKR] Apel, Sven ; Batory, Don ; Kästner, Christian ; Rosen-
müller, Marko: Handling Large-Scale Feature Interactions

[AGM+06] Alves, Vander ; Gheyi, Rohit ;Massoni, Tiago ; Kulesza, Uirá
; Borba, Paulo ; Lucena, Carlos: Refactoring product lines.
In: GPCE '06: Proceedings of the 5th international conference on
Generative programming and component engineering. New York,
NY, USA : ACM, 2006. � ISBN 1�59593�237�2, S. 201�210

[AHE08] The AHEAD Tool Suite Homepage. Website http://www.cs.
utexas.edu/users/schwartz/ATS.html, 2008

[AL08] Apel, Sven ; Lengauer, Christian: Superimposition: A
Language-Independent Approach to Software Composition. In:
Pautasso, Cesare (Hrsg.) ; Tanter, Éric (Hrsg.): Soft-
ware Composition, 7th International Symposium, SC 2008, Bu-
dapest, Hungary, March 29-30, 2008. Proceedings Bd. 4954,
Springer, 2008 (Lecture Notes in Computer Science), S. 20�35

[ALB+07] Apel, Sven ; Lengauer, Christian ; Batory, Don ; Möller,
Bernhard ; Kästner, Christian: An Algebra for Feature-Oriented
Software Development / Department of Informatics and Mathemat-
ics University of Passau. 2007 (MIP-0706). � Forschungsbericht

[Ape] Apel, Sven: FST-Composer Homepage. Website http:
//www.infosun.fim.uni-passau.de/cl/staff/apel/
FSTComposer/. http://www.infosun.fim.uni-passau.
de/cl/staff/apel/FSTComposer/

[Bat00] Batory, Don: Product-line architectures, aspects, and reuse (tu-
torial session). In: ICSE '00: Proceedings of the 22nd international
conference on Software engineering. New York, NY, USA : ACM,
2000. � ISBN 1�58113�206�9, S. 832

[Bat05] Batory, Don: Feature Models, Grammars, and Propositional For-
mulas. In: Software Product Line Conference (SPLC), 2005

[Bel03] Beltagui, Fatima: Features and Aspects: Exploring feature-
oriented and aspect-oriented programming interactions / Lancaster
University Computing Department. 2003. � Forschungsbericht

44

http://www.cs.utexas.edu/users/schwartz/ATS.html
http://www.cs.utexas.edu/users/schwartz/ATS.html
http://www.infosun.fim.uni-passau.de/cl/staff/apel/FSTComposer/
http://www.infosun.fim.uni-passau.de/cl/staff/apel/FSTComposer/
http://www.infosun.fim.uni-passau.de/cl/staff/apel/FSTComposer/
http://www.infosun.fim.uni-passau.de/cl/staff/apel/FSTComposer/
http://www.infosun.fim.uni-passau.de/cl/staff/apel/FSTComposer/

Chapter Bibliography

[BO92] Batory, Don ; O'Malley, Sean: The design and im-
plementation of hierarchical software systems with reusable
components. In: ACM Trans. Softw. Eng. Methodol.
1 (1992), Nr. 4, S. 355�398. http://dx.doi.org/
http://doi.acm.org/10.1145/136586.136587. � DOI
http://doi.acm.org/10.1145/136586.136587. � ISSN 1049�331X

[Bos99] Bosch, Jan: Superimposition: A Component Adaptation Tech-
nique. 1999

[BPSM+] Bray, Tim ; Paoli, Jean ; Sperberg-McQueen, C. M. ;
Maler, Eve ; Yergeau, François: Extensible Markup Language
(XML) 1.0 (Fourth Edition). Website http://www.w3.org/
TR/xml/. http://www.w3.org/TR/xml/

[BSR03] Batory, Don ; Sarvela, Jacob N. ; Rauschmayer, Axel: Scal-
ing step-wise re�nement. In: ICSE '03: Proceedings of the 25th
International Conference on Software Engineering. Washington,
DC, USA : IEEE Computer Society, 2003. � ISBN 0�7695�1877�X,
S. 187�197

[CHOT99] Clarke, Siobhán ; Harrison, William ; Ossher, Harold
; Tarr, Peri: Subject-oriented design: towards improved
alignment of requirements, design, and code. In: SIGPLAN
Not. 34 (1999), Nr. 10, S. 325�339. http://dx.doi.org/
http://doi.acm.org/10.1145/320385.320420. � DOI
http://doi.acm.org/10.1145/320385.320420. � ISSN 0362�1340

[CKMRM03] Calder, Mu�y ; Kolberg, Mario ; Magill, Evan H. ;
Reiff-Marganiec, Stephan: Feature interaction: a criti-
cal review and considered forecast. In: Comput. Netw. 41
(2003), Nr. 1, S. 115�141. http://dx.doi.org/http://
dx.doi.org/10.1016/S1389-1286(02)00352-3. � DOI
http://dx.doi.org/10.1016/S1389�1286(02)00352�3. � ISSN 1389�
1286

[CLRS01] Cormen, T. H. ; Leiserson, C. E. ; Rivest, R. L. ;
Stein, C.: Introduction to Algorithms. Second. MIT
Press, 2001 http://mitpress.mit.edu/catalog/item/
default.asp?tid=8570\&ttype=2

[CM86] Chandy, Mani ; Misra, Jayadev: An example of step-
wise re�nement of distributed programs: quiescence detection.
In: ACM Trans. Program. Lang. Syst. 8 (1986), Nr. 3, S.
326�343. http://dx.doi.org/http://doi.acm.org/10.
1145/5956.5958. � DOI http://doi.acm.org/10.1145/5956.5958.
� ISSN 0164�0925

45

http://dx.doi.org/http://doi.acm.org/10.1145/136586.136587
http://dx.doi.org/http://doi.acm.org/10.1145/136586.136587
http://www.w3.org/TR/xml/
http://www.w3.org/TR/xml/
http://www.w3.org/TR/xml/
http://dx.doi.org/http://doi.acm.org/10.1145/320385.320420
http://dx.doi.org/http://doi.acm.org/10.1145/320385.320420
http://dx.doi.org/http://dx.doi.org/10.1016/S1389-1286(02)00352-3
http://dx.doi.org/http://dx.doi.org/10.1016/S1389-1286(02)00352-3
http://mitpress.mit.edu/catalog/item/default.asp?tid=8570\&ttype=2
http://mitpress.mit.edu/catalog/item/default.asp?tid=8570\&ttype=2
http://dx.doi.org/http://doi.acm.org/10.1145/5956.5958
http://dx.doi.org/http://doi.acm.org/10.1145/5956.5958

Bibliography

[Dij82] Dijkstra, Edsger W.: On the role of scienti�c thought. In: Se-
lected Writings on Computing: A Personal Perspective. Springer-
Verlag, 1982, S. 60�66

[Fou08] Foundation, The Appache S.: Homepage. Website http://
www.apache.org/, 2008

[GHJV95] Gamma, Erich ; Helm, Richard ; Johnson, Ralph ; Vlissides,
John: Design Patterns: Elements of Resusable Object-Oriented
Software. Addison-Wesley Professional, 1995

[Gri00a] Griss, Martin: Implementing Product-Line Features By Compos-
ing Component Aspects. In: First International Software Product-
Line Conference, 2000

[Gri00b] Griss, Martin L.: Implementing Product-Line Features with Com-
ponent Reuse. In: ICSR, 2000, S. 137�152

[Gro08] Group, The Xerces P.: The Xerces Project Hompage. Website
http://xerces.apache.org/. http://xerces.apache.
org/. Version: 2008

[HMU00] Hopcroft, John E. ; Motwani, Rajeev ; Ullman, Jef-
frey D.: Introduction to Automata Theory, Languages,
and Computation (2nd Edition). Addison Wesley, 2000
http://www.amazon.ca/exec/obidos/redirect?tag=
citeulike09-20\&path=ASIN/0201441241. � ISBN
0201441241

[HO93] Harrison, William ; Ossher, Harold: Subject-oriented program-
ming: a critique of pure objects. In: OOPSLA '93: Proceedings of
the eighth annual conference on Object-oriented programming sys-
tems, languages, and applications. New York, NY, USA : ACM,
1993. � ISBN 0�89791�587�9, S. 411�428

[Jav08] The JavaCC Project Hompage. Website https://javacc.dev.
java.net/, 2008

[Kat93] Katz, Shmuel: A superimposition control construct for dis-
tributed systems. In: ACM Trans. Program. Lang. Syst.
15 (1993), Nr. 2, S. 337�356. http://dx.doi.org/
http://doi.acm.org/10.1145/169701.169682. � DOI
http://doi.acm.org/10.1145/169701.169682. � ISSN 0164�0925

[KIL+97] Kiczales, Gregor ; Irwin, John ; Lamping, John ; Loingtier,
Jean-Marc ; Lopes, Cristina V. ; Maeda, Chris ; Mendhekar,
Anurag: ASPECT-ORIENTED PROGRAMMING. 1997

46

http://www.apache.org/
http://www.apache.org/
http://xerces.apache.org/
http://xerces.apache.org/
http://xerces.apache.org/
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20\&path=ASIN/0201441241
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20\&path=ASIN/0201441241
https://javacc.dev.java.net/
https://javacc.dev.java.net/
http://dx.doi.org/http://doi.acm.org/10.1145/169701.169682
http://dx.doi.org/http://doi.acm.org/10.1145/169701.169682

Chapter Bibliography

[LBL06] Liu, Jia ; Batory, Don ; Lengauer, Christian: Feature oriented
refactoring of legacy applications. In: ICSE '06: Proceedings of the
28th international conference on Software engineering. New York,
NY, USA : ACM, 2006. � ISBN 1�59593�375�1, S. 112�121

[LBN05] Liu, Jia ; Batory, Don S. ; Nedunuri, Srinivas: Modeling Inter-
actions in Feature Oriented Software Designs. In: Feature Interac-
tions in Telecommunications and Software Systems VIII, ICFI 05,
28-30 June 2005, Leicester, UK, 2005

[LHB01] Lopez-Herrejon, Roberto E. ; Batory, Don S.: A Standard
Problem for Evaluating Product-Line Methodologies. In: GCSE
'01: Proceedings of the Third International Conference on Gener-
ative and Component-Based Software Engineering. London, UK :
Springer-Verlag, 2001. � ISBN 3�540�42546�2, S. 10�24

[McL00] McLaughlin, Brett: Java and XML. Sebastopol, CA, USA :
O'Reilly & Associates, Inc., 2000. � ISBN 0�596�00016�2

[Mel55] Melay, GH: A Method to Synthesizing Sequential Circuits / Bell
System Technical J. 1955. � Forschungsbericht

[MH03] McDirmid, Sean ; Hsieh, Wilson C.: Aspect-oriented program-
ming with Jiazzi. In: AOSD '03: Proceedings of the 2nd inter-
national conference on Aspect-oriented software development. New
York, NY, USA : ACM, 2003. � ISBN 1�58113�660�9, S. 70�79

[OH92] Ossher, Harold ; Harrison, William: Combination of inher-
itance hierarchies. In: OOPSLA '92: conference proceedings on
Object-oriented programming systems, languages, and applications.
New York, NY, USA : ACM, 1992. � ISBN 0�201�53372�3, S.
25�40

[Par72] Parnas, D. L.: On the criteria to be used in de-
composing systems into modules. In: Commun. ACM
15 (1972), Nr. 12, S. 1053�1058. http://dx.doi.org/
http://doi.acm.org/10.1145/361598.361623. � DOI
http://doi.acm.org/10.1145/361598.361623. � ISSN 0001�0782

[Pre97a] Prehofer, Christian: Feature-Oriented Programming: A Fresh
Look at Objects. In: Proc. Ann. European Conf. Pbject-Oriented
Programming, 1997

[Pre97b] Prehofer, Christian: An Object-Oriented Approach to Feature
Interaction. In: In Fourth IEEE Workshop on Feature Interactions
in Telecommunications networks and distributed systems, 1997, S.
313�325

47

http://dx.doi.org/http://doi.acm.org/10.1145/361598.361623
http://dx.doi.org/http://doi.acm.org/10.1145/361598.361623

Bibliography

[Sch] School, W3C: XML Schema Tutorial. Website http:
//www.w3schools.com/schema/default.asp. http://
www.w3schools.com/schema/default.asp

[SMC79] Stevens, W. ;Myers, G. ; Constantine, L.: Structured design.
(1979), S. 205�232. ISBN 0�917072�14�6

[Sun08] Sun: Java Hompage. Website http://java.sun.com, 2008

[VN96] VanHilst, Michael ; Notkin, David: Using role compo-
nents in implement collaboration-based designs. In: SIGPLAN
Not. 31 (1996), Nr. 10, S. 359�369. http://dx.doi.org/
http://doi.acm.org/10.1145/236338.236375. � DOI
http://doi.acm.org/10.1145/236338.236375. � ISSN 0362�1340

[W3Ca] W3C: Document Object Model (DOM). Website http://www.
w3.org/DOM/. http://www.w3.org/DOM/

[W3Cb] W3C: Extensible Markup Language (XML) 1.0 (Fourth Edition).
Website http://www.w3.org/TR/REC-xml/. http://www.
w3.org/TR/REC-xml/

[W3Cc] W3C: Guide to the W3C XML Speci�cation("XMLspec")DTD,
Version 2.1. Website http://www.w3.org/XML/1998/06/
xmlspec-report. http://www.w3.org/XML/1998/06/
xmlspec-report

[W3Cd] W3C: XML-Schema Part0: Primer Second Edition. Website
http://www.w3.org/TR/xmlschema-0/. http://www.
w3.org/TR/xmlschema-0/

[WK03] Wittenbrink, Heinz ; Köhler, Werner: XML (Wissen, dass
sich auszahlt). 2003

48

http://www.w3schools.com/schema/default.asp
http://www.w3schools.com/schema/default.asp
http://www.w3schools.com/schema/default.asp
http://www.w3schools.com/schema/default.asp
http://java.sun.com
http://dx.doi.org/http://doi.acm.org/10.1145/236338.236375
http://dx.doi.org/http://doi.acm.org/10.1145/236338.236375
http://www.w3.org/DOM/
http://www.w3.org/DOM/
http://www.w3.org/DOM/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/XML/1998/06/xmlspec-report
http://www.w3.org/XML/1998/06/xmlspec-report
http://www.w3.org/XML/1998/06/xmlspec-report
http://www.w3.org/XML/1998/06/xmlspec-report
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/

Appendix A

Appendix

A.1. Additional Graphics

AbstractAutomatNode
void addImportedObject(String importedObject)
void packageRead(boolean packageRead)
void modifierRead(String modifier)
AbstractAutomatNode packageDefBeginRead()
AbstractAutomatNode packageDefRead(String packageName)
AbstractAutomatNode packageDefEndRead()
AbstractAutomatNode importDefBeginRead()
AbstractAutomatNode importDefRead(String importedObject)
AbstractAutomatNode importDefEndRead()
AbstractAutomatNode classDefBeginRead()
AbstractAutomatNode classNameRead(String className)
AbstractAutomatNode extendsDefRead(String extendsTypeName)
AbstractAutomatNode implementsDefRead(String implementsTypeName)
AbstractAutomatNode classDefEndRead()
AbstractAutomatNode interfaceDefBeginRead()
AbstractAutomatNode interfaceNameRead(String className)
AbstractAutomatNode interfaceDefEndRead()
AbstractAutomatNode constructorDefBeginRead()
AbstractAutomatNode constructorDefNameRead(String name)
AbstractAutomatNode formalParameterListRead(Vector<FormalParameter> parameters)
AbstractAutomatNode constructorDefEndRead()
AbstractAutomatNode fieldDefBeginRead()
AbstractAutomatNode typeRead(String fieldType)
AbstractAutomatNode fieldDefFieldNameRead(String fieldName)
AbstractAutomatNode fieldDefBracketRead()
AbstractAutomatNode fieldDefEndRead()
AbstractAutomatNode methodDefBeginRead()
AbstractAutomatNode methodDefNameRead(String name)
AbstractAutomatNode anonymiousClassDefBeginRead()
AbstractAutomatNode anonymiousClassDefEndRead()
AbstractAutomatNode methodDefReturnTypeRead(String returnType)
AbstractAutomatNode methodDefThrowsListRead(Vector<String> throwsList)
AbstractAutomatNode methodDefEndRead()
AbstractAutomatNode initializerDefBeginRead()
AbstractAutomatNode initializerDefEndRead()
AbstractAutomatNode staticInitializerDefBeginRead()
AbstractAutomatNode staticInitializerDefEndRead()
AbstractAutomatNode javaSuperConstructBeginRead()
AbstractAutomatNode javaSuperConstructEndRead()
AbstractAutomatNode aheadSuperConstructBeginRead()
AbstractAutomatNode aheadSuperConstructEndRead()
AbstractAutomatNode gdeepSuperConstructBeginRead()
AbstractAutomatNode gdeepSuperConstructEndRead()

ClassAutomatNode
AbstractAutomatNode classDefBeginRead()
AbstractAutomatNode interfaceDefBeginRead()
AbstractAutomatNode constructorDefBeginRead()
AbstractAutomatNode classDefEndRead()
AbstractAutomatNode classNameRead(String className)
AbstractAutomatNode extendsDefRead(String extendsTypeName)
AbstractAutomatNode implementsDefRead(String implementsTypeName)
AbstractAutomatNode fieldDefBeginRead()
AbstractAutomatNode methodDefBeginRead()
AbstractAutomatNode initializerDefBeginRead()
AbstractAutomatNode staticInitializerDefBeginRead()

MethodAutomatNode
AbstractAutomatNode methodDefEndRead()
 AbstractAutomatNode methodDefReturnTypeRead(String returnType)
AbstractAutomatNode methodDefThrowsListRead(Vector<String> throwsList)
AbstractAutomatNode methodDefNameRead(String name)
AbstractAutomatNode formalParameterListRead(Vector<FormalParameter> parameters)
AbstractAutomatNode fieldDefBeginRead()
AbstractAutomatNode fieldDefEndRead()
AbstractAutomatNode fieldDefFieldNameRead(String fieldName)
AbstractAutomatNode fieldDefBracketRead()
AbstractAutomatNode typeRead(String fieldType)
AbstractAutomatNode anonymiousClassDefBeginRead()
AbstractAutomatNode aheadSuperConstructBeginRead()
AbstractAutomatNode aheadSuperConstructEndRead()
AbstractAutomatNode gdeepSuperConstructBeginRead()
AbstractAutomatNode gdeepSuperConstructEndRead()
AbstractAutomatNode javaSuperConstructBeginRead()
AbstractAutomatNode javaSuperConstructEndRead()

Figure A.1.: The extract of the UML model of the state machines' classes

49

A. Appendix

Figure A.2.: The Graph Representation of a FST-DL Document with 88 Features

Figure A.3.: Representation of GUIDSL features

50

Appendix A. Appendix

A.2. Additional Listings

Listing A.1: The generated program description for the two FSTs de�ned in �gure
3.5

<?xml version="1.0" encoding="iso-8859-1"?>
<tns:ProgrammDescr ipt ion xmlns : tns="http://www.scharinger.de/

FOPClassRepresentation" xmlns :x s i="http://www.w3.org/2001/XMLSchema-instance
">

<tns :Nontermina l ID="StackBase" JavaType="Feature" Name="StackBase" x s i : t y p e="
tns:FeatureNodeType">

<tns :Nontermina l ID="StackBase.stack" JavaType="Package" Name="stack"
x s i : t y p e="tns:PackageNodeType">

<tns :Nontermina l ID="StackBase.stack.Stack" JavaType="Class" Name="Stack"
x s i : t y p e="tns:ClassNodeType">

<tns :Termina l ID="StackBase.stack.Stack.elements" JavaType="Field" Name=
"elements" x s i : t y p e="tns:FieldNodeType">

<tn s :Re f e r e n c eL i s t>
<tns :Und i s so lv edRe f e r ence Re fe renc ing="Vector"/>

</ tn s :Re f e r e n c eL i s t>
<tns:Type>Vector</ tns:Type>
<tns :Content> = new Vector () ;</ tns :Content>

</ tns :Termina l>
<tns :Termina l ID="StackBase.stack.Stack.push(Object object)" JavaType="

Method" Name="apush(Object object)" x s i : t y p e="tns:MethodNodeType">
<tn s :Re f e r e n c eL i s t>

<tns :Und i s so lv edRe f e r ence Re fe renc ing="Object"/>
</ tn s :Re f e r e n c eL i s t>
<tns : InputParameterL i s t>

<tns : InputParameter>
<tns:ParameterName>ob j e c t</tns:ParameterName>
<tns:ParameterType>Object</ tns:ParameterType>

</ tns : InputParameter>
</ tns : InputParameterL i s t>
<tns:ReturnType>void</ tns:ReturnType>
<tns :Content>{

elements . add (0 , ob j e c t) ;
}

</ tns :Content>
</ tns :Termina l>
<tns :Termina l ID="StackBase.stack.Stack.pop()" JavaType="Method" Name="

pop()" x s i : t y p e="tns:MethodNodeType">
<tn s :Re f e r e n c eL i s t>

<tns :Und i s so lv edRe f e r ence Re fe renc ing="Object"/>
</ tn s :Re f e r e n c eL i s t>
<tns : InputParameterL i s t>
</ tns : InputParameterL i s t>
<tns:ReturnType>Object</ tns:ReturnType>
<tns :Content>{

return e lements . remove (0) ;
}

</ tns :Content>
</ tns :Termina l>

<tns :Termina l ID="StackBase.stack.Stack.top()" JavaType="Method" Name="
top()" x s i : t y p e="tns:MethodNodeType">

<tn s :Re f e r e n c eL i s t>
<tns :Und i s so lv edRe f e r ence Re fe renc ing="Object"/>

</ tn s :Re f e r e n c eL i s t>
<tns : InputParameterL i s t>
</ tns : InputParameterL i s t>
<tns:ReturnType>Object</ tns:ReturnType>
<tns :Content> {

return e lements . f i r s tE l emen t () ;
}

</ tns :Content>
</ tns :Termina l>

51

A. Appendix

</ tns :Nontermina l>
</ tns :Nontermina l>

</ tns :Nontermina l>
<tns :Nontermina l ID="StackElementCount" JavaType="Feature" Name="

StackElementCount" x s i : t y p e="tns:FeatureNodeType">
<tns :Nontermina l ID="StackElementCount.stack" JavaType="Package" Name="stack

" x s i : t y p e="tns:PackageNodeType">
<tns :Nontermina l ID="StackElementCount.stack.Stack" JavaType="Class" Name=

"Stack" x s i : t y p e="tns:ClassNodeType">
<tns :Termina l ID="StackElementCount.stack.Stack.getElementCount()"

JavaType="Method" Name="getElementCount()" x s i : t y p e="
tns:MethodNodeType">

<tn s :Re f e r e n c eL i s t>
<tns :Und i s so lv edRe f e r ence Re fe renc ing="int"/>

</ tn s :Re f e r e n c eL i s t>
<tns : InputParameterL i s t>
</ tns : InputParameterL i s t>
<tns:ReturnType>in t</ tns:ReturnType>
<tns :Content>{

return e lements . s i z e () ;
}

</ tns :Content>
</ tns :Termina l>

</ tns :Nontermina l>
</ tns :Nontermina l>

</ tns :Nontermina l>
</ tns:ProgrammDescr ipt ion>

Listing A.2: Part of the generated program description for GarphJak example
shown in �gure 5.1

<tns :Nontermina l ID="BasicGraph" JavaType="Feature" Name="BasicGraph" x s i : t y p e
="tns:FeatureNodeType">

<tns :Nontermina l ID="BasicGraph.defaultpackage" JavaType="Package" Name="
defaultpackage" x s i : t y p e="tns:PackageNodeType">

<tns :Nontermina l ID="BasicGraph.defaultpackage.Edge" JavaType="Class" Name
="Edge" x s i : t y p e="tns:ClassNodeType">

<tns :Content />
<tns :Termina l ID="BasicGraph.defaultpackage.Edge.a" JavaType="Field"

Name="a" x s i : t y p e="tns:FieldNodeType">
<tn s :Re f e r e n c eL i s t>

<tns :Und i s so lv edRe f e r ence Re fe renc ing="Node"/>
</ tn s :Re f e r e n c eL i s t>
<tns:Type>Node</ tns:Type>
<tns :Content>;</ tns :Content>

</ tns :Termina l>
<tns :Termina l ID="BasicGraph.defaultpackage.Edge.b" JavaType="Field"

Name="b" x s i : t y p e="tns:FieldNodeType">
<tn s :Re f e r e n c eL i s t>

<tns :Und i s so lv edRe f e r ence Re fe renc ing="Node"/>
</ tn s :Re f e r e n c eL i s t>
<tns:Type>Node</ tns:Type>
<tns :Content>;</ tns :Content>

</ tns :Termina l>
<tns :Termina l ID="BasicGraph.defaultpackage.Edge.Edge(defaultpackage.

Node, defaultpackage.Node)" JavaType="Constructor" Name="Edge(Node,
Node)" x s i : t y p e="tns:ConstructorNodeType">

<tn s :Re f e r e n c eL i s t>
<tns :Und i s so lv edRe f e r ence Re fe renc ing="Node"/>

</ tn s :Re f e r e n c eL i s t>
<tns : InputParameterL i s t>

<tns : InputParameter>
<tns:ParameterName>_a</tns:ParameterName>
<tns:ParameterType>Node</ tns:ParameterType>

</ tns : InputParameter>
<tns : InputParameter>

<tns:ParameterName>_b</tns:ParameterName>
<tns:ParameterType>Node</ tns:ParameterType>

52

Appendix A. Appendix

</ tns : InputParameter>
</ tns : InputParameterL i s t>
<tns :Content> {

a = _a ;
b = _b;
}
</ tns :Content>

</ tns :Termina l>

Listing A.3: Part of the generated program description for GarphJak example
shown in �gure 5.2

<tns :Nontermina l ID="Recursive" JavaType="Feature" Name="Recursive" x s i : t y p e="
tns:FeatureNodeType">

<tns :Nontermina l ID="Recursive.defaultpackage" JavaType="Package" Name="
defaultpackage" x s i : t y p e="tns:PackageNodeType">

<tns :Nontermina l ID="Recursive.defaultpackage.Graph" JavaType="Class" Name
="Graph" x s i : t y p e="tns:ClassNodeType">

<tns :Content />
<tns :Termina l ID="Recursive.defaultpackage.Graph.main(String[])"

JavaType="Method" Name="main(String[])" x s i : t y p e="tns:MethodNodeType
">

<tn s :Re f e r e n c eL i s t>
<tn s :D i s s o l v edRe f e r enc e Re fe renc ing="BasicGraph.defaultpackage.Graph

"/>
<tns :D i s s o l v edRe f e r enc e Re fe renc ing="BasicGraph.defaultpackage.Node"

/>
<tns :Und i s so lv edRe f e r ence Re fe renc ing="String"/>
<tns :Und i s so lv edRe f e r ence Re fe renc ing="main(String[])"/>

</ tn s :Re f e r e n c eL i s t>
<tn s :Mod i f i e r L i s t>

<tn s :Mod i f i e r>pub l i c</ tn s :Mod i f i e r>
<tn s :Mod i f i e r>s t a t i c</ tn s :Mod i f i e r>

</ tn s :Mod i f i e r L i s t>
<tns : InputParameterL i s t>

<tns : InputParameter>
<tns:ParameterName>args</tns:ParameterName>
<tns:ParameterType>St r ing []</ tns:ParameterType>

</ tns : InputParameter>
</ tns : InputParameterL i s t>
<tns:ReturnType>void</ tns:ReturnType>

53

Erklärung

Hiermit versichere ich eidesstattlich, dass ich die vorliegende Arbeit selbständig
verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt
sowie alle Ausführungen, die wörtlich oder sinngemäÿ übernommen wurden, als
solche gekennzeichnet habe. Die Arbeit wurde von mir in gleicher oder ähnlicher
Form noch keiner anderen Prüfungsbehörde vorgelegt.

Sebastian Scharinger
Passau, 12th June, 2009

	List of Figures
	Table of listings
	Introduction
	Problems of Object Oriented Software Design in Product-Line Development
	Motivation
	Outline

	Background
	Features and Feature Composition
	General Feature Structure Tree
	Feature Composition
	Feature Interactions

	XML-Schema Basics

	The FST Description Language
	Describing the General FST-Model via XML
	Type Definition for Terminal and Non-Terminal Nodes
	Definition of the Program Description

	Extending the General FST-Model for Java Source Code
	Mapping of Packages, Classes and Interfaces to Non-terminal Nodes
	Mapping of Fields, Constructors and Methods to Terminal Nodes

	Extending the XML-Description
	Several Extensions
	Type definition for Packages, Classes and Interfaces
	Type definition for Fields, Constructors and Methods
	Example

	Implementation of a Code Generator for FST-DL-Documents
	General Approach to Parse Source Code Artefacts
	Parser Tier
	Converter Tier
	Generator Tier
	Data Transformations

	The Application of FST-DL
	Representing an XML-Document in a Tree Model
	Graphical Visualization of the FST
	Displaying FST as a Tree
	Displaying FST as a Graph and Feature Interactions
	Finding Cyclic References between Features

	Composition of Features
	Case Studies
	GUIDSL
	GPL
	Violet

	Summary
	Conclusion
	Future Works

	Bibliography
	Appendix
	Additional Graphics
	Additional Listings

