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Abstract

Feature models are an important artifact in software product line
engineering. They describe commonality and variability of all
product line members. This thesis proposes the use of attributes
and additional constraints in feature modeling to extend expres-
siveness and usability. Therefore, new grammars were built to
extend traditional feature models by optional integer attributes
and additional constraints. We found a mapping that converts ex-
tended feature models into pseudo-boolean satisfiability (PBSAT)
instances. This allows reasoning of feature models using a PBSAT
solver. We took different feature model analysis operations from
several authors to show applicability of the PBSAT representation.
This required adaptations and led to extensions of known algo-
rithms. We analyzed the scalability of our proposed adaptations
by an evaluation of different real-world feature models.
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1 Introduction

Software product lines are a recent research topic in software engineering. It is about
producing a set of related software with similar core functionality but different pe-
culiarity. Product lines are widely known from big manufacturer’s of cars and com-
puters or even fast-food restaurants. They all have in common that they offer a
collection of related products which satisfy different customer needs. Product lines
often enable customers to individualize products.

Apart from the advantage of smaller portfolios, product lines reduce costs and help
to unify the development process. Especially larger software systems benefit from
this technology. Software product lines accelerate development because of intense
reuse of all software artifacts like components, frameworks, tests and documen-
tation. Fewer developers and lower investments are major benefits concerning to
resources. Furthermore, clients receive their products earlier and have more op-
tions to customize the resulting software.

Variability models are an important design artifact in software product-line engi-
neering. They capture commonalities and variabilities of product lines to describe
valid combinations of the available components. Several variability models have
been proposed in the past. A well-known kind are feature models which organize
different functionality or requirements in features.

Feature models are usually divided in two separate parts. The first part is the feature
diagram that organises features in a tree-structure and provides basic relations. The
second part are additional constraints that enable to define further relations between
features. Additional constraints are often called cross-tree constraints since they do
not rely on the tree-structure of the feature diagram. However, semantics of feature
models are fix and precise. This allows to map feature models to different logical
representations. A widely used representation is propositional logic since it allows
to use satisfiability (SAT)[Bat05] solvers for reasoning. Other authors propose the
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use of description logic (DL)[WLS+07] or constraint programming (CP)[BTRC05b]. In
this thesis, we want to examine the feasibility of pseudo-boolean satisfiability (PB-
SAT) problems. PBSAT instances are systems of linear inequalities with two-value
variables. Surprisingly, PBSAT instances can be handled similar to SAT instances in
some cases. This thesis checks feasibility, discovers limitations and applies analysis
based on feature models in PBSAT representations.

Chapter 2 provides explanations for the different topic-related terms in this thesis.
Feature models will be introduced in detail using graphical examples. The simi-
larities and differences between SAT and PBSAT will be examined. Furthermore,
concepts of automated analysis and tool support in FeatureIDE will be presented.

Apart from mapping to logic representations, feature models have been extended
by more sophisticated constructs like additional rules or attributes. Moreover, fea-
ture models can be specified using context-free languages. We combined both ap-
proaches and introduced attributes and additional constraints to extend features
models. The limitations of the feasibility study and the resulting grammars are
outlined in chapter 3.

The mapping of feature models to specific logic representations allows to reason
with off-the-shelf solvers. Reasoning allows to check the integrity of the model
using satisfiability algorithms. But feature model analysis also includes various
more complicated operations. Benavides et al. [BSRC10] collected all known oper-
ations and compared the use of different reasoning engines. We recognized that
pseudo-boolean satisfiability were not used yet. This motivated us to look for a
mapping from extended feature models to pseudo-boolean satisfiability instances.
Chapter 4 describes in detail the mapping procedure and emphasises advantages
of the pseudo-boolean representation.

Understanding semantics or imagining all represented variants of product lines
becomes difficult even for very small feature models. This is where tool support
comes in to help developers comprehending. Additionally, automated analysis
keeps track of changes and gives meaningful advices during refactoring. In chapter
5, we explain important analysis operations by definitions and graphical examples.
Then we show the feasibility of these operations using a PBSAT solver. Therefore,
we had to adapt most of them into the pseudo-boolean context. The algorithms are
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divided in two separate sections because the analysis takes place in different stages
of the development.

We created many test cases to verify the correctness of the adapted algorithms.
We also collected feature models from the FeatureIDE repository1 to apply the pro-
posed analysis. Chapter 6 explains our evaluation which we used to measure time
consumption in dependency to feature model size. The results of this evaluation
are elaborated and commented.

We finally conclude this thesis in chapter 7 by summarising the different research
steps and emphasising our contributions to the software product-line community.
Additionally, we mention several related topics to investigate that build on top of
the results from this thesis.

1 https://faracvs.cs.uni-magdeburg.de/projects/tthuem-FeatureIDE/browser/
trunk/featuremodels
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2 Background

The background chapter helps to understand important terms and concepts of this
thesis. Feature models as well as automated reasoning will be explained. SAT
and PBSAT instances will be introduced and compared. In addition, we present
important conversions that will be used in later chapters.

2.1 Feature models

As already mentioned in the introduction, feature models are a specialization of
variability models. Feature models describe a set of similar products using features
to encapsulate special customer needs like additional functionality or individual
requirements. The feature model captures relations between features and hence de-
fines legal combinations of them. The hierarchy and basic relations are provided by
the feature diagram. Besides, feature diagrams also visualize components and give
impressions of the complexity and size. Additional constraints are used to com-
plement missing relations. Figure 2.1 shows a feature model using both, a feature
diagram and additional constraints. The latter denoted below the feature diagram
using propositional logic.

Figure 2.1: Feature model of a mobile phone product line
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The complete feature model can be represented using propositional formulas. The
tree-structure of the feature diagram can be mapped to propositional logic as shown
in table 2.2. The four presented relations and the obligatory selected root feature
are known from basic feature models. Cardinality-based feature models are not
supported by the GUIDSL1 format we use. But our proposed mapping is able to
express cardinality-based feature models. We will introduce custom cardinality
groups later. We shortened the propositional logic representation by using implica-
tions and high-level functions like atLeast(n, X) and atMost(n, X). Both functions
limit the number of true-assigned variables in the set X by a lower or an upper
bound n. An equivalent but very verbose representation in conjunctive normal
form (CNF)[KK06] is shown by the equations 2.1 and 2.2.

atLeast(n, {x1, · · · , xi}︸ ︷︷ ︸
=X

) ≡ ∧
C=P=n+1(X)

∨
l∈C
¬l (2.1)

atMost(n, {x1, · · · , xi}︸ ︷︷ ︸
=X

) ≡ ∧
C=P=i−n+1(X)

∨
l∈C

l (2.2)

2.2 SAT and PBSAT

Feature models can be expressed in very different ways. The usual representations
are logic-based. Propositional logic[Bat05] is the most common type since it enables
straightforward transformation[BSRC10] as visualized in table 2.2. The proposi-
tional formula describing the feature model can easily be converted using known
rules of boolean algebra. Therefore, conversion into different forms like the CNF
are possible. Particularly the CNF is very important for analysis of feature models.
It is used as input for SAT solvers and hence allows to determine legal feature com-
binations. We just have to create a mapping from features to boolean variables and
then verify satisfiability using the SAT solver. Notice that the number of satisfying
assignments in the CNF is equal to the number of variants because features are di-
rectly represented by the boolean variables.

The idea of PBSAT solvers is similar to SAT solvers. Both try to find satisfying
assignments for boolean variables in a given problem instance. The major differ-

1 http://www.cs.utexas.edu/~schwartz/ATS/fopdocs/guidsl.html
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RELATION GRAPHIC PROPOSITIONAL LOGIC

root r

mandatory
(and-group)

(x ↔ y1) ∧ · · · ∧ (x ↔ yi)

optional
(and-group)

x ← y1 ∧ · · · ∧ yi

or
(group [1,i])

x ↔ y1 ∨ · · · ∨ yi

alternative
(group [1,1])

x → atLeast(1, {y1, · · · , yi}) ∧ atMost(1, {y1, · · · , yi})

Table 2.2: Feature diagram mappings to propositional logic

ence is the input format. PBSAT uses a system of linear inequalities with integer
coefficients. The variables are pseudo-boolean because they are either 0 (false) or
1 (true). A sample instance is shown in equation 2.3. It represents the phrase: “If
and only if a is true, exactly two of b, c and d have to be true too”. Otherwise, the
equation can not hold.

2a− 1b− 1c− 1d = 0 (2.3)

The PBSAT representation allows to negate boolean variables as in propositional
logic. We denote negated variables by an overline. Combining this possibility with
the property of pseudo-boolean variables allows to replace variables as shown in
equation 2.4[BHP08].

x = 1− x (2.4)
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The replacement of equation 2.4 enables to transform all variables positive/negative
or all coefficients positive/negative. We exemplary show how to flip all coefficients
positive. Therefore, we apply the replacement three times in 2.3 and get equation
2.5.

2a + 1b + 1c + 1d = 3 (2.5)

We introduced PBSAT as system of linear inequalities but obviously presented just
linear equations yet. But it is trivial to express an equation in a conjunction of
inequalities. The conjunction 2.6 shows an equivalent statement as equations 2.3
using inequalities instead of equations. We will use equations as much as possible
throughout this thesis to simplify and shorten representations by keeping in mind
that the PBSAT solver just accepts linear inequalities.

2a− 1b− 1c− 1d ≤ 0 ∧ 2a− 1b− 1c− 1d ≥ 0 (2.6)

Notice that we place variables always on the left-hand side of equations or rather
inequalities. The integer number on the right-hand side of the equations or inequal-
ity is called the degree.

PBSAT allows to express a lot problems more compact than propositional logic. In
the worst case, the PBSAT representation is as verbose as the propositional logic
instance in CNF because we are able to map each CNF clause by a cardinality
restriction[CK03]. The equivalence 2.7 shows the mapping.

(a ∨ ¬b ∨ c) ⇔ 1a + 1b + 1c ≥ 0 (2.7)

The referenced literature calls pseudo-boolean equations and inequalities constraints.
Unfortunately, the word constraint is already used to describe additional rules in
feature models. That is why we call pseudo-boolean equations or inequalities re-
strictions throughout this thesis to avoid misunderstandings. The general math-
ematical notation of arbitrary pseudo-boolean restriction can be seen in equation
2.8. We will use this notation later to explain necessary conversions.

n

∑
i=1

aixi = d (2.8)
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2.3 Automated analysis

Automated analysis plays an important role during feature modeling and product
derivation. It supports developers with useful information about the product line
and the represented variants. The collected information and the applied analysis
depends on the concrete tool. Some of them just generate statistical information like
homogeneity or the number of potential variants. Other tools focus on validation
and simplification of feature models as well as classification of feature model edits.
However, automated analysis provides different information to improve feature
models. This can be done by providing meaningful advices and reporting warn-
ings and errors. Integrated in feature model editors or development environments,
automated analysis supports faster development and causes fewer problems. Fig-
ure 2.2 illustrates the usual work flow of automated analysis.

Feature Model

represented by
DSL / Grammar

Feature Model

logical representation

propositional logic;
system of equations 

and inequalities

Feature Model

reduced logical 
representation

CNF; system of 
inequalities

Analysis Operation

algorithm

validation; feature 
properties; simplification; 

edits, propagation

Reasoning Engine

solver

SAT; PBSAT

Result

advice; suggestion; 
warning; error

mapping conversion

uses uses

calls (using assumptions)

returns

Figure 2.2: Steps of automated resasoning
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2.4 FeatureIDE

FeatureIDE2 is an open-source, integrated development environment (IDE) for
feature-oriented software development. It provides feature modeling support and
several established extensions for program composition. It is the only tool that
delivers concrete support for program composition. Other tools like pure::variants
from pure-systems3 focus on variant management which also supports product line
development for non-software projects. Certainly, no extensions for intelligent pro-
gram composition are delivered with pure::variants. Both tools have in common
that they are build on top of the Eclipse RCP4.

Figure 2.3: Screenshot of the feature modeling view in FeatureIDE

There are more projects that support feature modeling and/or automated analysis.
But most projects concentrate either on feature modeling or automated analysis.
We looked for a tool that combines both to improve development and enhance user

2 http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/
3 http://www.pure-systems.com/
4 http://www.eclipse.org/home/categories/rcp.php
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experience. FeatureIDE fulfils this requirements. Therefore, our proposed formats
and algorithms are fully compatible with FeatureIDE. Furthermore, we plan to ex-
tend the FeatureIDE platform by the results of this thesis. Figure 2.3 shows the
feature model editor of FeatureIDE. It provides a comfortable editing interface that
gives immediately feedback if the user modifies components such that inconsisten-
cies arise.
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3 Extended feature models

Traditional feature models are usually represented by propositional formulas [Bat05,
BSRC10]. Feature diagrams are used to create a hierarchy and visualize the connec-
tion of features. Cross-tree constraints complement the missing expressiveness and
define relations between features in different subtrees of the feature diagram. Ex-
tended feature models provide different ways to encode even more information into
feature models [BTRC05a]. We focussed on optional attributes which have to be
attached to features. The attached attributes are able to describe non-functional
properties as well as behaviour or compatibility of features. Our feasibility analysis
proved that we are able to express attributes in the integer domain using a PBSAT
solver. Since attributes do not have pre-defined semantics, we added additional
constraints that are able to refer features and feature attributes. These additional
constraints are represented as pseudo-boolean restrictions which allow reasoning
using a PBSAT solver.

Batory discovered the relation between feature models, grammars and proposi-
tional formulas [Bat05]. Based on his results, we built new grammars which express
feature attributes and additional constraints. The feature models are represented by
the GUIDSL language. However, the proposed extension of feature attributes and
additional constraints is independent of the concrete feature model representation.
Other representations can be plugged in to extend expressiveness and apply sev-
eral analysis operations.

3.1 Attribute grammar

Feature attributes have to be defined in a special file. This file contains all attribute
assignments in a JAVA-like syntax. Features are able to have several attributes
which are identified by a unique name. The value of the attributes is limited to
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integer values because of the PBSAT reasoning engine. The grammar of the at-
tribute file is described using the extended Backus-Naur Form (EBNF) in figure 3.1.

assignments = {assignment};
assignment = f eature, ’.’, attribute, ’=’, integer, ’;’;

f eature = identi f ier;
attribute = identi f ier;

identi f ier = (’a-z’|’A-Z’|’_’), { (’a-z’|’A-Z’|’_’|’0-9’) };
integer = [ (’-’|’+’) ], (’1-9’), { (’0-9’) };

Figure 3.1: Grammar of the attribute file

The listing in figure 3.2 shows an example attribute file. It extends the mobile phone
feature model from 2.1 by feature attributes that describe the cost of the different
components.

Phone.cost = 25;
GPS.cost = 30;
Standard.cost = 20;
HD.cost = 55;
Camera.cost = 35;

Figure 3.2: Sample attribute file

3.2 Constraint grammar

Additional constraints are also defined in a separate file. The file contains pseudo-
boolean restrictions which refer features and/or attributes. Additionally, integer
coefficients can be used. The constraint grammar is consistent to the attribute
grammar because attributes are referred the same way. Figure 3.3 describes the
constraint file grammar using EBNF.

Listing 3.4 shows how the attributes of listing 3.2 can be combined in an additional
constraint that limits the total cost. In other words, the constraint forces the selec-
tion of cheap mobile phone variants.
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constraints = {constraint};
constraint = terms, relation, degree, ’;’;

terms = f irstTerm, termsTail;
termsTail = {term};
f irstTerm = [ sign ], uinteger, [ negative ], re f erence;

term = sign, uinteger, [ negative ], re f erence;
re f erence = f eature, [ [ (’.’|’#’) ], attribute ];

degree = [ sign ], uinteger;
negative = ’~’;
relation = (’>=’|’=’|’<=’);

sign = (’-’|’+’);
identi f ier = (’a-z’|’A-Z’|’_’), { (’a-z’|’A-Z’|’_’|’0-9’) };

uinteger = (’1-9’), { (’0-9’) };

Figure 3.3: Grammar of the constraint file

Phone + GPS.cost + Standard.cost + HD.cost + Camera.cost <= 99;

Figure 3.4: Sample constraint file

We included a special operator to the constraint file grammar. It allows to build
sums of feature attributes like in listing 3.4. Listing 3.5 shows the usage of that
shortcut. Notice that the constraint in listings 3.4 and 3.5 is indentical. The operator
will be replaced by the sum of all subfeatures with the same attribute.

Phone#cost <= 99;

Figure 3.5: Alternative representation of sample constraint file

3.3 Generated parser

We used the ANTLR1 parser generator to build the required attribute and constraint
file parsers. Therefore, we created attributed grammars to generate the parser for

1 http://www.antlr.org/
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both file formats. We decided to skip the concrete grammar files here to focus on
the general approach.
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4 Mapping feature models to logic

Automated analysis of feature models needs a platform which enables reasoning.
We decided to use a PBSAT solver as reasoning engine. It takes PBSAT instances
and checks satisfiability which builds the base for most analysis operations.

We examined the form of PBSAT problems in chapter 2. It is basically a conjunction
of linear equations and inequalities where each variable is either 0 or 1. An equiva-
lent description would be a system of linear inequalities with limited solution sets,
namely {0, 1} for each variable xi.

The mapping is responsible to somehow translate a feature model into a problem
instance. The instance type depends on the required input of the reasoning engine.
Since we use PBSAT solvers, we have to find a method that is able to convert a
feature model into a PBSAT instance. Our proposed mapping method is very mod-
ular. We found a way to translate different components of the feature model into
individual PBSAT instances. Therefore, we divided the feature model in the fea-
ture diagram component, the cross-tree constraints and additional pseudo-boolean
equations and inequalities. Then we mapped each of them into sub-instances of
PBSAT and joined them together to obtain the PBSAT instance that represents the
whole feature model.

4.1 Feature diagram

The mapping of feature relations in the feature diagram has been shown by many
authors [Bat05, CW07, BSRC10]. We applied a similar technique treating groups
of features independent from each other. Furthermore, we focussed on having the
most compact PBSAT representation for each group. Table 4.2 shows the mapping
of all known feature diagram relations to propositional logic and PBSAT. Note that
mandatory or optional features in and-groups allow separate translation. Notice also
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that groups can be generalized using the mapping of cardinality groups. We ex-
tended the table by propositional logic mappings to emphasise the compactness of
the pseudo-boolean representation. The size of both representations seems to be
similar, but the conjunctive normal forms of the propositional logic mappings are
more verbose. Especially the high-level functions atLeast(n, X) and atMost(n, X)

cause much clauses depending on the parameters. The equivalent CNF representa-
tion of atLeast and atMost is shown in equations 2.1 and 2.2.

4.2 Cross-tree constraints

In some feature model specifications, cross-tree constraints are limited sets of pre-
defined relations [BCTS06, pur09] between features which are not directly con-
nected in the feature diagram. However, we think of cross-tree constraints as arbi-
trary propositional formulas like in GUIDSL [Bat05] or rather FeatureIDE [KTS+09].
This enables the application of our mapping on all specialized feature model spec-
ifications. To be more precise, we are able to apply the proposed mapping on each
representation that is reducible to propositional logic.

The mapping itself is very simple and analogous to the SAT-based approach. We
convert all propositional formulas into conjunctive normal form (CNF)[KK06] and
create an equivalent cardinality restriction for each clause as shown in chapter 2.
The conversion from an arbitrary propositional formulas can lead to an exponen-
tial explosion of clauses in the resulting CNF. However, cross-tree constraints com-
monly just affect a few features which guarantees quick conversions into CNF.

The example equations 4.1 shows the conversion from a cross-tree constraint which
forces the selection of C if and only if A and B are selected. After the conversion
into CNF, each clause is mapped to a cardinality restriction.

(A ∧ B)↔ C

≡ ((A ∧ B)→ C) ∧ (C → (A ∧ B))

≡ (¬(A ∧ B) ∨ C) ∧ (¬C ∨ (A ∧ B))

≡ (¬A ∨ ¬B ∨ C)︸ ︷︷ ︸
1a+1b+1c ≥ 1

∧ (¬C ∨ A)︸ ︷︷ ︸
1c+1a ≥ 1

∧ (¬C ∨ B)︸ ︷︷ ︸
1c+1b ≥ 1

(4.1)
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4.3 Additional pseudo-boolean equations and

inequalities

In chapter 3, we introduced additional constraints based on pseudo-boolean re-
strictions. These restrictions provide the declaration of equations and inequalities
that allow to refer features, attributes or even attribute sums. The mapping to the
PBSAT representation is simple because of the identical form. We just have to re-
place feature names by boolean variables and attribute references by their assigned
values. The sum operator requires a replacement by all feature attributes of the
referred feature subtree according to the feature diagram. Table 4.3 shows the map-
ping of features, feature attributes and sums of feature attributes from the syntax
described in chapter 3. The referred features and attributes are shown in figure 4.1
and 4.2. The row INTERPRETATION describes the logical consequence of the exem-
plary restrictions to ease comprehension.

Figure 4.1: Subtree of a feature diagram

A.foo = 15;
B.foo = 6;
C.foo = 7;

Figure 4.2: Sample attribute file according to 4.1

23



RELATION GRAPHIC PROPOSITIONAL LOGIC PBSAT

root r r ≥ 1

mandatory
(single)

x ↔ y x− y = 0

mandatory
(in and-group)

x ↔ y1 ∧ · · · ∧ yi i · x− y1 · · · − yi = 0

optional
(single)

y→ x x− y ≥ 0

optional
(in and-group)

y1 ∨ · · · ∨ yi → x i · x− y1 · · · − yi ≥ 0

or
(group [1,i])

x ↔ y1 ∨ · · · ∨ yi 0 ≤ i · x− y1 · · · − yi ≤ i− 1

alternative
(group [1,1])

x →
atLeast(1, {y1, · · · , yi}) ∧
atMost(1, {y1, · · · , yi})

x− y1 · · · − yi = 0

custom
cardinality
(group [n,m])

x →
atLeast(n, {y1, · · · , yi}) ∧
atMost(m, {y1, · · · , yi})

x → (n ≤ y1 + · · ·+ yi ≤ m)

⇔ i−m ≤ i · x− y1 · · · yi ≤ i− n

Table 4.2: Feature diagram mappings to PBSAT
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TYPE SYNTAX PBSAT INTERPRETATION

feature A >= 1 a ≥ 1 A is enabled
feature attribute A.foo <= 10 a ≤ 10 A is disabled, B and C too
feature attribute sum A#foo >= 20 10a + 6b + 7c ≥ 20 A is enabled, B and/or C too

Table 4.3: Additional constraint mapping according to 4.1 and 4.2
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5 Analysis operations

Automated reasoning is a recent topic in software product line research. In the past,
various tools were used to reason on feature models. Satisfiability solver (SAT),
constraint satisfaction problem (CSP) and description logic (DL) were popular tech-
niques [BSRC10]. But higher level tools like Prolog [BPSP04] or data structures like
binary decision diagrams (BDD) [BSTC07] were also used. This chapter shows how
PBSAT solvers can be used to reason on feature models. Therefore, several im-
portant analysis operations from different authors have been adapted to reason on
extended feature models in pseudo-boolean representation. The different analysis
operations will be introduced with raising complexity. The operations are sepa-
rated by the stage of the engineering process they occur.

We added pseudo-code listings to describe the way the algorithms work. Therefore,
some variables and functions have to be introduced. The parameter M represents
a feature models which is already translated into a conjunction of pseudo-boolean
restrictions. The parameter F denotes the set of all features present in the model M.
The function addAssumption() takes a model and an assumption (simple restric-
tion) and returns a new model extended by the specified assumption. The function
removeAssumptions() removes all previously added assumptions. Finally, the func-
tion satis f iable() symbolizes the call to the pseudo-boolean satisfiability solver. The
call to satis f iable() returns true if and only if there is a satisfying assignment for
the passed PBSAT instance representing the feature model.

5.1 Domain engineering

We divided this chapter in the section domain engineering and application engineering.
Both terms describe a specific process in software product-line engineering. We cat-
egorized the algorithms in these stages to emphasize the environment they usually
occur.
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Domain engineering describes the process of collecting individual customer needs
and assembling them into a feature model. In this stage, the domain engineer cre-
ates and refactors the feature model. The various suggested algorithms support
domain engineering by verifying feature models and reporting potential damages.
Furthermore, changes on the model can be observed to preserve semantics. All
these operations can run in background to inform the domain engineer if neces-
sary. Automated reasoning in the domain engineering process eases development
in software product line engineering and increases productivity.

5.1.1 Validation

Definition: A valid feature model requires that concrete products can be derived
from the specification. If there is no derivable product, the model is called void. The
validation is a basic reasoning operation since it guarantees that the model is con-
sistent. Furthermore, a valid feature model is a pre-condition for deeper analysis
which is explained later in this chapter.

Figure 5.1 illustrates the difference between valid and void feature models. Adding
the cross-tree constraint ¬A ∧ B makes the model invalid because both features are
forced to be enabled cause of mandatory feature diagram relations.

Figure 5.1: A valid and a void feature model

The validation algorithm [1] is simple and straightforward. We take the feature
model M which is represented as conjunction of pseudo-boolean restrictions call
the PBSAT solver on this representation. If the solver returns false which means
“unsatisfiable”, no solution exists and hence no product. Otherwise, the model is
valid and describes real products.
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Algorithm 1 Check validity of feature model

function ISVALID(M)
return satis f iable(M)

end function

5.1.2 Feature properties

Many authors covered the properties that arise from the composition of features in
their corresponding model [BSRC10]. They found out that some features are part
of every product. At least the root feature fulfils this condition all the time. Some-
times, features can not be enabled during application engineering and consequently
are never part of any derived product. In the following section, we introduce four
different feature properties, give a proposal how to compute them, and examine
the strong relation between them. In figure 5.2, we introduce a feature model with
different feature properties. In the following section, this feature model will help to
understand the described properties and to comprehend the proposed algorithms.

Figure 5.2: A feature model that contains features with different properties

Core features

Definition: A core feature is a component which is part in all products described by
the product line. Core features can not be disabled cause of relations and/or con-
straints in the feature model. The root feature is obviously a core feature in every
feature model.

Figure 5.3 emphasises the core feature in our example feature model. It is obvi-
ous that Root and the mandatory connected A are core features. Feature B is also a
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core feature because of the cross-tree constraint A⇒ B. The remaining features are
not contained in the set of core features.

Figure 5.3: A feature model with emphasised core features

The core feature algorithm [2] takes a feature model M and a set F of all features
present in the model. For each feature, we assume that it is disabled by adding an
assumption to the model. If the PBSAT solver tells us that the feature is “unsatis-
fiable”, we know the feature has to be part in any valid product. In other words,
there is no product without the contemplated feature.

Algorithm 2 Compute set of core features

function COMPUTECOREFEATURES(M, F)
Fcore ← ∅
for all f ∈ F do

M← addAssumption(M, f = 0) . forces feature f to be disabled
if ¬satis f iable(M) then

Fcore ← Fcore ∪ { f }
end if
M← removeAssumptions(M) . remove the assumption

end for
return Fcore

end function

Dead features

Definition: A dead feature is a component which can not be part in any product al-
though it is part of the feature model. Dead features occur because of additional
constraints which force them to be disabled.
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Benavides et al. [BSRC10] stated dead features as anomaly. In our opinion, dead
features are not always problematic. They could be used to temporarily deactivate
specific functionality. Another use case could be in staged configuration[CHE05],
where previous (de-)selections by another party can not be undone. This leads to
disabled or rather deselected features which can be interpreted as dead features.

Figure 5.4 shows a dead feature in the example feature model. Feature D is dead
because of the cross-tree constraint ¬(A ∧ D) and the fact that A is a core feature.

Figure 5.4: A feature model with emphasised dead features

If one selects a dead feature, the feature model becomes invalid. This characteristic
explains the correctness of our iteratively assumption-based algorithm [3]. Notice,
the computation of dead features is analogical to the core feature algorithm. The
only difference are the temporarily added assumptions.

Algorithm 3 Compute set of dead features

function COMPUTEDEADFEATURES(M, F)
Fdead ← ∅
for all f ∈ F do

M← addAssumption(M, f = 1) . forces feature f to be enabled
if ¬satis f iable(M) then

Fdead ← Fdead ∪ { f }
end if
M← removeAssumptions(M) . removes the assumption

end for
return Fdead

end function
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Variant features

In our opinion, there is no satisfying definition in the literature. Benavides et al.
[BSRC10] defines variant features as features that do not appear in all products of a
software product line. We propose a stronger definition of variant features. In our
mind, features can either be core, dead or variant. This definition separates dead and
variant features into two disjoint sets.

Definition: A variant feature describes a feature model component that can be en-
abled or disabled. Variant features extend the variability of the feature model, be-
cause their occurrence increases the number of potential products.

Figure 5.5 highlights all variant feature in the example feature diagram. The fea-
tures C and E are variant because they are neither core nor dead features.

Figure 5.5: A feature model with emphasised variant features

The variant feature algorithm [4] takes the feature model M and a set of all features
F. After computing core and dead features, the variant features can easily be deter-
mined. Variant features are those features that are neither core nor dead.

Algorithm 4 Compute set of variant features

function COMPUTEVARIANTFEATURES(M, F)
Fcore ← computeCoreFeatures(M, F)
Fdead ← computeDeadFeatures(M, F)
Fvariant ← F \ (Fcore ∪ Fdead)
return Fvariant

end function
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Notice that the previously introduced properties are strongly related to each other.
The computation can be combined in just one loop calling the satisfiability solver
at all for O(2n) times where n denotes the number of features. Additionally, the
following equations hold:

F = Fcore ∪ Fdead ∪ Fvariant (5.1)

|F| = |Fcore|+ |Fdead|+ |Fvariant| (5.2)

False-optional features

Definition: A false-optional feature is a component that seems to be optional although
it is part of all valid products. False-optional features are obviously a subset of core
features. Making false-optional features visible helps to restructure feature models
while semantics are preserved.

Figure 5.6 emphasises the only false-optional feature in the example model. Fea-
ture B is core but at the same time not mandatory connected to the parent feature
Root which makes it false-optional.

Figure 5.6: A feature model with emphasised false optional features

At first, the false-optional algorithm [5] determines all core features. After that, the
core features will be checked whether they are optional or not. This is done by the
isOptional() function. The result are all core features in a optional relation which
fits exactly the above definition.
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Algorithm 5 Compute set of false-optional features

function COMPUTEFALSEOPTIONALFEATURES(M, F)
Fcore ← computeCoreFeatures(M, F)
Ff alseOpt = ∅
for all f ∈ Fcore do

if isOptional( f ) then
Ff alseOpt ← Ff alseOpt ∪ { f }

end if
end for
return Ff alseOpt

end function

5.1.3 Simplification

In almost all feature models, there are groups of features which can be handled as
a single feature. In other words, if you select one feature of such a group, the se-
lection will be propagated to all remaining features of the group. These groups are
better known as atomic sets[ZZM04]. Each atomic set can be handled like a single
feature in the mapping procedure. This enables simplification through replacement
of features or rather variables. The consequence are fewer features and a more com-
pact representation. Furthermore, atomic sets make the real variability of a feature
model visible.

Figure 5.7 illustrates how a feature model can be simplified by replacement of
strongly connected features. Notice that the cross-tree constraint B ⇔ C is con-
sidered in the simplification.

Figure 5.7: Simplification of a feature model with atomic sets
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In the past, atomic sets were generated by traversal through the feature diagram[Seg08].
The algorithm grouped features which have a mandatory relation to each other. All
those groups were merged which caused a simplification that decreased the num-
ber of variables and clauses[ZZM04]. Cross-tree constraints and other information
attached to the feature model were skipped. To respect all the given information
encoded in the feature model, we extended the traversal-based algorithm. We built
a divide and conquer algorithm that is based on assumptions like the previously pre-
sented algorithms. This extension allows us to find all atomic sets in the feature
model.

The simplification algorithm [6] takes a feature model M and a set of features F.
At the initial call, F contains all features. In subsequent (recursive) calls, the set
F contains just subsets of features which are potential atomic sets. The basic idea
of the proposed algorithm is, to split F into two disjoint sets of features until we
find an atomic set. As soon as we find an atomic set, we can merge features or
rather simplify the feature model. An atomic set is found if |F| = 1 (trivial case) or
each selection of a feature in F forces all remaining features to be enabled (by proof).

Proof: Let M be the PBSAT representation of the feature model. Let F be a set
of features with |F| > 1. Let f ∈ F and G = F \ { f }. The set F is atomic if and
only if the selection of each feature f ∈ F forces all remaining features g ∈ G to
be enabled. Assume f is enabled ( f = 1) and g is disabled (g = 0). If the PBSAT
solver determines that this expression is "unsatisfiable", we know that the following
condition holds for feature model M.

¬satis f iable(M ∧ f = 1∧ g = 0) ⇒ M ∧ f = 1→ g = 1 (5.3)

If we do this assummption-based check for each f ∈ F and each g ∈ G and show
unsatisfiability of each combination, we know that F is an atomic set.

∀ f ∈ F : ∀g ∈ G : ¬satis f iable(M ∧ f = 1∧ g = 0)

⇒ ∀ f ∈ F : ∀g ∈ G : M ∧ f = 1→ g = 1

⇒ F is atomic set

(5.4)

For most calls to this procedure, F will not be an atomic set. In this case, we split
the set of features as soon as possible. If the inner loop detects that the selection
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propagates not to all g ∈ G, we split F into those features that were affected by the
propagation including f and those which were not affected.

It is not required to run the traversal-based algorithm before applying our pro-
posed one. The result will be the same in both cases. But we assume that the
pre-processing by the traversal-based algorithm will accelerate the total runtime.

Algorithm 6 Compute the atomic sets

procedure COMPUTEATOMICSETS(M, F)
if |F| = 1 then

simpli f y(M, F)
return

end if
for all f ∈ F do

G ← F \ { f }
H ← ∅
for all g ∈ G do

M← addAssumptions(M, f = 1∧ g = 0) . enables f ; disables g
if ¬satis f iable(M) then

H ← H ∪ {g}
end if
M← removeAssumptions(M) . remove assumptions

end for
if G 6= H then

computeAtomicSets(M, H ∪ { f })
computeAtomicSets(M, F \ (H ∪ { f }))
return

end if
end for
simpli f y(M, F)
return

end procedure

Performance adaptations

We already mentioned that the proposed algorithm is based on the divide and con-
quer design paradigm which provides parallel execution. Each (sub-)call of the
computeAtomicSets() procedure can be processed independently. To accomplish
concurrency, the simpli f y() function has to prevent race conditions. It can either
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apply the simplifications after the computation of the atomic sets or it needs syn-
chronization to simplify the feature model during parallel execution. Both variants
will differ in implementation effort as well as performance. Given this extension,
we are able to accelerate the runtime especially on large-scale feature models.

5.1.4 Edits

Definition: A feature model edit describes any modification on a feature model. Mod-
ifications occur during the development process of feature models. Adding, delet-
ing or changing features and/or constraints are edits. Each edit affects the under-
lying representation of the feature model that causes semantic changes. Analysing
these semantic changes allows to specify feature model edits.

Classifications of edits help to observe changes on the feature model. This allows
to assist the domain engineer during feature modeling. Changes in the represented
products will be reported and help to preserve semantics. Especially refactorings
benefit from the categorization of feature model edits.

Figure 5.8 illustrates a modification on the feature model that is caused by adding a
new feature C. The analysis will infer that new products were generated but none
were eliminated. This observation is required to state the modification as general-
ization.

Figure 5.8: A feature model edit that is classified as generalization

Feature model edits are specified by analysis of the represented products. The anal-
ysis basically compares the feature model before and after the edit. It determines
whether new variants have been generated and if variants have been eliminated.
The edit types are either refactoring, generalization, specialization or arbitrary edit. We
introduce L( f ) as the set of all products represented by feature model f . Figure 5.9

36



shows the four different edit types and their respective requirement which is ex-
pressed as subset relation of L( f ). Notice that g represents the feature model after
the edit.

L(g) ⊆ L( f ) L(g) * L( f )
(no products added) (products added)

L( f ) ⊆ L(g)
(no products deleted)

L( f ) = L(g) L( f ) ⊂ L(g)
(Refactoring) (Generalization)

L( f ) * L(g)
(products deleted)

L(g) ⊂ L( f )
(Specialization) (Arbitrary Edit)

Figure 5.9: Types of edits based on set inclusions or rather logical implications

Thüm et al. [TBK09] discovered a way to reason on feature model edits using a
traditional SAT solver. This approach is based on the relation between L( f ) and
the propositional logic representation. We already mentioned in chapter 2 that the
number of products and the number of satisfying assignments of the propositional
logic representation is equal. Therefore, let P( f ) be the propositional logic repre-
sentation of f , which is primarily in CNF. Let v be a combination of features. If and
only if v ∈ L( f ), then v is a valid product and consequently satisfies P( f ) by as-
signing all contained features of v to true. The connection between L and P allows
to verify subset relation by logical implications as shown in 5.5.

L( f ) ⊆ L(g) ≡ P( f )⇒ P(g) (5.5)

Thüm noticed that the conversion of P( f ) → P(g) to CNF took much more time
than the call to the SAT solver. The reason was the exponential explosion of clauses
caused by ¬P( f ). An improved technique called simplified reasoning was intro-
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duced. It provides a sophisticated way using multiple SAT solver calls and avoid-
ing the time-consuming CNF conversion. It is based on the fact that P( f ) and P(g)
are very similar CNFs. Equation 5.6 declares c as the identical clauses whereas p f

and pg are the distinct clauses.

P( f ) = p f ∧ c

P(g) = pg ∧ c
(5.6)

The simplified reasoning [TBK09] is based on the equivalence illustrated in 5.7. The
resulting propositional formula consists of a disjunction of Ii for i ∈ {1, · · · , n}.
The Ii represents the expression P( f ) ∧ ¬Ri whereas each Ri for i ∈ {1, · · · , n} is a
clause that arises by splitting the CNF pg. The simplified reasoning checks satisfia-
bility of each Ii independently. Therefore, we have up to n calls to the SAT solver.
If one of the calls determines satisfiability, we know that P( f ) ; P(g) holds. Oth-
erwise, P( f )⇒ P(g) is valid.

P( f ) ; P(g)

≡ P( f ) ∧ ¬pg

≡ (P( f ) ∧ ¬R1)︸ ︷︷ ︸
=I1

∨ · · · ∨ (P( f ) ∧ ¬Rn)︸ ︷︷ ︸
=In

(5.7)

Determining edit types using the PBSAT representation is similar to the presented
approach. We just have to deal with linear equations and inequalities instead of
CNF clauses. Therefore, we have to customize the presented approach slightly. The
complete equivalence proof from 5.7 can be applied by thinking of equations and
inequalities instead of clauses. The only adaption is the negation of the Ri’s, which
needs a little bit more work when treating equations and inequalities instead of
clauses. Negating inequalities is trivial because of the discrete space. The equations
in 5.8 visualize the procedure. Notice that we adjust the degree by +1 or rather −1
to preserve the pseudo-boolean representation.

¬(
n

∑
i=1

aixi ≥ d) ⇔
n

∑
i=1

aixi ≤ d− 1

¬(
n

∑
i=1

aixi ≤ d) ⇔
n

∑
i=1

aixi ≥ d + 1
(5.8)
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The negation of equations does not necessarily need more effort. The easiest way is
the separation in two inequalities I′i and I′′i which also requires two PBSAT solver
calls instead of one. A smarter approach is the transformation from a disjunction of
inequalities to a conjunction of inequalities. This allows the analysis in just one call
of the PBSAT solver.

¬(
n

∑
i=1

aixi = d)

⇔
n

∑
i=1

aixi 6= d

⇔
n

∑
i=1

aixi > d ∨
n

∑
i=1

aixi < d

⇔
n

∑
i=1

aixi ≥ d + 1 ∨
n

∑
i=1

aixi ≤ d− 1

⇔
n

∑
i=1

aixi ≥ d + 1 ∨ −
n

∑
i=1

aixi ≥ −d + 1

⇔
n

∑
i=1

aixi ≥ d + 1︸ ︷︷ ︸
=d′

∨
n

∑
i=1

aixi ≥ −d + 1 +
n

∑
i=1

ai︸ ︷︷ ︸
=d′′

(5.9)

The arithmetic conversion in 5.9 is required to transform the logical operator. The
conversion is based on the discrete space and equation 2.4. Equivalence 5.10 shows
the transformation of the disjunction into a conjunction. The applied technique is
similar to the reduction from the NP-complete problems “SAT” to “3SAT” [GJ79].
We have to introduce an auxiliary variable y to ensures satisfiability of both inequal-
ities. If one of the inequalities is satisfied, the other becomes automatically satisfied
by the right choice of y.

satis f iable

(
n

∑
i=1

aixi ≥ d′ ∨
n

∑
i=1

aixi ≥ d′′
)

⇔ satis f iable

(
d′y +

n

∑
i=1

aixi ≥ d′ ∧ d′′y +
n

∑
i=1

aixi ≥ d′′
) (5.10)

The adaption to PBSAT has several advantages according to the reasoning perfor-
mance. We already mentioned the compactness of the PBSAT representation. PB-
SAT instances are usually shorter than equivalent CNF instances. Therefore, fewer
Ri’s occur during simplified reasoning which decreases the number of calls to the
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solver. We additionally benefit from the existence of equations in the Ri’s because
we do not need to split them in two separate inequalities. The presented negation
uses an auxiliary variable to avoid unnecessary computation.

Thüm proposed two required extensions to handle addition and deletion of fea-
tures as well as abstract features[TKES11]. Without those extensions, the results of
the edit type reasoning would be wrong in some cases. The extension for added
and removed features determines if new features have been added or existing fea-
tures have been deleted. In this is the case, those features have to be disabled in the
model they do not occur. This can be done by adding an assumption. We already
handled assumptions in the previous algorithms. Disabling an arbitrary feature A
can obviously be achieved by adding the inequality a ≤ 0 to the PBSAT instance.
The second extension for abstract features eliminates variables which represent ab-
stract features. This is necessary because abstract features are code-less and therefore
did not extend variability of the product line. We eliminate these variables by re-
placements known from linear equation systems. For each variable representing an
abstract feature, we look for an equation to replace all occurrences of this variable
in the remaining pseudo-boolean restrictions.

5.2 Application engineering

Application engineering describes the process of selecting and deselecting features to
derive products. The configuration of products needs a feature model that defines
the product line. This enables tool support to handle propagations of feature se-
lections and provides explanations. Additionally, automated tool support prevents
from building invalid products. The presented algorithm minimizes configuration
effort and speeds up application engineering. Notice that we will use the term fea-
ture selection or rather selection to describe selections as well as feature deselections.
The former describes addition of features where the latter means the exclusion of
features.

5.2.1 Propagation of selections

Definition: Propagations are implicit feature selections that arise by manually select-
ing features during product derivation. The use of propagations can help to save
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time because most of the selections can be done automatically according to the fea-
ture diagram and the cross-tree constraints. Furthermore, automatic selections pro-
hibit to select contradictory or rather invalid products.

Propagations can be determined in different ways. One possible way is to encode
selections in the feature model. This can be achieved by adding assumptions to
forcedly enable or disable features. Afterwards, we run the core and dead feature
algorithms to determine selections and deselections, respectively. The disadvan-
tage of this approach are numerous calls to the SAT solver.

Our goal is to avoid as much (PB)SAT calls as possible. This can be done using
boolean constraint propagation (BCP). Batory[Bat05] proposed a logic truth maintenance
system (LTMS) that uses BCP to determine selections in feature models. BCP uses
the characteristics of the conjunctive normal form in combination with assignments.
Table 5.2 shows the different types of clauses that occur during BCP. The algorithm
applies selections through assignments in the CNF and looks for unit-open clauses.
A clause is unit-open if and only if it contains just a single literal. If we want to
satisfy the whole CNF, we are forced to satisfy each clause and consequently all
literals in unit-open clauses. If such a clause has been found, the boolean variable
will be assigned to satisfy the clauses. The algorithm terminates if all variables are
assigned or no further unit-open clauses exist.

TYPE DESCRIPTION EXAMPLE

satisfied at least one literal is already satisfied (l1 ∧ true ∧ l3)
violated all literals are unsatisfied ( f alse ∧ f alse ∧ f alse)
unit-open just one unassigned variable left to satisfy clause ( f alse ∧ l2 ∧ f alse)
not unit-open more than one variable is not yet assigned (l1 ∧ f alse ∧ l3)

Table 5.2: The four different types of BCP clauses

BCP is not limited to propositional logic in conjunctive normal form. Pseudo-
boolean systems of inequalities also provide BCP [CK03]. The algorithm has to
be customized to deal with linear inequalities instead of clauses. Two important
preliminaries are necessary to apply the adapted BCP. At first, we have to trans-
form all equations and inequalities into greater-or-equal inequalities. This can be
achieved by simple conversions shown in 5.11. Secondly, we have to convert the

41



left-hand side of the inequality to get only positive coefficients. The procedure to
transform all coefficients positive is explained in chapter 2.

n

∑
i=1

aixi ≤ d ⇔ −
n

∑
i=1

aixi ≥ −d

n

∑
i=1

aixi = d ⇔
n

∑
i=1

aixi ≤ d ∧
n

∑
i=1

aixi ≥ d
(5.11)

The basic functioning of the pseudo-boolean BCP is identical to the propositional
logic version. Just the definitions of satisfied, violated, unit-open and not unit-open
are different. Table 5.4 shows the definitions. An inequality is unit-open if and only
if the variable with the biggest coefficient has to be satisfied to avoid violation. A
violation occurs if the sum of all coefficients ∑n

i=1 ai is smaller than the degree d. In
other words, even if all variables are satisfied, the inequality can not be valid. Each
unit-open inequality produces new assignments which allow further propagations.
The adapted BCP also stops if all variables were assigned or no unit-open inequal-
ities exist anymore.

TYPE DEFINITION

satisfied d ≥ 0

violated
n
∑

i=1
< d

unit-open
n
∑

i=1
ai ≥ d >

n
∑

i=1
ai − ak

not unit-open inequality is neither satisfied, violated or unit-open

Table 5.4: The four different types of BCP inequalities

Figure 5.10 shows a sample feature model where feature B was selected. This starts
propagation which leads to the selection of feature D because of the constraint
B ⇒ D. Moreover, feature E will be deselected because of the alternative group
relation. Figure 5.11 illustrates the propagations of the pseudo-boolean BCP in a di-
rected graph. The nodes represent assignments. The directed edges are annotated
with the unit-open inequality that leads to new assignments. Notice that feature
Root and C are core features and hence already assigned. Otherwise, the presented
inequality −c + d + e = 0 would not be unit-open.
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Figure 5.10: A user selection leads to a propagation

b=1

d=1

 -b +d >= 0  

e=0

 -c +d +e = 0  

Figure 5.11: The propagation of 5.10 represented as graph

Both BCP algorithms are not complete which means that further propagations may
exist. Therefore, all remaining features, which assignments have not been inferred,
have to be checked by the (PB)SAT solver. We can use the core and dead feature
algorithms as previously described.
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6 Evaluation

The evaluation shall underline the applicability of the proposed analysis operations
for the development of software product lines. We are interested in fast algorithms
that allow quick responses. Minimizing the required runtime enables better user
interaction in graphical tools like FeatureIDE and pure::variants. Therefore, we
mainly focussed on the required computation time for selected algorithms. But we
also examined the simplification potential of the contemplated feature models. At
last, we tried to verify our assumption regarding the pre-processing to speed-up
simplification. The evaluations revealed some unexpected results which may have
an influence on further implementations.

We run the evaluation on an Intel Core 2 Duo CPU with a clock rate of 2 giga-
hertz. The installed operating system was a Linux system with kernel 2.6.35-30 (64
bit). The algorithms were executed on an OpenJDK1 virtual machine for Java 6. We
used the PBSAT solver of the SAT4J project2 as reasoning engine. We measured the
required time of the different analysis operations to check scalability. All contem-
plated algorithms were executed 100 times before we determined the arithmetic
mean. We used the JAVA-method System.nanotime() to determine the current time
in nanoseconds. The stated times are all converted to milliseconds to ease compar-
ison.

We used 11 real-world feature models of different software product lines from the
FeatureIDE repository. Most of the feature models contain between 20 and 30 fea-
tures. But we still have three larger models with more than 70 features whereas
each of them has at least 20 additional constraints.

1 http://openjdk.java.net/
2 http://sat4j.org/

44

http://openjdk.java.net/
http://sat4j.org/


6.1 Runtime behaviour

Table 6.1 shows the analysed feature models with feature and constraint count as
well as required time for different analysis operations. The column VALIDATION

specifies the required time to determine whether the feature model is valid or void.
It seems that the required processing time of the validation scales very well for
feature models with less than a few hundred features. The PROPERTIES-column
defines the required time to obtain the four different feature properties. We al-
ready mentioned in chapter 5 that the computation of dead, core, variant and false-
optional features can be done in a compound algorithm. Therefore, we needO(2n)
calls to the PBSAT solver where n denotes the number of features. We see that the
required time increases very fast depending on the number of features. The last col-
umn PROPAGATION shows the required time to propagate a selection in the feature
model. We evaluated the time by iteration over all features. We selected and des-
elected each features 100 times and determined the mean time until BCP stopped.
We observe increasing time for larger models. But the algorithm scales very well
even for the largest feature model.

MODEL #FEAT. #CONSTR. VALIDATION PROPERTIES PROPAGATION
(in ms) (in ms) (in ms)

FameDB2 21 1 0.543 6.089 0.825
FameDB 22 0 0.305 6.910 0.620
APL 23 2 0.194 3.530 0.838
SafeBali 24 0 0.204 3.818 0.688
Chat 25 1 0.230 4.561 0.663
APL-Model 28 8 0.224 4.635 0.767
TightVNC 28 3 0.207 4.623 0.636
GPL 38 15 0.605 8.359 2.217
BerkeleyDB 76 20 0.482 17.556 2.263
Violet 101 27 0.503 24.557 4.244
E-Shop 326 21 0.972 140.199 7.304

Table 6.1: Mean runtime of validation, property computation and propagation

6.2 Simplification potential

We extended the algorithm of atomic sets to guarantee maximum possible simpli-
fication of the feature model. Atomic sets allow to consider groups of features as
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a single feature. Hence, atomic sets reduce the number of required variables and
allow simplification of the underlying representation. The simplification eliminates
redundant or rather satisfied entities of the representation. In our context, these en-
tities are pseudo-boolean restrictions. Table 6.2 shows the number of features and
restrictions for each feature model. Additionally, the number of atomic sets and re-
strictions after the computation are listed. We observed that all feature models had
simplification potential. The potential varies between 2% in the Violet model and
58% in the SafeBali model. Even the largest feature model had a high simplification
rate of 35%.

BEFORE COMPUTATION AFTER COMPUTATION
MODEL #FEAT. #RESTR. #AS’S #RESTR.

FameDB2 21 18 15 -29% 12 -33%
FameDB 22 16 15 -32% 9 -44%
APL 23 24 15 -35% 16 -33%
SafeBali 24 21 10 -58% 7 -67%
Chat 25 22 20 -20% 17 -23%
APL-Model 28 36 24 -14% 32 -11%
TightVNC 28 16 23 -18% 11 -31%
GPL 38 46 26 -32% 34 -26%
BerkeleyDB 76 109 54 -29% 80 -27%
Violet 101 143 99 -2% 141 -1%
E-Shop 326 294 212 -35% 179 -39%

Table 6.2: Results of the simplification (atomic set) computation

6.3 Pre-processing impact

In chapter 5, we assumed that the traditional tree-traversal algorithm for atomic
sets is an efficient pre-processing for our extended algorithm. It turned out that this
assumption seems to be wrong. The evaluation revealed that the pre-processing
does not accelerate the required runtime. Furthermore, we noticed that the number
of calls to the PBSAT solver does not correlate with the runtime. In some models,
the computation of atomic sets was faster with pre-processing. In other models, the
runtime without pre-processing had a better performance. Table 6.3 contains the
results of our evaluation. We measured the time as well as the number of necesarry
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call to the satisfiability solver. In most of the cases, the performance without pre-
processing was better although more PBSAT calls were needed. The best example
is the SafeBali model that needed more than 3 times PBSAT calls with disabled pre-
processing. But the required time for the whole computation was still faster than
the version with enabled pre-processing.

+PRE-PROCESSING -PRE-PROCESSING
MODEL RUNTIME SAT CALLS RUNTIME SAT CALLS

FameDB2 32.250 105 22.250 -31% 138 +24%
FameDB 22.218 105 20.514 -8% 151 +30%
APL 21.050 102 19.708 -6% 139 +36%
SafeBali 12.950 45 11.966 -7% 164 +264%
Chat 33.667 180 37.925 +13% 190 +6%
APL-Model 50.659 254 31.607 -38% 203 -20%
TightVNC 48.384 252 33.137 -32% 208 -21%
GPL 45.906 237 56.756 +24% 385 +62%
BerkeleyDB 200.078 1169 201.313 +1% 1648 +41%
Violet 773.947 3186 639.629 -17% 2592 -23%
E-Shop 3817.053 18672 3605.623 -6% 20238 +8%

Table 6.3: Mean runtime of the simplification (atomic set) algorithm
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7 Conclusion

In this thesis, we proved that linear pseudo-boolean instances are able to repre-
sent feature models. We developed a mapping that allows independent transla-
tion of feature model components to PBSAT instances. Furthermore, we discovered
that PBSAT instances allow handling and reasoning of integer attributes in features
models. We proposed a special attribute file to assign values to feature attributes.
Moreover, we also introduced another file to define additional constraints which
can refer attributes.

Satisfiability solvers that work on the PBSAT representation allow similar reason-
ing as traditional SAT solvers. Therefore, we took different known feature model
analysis operations and adapted them to work with a PBSAT solver. Simple algo-
rithms needed almost no adaption. More sophisticated algorithms required deeper
knowledge of the PBSAT representation and possible conversions. Some adapted
algorithms enabled reasoning with fewer calls to the PBSAT solver. But fewer calls
not necessarily indicated faster execution. We could not find analysis operations
that are not feasible with the PBSAT representation.

In our evaluation, we saw that some algorithms scale very well. Especially the
validation and the propagation algorithm. Other algorithms, which needed many
PBSAT solver calls, slowed down if the number of features and additional con-
straints increased too much. The evaluation revealed that all feature models have
simplification potential. This is very useful for refactoring and improving perfor-
mance of other analysis operations. The evaluation also showed that the number
of SAT calls does not correlate with the required time to look for satisfying assign-
ments. We also verified that the pre-processing by the tree-traversal algorithm did
not accelerate our proposed algorithm.
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7.1 Contributions

The main contribution of the thesis is the usability of PBSAT problems to reason on
feature models. In chapter 4, we examined how (extended) feature models can be
mapped to PBSAT instances in the most compact representation.

During the adaption of the algorithms, we observed potential for further improve-
ment and therefore extended existing analysis operations. We extended the simpli-
fication algorithm to find all existing atomic sets which ensures maximum simplifi-
cation. The proposed algorithm supports the divide and conquer design paradigm
that enables parallel execution. We also found out that reasoning of feature model
edits using the PBSAT representation needs fewer calls to the solver. Further calls
can be saved if our proposed conversion for equations will be used. In addition, we
proposed the distinction between tree-based atomic sets and real atomic sets since the
widely known tree-traversal algorithm does not detect all atomic sets.

We also proposed a new definition of the term variant feature to have a clear dis-
tinction between feature properties. In our point of view, features are either core,
dead and variant.

We found out the PBSAT instances are well suited to represent feature models.
The compactness and the expressiveness are the major benefits of this represen-
tation. Additionally, it allows us to define cardinality-based feature models easily
and supports feature attributes.

7.2 Further work

During this thesis, we found several interesting issues we want to address in near
future. This section gives a brief overview about the related topics we want to deal
with.

Inspired by the logic truth maintenance system (LTMS) proposed by Batory[Bat05],
we want to check feasibility of explanations using a PBSAT solver. Explanations
describe automatic propagation in a human-readable way. This helps users to com-
prehend automatic selection during product derivation.
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PBSAT solvers usually provide an objective function that allow to find optimal so-
lutions. An optimal solution is a satisfying assignment which maximizes (or min-
imizes) the value of the objective function. We want to use this target function to
derive optimal products based on different objectives.

The evaluation in this thesis used 11 different real-world feature models from soft-
ware projects. In future, we want to enlarge our repository of feature models to get
more representative evaluation results. Therefore, we will gather variability mod-
els from different business sectors.

We are also interested in a comprehensive performance comparison of SAT and
PBSAT. Therefore, we have to implement missing analysis operation based on a
SAT reasoning engine.
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