
Faculty of Mathematics and Computer Science

Master Thesis

Adjustable Syntactic Merge
of Java Programs

Olaf Leßenich

February 2012

Advisors: Dr.-Ing. Sven Apel

Prof. Christian Lengauer Ph.D.



Abstract

Merging software artifacts while keeping the amount of conflicts at minimum is a difficult
task. Several theoretical approaches addressing this problem exist, but due to the lack
of implementations applicable in practice, the standard so far is performing line-based,
textual merges.

The first part of this thesis introduces the topic of merging and one of its main application
areas, version control systems. Afterwards, the focus is set on merging techniques,
outlining weaknesses and strengths of the respective approaches.

In the second part, JDime is presented, an adjustable, syntactic merge tool for Java
programs. The internal algorithms and the implementation of the tool are explained.

The last part contains an experimental study to evaluate performance and running time
of JDime, compared to two other merge engines. Thereafter, the results are analyzed
and discussed.



Contents

1. Introduction 5

2. Version Control 7
2.1. Version Control Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2. Centralized Version Control . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3. Distributed Version Control . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4. Merge Scenarios and Conflicts . . . . . . . . . . . . . . . . . . . . . . . . 11

3. Merging Software Artifacts 15
3.1. Identifying Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2. Two-Way and Three-Way Merges . . . . . . . . . . . . . . . . . . . . . . 16
3.3. Cut-and-Paste Merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4. Textual Merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5. Syntactic Merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.6. Semistructured Merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.7. Semantic Merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.8. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4. JDime: Structured Merge For Java 25
4.1. Basic Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2. JastAddJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3. Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.1. Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.2. Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3



Adjustable Syntactic Merge of Java Programs

4.4. An Algorithm for Code Comparison . . . . . . . . . . . . . . . . . . . . . 29
4.4.1. Tree Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4.2. Ordered Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4.3. Unordered Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4.4. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5. Merge Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5.1. Unchanged Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.5.2. Consistently Changed Nodes . . . . . . . . . . . . . . . . . . . . . 40
4.5.3. Separately Changed Nodes . . . . . . . . . . . . . . . . . . . . . . 41

4.6. Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.6.1. Altering Trees in JastAddJ . . . . . . . . . . . . . . . . . . . . . . 44
4.6.2. Inserting Nodes in the Right Order . . . . . . . . . . . . . . . . . 45
4.6.3. Representing Conflicts . . . . . . . . . . . . . . . . . . . . . . . . 45
4.6.4. Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.7. Extensibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5. Empirical Study 47
5.1. Setup and Choice of Projects . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1.1. Sample Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.1.2. Test Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3.1. Insertions and Ordering of Members . . . . . . . . . . . . . . . . 53
5.3.2. Code Formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3.3. Two-Way Merging . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3.4. Renamings and Changed Signatures . . . . . . . . . . . . . . . . . 57
5.3.5. Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6. Conclusion 59

A. Results: Tables 68
A.1. Conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
A.2. Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

B. Results: Graphs 72
B.1. DrJava . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
B.2. FreeCol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
B.3. GenealogyJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
B.4. iText . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
B.5. jEdit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
B.6. Jmol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
B.7. PMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
B.8. SQuirrelSQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Contents 4



CHAPTER 1

Introduction

The demand for intelligent merging processes is present in a variety of application areas
today. Among other data, we can already store our calendars, contacts, and bookmarks
to a cloud and access it from multiple clients, which have to be kept in synchronization.
With tablets, netbooks, and other mobile devices entering the market, and smartphones
replacing conventional mobile phones, the amount of clients per user also increases.
While the data is stored in databases on the server-side, clients often still use plain text
files, largely XML. As it is obviously considered unacceptable to confront a smartphone
user with a prompt to merge his XML-based calendar by hand, multiple approaches
and tools for structured merging of XML-fragments have been developed [Lin03, Lin04,
AKJK+02].

Although, other application areas are still behind, one of them being version control
systems, which have become an essential tool in today’s software engineering. Such
systems enable developers spread around the world to work concurrently on a project.
Instead of setting exclusive locks, merging is used in state-of-the-art revision control
systems. In particular, many Open Source projects follow the principle of frequent in-
tegration, which leads to small but numerous merge operations. Also, the creation of
many development branches or forks is very common in Open Source software engineer-
ing. Integrating branches or forks back into the mainline is a difficult, time-consuming,
and often error-prone task. However, whereas developers nowadays are supported with
several automated assistance features by their compilers and IDEs while programming
or debugging, the assistance while performing merge operations is still poor. This is due

5



Adjustable Syntactic Merge of Java Programs

to the fact that only line-based, textual merge engines are used in version control so far.
Those can process all files available in plain text very fast, but are rather weak at conflict
resolution, as they use no structural information about the files being processed.

Previous work has shown that the use of structured information also improves the merg-
ing of source code, because differences can be identified with higher precision compared
to textual techniques, which leads to fewer conflicts [Men02, Buf95, Wes91, ALL+]. Al-
though, only few tools are available that merge source code of programs using structured
information. Furthermore, the existing ones are mostly bound to specific IDEs. A main
reason is that for each language, a specific tool has to be implemented. But even for
popular programming languages, such as Java, C++, Perl, and Python, almost no tools
applicable in practice can be found. Another reason is the rather high complexity of
the algorithms needed to identify and merge structural changes, which results in run-
times being a lot higher than compared to textual merges. Chapters 2 and 3 provide
background information about version control systems and merging approaches.

As part of the thesis, a structured merge tool for Java programs, JDime, has been devel-
oped. It identifies differences between programs by applying tree-matching algorithms
to abstract syntax trees, and implements rules for a standard three-way merge. To make
the tool applicable in practice, an optional auto-tuning approach that switches between
structured and unstructured techniques is used to offer a trade-off between speed and
precision. Chapter 4 explains the implementation of JDime and explains the underlying
algorithms in detail.

An experimental study has been performed to compare JDime with other merge tools
using eight real-world Java projects. The results and a respective discussion is presented
in Chapter 5.

CHAPTER 1. INTRODUCTION 6



CHAPTER 2

Version Control

This chapter gives an overview of version control systems and their evolution. With
them being one of the main application areas for merging software artifacts, the basic
functionality and the main operations of such systems will be explained. Differences
concerning architecture and design of different systems will be discussed, in particular
regarding their impact on merging revisions. Scenarios requiring the execution of a
merge will be shown, as well as how conflicts arise in this context.

2.1. Version Control Systems

In general, version control (also called revision control) is a way to maintain multiple
versions of files. A naive approach to do version control by hand would be to save each
change to a new file, whose filename includes a consecutive number [OB09]. A version
control system (VCS) is a tool or a set of tools to automate this process and track the
history of a file [OB09].

Indeed, early version control software, such as SCSS1 (1972) and RCS2 (1982) simply
stored versions locally in the filesystem and were intended to be used by a single person

1http://sccs.berlios.de/
2http://www.gnu.org/software/rcs/

7

http://sccs.berlios.de/
http://www.gnu.org/software/rcs/


Adjustable Syntactic Merge of Java Programs

managing single files. There is a set of basic operations provided by such a system: Check
out is used to copy a revision to a local directory, check in or commit propagates local
changes to the VCS and log prints the history of a file.

A few years later, the need to work with multiple users on projects consisting of many files
increased. To cope with the new requirements, in 1986 the Concurrent Versions
System3 (CVS) was developed, which is still one of the most used version control
systems at this time. CVS is build on a central client-server architecture (see Section
2.2), which allows to store many files in a repository. The most important new operation
was update, which synchronizes the local copy of a repository with the latest revision on
the server and retrieves all newer files that have not been modified locally. Furthermore,
it was now possible to tag a revision, e.g., to mark it as a release candidate or as a
milestone. CVS also introduced the concept of branching, which allows to develop in
parallel. A branch is an additional stream parallel to the mainline within a project,
which can be developed separately. It is also possible, but in practice often difficult, to
merge a branch again into another branch or the mainline. The concept of branching
and tagging is shown in Figure 2.1.

Figure 2.1.: Branching and Tagging in Version Control

Today, version control is an essential instrument for working on a project with several
developers. Using a VCS, a user cannot only rollback to a former version, but also query
the log to find out what change was introduced when and by whom.

Although the locally storing, single-file approach as implemented by RCS, is still used
today by several applications, for example, to manage configuration files. Speaking
of up-to-date version control software, we have to distinguish between centralized and
distributed approaches.

3http://savannah.nongnu.org/projects/cvs

CHAPTER 2. VERSION CONTROL 8

http://savannah.nongnu.org/projects/cvs


Adjustable Syntactic Merge of Java Programs

2.2. Centralized Version Control

A centralized VCS relies on a client-server architecture. The project data and its history
are stored in a single repository on the server, but clients do not work directly on the
server’s data. If a client wants to change a document, it checks out the project and works
on the local copy. When it has finished, it commits the version to the server again.

Figure 2.2.: Centralized Version Control System

An advantage of a centralized approach is that access control can be easily implemented,
since every client has to connect to the server in order to request a file or commit a change.
Furthermore, the amount of data stored at the client side stays minimal, because only
one revision is kept in the local working copy. This can be significant when dealing with
often changing, large binary data. However, each request concerning the history of a
document requires a connection to the server, which is also the single point of failure
because it is the only place where the project history is stored.

Popular centralized systems are CVS and Subversion4, of which the latter was created
in the year 2000 and designed to be the successor of CVS.

4http://subversion.apache.org/

CHAPTER 2. VERSION CONTROL 9

http://subversion.apache.org/


Adjustable Syntactic Merge of Java Programs

2.3. Distributed Version Control

A distributed VCS relies on a peer-to-peer architecture. The main idea is, instead of
fetching and committing data to a single server, each peer holds its own repository,
including project data and history, and synchronizes on demand with repositories main-
tained by other peers.

The operations differ a little in distributed systems: To replicate a repository, the clone

command is used. It retrieves a lot more information than the check out command
in centralized systems does, since it also fetches the project history, all metadata and
all deltas between the historic versions [OB09][Loe09]. After cloning a repository, a
user is working on his own branch. To keep track of the original repository, the pull

command is used, which again synchronizes the complete project including metadata.
The equivalent for the check in operation is push, which pushes changes from the local
branch to a remote branch. However, it is more common to send a pull request to the
other peer, so that the remote peer can pull the changes and perform the merge.

Figure 2.3.: Distributed Version Control System

The main advantage of distributed version control systems is that network connection
is not necessary for querying the project history, committing changes or rolling back to
older versions. Furthermore each peer has a full backup of both project data and history
and can easily confirm the integrity of this data by comparing hash values with other
peers. The downside is that the amount of data stored locally is rather large. Also, it
is not trivial to implement access control for distributed systems, since there is nothing
like a central place to define global access rules.

CHAPTER 2. VERSION CONTROL 10



Adjustable Syntactic Merge of Java Programs

Popular distributed version control systems are Git5 and Mercurial6, both developed
in 2005.

2.4. Merge Scenarios and Conflicts

This section addresses the problems that can arise in version control when working with
two or more users on the same resources. Several scenarios will be explained that lead
to an inconsistent system or to a merge process that might result in a conflict.

Lost Update Problem

A main issue of parallel development is the lost update problem, also known as blind
overwriting [CSFP10]. Figure 2.4 shows what happens if a system offers no mechanism
to prevent the lost update problem. The changes in revision 2 committed by user A
are lost when user B commits his changes, which become revision 3. If user A has
also committed changes to other files that were not overwritten but interact with the
overwritten changes, the system is in an inconsistent state. This problem is also known
in the context of databases.

Figure 2.4.: Lost Update Problem/Blind Overwriting

5http://git-scm.com/
6http://mercurial.selenic.com/

CHAPTER 2. VERSION CONTROL 11

http://git-scm.com/
http://mercurial.selenic.com/


Adjustable Syntactic Merge of Java Programs

The Lock-Modify-Write Solution

A safe way to prevent other users from checking in a newer version of a specific file while
one is working on it, is locking the relevant file [CSFP10]. This mechanism ensures
that only the person owning the lock can commit the file to the repository. In practice,
this approach causes several problems, for example, developers forgetting to unlock a
file or developers locking large parts of a project, both causing development to stall.
Furthermore, using exclusive locking, it is not possible to work with two people on the
same file, even if it is clear that no overlapping will occur. Imagine, for instance, a
text document in which one person wants to edit the introduction and the other the
conclusion. Only the person owning the lock on the file is able to work. Figure 2.5
demonstrates, how the locking mechanism solves the lost update problem.

Figure 2.5.: Lock-Modify-Write Solution

The Copy-Modify-Merge Solution

To prevent unintended overwriting without enforcing the use of lock files, most modern
version control systems accept a commit of a modified file to the repository only if
its original local copy matches the latest revision available in the repository [CSFP10].
If somebody else has committed a newer version of the file to the repository in the
meantime, one has to merge this newer file with the locally changed file before a commit.
So, instead of overwriting or exclusive locking, the state-of-the-art procedure in version
control is merging, although locking is supported as an additional instrument by most
systems.

CHAPTER 2. VERSION CONTROL 12



Adjustable Syntactic Merge of Java Programs

Figure 2.6 illustrates, how merging solves the lost update problem.

Figure 2.6.: Copy-Modify-Merge Solution

Note that this illustration is a little bit simplified, as the merge process shown takes two
files as input and one file as output. As will be explained in Section 3.2, usually the
common ancestor of both files (which would be revision 1 in the example) is also taken
into account for the merge. Concerning the merge process, if there are non-overlapping
changes performed by two users, all the changes can be integrated automatically. Other-
wise, a conflict is generated. In version control, a conflict is an undesirable state, which
occurs if two users changed the same part of a file and that requires manual resolution.
In the documentation of many version control systems a phrase like the following can
be found:

“[The user will] be able to see both sets of conflicting changes and manually
choose between them. Note that software can’t automatically resolve con-
flicts; only humans are capable of understanding and making the necessary
intelligent choices.” [CSFP10]

Although the second sentence describes the current situation properly, the first sentence
might give the impression that all the user has to do is choose between two alternatives
presented to him by the client. Unfortunately, this is not true in many cases, where both
alternatives fail. Then, the user has to merge both files manually to create a consistent
version containing both changes.

CHAPTER 2. VERSION CONTROL 13



Adjustable Syntactic Merge of Java Programs

Merging Two Branches

Another scenario requiring a merge occurs when two branches are being rejoined into a
single branch or when changes of one branch are applied to the other. If both branches
altered the same file, both files have to be merged in order to merge the branches. The
more the development of the branches diverted, the more difficult a merge will be and
the more conflicts will be created.

CHAPTER 2. VERSION CONTROL 14



CHAPTER 3

Merging Software Artifacts

As shown in the previous chapter, there are several scenarios in version control that
require merging. This chapter introduces, classifies and discusses the most important
approaches for comparing and merging software artifacts.

3.1. Identifying Differences

In order to merge multiple artifacts of source code, it is essential to compare them and
extract the differences. This separate process is crucial for the quality of the merge. If
a program element is mistakenly detected as change by the compare process, whereas
it is actually unchanged in both versions, this might lead to an unnecessary conflict
while assembling the unified output in a later step of the merge. The implementation of
the this process heavily depends on the underlying data structure, as we will see in the
Sections 3.4 to 3.7.

15



Adjustable Syntactic Merge of Java Programs

3.2. Two-Way and Three-Way Merges

In the context of version control, a distinction has to be made between two-way merges
and three-way merges. A two-way merge attempts to merge two revisions directly by
comparing two files without using any other information from the VCS. Each difference
between the two revisions leads to a conflict since it cannot be decided whether only one
of the revisions introduced a change to the code or both. It also cannot be determined
whether a certain program element has been created by one revision or has been deleted
by the other one.

(a) Two-way merge (b) Three-way merge

Figure 3.1.: Two-way and three-way merge

A three-way merge takes the common ancestor of both revisions into account and thus
has more information at its hands to decide where a change came from and whether it
creates a conflict or not [Men02]. The difference is illustrated in Figure 3.1.

CHAPTER 3. MERGING SOFTWARE ARTIFACTS 16



Adjustable Syntactic Merge of Java Programs

In order to perform a three-way merge, the basic rules are given in Table 3.1 [Wes91].
Note, that due to the rules being symmetric, the table displays them in a shortened
form.

Type of i Left Rev A1 Right Rev A2 Base-Rev B Merge M
1 Element iB iA2 iB iA2

2 Element iA1 iA2 iB Conflict
3 List i1 ∈ iA1 i1 /∈ iA2 i1 ∈ iB i1 /∈ iM
4 List i1 ∈ iA1 i1 /∈ iA2 i1 /∈ iB i1 ∈ iM∨ Conflict

Table 3.1.: Three-way merge rules

An element modified in exactly one of the opposing revisions is included into the merged
program (row 1). In case it is modified in both revisions in a diverging way (row 2), a
conflict is created, which has to be resolved manually. If an element contained in the
base revision is missing in exactly one of the opposing revisions (row 3), it is considered
as deleted and will therefore not be included in the merged output program. New items
appearing in only one revision are inserted into the merged program (row 4). In the last
case, the position at which the element has to be inserted is significant and has to be
taken care of by the merge algorithm. If the insert position is ambiguous, a conflict has
to be reported as well.

3.3. Cut-and-Paste Merging

The most simple and primitive way of merging is cut-and-paste merging. This kind
of merge is performed without automatic assistance and requires the user to manually
compare the source code and copy or delete relevant parts in order to resolve all conflicts
and retrieve a merged file.

Today, this method is usually only necessary for single files which failed to be merged
automatically. Since this thesis focuses on tool-assisted merges, this type of merge is
not further discussed here.

3.4. Textual Merge

Chapter 2 has provided an overview of the history of version control systems. While
these systems evolved over the years in several stages to cope with increasing demands,
the tools that actually perform the merges have not evolved that much. When it comes
to merges in version control, the state of the art is performing a textual, line-based

CHAPTER 3. MERGING SOFTWARE ARTIFACTS 17



Adjustable Syntactic Merge of Java Programs

merge. A popular example for textual merge is GNU merge, which was developed to
perform a three-way merge. GNU merge works in the same way as rcsmerge, which
was released as part of RCS in 1982 and is today part of the GNU project. Merge
tools used by version control systems work and behave in a similar way as GNU merge
does. In the following paragraphs, we will show, how the merge works, how it is used,
and how its output presents conflicts to the user.

To compare two files, merge calls another well-known program: GNU diff. Diff
compares two files line by line and detects the smallest sets of differing lines. To compare
three files, GNU merge calls diff3, which works in a similar way but applies the rules
of a three-way merge. The syntax of GNU merge is merge file1 file2 file3, in
which file2 is the common ancestor of file1 and file3.

The behavior of GNU merge is rather unusual compared to other Unix tools, since its
output is written directly into file1, unless the command line switch -p is specified,
which redirects the command’s output to stdout. If no conflict occurred during the
merge process, the output equals the successfully merged file. In the case a conflict was
detected, it is displayed at the relevant place in the output as shown in Figure 3.2.

<<<<<<< file1
conflicting lines in file1
=======
conflicting files in file3
>>>>>>> file3

Figure 3.2.: GNU merge displaying a conflict

As mentioned in previous sections, it is possible that none of both alternatives leads to
the desired solution. Such an example is shown in Figure 3.3. Choosing the first alter-
native would cause the output to be incompilable due to the duplicated fac()-method,
choosing the second one would end up in losing the square()-method introduced by
revision 1.

The benefits of a textual merge like the one implemented by GNU merge, are its
generality and its performance. It can be applied to all non-binary files, even to very
large ones, so there is only one tool needed regardless of which programming languages
are used within a project. If the amount of changes is very small in comparison to the
input files, or if there are no changes at all, this method is very effective.

But since this type of merge does not utilize knowledge about the structure of the input
documents and the syntax of respective languages, it might miss conflicts, detect too
many conflicts and is likely to produce syntactically incorrect output. In 1989, Horwitz
[HPR89] presented several examples where textual merging fails and stated:

“Integrating programs via textual comparison and merging operations is ac-

CHAPTER 3. MERGING SOFTWARE ARTIFACTS 18



Adjustable Syntactic Merge of Java Programs

Version Base

public class Example {
public static long fib(int n) {

if (n <= 1) return n;
else return fib(n−1) + fib(n−2);
}
public static long fac(int n) {

long result = 1;
for (int i = 1; i <= n; i++)

result ∗= i;
return result;
}
}

Version Right

public class Example {
public static long fac(int n) {

long result = 1;
if (n>1)

for (int i = 2; i <= n; i++)
result ∗= i;

return result;
}
public static long fib(int n) {

if (n <= 1) return n;
else return fib(n−1) + fib(n−2);
}
}

Version Left

public class Example {
public static long fib(int n) {

if (n <= 1) return n;
else return fib(n−1) + fib(n−2);
}
public static long fac(int n) {

long result = 1;
for (int i = 1; i <= n; i++)

result ∗= i;
return result;
}
public static int square(int n) {

return n∗n;
}
}

unstructured

public class Example {
public static long fac(int n) {

long result = 1;
if (n>1)

for (int i = 2; i <= n; i++)
result ∗= i;

return result;
}
public static long fib(int n) {

if (n <= 1) return n;
else return fib(n−1) + fib(n−2);
}

<<<<<<< rev1/Example.java
public static long fac(int n) {

long result = 1;
for (int i = 1; i <= n; i++)

result ∗= i;
return result;
}
public static int square(int n) {

return n∗n;
}

=======
>>>>>>> rev2/Example.java
}

branch

merge

Figure 3.3.: Failed textual merge

CHAPTER 3. MERGING SOFTWARE ARTIFACTS 19



Adjustable Syntactic Merge of Java Programs

companied by numerous hazards.” [HPR89]

Additionally, as Buffenbarger [Buf95] shows, textual merges might produce uncompilable
output from compilable input without detecting conflicts.

In practice, one of the main weaknesses of textual merges is their inability to detect
reordered declarations [ALL+]. In Java, a change in the order of methods and fields has
no semantic impact on the program behavior, but using a line-based algorithm to merge
such changes will lead to a lot of conflicts which have to be manually resolved in order
to complete the merge. As discussed later in the experimental study, reorderings occur
very often in project.

Furthermore, (re)formatting of code produces conflicts when textual merge is used, be-
cause the position of brackets and the indentation style (e.g., tabs or spaces) might be
different according to the settings of the developers’ editor. Since reformattings also
occur a lot in practice, many unnecessary conflicts are created by textual merges.

As mentioned before, the accuracy of the diff is essential for the merge process. GNU
diff provides several switches to improve the matching, such as ignoring empty lines
or trailing and leading whitespace characters, which would be of great aid when dealing
with reformattings. Unfortunately, diff3 does not offer such fine-tuning capabilities
and therefore they are not available for GNU merge either.

After examining the algorithm implemented by diff3 in 2007, Khanna et al. [KKP07]
do not even consider it as stable, since two runs with similar input do not produce similar
output in every case.

3.5. Syntactic Merge

Syntactic merges exploit language-specific knowledge and can therefore compare and
merge software artifacts better than textual merges. The underlying data structure for
syntactic merges are usually (abstract syntax) trees or graphs, which requires the merge
tool to parse the programs in advance and generate the corresponding trees or graphs
[Men02].

Comparing two programs for this type of merge means traversing both trees/graphs and
finding the differing nodes. Since the merge is applied to the trees or graphs after parsing
the program and comparing the trees/graphs, code formatting is no longer relevant. The
previously mentioned ordering conflicts can also be detected as such, and in case of Java
programs, simply be ignored. When the merge process has finished, the output document
is generated by pretty-printing the abstract syntax tree (AST).

CHAPTER 3. MERGING SOFTWARE ARTIFACTS 20



Adjustable Syntactic Merge of Java Programs

However, this approach has disadvantages as well: First of all, syntactic merges are much
slower than textual merges, mostly due to the complexity of their compare algorithms,
working on trees or graphs. Depending on how accurate the matching is supposed to
be, this problem can happen to be NP-complete [ZJ94]. A syntactic merge requires the
input files to be syntactically correct, otherwise the parser is not able to build the AST. If
an incorrect source file is committed to the repository, a syntactic merge tool is of no use.
Furthermore, it is restricted to certain file types since it uses syntactic knowledge of the
programming languages in which the programs to be merged are written. Supporting
additional programming languages requires a lot of work: A parser must be written
and several language-specific rules, like the relevance of the order of class members
and miscellaneous other rules, have to be considered for the merge process. Changes
in the specification of a language might break the correctness of a merge tool, which
then must be subsequently adapted to the specification (e.g. Java 1.4 to 1.5). Another
disadvantage is produced from using pretty-printers to generate the output: The original
code formatting done by the developers is lost after the merge.

Westfechtel [Wes91] developed a language-independent, structured merge tool based on
ASTs, but the price to pay for this generality is that all changes have to be performed
within a special development environment. Both Yang [Yan91] and Buffenbarger [Buf95]
created syntactic merge tools for C, though they did not address ordering conflicts in
their respective implementations.

3.6. Semistructured Merge

Semistructured merge [ALL+] by Apel et al. is an approach to avoid many disadvantages
of unstructured merges, while staying more general than syntactic merges. In particular,
semistructured merge provides a solution for ordering conflicts, which arise in textual
merging. This is achieved by working on simplified parse trees, which represent the
program structure. Such parse trees, called program structure trees (PST), include some
but not all structural information of a program. Concerning Java, for example, classes,
methods and fields are contained in a PST, whereas statements and expressions are
hidden in the leaves of a tree in form of plain text.

The idea is to use the structured information contained in the PSTs to merge revisions
with less conflicts than a textual merge is able to, while not having to deal with the
merging of separate statements on the syntax level inside of method bodies. This trade-
off allows semistructured merge to support a larger set of programming languages than
pure syntactic merges do, and to provide superior conflict resolution in most cases,
compared to conventional textual merges. FSTMerge1 is an implementation of a

1http://fosd.de/SSMerge

CHAPTER 3. MERGING SOFTWARE ARTIFACTS 21

http://fosd.de/SSMerge


Adjustable Syntactic Merge of Java Programs

semistructured merge engine build into FeatureHouse2 and currently supports C#,
Java, and Python.

The merge algorithm itself is implemented via superimposition of the PSTs, working
recursively and beginning at the root nodes. The principle of superimposition is illus-
trated in Figure 3.4. To handle the removal of constructs by revisions, the usage of
superimposition was complemented to satisfy common three-way merging rules. This
approach implies that method bodies only have to be merged if the signature of two
methods is identical. In this case, a line-based merge using GNU merge is launched to
merge the method bodies [ALL+].

Figure 3.4.: Superimposition

3.7. Semantic Merge

Semantic merging addresses a set of conflicts that is not detectable by syntactic merge
tools. An example for such conflicts is shown in Figure 3.5.

The left revision renamed n to a in the function compute() and introduces an inde-
pendent class member n, which might be used elsewhere. The right revision wants to
make sure, the argument of compute() is positive. After the syntactic merge, which
did not produce a conflict, the new class member n is unintentionally changed within
compute(), if it is negative.

The reason why the syntactic merge cannot detect this conflict is that it lacks a link
between usage and declaration of variables. To handle these kind of conflicts, more
information about the program is needed than is obtainable from its AST.

For his implementation of structured merging, Westfechtel [Wes91] enhanced his ASTs
with context sensitive relations in order to provide the mentioned missing link. However,

2http://fosd.de/fh

CHAPTER 3. MERGING SOFTWARE ARTIFACTS 22

http://fosd.de/fh


Adjustable Syntactic Merge of Java Programs

Version Base

public class Example2 {
public static int compute(int n) {

while(n != 1) {
if(n % 2 == 0)

n = n / 2;
else

n = 3∗n + 1;
}
return n;
}
}

Version Right

public class Example2 {
public static int compute(int n) {

if (n<0) n∗=−1;
while(n != 1) {

if(n % 2 == 0)
n = n / 2;

else
n = 3∗n + 1;

}
return n;
}
}

Version Left

public class Example2 {
int n;
public static int compute (int a) {

while(a != 1) {
if(a % 2 == 0)

a = a / 2;
else

a = 3∗a + 1;
}
return a;
}
}

structured

public class Example2 {
int n;
public static int compute (int a) {

if (n<0) n∗=−1;
while(a != 1) {

if(a % 2 == 0)
a = a / 2;

else
a = 3∗a + 1;

}
return a;
}
}

branch

merge

Figure 3.5.: Semantic Conflict

CHAPTER 3. MERGING SOFTWARE ARTIFACTS 23



Adjustable Syntactic Merge of Java Programs

even using an approach like this, static information is not sufficient to accomplish the
detection of all semantic conflicts [Men02]. Finding complex behavioral conflicts between
programs is an extremely difficult task and the sophisticated algorithms required are very
expensive concerning runtime.

3.8. Summary

Merging software artifacts is a difficult process, which has always been an issue within
version control. And, despite the evolution of version control systems to facilitate parallel
development, in the majority of systems available today, the tools to support users
performing merges usually implement a textual three-way merge.

According to Mens [Men02], these tools can process 90% of all changed files automati-
cally without detecting conflicts. With distributed version control systems gaining mar-
ket share, the need to perform difficult merges of many branches is likely to increase.
Replacing the textual merges completely would probably not be applicable in practice
due to the heavily increased runtime of structured tools. But focusing on the remaining
10%, more powerful tools could be effectively used here to assist the user in a better
way.

With the concept of semistructured merge and its implementation FSTMerge, order-
ing conflicts have been successfully tackled, and in most cases the merge output is of
better quality than the one of conventional merges. However, the overhead brought in
by FeatureHouse is quite a bit and noticeable concerning the runtime of a merge
process.

In 2002, which was 3 years before popular distributed systems like GIT and Mercurial
were available, Mens [Men02] came to the following conclusion:

“An interesting avenue of research would be to find out how to combine
the virtues of different merge techniques. For example, one could combine
textual merging with more formal syntactic and semantic approaches in order
to detect and resolve merge conflicts up to the level of detail required for each
particular situation.” [Men02]

One should assume, that the need for more adjustable tools since then has even grown,
but still there is no usable implementation for popular programming languages.

CHAPTER 3. MERGING SOFTWARE ARTIFACTS 24



CHAPTER 4

JDime: Structured Merge For Java

The goal within this thesis was to create a tool that performs a syntactic three-way
merge on Java programs. Its main objectives are adjustability and extensibility. The
former means being able to switch between implemented algorithms at runtime in order
to speed up the merge process or minimize the number of conflicts, the way Mens
[Men02] suggested it. The latter refers to the more or less easy integration of additional
algorithms, which allow even more tuning options concerning granularity. Call syntax
and visualization of conflicts are designed to be similar to GNU merge.

4.1. Basic Decisions

For the implementation of a syntactic merge tool, it seemed obvious to use either trees
or graphs as underlying data structure.

There are already a lot of frameworks and tools providing parsers and pretty-printers
that could be used for the merge tool. Because extensibility concerning the algorithms
and language-specific logic was considered a very important property, the decision was
made to use parts of the Java compiler JastAddJ1.

1http://jastadd.org/web/jastaddj/

25

http://jastadd.org/web/jastaddj/


Adjustable Syntactic Merge of Java Programs

4.2. JastAddJ

JastAddJ is an extensible Java compiler built from the metacompiler framework Jas-
tAdd2. Its most interesting feature for building a syntactic merge tool on top of it, is its
data structure: programs are represented as attributed ASTs, which are accessible via a
Java class hierarchy. Each node within the AST is an instance of ASTNode or one of its
subclasses, whereas its child nodes are themselves instances of ASTNode or a respective
subclass [EH07].

There are about 370 subclasses corresponding to elements of the Java 1.5 programming
language. Each node in this class hierarchy may have specific attributes. For example,
a node representing a while-loop has the attributes getCondition() and getBody(),
which link to nodes representing condition and body of the loop.

Using this data structure, the merge tool would have to compare and merge nodes of the
attributed AST. A lot of information has to be considered in order to detect conflicts
while merging, for instance, whether the order of two nodes is important or not for the
semantic of the program. Extending the AST classes to provide this information results
in a new attribute isOrdered(), which returns true if the order of a language element
is significant, and false otherwise.

Adding attributes to the AST classes is fairly easy in JastAddJ: It supports an aspect
language similar to AspectJ3, so all that has to be done is creating an aspect and
defining fields and methods that will be woven into the AST classes.

However, there is a downside to this design as well. It is not possible to extend the
AST hierarchy in a sane way without using aspects. This practically means, every
change done via the implementation of an aspect requires the whole class hierarchy to
be regenerated and all aspects to be re-woven into the relevant destination files from
scratch, to finally apply the change.

4.3. Design

A significant disadvantage of syntactic merge tools is the complexity of their underlying
tree-based algorithms, which affects the runtime in a negative way. To merge two or three
files, which might not even have changed at all, a syntactic merge tool has to parse the
source code, compare all pairs of trees, and finally assemble and pretty-print the merged

2http://jastadd.org
3http://www.eclipse.org/aspectj/

CHAPTER 4. JDIME: STRUCTURED MERGE FOR JAVA 26

http://jastadd.org
http://www.eclipse.org/aspectj/


Adjustable Syntactic Merge of Java Programs

tree. This way, merging two revisions of an entire project becomes a painfully time-
consuming task. To overcome this problem, an auto-tuning approach is implemented
for JDime: As long as no conflicts are detected, the tool uses an unstructured, textual
merge relying on GNU merge, which is cheap in performance and does not require to
build the ASTs. Only if a conflict is detected by the conventional merge, JDime switches
to the more powerful syntactic merge, which has all of the structural information at its
disposal and provides a better conflict resolution in most cases. Also, it is possible, to use
the semistructured merge engine FSTMerge instead of the fully structured syntactic
merge.

4.3.1. Data Structure

The main data structure used in JDime are trees, which are implemented using objects
of the custom type jdime.Node. A Node object has child nodes, certain attributes, and
encapsulates an ASTNode-instance provided by JastAddJ. Although, at first glance,
this extra class seems to be redundant, it was absolutely necessary due to the behavior
of JastAddJ while modifying its ASTNodes, as will be described in detail in Section
4.6.

Node
-children: Node[]
-astnode: ASTNode

+getNumChild(): int
+getChild(position:int): Node
+insertChild(child:Node,position:int)
+removeChild(position:int)
+conflicts(other:Node): boolean
+matches(other:Node): boolean
+isOrdered(): boolean
+flag(flag:Flag)
+rebuildAST()

ASTNode

+getNumChild(): int
+conflicts(other:ASTNode): boolean
+isOrdered(): boolean
+matches(ASTNode:other): boolean1

 astnode
1

Figure 4.1.: UML: Node

4.3.2. Architecture

A merging algorithm only has to implement the MergeInterface in order to be used in
JDime. Currently, algorithm classes for syntactic, textual, and semistructured merge
exist in JDime, of which the last two are simple wrappers for external tools. Compare
algorithms inherit from the TreeMatcher-Class, which already handles the flagging of
found matchings. The implemented algorithms are explained in Section 4.4. Figure 4.2
illustrates how the algorithms work together.

CHAPTER 4. JDIME: STRUCTURED MERGE FOR JAVA 27



Adjustable Syntactic Merge of Java Programs

<<Interface>>

MergeInterface

+merge(output:StringWriter,left:File,right:File)
+merge3(output:StringWriter,left:File,base:File,
        right:File)

TextualMerge SemiStructuredMerge SyntacticMerge
-matcher: Matcher

-diff(left:Node,right:Node)
-diff3(left:Node,base:Node,baseCopy:Node,
       right:Node)

Matcher

+match(a:Node,b:Node): Matching
+markMatching(m:Matching)

OrderedTreeMatcher

1

 matcher
1

Matching

+getNodeA(): Node
+getNodeB(): Node
+getChildren(): Matching[]
+getScore(): int

UnorderedTreeMatcher

TreeMatching
-unorderedMatcher: Matcher
-orderedMatcher: Matcher

1

 orderedMatcher
1

1

 unorderedMatcher
1

Figure 4.2.: UML: Algorithms

CHAPTER 4. JDIME: STRUCTURED MERGE FOR JAVA 28



Adjustable Syntactic Merge of Java Programs

4.4. An Algorithm for Code Comparison

Prior to being able to merge two or three revisions, the actual changes between them
have to be identified. Detecting the minimum set of changes is the same problem as
detecting the maximum set of unchanged parts within the revisions. The quality of the
matching result is crucial for the whole merge process. Missed links at this step will
cause trouble while detecting conflicts and performing the actual merge.

When comparing trees, we have to distinguish between ordered and unordered trees.
Furthermore, we have to decide, whether only nodes of the same height in the trees
are compared, or also nodes being placed on different tree levels. While the former
refers to the Largest Common Subtree-problem, the latter is known as Largest Common
Embedded Subtree-problem. Finding a perfect matching in case of unordered trees,
which means solving the more difficult problem of finding the largest common embedded
subtree, is known to be NP-hard. As Zhang and Jiang have shown, the problem is even
hard to approximate for general cases [ZJ94]. Halldórsson and Tanaka provided a further
reduction from 3-Set-Packing [HT96]. The Largest Common Subtree-problem is solvable
in polynomial time for unordered trees. In case of ordered trees, both problems can be
solved inP .

To compare Java programs, algorithms to compare ordered and unordered trees are
required. The algorithms implemented for JDime within this thesis are restricted to
compare only nodes being placed on the same tree level, solving the Largest Common
Subtree-problem, but therefore a perfect matching is computed for two levels. While
this restriction limits the matching power of the tool in the way that renamings or code
shifted between levels cannot be recognized, it allows an acceptable runtime without
using heuristics. While Section 4.4.1 depicts, how the two algorithms work together,
whereas Sections 4.4.2 and 4.4.3 explain them in detail.

4.4.1. Tree Matching

To decide which of the Algorithms 5 and 7 is used to compare two nodes, it has to
be determined whether the order of their children is important or not. Algorithm 1
illustrates, how this is accomplished in JDime.

CHAPTER 4. JDIME: STRUCTURED MERGE FOR JAVA 29



Adjustable Syntactic Merge of Java Programs

Algorithm 1 Tree Matching

function TreeMatching(Node A, Node B)
m← number of children of A
n← number of children of B
Boolean ordered ← false
for i← 1,m do . Can be determined using the attributed AST

if order of Ai is significant then
ordered ← true
break

end if
end for
if ordered = false then

for j ← 1, n do
. Can be determined using the attributed AST

if order of Bj is significant then
ordered ← true
break

end if
end for

end if
if ordered = true then

return OrderedTreeMatching(A,B)
else

return UnorderedTreeMatching(A,B)
end if

end function

4.4.2. Ordered Trees

Yang [Yan91] describes how to find a matching between ordered trees. He therefore
introduces an algorithm based on a solution for sequence matching. As Yang states, the
problem of finding the maximum common subtree for ordered trees is a generalization of
the largest common subsequence problem. For the latter exists a dynamic programming
approach, LCS (see Algorithm 2), which solves the problem in polynomial time [BHR00].
Yang extended the LCS algorithm to his SimpleTreeMatching algorithm to find the
maximum common subtree of two trees. This procedure is shown in Algorithm 4. For
the implementation of JDime, Yang’s SimpleTreeMatching algorithm was extended
to Algorithm 5 and implemented in Java.

CHAPTER 4. JDIME: STRUCTURED MERGE FOR JAVA 30



Adjustable Syntactic Merge of Java Programs

Largest Common Subsequence

In general, the largest common subsequence problem with n input sequences is known to
be NP-complete [Mai78]. However, for small n it is solvable in polynomial time [Hir75,
BHR00]. Algorithm 2 finds the longest common subsequence of two input sequences by
using a dynamic programming approach and returns its length.

Algorithm 2 Largest Common Subsequence (LCS)

function LCS(Sequence A, Sequence B)
m← length of A
n← length of B
Matrix M ← (m + 1)× (n + 1) Matrix
for i← 0,m do

M [i, 0]← 0 . Initialization
end for
for j ← 0, n do

M [0, j]← 0 . Initialization
end for
for i← 1,m do

for j ← 1, n do
if Ai = Bj then

W [i, j]← 1
else

W [i, j]← 0
end if
M [i, j]← max(M [i, j − 1],M [i− 1, j],M [i− 1, j − 1] + W [i, j])

end for
end for
return M [m,n]

end function

To illustrate the idea, Table 4.1 shows the matrix produced by the algorithm. The value
of 4 at the position (m,n) in the matrix indicates that the length of the longest common
subsequence of ABCBDAB and BDCABA is 4. To identify the matching characters,
backtracing is used: Starting at position (m,n), a path is followed until either the row
or column index is zero. Finding a valid path via backtracing is shown in Algorithm 3.
Whenever the matching decreases, two characters were part of the maximum matching,
which is BCBA in the example from Table 4.1.

CHAPTER 4. JDIME: STRUCTURED MERGE FOR JAVA 31



Adjustable Syntactic Merge of Java Programs

B 0 1 2 2 3 4 4
A 0 1 2 2 3 3 4
D 0 1 2 2 2 3 3
B 0 1 1 2 2 3 3
C 0 1 1 2 2 2 2
B 0 1 1 1 1 2 2
A 0 0 0 0 1 1 1

0 0 0 0 0 0
B D C A B A

Table 4.1.: Matrix produced by LCS algorithm

Algorithm 3 Backtracing LCS

function BacktraceLCS(Matrix M , Sequence A, Sequence B)
m← length of A
n← length of B
i← m
while i > 1 do

j ← n
while j > 1 do

if M(i− 1, j) = M(i, j) then
i← i− 1

else if M(i, j − 1) = M(i, j) then
j ← j − 1

else
if M(i− 1, j − 1) < M(i, j) then

Mark characters A(i) and B(j) as part of the maximum matching
end if
i← i− 1
j ← j − 1

end if
end while

end while
end function

SimpleTreeMatching

The idea of SimpleTreeMatching is the same as already known from LCS. A match-
ing is computed for each level of the ASTs, the same way LCS does, just that nodes in-
stead of characters are compared. Therefore, SimpleTreeMatching works top down,
recursively calling itself to compute the matching of the child nodes. The last matrix

CHAPTER 4. JDIME: STRUCTURED MERGE FOR JAVA 32



Adjustable Syntactic Merge of Java Programs

filled is the one for the root nodes, which includes the maximum matching of the entire
trees.

Algorithm 4 SimpleTreeMatching by Yang

function SimpleTreeMatching(Node A, Node B)
if A 6= B then

return 0 . root nodes do not match
end if
m← number of children of A
n← number of children of B
Matrix M ← (m + 1)× (n + 1) Matrix
for i← 0,m do

M [i, 0]← 0 . Initialization
end for
for j ← 0, n do

M [0, j]← 0 . Initialization
end for
for i← 1,m do

for j ← 1, n do
W [i, j]← SimpleTreeMatching(Ai, Bj)
M [i, j]← max(M [i, j − 1],M [i− 1, j],M [i− 1, j − 1] + W [i, j])

end for
end for

. return sum of child matchings plus matching of the root rodes
return M [m,n] + 1

end function

Ordered Tree Matching in JDime

This section presents the algorithm used in JDime to compare ordered trees. Pseudo-
code is provided in Algorithm 5. The first part is very similar to Yang’s Simple-
TreeMatching. To be able to reconstruct the maximum matching tree, the matchings
for child nodes are stored. Furthermore, directions are stored to facilitate backtracing.
When the algorithm has terminated, a tree of matchings is given due to the recursive
calls. Each level of the matching-tree corresponds to a level of the input trees.

CHAPTER 4. JDIME: STRUCTURED MERGE FOR JAVA 33



Adjustable Syntactic Merge of Java Programs

Algorithm 5 Ordered Tree Matching - Part 1

function OrderedTreeMatching(Node A, Node B)
if A 6= B then

return empty matching . root nodes do not match
end if
m← number of children of A
n← number of children of B
Matrix M ← (m + 1)× (n + 1) Matrix
for i← 0,m do

M [i, 0]← 0 . Initialization
end for
for j ← 0, n do

M [0, j]← 0 . Initialization
end for
for i← 1,m do

for j ← 1, n do
Matching w ← TreeMatching(Ai, Bj)
if M [i, j − 1] > M [i− 1, j] then

if M [i, j − 1] > M [i− 1, j − 1] + w then
M [i, j]←M [i, j − 1]
M [i, j].Direction ← LEFT

else
M [i, j]←M [i− 1, j − 1] + w
M [i, j].Direction ← DIAG

end if
else

if M [i− 1, j] > M [i− 1, j − 1] + w then
M [i, j]←M [i− 1, j]
M [i, j].Direction ← DOWN

else
M [i, j]←M [i− 1, j − 1] + w
M [i, j].Direction ← DIAG

end if
end if

end for
end for

CHAPTER 4. JDIME: STRUCTURED MERGE FOR JAVA 34



Adjustable Syntactic Merge of Java Programs

Algorithm 6 Ordered Tree Matching - Part 2

List childrenMatchings ← empty List
i← m
j ← n
while i ≥ 1 ∧ j ≥ 1 do

if M [i, j].Direction = DOWN then
i← i− 1

else if M [i, j].Direction = LEFT then
j ← j − 1

else
if M [i, j] > M [i− 1, j − 1] then

add M [i, j] to childrenMatchings
end if

end if
i← i− 1
j ← j − 1

end while
. return sum of child matchings plus matching of the root rodes

Matching m←M [m,n] + 1
m.childrenMatchings ← childrenMatchings
return m

end function

CHAPTER 4. JDIME: STRUCTURED MERGE FOR JAVA 35



Adjustable Syntactic Merge of Java Programs

4.4.3. Unordered Trees

In order to compare Java programs, an algorithm for unordered trees is needed in ad-
dition to the one applicable for ordered trees.. Unordered nodes are encountered, for
instance, when declarations of imports, methods and class members are compared. As
already mentioned in Section 4.4, finding a maximum common embedded subtree for
unordered trees is APX -hard [ZJ94, HT96]. In JDime, the key to an acceptable runtime
is the restriction to compare only nodes of the same tree level.

To compare unordered children of two nodes A and B, an m × n matrix M is created,
whereas m and n are the amount of the respective children. As a first step, the matchings
for all pairs AiBj of are computed, with i = 1..m and j = 1..n. This is achieved by n ·m
calls of TreeMatching(Ai, Bj). Given this matching matrix, pairs AiBj providing the
highest sum of matchings have to be found, whereas each node is part of at most one
pair. Finding those pairs is equivalent to finding the maximum matching in a weighted
bipartite graph, which is also known as assignment problem.

Per definition, the vertices of a bipartite graph can be divided into two disjoint sets
(partitions) T and W , whereas every edge in the graph connects a vertex from T with a
vertex from W . A common description for the general (unweighted) matching problem
on bipartite graphs is the tasks-workers-example: Imagine, a company has a set of tasks
(T ) to finish and a set of workers (W ) at its disposal, but not every worker can accomplish
every task. If a task Ti can be done by a worker Wj, the graph contains an edge TiWj.
Furthermore, every worker can only be assigned to a single task. The goal is to find a
maximum matching between tasks and workers, to get as much done as possible.

If a weight k is added to the edges, a worker generates k units of profit for the company
while accomplishing the task. Adding weights to the example means, among all workers
that are able to fulfill a certain task, some of them are performing better than others.
A weight of zero is equivalent to a non-existent edge. For weighted matching, the goal
of the company is assigning workers to tasks in order to maximize profit.

Finding the best matching between unordered nodes of two levels within ASTs can be
reduced to maximum weighted bipartite matching: The nodes of the left and right trees’
levels embody the partitions, the matchings for all AiBj, which are stored in the matrix,
represent the weights.

There exist several algorithms to solve the weighted bipartite matching problem in poly-
nomial time [SL93]. A well-known approach is to reduce the problem to maximum
flow: A source and a sink node is added to the graph, whereas the source is con-
nected to all nodes of the left partition, and the sink to all nodes of the right partition.
Algorithms computing maximum flow have been provided, for example, by Ford and
Fulkerson or Edmonds and Karp [LR86, SL93]. A different approach is the Hungarian

CHAPTER 4. JDIME: STRUCTURED MERGE FOR JAVA 36



Adjustable Syntactic Merge of Java Programs

method, which solves the weighted bipartite matching problem via matrix transforma-
tions [Fra05, SL93].

Also, it is possible to express the problem as linear program as follows4:

max
∑
t∈T

∑
w∈W

ktwxtw

subject to ∑
t∈T

xtw = 1, for all w ∈ W∑
w∈W

xtw = 1, for all t ∈ T

xtw ∈ {0, 1}, for all (t, w) ∈ T ×W

where xtw = 1 means, that task t is assigned to worker w. The first constraint set
expresses that each worker must be assigned exactly one task, the second ensures that
every task is carried out by exactly one worker.

The constraint matrix C of a linear program is a matrix with a row for each constraint
and a column for each variable. An entry cij is set to 1, if the j-th variable is added in
the i-th constraint, −1, if it is subtracted, and 0 if it does not appear at all.

For the weighted bipartite matching problem, C is equal to the unoriented incidence ma-
trix of the underlying graph and therefore an optimal, integral solution can be computed
in polynomial time, in contrast to general exponential time.

JDime uses the GNU linear programming kit5 (GLPK) to solve maximum weighted bi-
partite matching and therefore retrieve the pairs providing the highest sum of matchings.
During the experimental study performed within this thesis, which will be discussed in
Chapter 5, GLPK provided the maximum matching in sufficient time. Nevertheless, as
future work, for instance, the Hungarian method could be implemented in JDime, as
it might lead to a further speed up while comparing unordered trees. Also, the use of
superimposition, as introduced in Section 3.6, has to be considered in order to compare
unordered nodes.

The procedure implemented in JDime is presented in Algorithm 7.

4http://www.math.ucla.edu/~tom/LP.pdf
5http://www.gnu.org/software/glpk

CHAPTER 4. JDIME: STRUCTURED MERGE FOR JAVA 37

http://www.math.ucla.edu/~tom/LP.pdf
http://www.gnu.org/software/glpk


Adjustable Syntactic Merge of Java Programs

Algorithm 7 Unordered Tree Matching

function UnorderedTreeMatching(Node A, Node B)
if A 6= B then

return 0 . root nodes do not match
end if
m← number of children of A
n← number of children of B
Matrix M ← (m)× (n) Matrix
for i← 0,m do

for j ← 0, n do
W [i, j]← TreeMatching(Ai, Bj)

end for
end for

. return sum of child matchings plus matching of the root rodes
Matching m←M [m,n] + 1
m.childrenMatchings ← SolveLP(M)
return m

end function

4.4.4. Implementation

The Java implementation for JDime offers two methods to compare ASTs: diff() and
diff3(): diff() is used to compare two trees, and simply calls the TreeMatching al-
gorithm, which was presented in Section 4.4.1, and retrieves a set of matching nodes. For
each matching pair, it flags both nodes as equal and adds a reference to the correspond-
ing node of the other tree. when processing a node in a later step, the corresponding
node can be accessed in O(1). diff3() compares two trees by taking the tree of their
common ancestor into account. It is implemented by three calls of TreeMatching,
comparing all pairs of trees, followed by the appropriate flagging, as shown in Algorithm
8.

CHAPTER 4. JDIME: STRUCTURED MERGE FOR JAVA 38



Adjustable Syntactic Merge of Java Programs

Algorithm 8 diff3

. base ′ is a copy of base
function diff3(Tree left , Tree base, Tree base ′, Tree right)

matchings ← TreeMatching(base, left)
for all Matching m : matchings do

flag(m.A,m.B ,EqualFlag)
end for
matchings ← TreeMatching(base ′, right)
for all Matching m : matchings do

flag(m.A,m.B ,EqualFlag)
end for
matchings ← TreeMatching(left , right)
for all Matching m : matchings do

flag(m.A,m.B ,NewEqualFlag)
end for

end function

To facilitate the process of merging, the base revision’s tree is cloned before calling
diff3(). That means, the tool internally works with base and base’. After diff3() has
terminated, nodes of base have references to their corresponding nodes of leftRevision,
nodes of base’ have references to their corresponding matchings of rightRevision. As
a future optimization, the first two steps could also be parallelized, as they do not de-
pend on each other. With the matching process being one of the most time-consuming
tasks during the merge, and dual-cores being lower standard for today’s workstations,
this optimization should fasten up the tool significantly in practice. Apart from such
simple optimizations, the matching algorithms themselves could be improved to make
use of concurrency. In case of the unordered matcher, this would be trivial at least for its
first step, in which all nodes are compared to each other. For the last step of diff3(),
which compares the left and right revision, a special flag is used to tag changes and
additions only existent in those opposing revisions, but not in the common ancestor.
The technical detail of using a supplementary clone of the base revision is omitted in
the further discussion.

4.5. Merge Algorithm

After the ASTs of the three input programs have been compared to each other, the
actual merge launches. Instead of modifying one of the existing trees, a new AST is
created for the output program, which will be referred to in the following sections as
merge-AST or merged tree. This decision was made in order to keep the three existing
ASTs unmodified and allow the tool to query the original trees for additional information

CHAPTER 4. JDIME: STRUCTURED MERGE FOR JAVA 39



Adjustable Syntactic Merge of Java Programs

even in an advanced step of the merge process. This property ensures, that the merge
process of JDime is implemented in a non-destructive way, which could also be useful
if additional examining algorithms are implemented in the future, for instance, to make
use of type information. The main steps of the merge process is shown in Algorithm
9.

Algorithm 9 Merge - Part 1

function Merge(Node left , Node base, Node right)
mergetree ← empty tree
diff3(left , base, right)
unchanged ← {n |n ∈ base ∧ n ∈ left ∧ n ∈ right}
insert(unchanged ,merged)
consistent ← {n |n /∈ base ∧ n ∈ left ∧ n ∈ right}
insert(consistent ,merged)
lchanges ← {n |n ∈ left ∧ n /∈ merged ∧ n /∈ right ∧ n /∈ base}
rchanges ← {n |n ∈ right ∧ n /∈ merged ∧ n /∈ left ∧ n /∈ base}
DetectConflicts(lchanges , rchanges)
MergeChanges(merged , lchanges)
MergeChanges(merged , rchanges)

end function

4.5.1. Unchanged Nodes

The first step of the merge process is traversing the trees top-down, while copying all
nodes into the merge-AST that are unchanged in all three input revisions. This is
accomplished by traversing the base revision’s tree top down, inserting all nodes into
the merge tree that have corresponding nodes in both left and right revision. If a node
is unchanged, but its parent node was modified, it will be skipped for now and be dealt
with in a later step of the merge process.

4.5.2. Consistently Changed Nodes

The second step of merging addresses changes introduced in both left and right revision.
In order to find those changes, the tree representing the left revision is traversed. If a
node is reached that is not contained in the base revision, but has a corresponding node
in the right revision, it will be inserted into the merge tree.

CHAPTER 4. JDIME: STRUCTURED MERGE FOR JAVA 40



Adjustable Syntactic Merge of Java Programs

4.5.3. Separately Changed Nodes

The previous steps were rather simple, as all nodes added to the merge tree so far were
originally contained in the trees of both left and right revision, and as such could not
create any conflicts. Changes introduced in only one of the revisions are more difficult
to merge, because they could conflict with changes of the opposing revision.

Thanks to the flagged nodes, finding the changes is easy. So before conflicts can be
detected, a list of all changes introduced by the left revision is created. The same is
performed for the right revision.

Detecting Conflicts

In order to detect conflicts, every change in a revision is checked against each change of
the opposing revision. If two changes would be added to the same parent node in the
merge tree, they might be conflicting. Now the algorithm has to distinguish between
two scenarios: parent nodes being strict concerning the order of their children, and those
whose children are unordered.

In the first case, implemented by extending the attribute system of JastAddJ’s ASTNode-
hierarchy with an appropriate method, a node can check by itself whether it conflicts
with another node or not by calling its conflicts(Node otherNode) method. The
implementation of this method depends on the language element represented by the
node. For instance, a node representing a method declaration knows, it can conflict
with another method declaration, if their names, their return values and the amount of
their arguments equal. It also knows, it cannot conflict with an import declaration. If
conflicts(Node otherNode) returns false, the change can be safely inserted into the
merge tree. Otherwise, both nodes and their subtrees are marked as conflicting.

If the order of the parent node’s children is significant, the insertion positions of the
rivaling changes are decisive. Imagine, for example, a block of n statements with n > 2,
where the left revision modified the first statement and the right revision the last while
anything in between remained unchanged. Merging both changes in this example would
be no problem, as they do not overlap. In case there is no way inserting both changes
in an unambiguous way, they are marked as conflicting. This procedure is shown in
Algorithm 10.

CHAPTER 4. JDIME: STRUCTURED MERGE FOR JAVA 41



Adjustable Syntactic Merge of Java Programs

Algorithm 10 Merge - Part 2

function detectConflicts(List leftChanges , List rightChanges)
for all Node n : leftChanges do

for all Node m : rightChanges do
if parent of n in mergetree = parent of m in mergetree then

if order of n and m is important then
if insert position is ambigious then

conflict(n,m)
end if

else
if n.conflicts(m) then

conflict(n,m)
end if

end if
end if

end for
end for

end function

A node involved in a conflict has an appropriate conflict-flag, a list of conflicting changes
(which belong to the opposing revision) and a list of related changes (belonging to its
own revision). I node A is detected to be in conflict with node B, while B is already
part of an existing conflict, the previously detected conflicting changes of B are added
to A’s list of related changes and vice versa. The procedure used to mark conflicts is
shown in Algorithm 11.

Algorithm 11 Merge - Part 3

function conflict(Node n, Node m)
flag(n,m,ConflictFlag)
add n to m.conflictingChanges
for all Node r : n.relatedChanges do

add r to m.conflictingChanges
end for
for all Node c : m.conflictingChanges do

add c to n.relatedChanges
end for

end function

CHAPTER 4. JDIME: STRUCTURED MERGE FOR JAVA 42



Adjustable Syntactic Merge of Java Programs

Treating Conflicts

If all changes have been processed and no nodes are flagged as conflicting, the merge
has finished. The remaining conflicts nevertheless have to be included into the merge
tree, thus allowing the pretty-printer to find them. Therefore, a dummy node is created
for each conflict, linking to the respective sets of conflicting changes. These sets have
already been gathered by detectConflicts, and are stored in the relatedChanges

and conflictingChanges lists of a node. This dummy node is then inserted into the
merge tree instead of the nodes being in conflict. In case of a certain node requiring a
minimum amount of children in order to guarantee syntactical correctness, placeholder
dummy nodes are inserted. Algorithm 12 illustrates this process. When the merge tree
is transformed into source code, and the pretty-printer reaches a conflict dummy node,
it prints two opposing sets of changes, visualizing them the same way GNU merge
does.

Algorithm 12 Merge - Part 4

function mergeChanges(Tree mergetree, List changes)
for all Node n : changes do

if n is flagged as conflict ∧n is not marked as processed then
Node c← new conflict dummy node
c.leftAlternative ← n.relatedChanges
c.rightAlternative ← n.conflictingChanges
for all Node m : n.relatedChanges ∪ n.conflictingChanges do

mark m as processed
end for

else
insert n into mergetree

end if
end for

end function

4.6. Challenges

While working on the implementation in general, and with JastAddJ in particular, a
few difficulties surfaced. This section discusses the main issues and explains the solutions
found most applicable for JDime.

CHAPTER 4. JDIME: STRUCTURED MERGE FOR JAVA 43



Adjustable Syntactic Merge of Java Programs

4.6.1. Altering Trees in JastAddJ

At the beginning of the implementation, the first approach was to operate directly on
the abstract syntax trees provided by JastAddJ, which always assumes an AST to
have a correct structure fulfilling the language-specific rules. While the merge algorithm
requires syntactical correct input and produces a syntactical correct tree as final result, it
temporarily works on fragmented and partially incorrect trees to accomplish this result.
for example, an if-statement in Java has three children: a condition, an if-block and
an optional else-block. If the else-block does not exist in the code, JastAddJ adds
an empty block to the AST. Let’s assume we are performing a three-way merge with a
left revision, base revision, and right revision as input, and there is a difference between
the conditions of the if-block in left and right revision. Detecting a potential conflict,
the merge algorithm will not add the condition node to the merge tree in its first step,
because in this step only all nodes being unchanged, and therefore contained in all three
revisions, will be inserted into the merge tree. In a later step, it will decide whether the
condition of one of the two revisions will be inserted, or whether a conflict exists and a
dummy node has to be created. What seems stable and correct to the merge algorithm
(namely not adding potentially conflicting nodes in its first steps), is not at all stable
and correct for the AST generated by JastAddJ, since it requires the existence of a
condition.

A concrete related problem with JastAddJ is, that whenever asked how many children
a specific node has, it will always return the amount of children this node is supposed
to have according to the language specification, and not how many children it actu-
ally has. The return value of the getNumChild()-method is hard-coded to a certain
integer value for a lot of ASTNode’s subclasses. In case of an if-statement, JastAddJ
will always return 3, when asked how many children the if-statement has, no matter
if there is actually a condition node or not, since an if-construct is supposed to have
three children, as specified in the language specification. Even after repeatedly calling
the removeChild()-method of the node and deleting its first child node, the node rep-
resenting the if-statement still claims to have all three children. The way adding and
removing nodes is implemented in JastAddJ, which is shifting an array, complicates
the situation even more. This behavior makes it very difficult to implement complex
algorithms altering a tree, if not every single change results in a complete and correct
AST.

After experimenting with a lot of potential workarounds like inserting dummy nodes,
dealing with exceptions, and even trying to change the algorithms, the decision was
made to let the merge algorithm work on a dedicated, much simpler tree structure,
consisting of a custom node class: jdime.Node. Each of these custom nodes encapsulates
a JastAddJ ASTNode internally, but its getNumChild()-method returns the actual
amount of children the node has at the time the method is called. Furthermore, adding
and removing child nodes is implemented in a safer way. Using these custom node

CHAPTER 4. JDIME: STRUCTURED MERGE FOR JAVA 44



Adjustable Syntactic Merge of Java Programs

objects, working with fragmented trees is possible. When the merge algorithm has
finished, a complete and correct AST containing of ASTNodes can be generated top-
down, recursively from the custom root node.

An additional benefit of the new tree structure is that JDime could now theoretically
be dismantled from JastAddJ in order to use another backend.

4.6.2. Inserting Nodes in the Right Order

Another difficult problem was to insert changes that occurred in only one revision into
the merge tree in correct order. There are several, complex scenarios that have to
be considered by the merge algorithm. Imagine, for instance, a block of statements,
where the left revision includes the first two statements from the base revision without
modification, while inserting an additional statement behind. If the right revision deleted
the first and second statement of the originating revision, but introduced changes instead
of them, how are both revisions going to be treated by the merge process? The correct
solution is to create a conflict, since the insertion positions of the changes are ambiguous.
Detecting such situations is not easy, but missing them is fatal to the merge algorithm’s
output. Therefore, the implementations of detectConflicts and mergeChanges
have to take a large amount of special cases into account, which allows assembling a
merge with few conflicts while not producing wrong insertions.

4.6.3. Representing Conflicts

After the merge process has finished, the merged AST has to fulfill the specification
of the respective language. In order to produce source code from the AST, a pretty-
printer traverses the tree and prints suitable code for each node. To print conflicts in
an acceptable way, the pretty-printer has to identify them as such. This leads to the
question how conflicts should be included into the AST without breaking its syntactical
structure, which is not allowed in JastAddJ, as mentioned in Section 4.6.1. Inserting
both alternative branches of a conflict into the tree would break the structure, so this is
not an option.

In JDime, a specific dummy node is inserted in such cases. A conflict dummy node
holds references to the rivaling branches, that can be followed by the pretty-printer. In
case a removal of code conflicts with other changes, the removal is represented by an
empty node.

CHAPTER 4. JDIME: STRUCTURED MERGE FOR JAVA 45



Adjustable Syntactic Merge of Java Programs

4.6.4. Runtime

Another typical issue of syntactic merges is their rather high runtime, which is caused
by the expensive algorithms and the overhead that is necessary to parse and pretty-print
programs. The syntactic merge algorithm implemented yet is not even the most precise,
one could think of. E.g., an algorithm could be added, which detects renamed methods
or code shifted between different levels. The impact on the runtime would be even more
noticeable in such cases. For unordered trees, a more precise matching would only be
possible by implementing approximations.

To offer a trade-off between acceptable execution times and precision, an auto-tuning
approach was implemented for JDime: Prior to launching an expensive syntactic merge,
a cheap, conventional merge using GNU merge is performed. Only if the textual merge
produces a conflict, the syntactic merge is started.

When there are more algorithms available for JDime in the future, this idea can be
extended easily. Several configurations defining rankings of algorithms, from fast to
precise, could be preset and provided to users or tools.

Of course the gain of speed has its price, in the form of a potential loss of precision:
Conflicts missed by a cheap merge are not detected if the file being processed has no
further conflicts that could be detected by the merge. Auto-tuning can be switched on
and off via command line options.

4.7. Extensibility

Additional merge algorithms simply have to implement MergeInterface and have to
be registered in the main method of JDime. MergeInterface requires the methods
merge() and merge3() to be implemented. In order to add a different compare algorithm
for ASTs, which can then be used by the existing syntactic merge algorithm, a class
inheriting TreeMatcher can be created.

Of course, also integrating other, non-AST-based merging algorithms is possible via pro-
viding an appropriate wrapper class, as it was done for GNU merge and FSTMerge.
Those algorithms can be as well used for further optimized auto-tuning capabilities.

CHAPTER 4. JDIME: STRUCTURED MERGE FOR JAVA 46



CHAPTER 5

Empirical Study

In the previous chapter, JDime was presented, an adjustable, syntactic merge tool for
Java programs. It uses a tree-based approach and was built within this thesis in order
to produce merges of better quality than a standard textual merge does.

In this chapter, we will see how it actually performs compared to GNU merge, which
still is a standard tool in merging software artifacts so far. GNU merge is a repre-
sentative for line-based, textual merges, which have been described in Section 3.4. Also
included in the comparison is FSTMerge, which was designed to be a trade-off between
a textual and a syntactic merge. FSTMerge has been presented in Section 3.6.

Eight projects written in Java, with several merge scenarios given, have been chosen as
subjects for the study. The values measured for the evaluation are number of conflicts,
conflicting files, conflicting lines, and the runtime.

In Section 5.1, the sample projects and the environment for the evaluation are intro-
duced. Afterwards, the results are presented in Section 5.3. In the last section, the most
influencing factors leading to the results are discussed.

47



Adjustable Syntactic Merge of Java Programs

5.1. Setup and Choice of Projects

While working on semistructured merge, Apel et al. published an evaluation compar-
ing the performance of FSTMerge with a textual merge [ALL+]. Therefore, they
retrieved several projects varying in size and being written in Java, C#, or Python
from SourceForge, examined the projects’ subversion histories, and created a couple of
merge scenarios. Those merge scenarios either have actually been performed during the
evolution of a project and are documented in form of commit messages, or have been
considered realistic in the context of the respective project [ALL+]. An example for the
last case is merging a development branch back into trunk.

5.1.1. Sample Projects

A subset of appropriate projects is taken from the mentioned repertory for the evaluation
performed within this thesis, as is shown in Table 5.1. The lines of code (LoC) stated
in the table, are average values over all revisions that were checked out. The values for
the separate revisions in order to build the average, have been computed using cloc1.
Furthermore, the amount of merge scenarios (MS) is given for each project.

Project Domain LoC MS
DrJava development environment 77 K 9
FreeCol turn-based strategy game 85 K 10
GenealogyJ editor for genealogical data 55 K 10
iText PDF library 85 K 8
jEdit programmer’s text editor 98 K 8
Jmol viewer for chemical structures 128 K 7
PMD bug finder 65 K 10
SQuirrelSQL SQL GUI client 194 K 10

Table 5.1.: Sample projects

5.1.2. Test Environment

For each merge scenario, four merges are performed consecutively:

• textual merge (TM): GNU merge

1http://cloc.sourceforge.net

CHAPTER 5. EMPIRICAL STUDY 48

http://cloc.sourceforge.net


Adjustable Syntactic Merge of Java Programs

• syntactic merge (SM): JDime with disabled auto-tuning (always using syntactic
merge)

• combined merge (CM): JDime with enabled auto-tuning (trying textual merge
first)

• semistructured merge (SSM): FSTMerge

The framework for the evaluation is a Java program which already performs the basic
three-way merge rules, as shown in 3.2, at directory level and executes the merge tools
with files as appropriate input arguments. This decision was made in order to allow a
more direct comparison between the merge tools. The framework program measures the
time a tool needs to complete a merge, and analyzes the output produced. The runtime
is retrieved by running each merge process 10 times, then computing the median.

All tests were carried out on an AMD Phenom II X6 1090T with 6 cores at 3.2 GHz
with 16 GB of RAM. The machine runs Gentoo Linux with kernel 3.2.7 and uses an
up-to-date version of the Oracle Java HotSpot 64-Bit Server VM (1.6.0 31).

5.2. Results

In this section, the overall results are presented. The complete statistics are contained
in form of tables in Appendix A, and in form of diagrams in Appendix B.

Table 5.2 lists the mean values over all revisions for conflicting files, conflicts, and con-
flicting lines for all projects. Compared are textual merge (TM), syntactic merge (SM),
combined merge (CM), and semistructured merge (SSM). As the syntactic approach was
expected to be superior to textual merges concerning conflict detection and resolution,
fields in the tables are highlighted if the opposite was the case. Table 5.3 includes the
respective mean runtime values over all revisions in milliseconds. Figures 5.1 to 5.4
illustrate the collected data.

Another interesting representation of the results is given by Tables 5.4 and 5.5, which
display percentage values for each merge using the textual merge as base line by setting
it to 100 % (since textual merging is the de-facto standard today).

In most of the merge scenarios tested, the syntactic approach indeed was superior than
the line-based and semistructured ones. FSTMerge tends to rank in between textual
and syntactic merge, a result that is not surprising as well.

It becomes evident, that the results produced by JDime executing a pure syntactic

CHAPTER 5. EMPIRICAL STUDY 49



Adjustable Syntactic Merge of Java Programs

conflicting files conflicts conflicting lines

Project TM SM CM SSM TM SM CM SSM TM SM CM SSM

DrJava 7 2 2 7 2 4 4 17 285 61 57 203
FreeCol 63 48 47 58 47 200 187 212 4321 1745 1709 3254
GenealogyJ 8 5 5 5 5 6 6 6 150 55 55 105
iText 212 190 190 173 190 1847 1847 667 117234 6458 6443 35514
jEdit 3 2 2 2 2 2 2 4 40 16 16 51
Jmol 23 13 12 19 12 31 30 43 1117 234 225 609
PMD 10 7 7 10 7 10 10 15 691 357 357 471
SquirrelSQL 15 7 7 12 7 9 9 23 2492 214 214 563

Table 5.2.: mean results for all projects

runtime in ms

Project TM SM CM SSM

DrJava 5971 99901 33674 539996
FreeCol 5726 82539 27815 473963
GenealogyJ 4174 56378 6115 337669
iText 7163 338302 315969 427851
jEdit 5174 72536 6587 459207
Jmol 4937 313965 239141 556777
PMD 3194 33368 5222 190080
SquirrelSQL 18129 230279 23788 1101322

Table 5.3.: mean runtime values for all projects

D
rJ

av
a

F
re

eC
ol

G
en

ea
lo

gy
J

iT
ex

t

jE
di

t

Jm
ol

P
M

D

S
qu

irr
el

S
Q

L

1

10

100

1000

10000

All Projects

Conflicts: Mean Values

GNU Merge

JDime

JDime AT

FSTMerge

Projects

N
u

m
b

e
r 

o
f c

o
n

fli
ct

s
 (

lo
g

 s
ca

le
)

Figure 5.1.: All projects: mean values for conflicts

CHAPTER 5. EMPIRICAL STUDY 50



Adjustable Syntactic Merge of Java Programs

D
rJ

av
a

F
re

eC
ol

G
en

ea
lo

gy
J

iT
ex

t

jE
di

t

Jm
ol

P
M

D

S
qu

irr
el

S
Q

L

1

10

100

1000

10000

100000

1000000

All Projects

Conflicting Lines: Mean Values

GNU Merge

JDime

JDime AT

FSTMerge

Projects

N
u

m
b

e
r 

o
f c

o
n

fli
ct

in
g

 li
n

e
s

 (
lo

g
 s

ca
le

)

Figure 5.2.: All projects: mean values for conflicting lines

D
rJ

av
a

F
re

eC
ol

G
en

ea
lo

gy
J

iT
ex

t

jE
di

t

Jm
ol

P
M

D

S
qu

irr
el

S
Q

L

1

10

100

1000

All Projects

Conflicting Files: Mean Values

GNU Merge

JDime

JDime AT

FSTMerge

Projects

N
u

m
b

e
r 

o
f c

o
n

fli
ct

in
g

 fi
le

s
 (

lo
g

 s
ca

le
)

Figure 5.3.: All projects: mean values for conflicting files

CHAPTER 5. EMPIRICAL STUDY 51



Adjustable Syntactic Merge of Java Programs

D
rJ

av
a

F
re

eC
ol

G
en

ea
lo

gy
J

iT
ex

t

jE
di

t

Jm
ol

P
M

D

S
qu

irr
el

S
Q

L

1
10

100
1000

10000
100000

1000000
10000000

All Projects

Runtime: Mean Values

GNU Merge

JDime

JDime AT

FSTMerge

Projects

T
im

e
 in

 m
ill

is
e

co
n

d
s

 (
lo

g
 s

ca
le

)

Figure 5.4.: All projects: mean values for runtime

conflicting files conflicts conflicting lines

Project TM SM CM SSM TM SM CM SSM TM SM CM SSM

DrJava 100 25.78 21.28 94 100 20.31 18.72 79.69 100 21.45 20.05 71.22
FreeCol 100 77 75.24 92.01 100 85.53 79.76 90.44 100 40.39 39.56 75.29
GenealogyJ 100 62.34 62.34 62.34 100 32.56 32.56 33.72 100 36.7 36.7 69.99
iText 100 89.63 89.45 81.56 100 855.27 854.98 308.62 100 5.51 5.5 30.29
jEdit 100 75.2 75.2 95.2 100 46.11 46.11 79.51 100 38.81 38.81 127.01
Jmol 100 56.18 52.46 80.25 100 54.73 53.19 76.73 100 20.95 20.19 54.56
PMD 100 70.71 70.71 98.99 100 58.33 58.33 89.88 100 51.66 51.66 68.12
SQuirrelSQL 100 45.03 45.03 82.12 100 34.66 34.66 92.03 100 8.6 8.6 22.57

Table 5.4.: results in percentage for all projects with textual merge as base level

runtime

Project TM SM CM SSM

DrJava 100 1673.08 563.96 9043.47
FreeCol 100 1441.5 485.78 8277.53
GenealogyJ 100 1350.73 146.51 8090
iText 100 4723.16 4411.36 5973.39
jEdit 100 1402.08 127.33 8876.13
Jmol 100 6359.42 4843.86 11277.64
PMD 100 1044.88 163.53 5952.08
SQuirrelSQL 100 1270.2 131.21 6074.79

Table 5.5.: runtime in percentage for all projects with textual merge as base level

CHAPTER 5. EMPIRICAL STUDY 52



Adjustable Syntactic Merge of Java Programs

merge are in the same range as the ones produced using the combined approach. In
some specific cases, the combined version performed even better. The reasons for this
behavior will be discussed in Section 5.3. Comparing the runtime of JDime with and
without auto-tuning proves, that combining different approaches in order to achieve a
trade-off between speed and precision is an effective way to get a tool more applicable
in practice. The auto-tuning approach is up to 12 times faster than the pure structured
merge, with 5 times being the average.

A few spikes are noticeable among the projects, e.g., iText with large amounts of conflicts
but few conflicting lines for syntactic and semistructured merges. This observation will
be examined further as well in the following section.

5.3. Discussion

As expected, the structured merge in form of JDime produces better results than textual
or semistructured approaches in most of the merge scenarios, although some surprises
can be observed for some projects. In this section, the most influencing factors are
discussed, which will also depict the appearance of the spikes.

5.3.1. Insertions and Ordering of Members

As expected, and already been observed by Apel et al. [ALL+], ordering conflicts are a
common problem for line-based merge tools, whereas they are more easily detected by
semistructured or structured approaches. Ordering conflicts occur, if new elements are
added between existing ones or if existing members are reordered. In particular, using
IDE-features automatically sorting class members can be fatal for later merges, as long
as line-based merging tools are used. The good results of FSTMerge, which was devel-
oped in order to address this issue, indicates how important in practice proper detection
at this level is. Using a matching algorithm for unordered trees, which was presented in
Section 4.4.3, JDime handles reorderings without creating conflicts as well.

A typical example, extracted from merge scenario rev4007-4103 of SQuirrelSQL, is
given in Figure 5.5. Both JDime and FSTMerge are capable of automatically merging
such scenarios without conflict. Other typical elements in Java causing ordering conflicts
are import declarations.

As long as the insert position is unambiguous, JDime is even able to merge insertions
of elements whose order is significant, for example, inside of method bodies.

CHAPTER 5. EMPIRICAL STUDY 53



Adjustable Syntactic Merge of Java Programs

Version Base

public ContentsTab() { }

Version Right

private ObjectTreePanel treePanel = null;

PleaseWaitDialog waitDialog = null;

public ContentsTab(ObjectTreePanel
treePanel) {

treePanel = treePanel;
}

Version Left

private ObjectTreePanel treePanel = null;

public ContentsTab(ObjectTreePanel
treePanel) {

treePanel = treePanel;
}

unstructured

<<<<<<<
left−branch−4103/ContentsTab.java

private ObjectTreePanel treePanel =
null;

public ContentsTab(ObjectTreePanel
treePanel) {

treePanel = treePanel;
}

=======
private ObjectTreePanel treePanel =

null;

PleaseWaitDialog waitDialog = null;

public ContentsTab(ObjectTreePanel
treePanel) {

treePanel = treePanel;
}

>>>>>>>
right−trunk−4103/ContentsTab.java

branch

merge

Figure 5.5.: Ordering conflict

CHAPTER 5. EMPIRICAL STUDY 54



Adjustable Syntactic Merge of Java Programs

5.3.2. Code Formatting

Code reformatting was another factor having a large impact on the results. If both
rivaling branches changed indentation style, textual merges produce large conflicts with
many conflicting lines. This issue also affects FSTMerge, which uses GNU merge in
order to merge method bodies. As already mentioned in Section 3.4, it is possible to have
GNU diff ignoring indentation changes. Unfortunately, this option is not provided in
the GNU tools diff3 and merge.

The impact of reformattings can be seen most clearly by examining merge scenario
rev4989-5044 of the DrJava project. JDime could merge almost all files without a
conflict, whereas GNU merge and FSTMerge produced more than 20 conflicting
files. With auto-tuning enabled, even the last file could be merged without a conflict
by JDime. Examining the relevant file manually proved that the textual merge did
not miss a conflict in this case. A lot of changes in code formatting were introduced
in several revisions of DrJava, changing not even trailing and leading spaces and tabs,
but also spaces between arithmetic arguments, for instance, (x+1) was changed to (x +

1), which cannot (and probably should not, as it would be a semantic difference in case
of strings) be detected by textual merges at all. These changes explain the results for
syntactic merge for DrJava, which are much better than the average improvement.

An example merge from DrJava is shown in Figure 5.6. JDime does not distinguish
between the code used in left and right revision.

5.3.3. Two-Way Merging

The project iText is an example where the syntactic merge produces a very high amount
of conflicts compared to the textual merge (850 %), therefore having a lot fewer con-
flicting lines (5%). FSTMerge has a similar tendency for these scenarios, but with less
extreme dimensions (300 % conflicts, 30 % conflicting lines). Those results differ a lot
from the other projects, so there had to be something special about iText. Investigating
the merge scenarios for iText closer, shows that a large amount of two-way merges is
performed due to renamings in the project directory, resulting in a missing common
ancestor. After re-adjusting the benchmark framework in order to gain more statistical
information about which merges were performed, the situation was a lot clearer: To be
precise, 78 % of all merges executed while processing the merge scenarios of iText were
two-way merges. This is much more than the average percentage of two-way merges for
the other projects, which tends to be below 1 %. Indeed, manually inspecting the input
files of the merges as well as the output generated by the competing tools, confirms the
suspicion.

CHAPTER 5. EMPIRICAL STUDY 55



Adjustable Syntactic Merge of Java Programs

Version Base

String dString =
RemoteControlServer.QUERY PREFIX;
if (f!=null) {

dString = dString+”
”+f.getAbsolutePath();
}

Version Right

String dString =
RemoteControlServer.QUERY PREFIX;
if (f != null) {

dString = dString+”
”+f.getAbsolutePath();
}

Version Left

String dString =
RemoteControlServer.QUERY PREFIX;
if (f != null) {

dString = dString + ” ” +
f.getAbsolutePath();
}

unstructured

String dString = RemoteControlServer.QUERY PREFIX;
<<<<<<< left−trunk−5044/RemoteControlClient.java

if (f != null) {
dString = dString + ” ” + f.getAbsolutePath();

=======
if (f != null) {

dString = dString+” ”+f.getAbsolutePath();
>>>>>>> right−branch−5044/RemoteControlClient.java

}

branch

merge

Figure 5.6.: Code reformatting

CHAPTER 5. EMPIRICAL STUDY 56



Adjustable Syntactic Merge of Java Programs

Two-way merges are handled by GNU merge by creating a conflict and adding all
lines of the files as alternatives, which results in few conflicts with very many conflicting
lines. The semistructured approach is able to merge some of the structural changes
that do not overlap concerning their declarations, but has to rely on the textual merge
in order to process the remaining methods’ bodies. This results in more conflicts, but
fewer affected lines due to the finer granularity. Finally, the syntactic merge produces a
very high number of close-grained conflicts which affect a comparatively low amount of
lines.

5.3.4. Renamings and Changed Signatures

As already discovered in the evaluation for semistructured merge, renamings are prob-
lematic for structural merging under some circumstances [ALL+]. Since the matching
algorithms of JDime are currently not able to detect renamed methods or classes, sce-
narios might occur in which a textual merge produces less conflicts than the structured
merge. The same can happen if the signature of a method was changed in one revi-
sion, but at the same time, changes were introduced by the other revision to the old
method.

An example for the last case can be found in merge scenario rev5082-5155 of SQuirrel-
SQL. In the file UpdateControllerImpl.java, the right revision changed the method
signature of pullDownUpdateFiles(), whereas the left revision changed statements in
the body of the method. While merging this file, the syntactic merge produced more
conflicting lines than the textual merge.

To match the children of a renamed element to their corresponding nodes of the opposing
revision, the matching algorithm has to solve the maximum common embedded subtree
problem, which is known to be APX -hard [ZJ94].

A simpler approach to improve the performance when encountering renamings while
auto-tuning is enabled, would be to use the result produced by the textual merge if it
contains less conflicting lines. So far, the result of the textual merge is only used if
it created no conflicts at all. A simple comparison after both runs in case of detected
conflicts would be a simple and convincing way to improve the output of the merge tool.
This solution has also been proposed in the evaluation of semistructured merge [ALL+],
and could be easily integrated into JDime.

CHAPTER 5. EMPIRICAL STUDY 57



Adjustable Syntactic Merge of Java Programs

5.3.5. Runtime

One of the main benefits of textual merges are their speed, which was confirmed by
the measures for GNU merge during the evaluation. The other approaches were a lot
slower compared to the line-based merge.

The syntactic merge was expected to be the slowest in the field of competitors, but
surprisingly this was not the case. For all projects benchmarked during the study,
FSTMerge needed longer to complete its merges. While JDime is tailored for Java,
FSTMerge, as a plugin of FeatureHouse, is more general concerning the support of
programming languages. The price for this generality might be increased runtime, but
this would have to be inspected with more detail in the case of FSTMerge. Using a
profile tool measuring the amount of time spent in single methods, might be a promising
attempt to find possible bottlenecks.

The combination of textual and syntactic merge provides an acceptable trade-off for
many of the tested projects. In particular, large files are problematic for the syntactic
merge, since they lead to ASTs with many nodes per level, which increases the time for
each compare process significantly. Especially the algorithm used to match unordered
nodes affects the runtime in a negative way in those cases.

CHAPTER 5. EMPIRICAL STUDY 58



CHAPTER 6

Conclusion

This thesis gave an overview of version control software and depicted situations in which
merging of software artifacts is required. Different approaches and techniques in order
to merge programs have been explained in the second chapter. The de-facto standard
in merging today is a line-based, textual method. Its benefits are speed and generality,
making it applicable to all plain text files. But using no information about the structure
of a document, such tools tend to produce a large number of conflicts, which are in
some cases hard to resolve manually. Structured algorithms provide more power to
match elements and detect conflicts in order to assist users while merging files, but
they are slower and restricted to specific program languages A semistructured approach
was explained as well, which uses structured information to a certain degree and relies
on textual merges for lower levels, thus allowing it to provide better resolution than
conventional merges while staying more general than structured ones.

Within this thesis, an AST-based tool performing a syntactic merge for Java source code,
called JDime was developed. In addition to the implementation of a pure syntactic
merge, the tool was designed to combine different algorithms at runtime, in order to use
cheaper algorithms, like line-based ones, as long as no conflicts occur. This functionality
can be switched on and off. The chapter about JDime presents idea and architecture of
the tool, as well as the algorithms implemented. It was expected, that the tool would be
superior in practice to both textual and semistructured merge concerning the detection
and resolution of conflicts.

59



Adjustable Syntactic Merge of Java Programs

In an empirical study, described in Chapter 5, this assumption was confirmed for most
cases, although scenarios have been found where the conventional merge produced less
conflicts. Those cases have been examined in Section 5.3. Furthermore, the results
obtained in the evaluation show, that the semistructured approach indeed ranks in the
middle concerning conflict resolution.

As to future research, even more detailed algorithms, detecting the renaming of elements,
could be integrated into JDime. It would also be interesting to use type information and
call-graphs in order to detect semantic conflicts. To reduce the runtime, the auto-tuning
mechanism could be modified at some points to provide even better results in practice,
as mentioned in Section 5.3.4. Furthermore, several independent procedures could be
parallelized to benefit from the capabilities of todays’ desktop computers.

CHAPTER 6. CONCLUSION 60



Bibliography

[AKJK+02] S. Al-Khalifa, H.V. Jagadish, N. Koudas, J.M. Patel, D. Srivastava, and
Yuqing Wu. Structural joins: a primitive for efficient xml query pattern
matching. In Data Engineering, 2002. Proceedings. 18th International Con-
ference on, pages 141 –152, 2002.

[ALL+] Sven Apel, Jörg Liebig, Christian Lengauer, Christian Kästner, and
William R. Cook. Semistructured merge in revision control systems.

[BHR00] L. Bergroth, H. Hakonen, and T. Raita. A survey of longest common sub-
sequence algorithms. In String Processing and Information Retrieval, 2000.
SPIRE 2000. Proceedings. Seventh International Symposium on, pages 39
–48, 2000.

[Buf95] Jim Buffenbarger. Syntactic software merging. In Jacky Estublier, ed-
itor, Software Configuration Management, volume 1005 of Lecture Notes
in Computer Science, pages 153–172. Springer Berlin / Heidelberg, 1995.
10.1007/3-540-60578-9 14.

[CSFP10] Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato. Ver-
sion Control With Subversion for Subversion 1.6: The Official Guide And
Reference Manual. CreateSpace, Paramount, CA, 2010.

[EH07] Torbjörn Ekman and Görel Hedin. The jastadd extensible java compiler.
In Proceedings of the 22nd annual ACM SIGPLAN conference on Object-

61



Adjustable Syntactic Merge of Java Programs

oriented programming systems and applications, OOPSLA ’07, pages 1–18,
New York, NY, USA, 2007. ACM.

[Fra05] András Frank. On kuhn’s hungarian method—a tribute from hungary.
Naval Research Logistics (NRL), 52(1):2–5, 2005.

[Hir75] D. Hirschberg. A Linear Space Algorithm for Computing Maximal Common
Subsequences. Communications of the ACM, 18(6):341–343, 1975.

[HPR89] Susan Horwitz, Jan Prins, and Thomas Reps. Integrating non-interfering
versions of programs. ACM Transactions on Programming Languages and
Systems, 11:345–387, 1989.

[HT96] Magnús Halldórsson and Keisuke Tanaka. Approximation and special
cases of common subtrees and editing distance. In Tetsuo Asano, Yoshi-
hide Igarashi, Hiroshi Nagamochi, Satoru Miyano, and Subhash Suri,
editors, Algorithms and Computation, volume 1178 of Lecture Notes in
Computer Science, pages 75–84. Springer Berlin / Heidelberg, 1996.
10.1007/BFb0009483.

[KKP07] Sanjeev Khanna, Keshav Kunal, and Benjamin C. Pierce. A formal in-
vestigation of diff3. In Proceedings of the 27th international conference
on Foundations of software technology and theoretical computer science,
FSTTCS’07, pages 485–496, Berlin, Heidelberg, 2007. Springer-Verlag.

[Lin03] Tancred Lindholm. Xml three-way merge as a reconciliation engine for
mobile data. In Proceedings of the 3rd ACM international workshop on
Data engineering for wireless and mobile access, MobiDe ’03, pages 93–97,
New York, NY, USA, 2003. ACM.

[Lin04] Tancred Lindholm. A three-way merge for xml documents. In Proceedings
of the 2004 ACM symposium on Document engineering, DocEng ’04, pages
1–10, New York, NY, USA, 2004. ACM.

[Loe09] Jon Loeliger. Version Control with Git: Powerful Tools and Techniques
for Collaborative Software Development. O’Reilly Media, Inc., 1st edition,
2009.

[LR86] J. Van Leeuwen and I Representation. Graph algorithms, 1986.

[Mai78] David Maier. The complexity of some problems on subsequences and su-
persequences. J. ACM, 25:322–336, April 1978.

Bibliography 62



Adjustable Syntactic Merge of Java Programs

[Men02] T. Mens. A state-of-the-art survey on software merging. Software Engi-
neering, IEEE Transactions on, 28(5):449 –462, may 2002.

[OB09] Bryan O’Sullivan and O’Sullivan Bryan. Mercurial: The Definitive Guide.
O’Reilly Media, Inc., 2009.

[SL93] Herbert Alexander Baier Saip and Claudio Leonardo Lucchesi. Matching
algorithms for bipartite graphs matching algorithms for bipartite graphs.
Relatorio Tecnico, 700(DCC-03/93):21, 1993.

[Wes91] Bernhard Westfechtel. Structure-oriented merging of revisions of software
documents. In Proceedings of the 3rd international workshop on Software
configuration management, SCM ’91, pages 68–79, New York, NY, USA,
1991. ACM.

[Yan91] Wuu Yang. Identifying syntactic differences between two programs. Soft-
ware - Practice and Experience, 21:739–755, 1991.

[ZJ94] Kaizhong Zhang and Tao Jiang. Some max snp-hard results concerning
unordered labeled trees. Inf. Process. Lett., 49:249–254, March 1994.

Bibliography 63



List of Figures

2.1. Branching and Tagging in Version Control . . . . . . . . . . . . . . . . . 8
2.2. Centralized Version Control System . . . . . . . . . . . . . . . . . . . . . 9
2.3. Distributed Version Control System . . . . . . . . . . . . . . . . . . . . . 10
2.4. Lost Update Problem/Blind Overwriting . . . . . . . . . . . . . . . . . . 11
2.5. Lock-Modify-Write Solution . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6. Copy-Modify-Merge Solution . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1. Two-way and three-way merge . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2. GNU merge displaying a conflict . . . . . . . . . . . . . . . . . . . . . . 18
3.3. Failed textual merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4. Superimposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5. Semantic Conflict . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1. UML: Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2. UML: Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1. All projects: mean conflicts . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2. All projects: mean conflicting lines . . . . . . . . . . . . . . . . . . . . . 51
5.3. All projects: mean conflicting files . . . . . . . . . . . . . . . . . . . . . . 51
5.4. All projects: mean runtime . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5. Ordering conflict . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.6. Code reformatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

B.1. DrJava: conflicting files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
B.2. DrJava: conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
B.3. DrJava: conflicting lines . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

64



Adjustable Syntactic Merge of Java Programs

B.4. DrJava: runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
B.5. FreeCol: conflicting files . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
B.6. FreeCol: conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
B.7. FreeCol: conflicting lines . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
B.8. FreeCol: runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
B.9. GenealogyJ: conflicting files . . . . . . . . . . . . . . . . . . . . . . . . . 76
B.10.GenealogyJ: conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
B.11.GenealogyJ: conflicting lines . . . . . . . . . . . . . . . . . . . . . . . . . 77
B.12.GenealogyJ: runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
B.13.iText: conflicting files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
B.14.iText: conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
B.15.iText: conflicting lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
B.16.iText: runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
B.17.jEdit: conflicting files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
B.18.jEdit: conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
B.19.jEdit: conflicting lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
B.20.jEdit: runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
B.21.Jmol: conflicting files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
B.22.Jmol: conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
B.23.Jmol: conflicting lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
B.24.Jmol: runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
B.25.PMD: conflicting files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
B.26.PMD: conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
B.27.PMD: conflicting lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
B.28.PMD: runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
B.29.SQuirrelSQL: conflicting files . . . . . . . . . . . . . . . . . . . . . . . . . 86
B.30.SQuirrelSQL: conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
B.31.SQuirrelSQL: conflicting lines . . . . . . . . . . . . . . . . . . . . . . . . 87
B.32.SQuirrelSQL: runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

List of Figures 65



List of Tables

3.1. Three-way merge rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1. Matrix produced by LCS algorithm . . . . . . . . . . . . . . . . . . . . . 32

5.1. Sample projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2. All projects: mean results . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3. All projects: mean runtime . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.4. All projects: results in percentage . . . . . . . . . . . . . . . . . . . . . . 52
5.5. All projects: runtime in percentage . . . . . . . . . . . . . . . . . . . . . 52

A.1. Conflicts of all projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.2. Runtime in ms of all projects . . . . . . . . . . . . . . . . . . . . . . . . 71

66



List of Algorithms

1. Tree Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2. Largest Common Subsequence (LCS) . . . . . . . . . . . . . . . . 31
3. Backtracing LCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4. SimpleTreeMatching by Yang . . . . . . . . . . . . . . . . . . . . . 33
5. Ordered Tree Matching - Part 1 . . . . . . . . . . . . . . . . . . . . 34
6. Ordered Tree Matching - Part 2 . . . . . . . . . . . . . . . . . . . . 35
7. Unordered Tree Matching . . . . . . . . . . . . . . . . . . . . . . . 38
8. diff3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9. Merge - Part 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
10. Merge - Part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
11. Merge - Part 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
12. Merge - Part 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

67



APPENDIX A

Results: Tables

A.1. Conflicts

conflicting files conflicts conflicting lines

Project Revision TM SM CM SSM TM SM CM SSM TM SM CM SSM

DrJava rev3734-3786 7 3 3 5 3 6 6 6 99 163 163 49
DrJava rev3734-3788 7 3 3 5 3 6 6 8 131 163 163 59
DrJava rev3734-3807 8 2 2 6 2 4 4 10 876 73 73 328
DrJava rev4989-5004 2 3 2 2 2 12 11 9 499 125 95 459
DrJava rev4989-5019 11 1 1 11 1 1 1 25 160 2 2 130
DrJava rev4989-5044 23 1 0 26 0 1 0 51 265 2 0 367
DrJava rev4989-5058 5 1 0 4 0 1 0 13 133 4 0 131
DrJava rev5319-5330 2 2 2 2 2 4 4 15 236 10 10 167
DrJava rev5319-5332 1 1 1 1 1 3 3 12 165 8 8 136
FreeCol rev5884-5962 5 3 2 4 2 7 6 4 363 17 15 155
FreeCol rev5884-6055 9 4 4 8 4 8 8 12 1094 328 328 492
FreeCol rev5884-6110 8 2 2 6 2 9 9 16 1121 621 621 724
FreeCol rev5884-6265 12 4 3 12 3 15 14 28 1766 684 680 1257
FreeCol rev5884-6362 20 8 6 19 6 45 24 43 2630 863 806 1494
FreeCol rev5884-6440 72 56 55 66 55 243 223 245 5784 2383 2330 4319
FreeCol rev5884-6616 119 97 96 110 96 403 383 436 6358 2788 2735 5610
FreeCol rev5884-6672 123 99 98 115 98 404 384 442 6884 3044 2991 5848
FreeCol rev5884-6742 124 103 101 116 101 431 405 440 7985 3230 3162 6118
FreeCol rev5884-6843 134 106 104 120 104 438 412 452 9229 3494 3426 6519
GenealogyJ rev5531-5561 1 0 0 0 0 0 0 0 3 0 0 0
GenealogyJ rev5531-5725 3 3 3 3 3 5 5 5 89 75 75 89
GenealogyJ rev5537-5610 28 20 20 12 20 23 23 16 556 188 188 134
GenealogyJ rev5537-5673 28 20 20 12 20 23 23 16 556 188 188 134
GenealogyJ rev5676-6013 1 0 0 1 0 0 0 1 3 0 0 27

Continued on next page

68



Adjustable Syntactic Merge of Java Programs

conflicting files conflicts conflicting lines

Project Revision TM SM CM SSM TM SM CM SSM TM SM CM SSM

GenealogyJ rev5676-6125 1 0 0 1 0 0 0 1 3 0 0 27
GenealogyJ rev6127-6244 2 1 1 3 1 1 1 3 30 16 16 95
GenealogyJ rev6127-6310 4 2 2 5 2 2 2 5 56 38 38 151
GenealogyJ rev6127-6410 4 1 1 5 1 1 1 5 94 22 22 189
GenealogyJ rev6127-6531 5 1 1 6 1 1 1 6 106 22 22 201
iText rev2818-3036 24 20 17 23 17 65 60 51 2897 569 451 1613
iText rev2818-3191 178 155 155 157 155 1834 1834 652 115577 6284 6284 36374
iText rev2818-3306 234 204 204 204 204 2097 2097 787 133913 6943 6943 41102
iText rev2818-3392 249 230 230 204 230 2263 2263 802 138768 7791 7791 42509
iText rev2818-3560 261 226 226 208 226 2098 2098 796 142685 7391 7391 45099
iText rev2818-3625 264 243 243 200 243 2358 2358 746 136078 7825 7825 42231
iText rev2818-3988 252 225 225 201 225 2059 2059 774 135368 7794 7794 39204
iText rev2818-4022 235 218 218 187 218 2005 2005 725 132585 7067 7067 35976
jEdit rev4676-4998 2 0 0 1 0 0 0 1 28 0 0 2
jEdit rev16588-16755 2 2 2 2 2 2 2 2 9 7 7 9
jEdit rev16588-16883 2 1 1 2 1 1 1 2 9 2 2 9
jEdit rev16588-17060 2 2 2 2 2 2 2 3 24 4 4 24
jEdit rev16588-17316 2 2 2 2 2 2 2 3 20 4 4 20
jEdit rev16588-17492 2 2 2 2 2 2 2 3 20 4 4 20
jEdit rev16588-17551 2 2 2 2 2 2 2 3 20 4 4 20
jEdit rev16883-16964 6 4 4 6 4 7 7 14 192 100 100 305
Jmol rev11338-11438 4 3 2 3 2 3 2 7 350 20 10 131
Jmol rev11338-11538 9 6 5 7 5 12 11 21 521 67 57 269
Jmol rev11338-11638 15 8 7 10 7 17 16 25 667 78 68 344
Jmol rev11338-11738 23 13 12 18 12 35 34 43 1070 203 193 493
Jmol rev11338-11838 34 19 18 27 18 46 45 58 1637 333 323 915
Jmol rev11338-11938 35 20 19 29 19 48 47 67 1703 344 334 998
Jmol rev11338-12038 42 22 22 36 22 53 53 79 1869 593 593 1115
PMD rev5929-6010 1 0 0 1 0 0 0 1 5 0 0 5
PMD rev5929-6135 3 2 2 3 2 2 2 3 22 17 17 24
PMD rev5929-6198 7 3 3 7 3 4 4 13 784 342 342 359
PMD rev5929-6296 9 5 5 10 5 6 6 16 734 349 349 450
PMD rev5929-6425 9 5 5 9 5 6 6 15 727 349 349 439
PMD rev5929-6595 12 9 9 12 9 12 12 19 670 462 462 478
PMD rev5929-6700 13 11 11 13 11 15 15 20 1003 539 539 767
PMD rev5929-6835 12 10 10 12 10 16 16 19 939 506 506 721
PMD rev5929-7018 16 12 12 15 12 18 18 22 1053 510 510 737
PMD rev5929-7073 17 13 13 16 13 19 19 23 977 498 498 730
SQuirrelSQL rev4007-4051 1 0 0 0 0 0 0 0 4 0 0 0
SQuirrelSQL rev4007-4103 3 1 1 2 1 1 1 3 299 7 7 33
SQuirrelSQL rev4007-4212 11 6 6 9 6 8 8 19 1384 108 108 303
SQuirrelSQL rev4007-4321 17 7 7 14 7 9 9 27 3862 164 164 546
SQuirrelSQL rev4007-4394 21 10 10 18 10 12 12 32 4218 357 357 824
SQuirrelSQL rev4007-4516 25 12 12 21 12 15 15 35 4258 414 414 871
SQuirrelSQL rev4007-4908 33 13 13 27 13 18 18 53 6111 420 420 1468
SQuirrelSQL rev4007-5081 34 15 15 28 15 20 20 55 4574 615 615 1482
SQuirrelSQL rev5082-5155 2 1 1 2 1 1 1 3 17 50 50 37
SQuirrelSQL rev5082-5351 4 3 3 3 3 3 3 4 194 9 9 61

Table A.1.: Conflicts of all projects

APPENDIX A. RESULTS: TABLES 69



Adjustable Syntactic Merge of Java Programs

A.2. Runtime

runtime

Project Revision TM SM CM SSM

DrJava rev3734-3786 5556 95582 39398 470021
DrJava rev3734-3788 5557 100648 44350 491475
DrJava rev3734-3807 5663 69549 11692 517842
DrJava rev4989-5004 6029 95760 22869 606357
DrJava rev4989-5019 6186 83276 13749 559721
DrJava rev4989-5044 6278 81310 16619 532562
DrJava rev4989-5058 6163 81592 14812 523317
DrJava rev5319-5330 6158 145662 68712 598992
DrJava rev5319-5332 6150 145734 70869 559674
Freecol rev5884-5962 5160 74649 7307 446411
Freecol rev5884-6055 5285 75085 9579 449462
Freecol rev5884-6110 5276 75268 9600 449972
Freecol rev5884-6265 5355 75738 10803 458225
Freecol rev5884-6362 5458 78238 13333 455063
Freecol rev5884-6440 5924 87671 34643 449400
Freecol rev5884-6616 6157 89137 47010 446345
Freecol rev5884-6672 6205 90245 48095 452306
Freecol rev5884-6742 6220 91477 48572 567253
Freecol rev5884-6843 6219 87880 49211 565195
GenealogyJ rev5531-5561 4017 54710 4513 333400
GenealogyJ rev5531-5725 3950 52353 4728 322092
GenealogyJ rev5537-5610 4108 54049 9364 326318
GenealogyJ rev5537-5673 4032 52881 9402 323886
GenealogyJ rev5676-6013 3929 52942 4310 319795
GenealogyJ rev5676-6125 3848 52995 4323 320054
GenealogyJ rev6127-6244 4445 61138 5955 363692
GenealogyJ rev6127-6310 4455 61860 6218 361185
GenealogyJ rev6127-6410 4504 61223 5794 351949
GenealogyJ rev6127-6531 4451 59632 6546 354315
iText rev2818-3036 4501 105082 18275 426837
iText rev2818-3191 5949 135344 130619 334554
iText rev2818-3306 7206 366823 345364 401390
iText rev2818-3392 7851 406303 389471 436913
iText rev2818-3560 7984 430900 426416 447347
iText rev2818-3625 7929 411803 404812 450984
iText rev2818-3988 7790 387069 404926 461890
iText rev2818-4022 8091 463090 407869 462895
jEdit rev4676-4998 3584 49316 4033 324090
jEdit rev16588-16755 5405 76507 6840 478027
jEdit rev16588-16883 5411 75910 6811 476061
jEdit rev16588-17060 5420 76301 6921 476359
jEdit rev16588-17316 5377 75085 6926 483460
jEdit rev16588-17492 5375 76129 6876 481671
jEdit rev16588-17551 5381 77070 6932 479139
jEdit rev16883-16964 5435 73973 7359 474847
Jmol rev11338-11438 4721 299620 211114 551740
Jmol rev11338-11538 4786 297964 213165 553854
Jmol rev11338-11638 4893 288328 208357 558043
Jmol rev11338-11738 4970 281843 203392 554943
Jmol rev11338-11838 5068 329436 270839 560149
Jmol rev11338-11938 5080 344811 277888 559467
Jmol rev11338-12038 5041 355751 289234 559244
PMD rev5929-6010 4155 42865 4371 245628
PMD rev5929-6135 4136 43667 4875 241109
PMD rev5929-6198 3407 34931 4635 194273
PMD rev5929-6296 3360 33896 4833 194605
PMD rev5929-6425 2842 29597 4640 173048
PMD rev5929-6595 2814 29879 5373 170519
PMD rev5929-6700 2836 30182 5507 170600

Continued on next page

APPENDIX A. RESULTS: TABLES 70



Adjustable Syntactic Merge of Java Programs

runtime

Project Revision TM SM CM SSM

PMD rev5929-6835 2775 30094 5419 169000
PMD rev5929-7018 2793 28456 6169 170862
PMD rev5929-7073 2817 30117 6400 171152
SQuirrelSQL rev4007-4051 16938 215394 18358 1048074
SQuirrelSQL rev4007-4103 16968 222290 19273 1047812
SQuirrelSQL rev4007-4212 16831 213916 21380 1025056
SQuirrelSQL rev4007-4321 16906 216931 23217 1022810
SQuirrelSQL rev4007-4394 16902 212638 23996 1022106
SQuirrelSQL rev4007-4516 16955 224109 25483 1024647
SQuirrelSQL rev4007-4908 16644 208173 26564 1008498
SQuirrelSQL rev4007-5081 16524 209951 26406 989299
SQuirrelSQL rev5082-5155 23351 286927 25940 1416288
SQuirrelSQL rev5082-5351 23275 292464 27264 1408631

Table A.2.: Runtime in ms of all projects

APPENDIX A. RESULTS: TABLES 71



APPENDIX B

Results: Graphs

B.1. DrJava

37
34

-3
78

6

37
34

-3
78

8

37
34

-3
80

7

49
89

-5
00

4

49
89

-5
01

9

49
89

-5
04

4

49
89

-5
05

8

53
19

-5
33

0

53
19

-5
33

2

1

10

100

DrJava

Conflicting Files

GNU Merge

JDime

JDime AT

FSTMerge

Merge scenarios

N
u

m
b

e
r 

o
f c

o
n

fli
ct

in
g

 fi
le

s
 (

lo
g

 s
ca

le
)

Figure B.1.: DrJava: conflicting files

72



Adjustable Syntactic Merge of Java Programs

37
34

-3
78

6

37
34

-3
78

8

37
34

-3
80

7

49
89

-5
00

4

49
89

-5
01

9

49
89

-5
04

4

49
89

-5
05

8

53
19

-5
33

0

53
19

-5
33

2

1

10

100

DrJava

Conflicts

GNU Merge

JDime

JDime AT

FSTMerge

Merge scenarios

N
u

m
b

e
r 

o
f c

o
n

fli
ct

s
 (

lo
g

 s
ca

le
)

Figure B.2.: DrJava: conflicts

37
34

-3
78

6

37
34

-3
78

8

37
34

-3
80

7

49
89

-5
00

4

49
89

-5
01

9

49
89

-5
04

4

49
89

-5
05

8

53
19

-5
33

0

53
19

-5
33

2

1

10

100

1000

DrJava

Conflicting Lines

GNU Merge

JDime

JDime AT

FSTMerge

Merge scenarios

N
u

m
b

e
r 

o
f c

o
n

fli
ct

in
g

 li
n

e
s

 (
lo

g
 s

ca
le

)

Figure B.3.: DrJava: conflicting lines

APPENDIX B. RESULTS: GRAPHS 73



Adjustable Syntactic Merge of Java Programs

37
34

-3
78

6

37
34

-3
78

8

37
34

-3
80

7

49
89

-5
00

4

49
89

-5
01

9

49
89

-5
04

4

49
89

-5
05

8

53
19

-5
33

0

53
19

-5
33

2

1

10

100

1000

10000

100000

1000000

DrJava

Runtime

GNU Merge

JDime

JDime AT

FSTMerge

Merge scenarios

T
im

e
 in

 m
ill

is
e

co
n

d
s

 (
lo

g
 s

ca
le

)

Figure B.4.: DrJava: runtime

B.2. FreeCol

58
84

-5
96

2

58
84

-6
05

5

58
84

-6
11

0

58
84

-6
26

5

58
84

-6
36

2

58
84

-6
44

0

58
84

-6
61

6

58
84

-6
67

2

58
84

-6
74

2

58
84

-6
84

3

1

10

100

1000

FreeCol

Conflicting Files

GNU Merge

JDime

JDime AT

FSTMerge

Merge scenarios

N
u

m
b

e
r 

o
f c

o
n

fli
ct

in
g

 fi
le

s
 (

lo
g

 s
ca

le
)

Figure B.5.: FreeCol: conflicting files

APPENDIX B. RESULTS: GRAPHS 74



Adjustable Syntactic Merge of Java Programs

58
84

-5
96

2

58
84

-6
05

5

58
84

-6
11

0

58
84

-6
26

5

58
84

-6
36

2

58
84

-6
44

0

58
84

-6
61

6

58
84

-6
67

2

58
84

-6
74

2

58
84

-6
84

3

1

10

100

1000

FreeCol

Conflicts

GNU Merge

JDime

JDime AT

FSTMerge

Merge scenarios

N
u

m
b

e
r 

o
f c

o
n

fli
ct

s
 (

lo
g

 s
ca

le
)

Figure B.6.: FreeCol: conflicts

58
84

-5
96

2

58
84

-6
05

5

58
84

-6
11

0

58
84

-6
26

5

58
84

-6
36

2

58
84

-6
44

0

58
84

-6
61

6

58
84

-6
67

2

58
84

-6
74

2

58
84

-6
84

3

1

10

100

1000

10000

FreeCol

Conflicting Lines

GNU Merge

JDime

JDime AT

FSTMerge

Merge scenarios

N
u

m
b

e
r 

o
f c

o
n

fli
ct

in
g

 li
n

e
s

 (
lo

g
 s

ca
le

)

Figure B.7.: FreeCol: conflicting lines

APPENDIX B. RESULTS: GRAPHS 75



Adjustable Syntactic Merge of Java Programs

58
84

-5
96

2

58
84

-6
05

5

58
84

-6
11

0

58
84

-6
26

5

58
84

-6
36

2

58
84

-6
44

0

58
84

-6
61

6

58
84

-6
67

2

58
84

-6
74

2

58
84

-6
84

3

1

10

100

1000

10000

100000

1000000

FreeCol

Runtime

GNU Merge

JDime

JDime AT

FSTMerge

Merge scenarios

T
im

e
 in

 m
ill

is
e

co
n

d
s

 (
lo

g
 s

ca
le

)

Figure B.8.: FreeCol: runtime

B.3. GenealogyJ

55
31

-5
56

1

55
31

-5
72

5

55
37

-5
61

0

55
37

-5
67

3

56
76

-6
01

3

56
76

-6
12

5

61
27

-6
24

4

61
27

-6
31

0

61
27

-6
41

0

61
27

-6
53

1

1

10

100

GenealogyJ

Conflicting Files

GNU Merge

JDime

JDime AT

FSTMerge

Merge scenarios

N
u

m
b

e
r 

o
f c

o
n

fli
ct

in
g

 fi
le

s
 (

lo
g

 s
ca

le
)

Figure B.9.: GenealogyJ: conflicting files

APPENDIX B. RESULTS: GRAPHS 76



Adjustable Syntactic Merge of Java Programs

55
31

-5
56

1

55
31

-5
72

5

55
37

-5
61

0

55
37

-5
67

3

56
76

-6
01

3

56
76

-6
12

5

61
27

-6
24

4

61
27

-6
31

0

61
27

-6
41

0

61
27

-6
53

1

1

10

100

GenealogyJ

Conflicts

GNU Merge

JDime

JDime AT

FSTMerge

Merge scenarios

N
u

m
b

e
r 

o
f c

o
n

fli
ct

s
 (

lo
g

 s
ca

le
)

Figure B.10.: GenealogyJ: conflicts

55
31

-5
56

1

55
31

-5
72

5

55
37

-5
61

0

55
37

-5
67

3

56
76

-6
01

3

56
76

-6
12

5

61
27

-6
24

4

61
27

-6
31

0

61
27

-6
41

0

61
27

-6
53

1

1

10

100

1000

GenealogyJ

Conflicting Lines

GNU Merge

JDime

JDime AT

FSTMerge

Merge scenarios

N
u

m
b

e
r 

o
f c

o
n

fli
ct

in
g

 li
n

e
s

 (
lo

g
 s

ca
le

)

Figure B.11.: GenealogyJ: conflicting lines

APPENDIX B. RESULTS: GRAPHS 77



Adjustable Syntactic Merge of Java Programs

55
31

-5
56

1

55
31

-5
72

5

55
37

-5
61

0

55
37

-5
67

3

56
76

-6
01

3

56
76

-6
12

5

61
27

-6
24

4

61
27

-6
31

0

61
27

-6
41

0

61
27

-6
53

1

1

10

100

1000

10000

100000

1000000

GenealogyJ

Runtime

GNU Merge

JDime

JDime AT

FSTMerge

Merge scenarios

T
im

e
 in

 m
ill

is
e

co
n

d
s

 (
lo

g
 s

ca
le

)

Figure B.12.: GenealogyJ: runtime

B.4. iText

28
18

-3
03

6

28
18

-3
19

1

28
18

-3
30

6

28
18

-3
39

2

28
18

-3
56

0

28
18

-3
62

5

28
18

-3
98

8

28
18

-4
02

2

1

10

100

1000

iText

Conflicting Files

GNU Merge

JDime

JDime AT

FSTMerge

Merge scenarios

N
u

m
b

e
r 

o
f c

o
n

fli
ct

in
g

 fi
le

s
 (

lo
g

 s
ca

le
)

Figure B.13.: iText: conflicting files

APPENDIX B. RESULTS: GRAPHS 78



Adjustable Syntactic Merge of Java Programs

28
18

-3
03

6

28
18

-3
19

1

28
18

-3
30

6

28
18

-3
39

2

28
18

-3
56

0

28
18

-3
62

5

28
18

-3
98

8

28
18

-4
02

2

1

10

100

1000

10000

iText

Conflicts

GNU Merge

JDime

JDime AT

FSTMerge

Merge scenarios

N
u

m
b

e
r 

o
f c

o
n

fli
ct

s
 (

lo
g

 s
ca

le
)

Figure B.14.: iText: conflicts

28
18

-3
03

6

28
18

-3
19

1

28
18

-3
30

6

28
18

-3
39

2

28
18

-3
56

0

28
18

-3
62

5

28
18

-3
98

8

28
18

-4
02

2

1

10

100

1000

10000

100000

1000000

iText

Conflicting Lines

GNU Merge

JDime

JDime AT

FSTMerge

Merge scenarios

N
u

m
b

e
r 

o
f c

o
n

fli
ct

in
g

 li
n

e
s

 (
lo

g
 s

ca
le

)

Figure B.15.: iText: conflicting lines

APPENDIX B. RESULTS: GRAPHS 79



Adjustable Syntactic Merge of Java Programs

28
18

-3
03

6

28
18

-3
19

1

28
18

-3
30

6

28
18

-3
39

2

28
18

-3
56

0

28
18

-3
62

5

28
18

-3
98

8

28
18

-4
02

2

1

10

100

1000

10000

100000

1000000

iText

Runtime

GNU Merge

JDime

JDime AT

FSTMerge

Merge scenarios

T
im

e
 in

 m
ill

is
e

co
n

d
s

 (
lo

g
 s

ca
le

)

Figure B.16.: iText: runtime

B.5. jEdit

46
76

-4
99

8

16
58

8-
16

75
5

16
58

8-
16

88
3

16
58

8-
17

06
0

16
58

8-
17

31
6

16
58

8-
17

49
2

16
58

8-
17

55
1

16
88

3-
16

96
4

1

10

jEdit

Conflicting Files

GNU Merge

JDime

JDime AT

FSTMerge

Merge scenarios

N
u

m
b

e
r 

o
f c

o
n

fli
ct

in
g

 fi
le

s
 (

lo
g

 s
ca

le
)

Figure B.17.: jEdit: conflicting files

APPENDIX B. RESULTS: GRAPHS 80



Adjustable Syntactic Merge of Java Programs

46
76

-4
99

8

16
58

8-
16

75
5

16
58

8-
16

88
3

16
58

8-
17

06
0

16
58

8-
17

31
6

16
58

8-
17

49
2

16
58

8-
17

55
1

16
88

3-
16

96
4

1

10

100

jEdit

Conflicts

GNU Merge

JDime

JDime AT

FSTMerge

Merge scenarios

N
u

m
b

e
r 

o
f c

o
n

fli
ct

s
 (

lo
g

 s
ca

le
)

Figure B.18.: jEdit: conflicts

46
76

-4
99

8

16
58

8-
16

75
5

16
58

8-
16

88
3

16
58

8-
17

06
0

16
58

8-
17

31
6

16
58

8-
17

49
2

16
58

8-
17

55
1

16
88

3-
16

96
4

1

10

100

1000

jEdit

Conflicting Lines

GNU Merge

JDime

JDime AT

FSTMerge

Merge scenarios

N
u

m
b

e
r 

o
f c

o
n

fli
ct

in
g

 li
n

e
s

 (
lo

g
 s

ca
le

)

Figure B.19.: jEdit: conflicting lines

APPENDIX B. RESULTS: GRAPHS 81



Adjustable Syntactic Merge of Java Programs

46
76

-4
99

8

16
58

8-
16

75
5

16
58

8-
16

88
3

16
58

8-
17

06
0

16
58

8-
17

31
6

16
58

8-
17

49
2

16
58

8-
17

55
1

16
88

3-
16

96
4

1

10

100

1000

10000

100000

1000000

jEdit

Runtime

GNU Merge

JDime

JDime AT

FSTMerge

Merge scenarios

T
im

e
 in

 m
ill

is
e

co
n

d
s

 (
lo

g
 s

ca
le

)

Figure B.20.: jEdit: runtime

B.6. Jmol

11
33

8-
11

43
8

11
33

8-
11

53
8

11
33

8-
11

63
8

11
33

8-
11

73
8

11
33

8-
11

83
8

11
33

8-
11

93
8

11
33

8-
12

03
8

1

10

100

Jmol

Conflicting Files

GNU Merge

JDime

JDime AT

FSTMerge

Merge scenarios

N
u

m
b

e
r 

o
f c

o
n

fli
ct

in
g

 fi
le

s
 (

lo
g

 s
ca

le
)

Figure B.21.: Jmol: conflicting files

APPENDIX B. RESULTS: GRAPHS 82



Adjustable Syntactic Merge of Java Programs

11
33

8-
11

43
8

11
33

8-
11

53
8

11
33

8-
11

63
8

11
33

8-
11

73
8

11
33

8-
11

83
8

11
33

8-
11

93
8

11
33

8-
12

03
8

1

10

100

Jmol

Conflicts

GNU Merge

JDime

JDime AT

FSTMerge

Merge scenarios

N
u

m
b

e
r 

o
f c

o
n

fli
ct

s
 (

lo
g

 s
ca

le
)

Figure B.22.: Jmol: conflicts

11
33

8-
11

43
8

11
33

8-
11

53
8

11
33

8-
11

63
8

11
33

8-
11

73
8

11
33

8-
11

83
8

11
33

8-
11

93
8

11
33

8-
12

03
8

1

10

100

1000

10000

Jmol

Conflicting Lines

GNU Merge

JDime

JDime AT

FSTMerge

Merge scenarios

N
u

m
b

e
r 

o
f c

o
n

fli
ct

in
g

 li
n

e
s

 (
lo

g
 s

ca
le

)

Figure B.23.: Jmol: conflicting lines

APPENDIX B. RESULTS: GRAPHS 83



Adjustable Syntactic Merge of Java Programs

11
33

8-
11

43
8

11
33

8-
11

53
8

11
33

8-
11

63
8

11
33

8-
11

73
8

11
33

8-
11

83
8

11
33

8-
11

93
8

11
33

8-
12

03
8

1

10

100

1000

10000

100000

1000000

Jmol

Runtime

GNU Merge

JDime

JDime AT

FSTMerge

Merge scenarios

T
im

e
 in

 m
ill

is
e

co
n

d
s

 (
lo

g
 s

ca
le

)

Figure B.24.: Jmol: runtime

B.7. PMD

59
29

-6
01

0

59
29

-6
13

5

59
29

-6
19

8

59
29

-6
29

6

59
29

-6
42

5

59
29

-6
59

5

59
29

-6
70

0

59
29

-6
83

5

59
29

-7
01

8

59
29

-7
07

3

1

10

100

PMD

Conflicting Files

GNU Merge

JDime

JDime AT

FSTMerge

Merge scenarios

N
u

m
b

e
r 

o
f c

o
n

fli
ct

in
g

 fi
le

s
 (

lo
g

 s
ca

le
)

Figure B.25.: PMD: conflicting files

APPENDIX B. RESULTS: GRAPHS 84



Adjustable Syntactic Merge of Java Programs

59
29

-6
01

0

59
29

-6
13

5

59
29

-6
19

8

59
29

-6
29

6

59
29

-6
42

5

59
29

-6
59

5

59
29

-6
70

0

59
29

-6
83

5

59
29

-7
01

8

59
29

-7
07

3

1

10

100

PMD

Conflicts

GNU Merge

JDime

JDime AT

FSTMerge

Merge scenarios

N
u

m
b

e
r 

o
f c

o
n

fli
ct

s
 (

lo
g

 s
ca

le
)

Figure B.26.: PMD: conflicts

59
29

-6
01

0

59
29

-6
13

5

59
29

-6
19

8

59
29

-6
29

6

59
29

-6
42

5

59
29

-6
59

5

59
29

-6
70

0

59
29

-6
83

5

59
29

-7
01

8

59
29

-7
07

3

1

10

100

1000

10000

PMD

Conflicting Lines

GNU Merge

JDime

JDime AT

FSTMerge

Merge scenarios

N
u

m
b

e
r 

o
f c

o
n

fli
ct

in
g

 li
n

e
s

 (
lo

g
 s

ca
le

)

Figure B.27.: PMD: conflicting lines

APPENDIX B. RESULTS: GRAPHS 85



Adjustable Syntactic Merge of Java Programs

59
29

-6
01

0

59
29

-6
13

5

59
29

-6
19

8

59
29

-6
29

6

59
29

-6
42

5

59
29

-6
59

5

59
29

-6
70

0

59
29

-6
83

5

59
29

-7
01

8

59
29

-7
07

3

1

10

100

1000

10000

100000

1000000

PMD

Runtime

GNU Merge

JDime

JDime AT

FSTMerge

Merge scenarios

T
im

e
 in

 m
ill

is
e

co
n

d
s

 (
lo

g
 s

ca
le

)

Figure B.28.: PMD: runtime

B.8. SQuirrelSQL

40
07

-4
05

1

40
07

-4
10

3

40
07

-4
21

2

40
07

-4
32

1

40
07

-4
39

4

40
07

-4
51

6

40
07

-4
90

8

40
07

-5
08

1

50
82

-5
15

5

50
82

-5
35

1

1

10

100

SQuirrelSQL

Conflicting Files

GNU Merge

JDime

JDime AT

FSTMerge

Merge scenarios

N
u

m
b

e
r 

o
f c

o
n

fli
ct

in
g

 fi
le

s
 (

lo
g

 s
ca

le
)

Figure B.29.: SQuirrelSQL: conflicting files

APPENDIX B. RESULTS: GRAPHS 86



Adjustable Syntactic Merge of Java Programs

40
07

-4
05

1

40
07

-4
10

3

40
07

-4
21

2

40
07

-4
32

1

40
07

-4
39

4

40
07

-4
51

6

40
07

-4
90

8

40
07

-5
08

1

50
82

-5
15

5

50
82

-5
35

1

1

10

100

SQuirrelSQL

Conflicts

GNU Merge

JDime

JDime AT

FSTMerge

Merge scenarios

N
u

m
b

e
r 

o
f c

o
n

fli
ct

s
 (

lo
g

 s
ca

le
)

Figure B.30.: SQuirrelSQL: conflicts

40
07

-4
05

1

40
07

-4
10

3

40
07

-4
21

2

40
07

-4
32

1

40
07

-4
39

4

40
07

-4
51

6

40
07

-4
90

8

40
07

-5
08

1

50
82

-5
15

5

50
82

-5
35

1

1

10

100

1000

10000

SQuirrelSQL

Conflicting Lines

GNU Merge

JDime

JDime AT

FSTMerge

Merge scenarios

N
u

m
b

e
r 

o
f c

o
n

fli
ct

in
g

 li
n

e
s

 (
lo

g
 s

ca
le

)

Figure B.31.: SQuirrelSQL: conflicting lines

APPENDIX B. RESULTS: GRAPHS 87



Adjustable Syntactic Merge of Java Programs

40
07

-4
05

1

40
07

-4
10

3

40
07

-4
21

2

40
07

-4
32

1

40
07

-4
39

4

40
07

-4
51

6

40
07

-4
90

8

40
07

-5
08

1

50
82

-5
15

5

50
82

-5
35

1

1

10

100

1000

10000

100000

1000000

10000000

SQuirrelSQL

Runtime

GNU Merge

JDime

JDime AT

FSTMerge

Merge scenarios

T
im

e
 in

 m
ill

is
e

co
n

d
s

 (
lo

g
 s

ca
le

)

Figure B.32.: SQuirrelSQL: runtime

APPENDIX B. RESULTS: GRAPHS 88



Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich diese Arbeit selbst verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe. Ich habe die Arbeit nicht in gleicher
oder ähnlicher Form bei einer anderen Prüfungsbehörde vorgelegt.

Passau, den 27. Februar 2012

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(Olaf Leßenich)

89


	Introduction
	Version Control
	Version Control Systems
	Centralized Version Control
	Distributed Version Control
	Merge Scenarios and Conflicts

	Merging Software Artifacts
	Identifying Differences
	Two-Way and Three-Way Merges
	Cut-and-Paste Merging
	Textual Merge
	Syntactic Merge
	Semistructured Merge
	Semantic Merge
	Summary

	JDime: Structured Merge For Java
	Basic Decisions
	JastAddJ
	Design
	Data Structure
	Architecture

	An Algorithm for Code Comparison
	Tree Matching
	Ordered Trees
	Unordered Trees
	Implementation

	Merge Algorithm
	Unchanged Nodes
	Consistently Changed Nodes
	Separately Changed Nodes

	Challenges
	Altering Trees in JastAddJ
	Inserting Nodes in the Right Order
	Representing Conflicts
	Runtime

	Extensibility

	Empirical Study
	Setup and Choice of Projects
	Sample Projects
	Test Environment

	Results
	Discussion
	Insertions and Ordering of Members
	Code Formatting
	Two-Way Merging
	Renamings and Changed Signatures
	Runtime


	Conclusion
	Results: Tables
	Conflicts
	Runtime

	Results: Graphs
	DrJava
	FreeCol
	GenealogyJ
	iText
	jEdit
	Jmol
	PMD
	SQuirrelSQL


