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Abstract

Background Software is an integral part of today’s world with an outlook of ever-increasing
importance. Maintaining all of these software artifacts is a major challenge for software engi-
neering. A future with robust software primarily relies on programmers’ ability to understand
existing source code, because they spend most of their time on it.

Program comprehension is the cognitive process of understanding source code. Since program
comprehension is an internal cognitive process, it is inherently difficult to observe and measure
reliably. Decades of research have developed fundamental models of program comprehension,
but there still are substantial knowledge gaps in our understanding of program comprehension.

Novel psycho-physiological and neuroimaging measures provide an additional perspective on
program comprehension which promise new insights to program comprehension. Recently,
these measures have been permeating software engineering research. The measures include
eye tracking and physiological sensors, but also neuroimaging measures, such as functional
magnetic resonance imaging (fMRI), which allow researchers to more objectively observe cognitive
processes.

Aims This dissertation aims to advance software engineering by better understanding program
comprehension. We apply and refine the use of psycho-physiological and neuroimaging measures.
The goals are twofold:

First, we develop a framework for studying program comprehension with neuroimaging, psycho-
physiological, eye tracking, and behavioral methods. For neuroimaging, we focus on functional
magnetic resonance imaging (fMRI), as it allows researchers to unravel cognitive processes in
high detail. Our framework offers a detailed, multi-modal view on program comprehension that
allows us to examine even small effects.

Second, we shed light on the underlying cognitive process of program comprehension by applying
our experiment framework. One major focus is to understand experienced programmers’ efficient
top-down comprehension. We also link programmers’ cognition to common code complexity
metrics.

Method and Results To fulfill our goals, we conduct a series of empirical studies on program
comprehension. In these studies, we use and combine fMRI, psycho-physiological, and eye-
tracking measures. Throughout the experiments, we develop and refine a multi-modal experiment
framework to shed light onto program comprehension with a neuro-cognitive perspective. We
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demonstrate that the framework provides a reliable approach to quantify and to investigate
programmers’ cognitive processes.

We explore the neuro-cognitive perspective of program comprehension to validate and extend
established program-comprehension models. We show that programmers using top-down com-
prehension require less cognitive effort, but use the same network of brain areas.

We also demonstrate how our developed experiment framework and fMRI as a measure can be
used in software engineering to provide objective data in long-standing debates. For example,
we show that commonly used, but criticized code complexity metrics indeed only have a limited
predictive power on the required cognitive effort to understand source code.

Conclusion In our interdisciplinary research, we show how neuroimaging methods, such as fMRI,
in combination with psycho-physiological, eye tracking and behavioral measures, is beneficial to
software-engineering research. This dissertation provides a foundation to further investigate the
neuro-cognitive perspective to programmers’ brains, which is a critical contribution to the future
of software engineering.
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Zusammenfassung

Hintergrund Software ist ein fester Bestandteil der heutigen Welt mit einer immer wichtiger
werdenden Bedeutung. Das moderne Leben ist infolgedessen zunehmend von funktionierender
und möglichst fehlerfreier Software abhängig. Deshalb ist die Pflege aller Software-Artefakte eine
wichtige und große Herausforderung für das Software-Engineering. Eine Zukunft mit robuster
Software hängt in erster Linie von der Fähigkeit ab, den vorhandenen Quellcode zu verstehen, da
damit die meiste Zeit verbracht wird.

Programmverständnis ist der kognitive Prozess des Verstehens von Quellcode. Da dieser kognitive
Prozess intern abläuft, ist ein zuverlässiges Beobachten und ein genaues Messen mit erheblichen
Schwierigkeiten verbunden. Jahrzehntelange Forschung hat zwar grundlegende Modelle des
Programmverständnisses entwickelt, aber das Bild von Programmverständnis weist noch immer
erhebliche Wissenslücken auf.

Neuartige psychophysiologische und nicht-invasive human-bildgebende Verfahren bieten zusätz-
liche Perspektiven auf das Programmverständnis, die neue Erkenntnisse versprechen. In
den letzten Jahren haben diese Erfassungsmöglichkeiten die Software-Engineering-Forschung
durchdrungen. Zu den Messverfahren gehören Eyetracking und physiologische Sensoren, aber
auch nicht-invasive Human-Bildgebung, wie die funktionelle Magnetresonanztomographie (fMRT).
Diese innovativen Messverfahren ermöglichen es Forschenden, kognitive Prozesse objektiver und
genauer zu verfolgen und auszuwerten.

Ziele Diese Dissertation zielt darauf ab, Software-Engineering durch ein besseres Erfassen des
Programmverständnisses voranzubringen. Dafür werden psychophysiologische und nicht-invasive
human-bildgebende Verfahren angewendet und verfeinert. Es werden zwei Ziele verfolgt:

Zum einen wird ein Framework für Experimente zum Programmverständnis, die mit Human-
Bildgebung, Psychophysiologie, Eyetracking und Verhaltensmethoden durchgeführt werden,
entwickelt. Bei der Human-Bildgebung erfolgt die Konzentration auf die funktionelle Magnet-
resonanztomographie (fMRT), da sie kognitive Prozesse mit hoher Detailschärfe entschlüsseln
kann. Das entwickelte Framework bietet eine detaillierte, multimodale Sicht auf das Programm-
verständnis, die es ermöglicht, auch kleine Effekte zu untersuchen.

Zum anderen wird der zugrunde liegende kognitive Prozess des Programmverständnisses
durch den Einsatz des aufgestellten Frameworks analysiert. Ein Hauptaugenmerk liegt dabei
auf dem Erfassen des effizienten Top-Down-Verstehens von Quellcode. Zusätzlich wird die
Kognition beim Programmieren mit gängigen Komplexitätsmetriken von Quellcode verknüpft und
im Zusammenhang ausgewertet.
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Methodik und Ergebnisse Um die Ziele zu erreichen, werden eine Reihe empirischer Studien
zum Programmverständnis durchgeführt. In diesen Studien werden fMRT, Psychophysiologie
sowie Eyetracking verwendet und miteinander kombiniert. Während der Experimente erfolgt eine
Entwicklung und Verfeinerung eines multimodalen Experimentframework, um das Programm-
verständnis mit einer neurokognitiven Perspektive zu beleuchten. Es wird dokumentiert, dass
das entwickelte Framework einen zuverlässigen Ansatz bietet, um kognitive Prozesse beim
Programmieren zu quantifizieren und zu untersuchen.

Weiterhin wird die neurokognitive Perspektive des Programmverständnisses erforscht, um
etablierte Programmverständnismodelle zu validieren und zu erweitern. Im Kontext dessen
wird belegt, dass das Top-Down-Verständnis das gleiche Netzwerk von Gehirnbereichen aktiviert,
aber zu geringerer kognitiver Last führt.

Es wird demonstriert, wie das entwickelte Experimentframework und fMRT als Messverfahren
im Software-Engineering verwendet werden können, um in langjährigen Debatten objektive
Daten zu bieten. Dabei wird insbesondere gezeigt, weshalb gängige, aber in Frage gestellte
Komplexitätsmetriken von Quellcode tatsächlich nur eine begrenzte Vorhersagekraft auf die
erforderliche kognitive Last beim Verstehen von Quellcode haben.

Schlussfolgerung In interdisziplinärer Forschung wird nachgewiesen, dass nicht-invasive
human-bildgebende Verfahren wie die fMRT, kombiniert mit Psychophysiologie, Eyetracking sowie
Verhaltensmethoden für die Software-Engineering-Forschung von erheblichem Vorteil sind. Diese
Dissertation bietet eine belastbare Grundlage für die weitere Untersuchung der neurokognitiven
Perspektive auf das Gehirn von Programmierern. Damit wird ein entscheidender Beitrag für ein
erfolgreiches Software-Engineering geleistet.
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Theses

Thesis 1 A neuro-cognitive perspective of program comprehension is a promising approach
to finally close the gap between research and programmers’ minds.

Thesis 2 Our multi-modal experiment framework offers a novel, data-rich approach to examine
programmers’ cognition in great detail.

Thesis 3 Efficient top-down comprehension of experienced programmers relies on the same
network of brain areas, but shows higher neural efficiency.

Thesis 4 Code complexity metrics are linked to programmers’ cognition only to a limited degree
and are often misused in practice.
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1 Introduction

In today’s connected world, software invisibly permeates almost all aspects of our lives. In the
future of the Internet of things, billions of devices will be connected to the Internet and run with
human-written software. The device spectrum ranges from tiny sensors to enormous facilities,
such as nuclear power plants. While software enables the development and increased safety of
devices that push humanity forward, it can also threaten human life. For example, a software error
caused an overexposure of the radiation therapy system Therac-25, killing at least 5 persons [LT93].
Erroneous software contributed to two crashes of brand-new Boeing 737 MAX airplanes in 2018
and 2019, killing 346 persons [JH19]. These are not outliers, but an industry-wide problem, as
analyses of newspapers by Software Fail Watch revealed. They identified 606 recorded software
failures, impacting half of the world’s population, and causing $1.7 trillion in damage [Tri17].
Thus, due to the spread and criticality of software, we need software to operate on extremely high
standards of correctness, reliability, and quality across countless deployments.

The critical importance of high-quality software was already recognized many decades ago
at the NATO SE conference, which was considered to be the founding moment of software
engineering [NR68]. Software engineering is the discipline that must push forward toward more
correct, reliable, and high-quality software. While software-engineering research has made
substantial progress in many technical aspects, we still have failed to unravel countless human
aspects of software engineering. In particular, we have an insufficient understanding of the
underlying cognitive processes that are part of the software-engineering process [Sie+20]. A
major part of the daily work of programmers is comprehending software as they spend most of
their time with existing source code [Sta84; LVD06; Tia11; MML15]. But this internal cognitive
process is inherently difficult to measure, which leads to substantial gaps in knowledge. For
example, a widely known phenomenon are “10xer”; programmers who show multiple times the
output of their peers despite similar backgrounds. How do their thinking processes differ so that
they can achieve such performance? Can we teach such skills? We lack the understanding of
programmers’ cognitive processes to answer these questions.

In this dissertation, we shed light in the internal cognitive process of program comprehension.
We will explore and evaluate a new neuro-cognitive perspective of program comprehension.
Unlike conventional measurement methods used in the last decades, studying programmers’
brains is a promising way to objectively measure underlying cognitive processes. In the long-
run, this would allow us to systematically tackle fundamental questions regarding program
comprehension. In turn, understanding program comprehension leads to a better education
and training of programmers. We may also be able to optimize programming languages and
implementations to better correspond to how programmers comprehend software.
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1 Introduction

1.1 Program Comprehension

Program comprehension the fundamental cognitive process of understanding software code. Un-
derstanding how programmers comprehend code is essential, because programmers spend most
of their everyday work comprehending existing source code [Tia11] and according to studies, more
than tenfold of their time writing new code [MML15]. These are not recent discoveries. Research
was aware of the special challenge associated with continuous tasks, such as maintenance, as
early as the 1970s [LST78].

Due to its importance, researchers have been studying program comprehension for decades.
Past research has resulted in valuable models of program comprehension, such as top-down
comprehension and bottom-up comprehension. However, despite decades of research on pro-
gram comprehension, we still have an insufficient understanding of the underlying cognitive
processes [Sie16]. Many effects and aspects of program comprehension are unclear. In particular,
none of the developed program comprehension theories, which we describe in Section 2.1, have
been properly validated. Despite the developed and refined theories, there is a notable lack of
robust, quantifiable answers to critical practical questions in programming. For example, which
implementation approaches (i.e., recursion versus iteration) should be taught first to optimize
learning programming concepts?

One challenge of studying program comprehension is that it is a complex cognitive process
that is inherently difficult to observe and objectively measure. Conventional measures, such
as observing programmer behavior (e.g., response time, response correctness) can identify
differences between tasks, participants or participant groups, but it often fails to explain why
such differences exist. Researchers have to turn to qualitative measures, such as interviews, to
hypothesize on explanations for observed phenomena. However, this is also problematic since
self-reflecting can be incomplete or inaccurate, especially for complex cognitive tasks [SBS94a;
Pik+14].

One promising solution is to explore new ways of measuring program comprehension to shed
light on program comprehension from a different perspective. In past years, eye tracking has
been at the forefront of studying programmers’ visual attention and reading patterns [Sha+20b].
Another approach is to observe programmers’ physiological responses to programming tasks,
for example, by measuring electrodermal activity as an indicator for their stress level [Bou12].
While eye tracking and physiological responses are objective in their observations, they still fail
to explain the cognitive processes of program comprehension.

In this dissertation, we will explore a neuro-cognitive perspective with functional magnetic reso-
nance imaging (fMRI) that allows us to observe programmers’ brains. Based on their brain activity,
we can identify fundamental cognitive processes of program comprehension and objectively
measure them. We will develop a robust framework of observing programmers with neuroimag-
ing, validate decade-old program comprehension models, and apply our research to practical
questions of code complexity measures.

2



1.2 Contributions

1.2 Contributions

Neuro-Cognitive Perspective of Program Comprehension

fMRI Methodology

fMRI & Eye-Tracking

Tool Support for Multi-Modal Analysis

Understanding Program 
Comprehension with fMRI

Neural Efficiency of Top-Down 
Comprehension

Programmer Experience

Code Complexity Metrics

Variation and Aggregation of Human 
Responses

Applications of fMRI Research

Chapter 3.2 | ESEM’18

Chapter 3.6 | ICPC’20 Chapter 4.3 | ICPC’20

Chapter 4.1 | FSE’17 Chapter 5.1 | TSE’20, ICSE’21

Chapter 5.2.1 | TOSEM’20

Figure 1.1: Overview of conducted work, chapters, and selected publications.

In Figure 1.1, we provide an overview of our research avenues. In a nutshell, this dissertation
makes the following contributions:

Experiment Framework We provide a methodological framework for future, multi-modal fMRI
studies of program comprehension and related studies. The framework combines modalities for a
thorough view on program comprehension. This comprehensive view on the underlying cognitive
processes allows us to study fine-grained effects (e.g., the influence of beacons). Additionally, we
outline several future evaluations regarding the importance of task design and suitable contrast
conditions. We further share a prototype for multi-modal data exploration that helps to generate
new hypotheses.

Validation of Top-Down Comprehension We provide a neuro-cognitive perspective of the model
of top-down comprehension. In particular, we find a higher neural efficiency of top-down com-
prehension in contrast to bottom-up comprehension. We also investigated the impact of code
aspects (e.g., beacons, layout).

Code Complexity Metrics and Cognition We collected objective evidence that widely used code
complexity metrics exhibit a limited link to programmers’ cognitive processes. Our data show that
the search for one all-encompassing metric may be misguided. Rather, a combination of simple
metrics, in particular measuring data flow, are the most promising. Our experiment framework
and this dissertation provide a template for future research.
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1 Introduction

Analysis of Implementation Details We outline several ongoing projects that further deepen
our understanding of program comprehension. Specifically, we present current studies on the
neuronal representations of programming constructs (e.g., iteration versus recursion) and data
types (e.g., numbers versus words).

Re-Analysis of fMRI Data for Methodological Insights We demonstrate further applications of
fMRI research in a broader software-engineering context. First, we showcase that aggregating
measures of cognitive processes has a strong influence on the validity and reliability of empirical
experiments and must be carefully considered. Second, we illustrate a compelling approach to
analyze fMRI data that uses participant-specific anatomies.

Open Science All research presented in this dissertation follows the open science concept. We
share replication packages and insights for each study1 to pave the way for other researchers
also to conduct neuroimaging studies of program comprehension. We also created a permanent
archive on zenodo to ensure long-term availability.2

1.3 Outline

Background In Chapter 2, we present the state of the art on models of program-comprehension
strategies. We introduce which measurement methods researchers are using to observe program
comprehension. We also provide an overview of how neuroimaging, eye tracking, and conventional
measurements methods provide different perspectives on programmers’ cognitive processes. In
addition, we provide a close look at eye tracking and fMRI as measurement methods.

Methods and Results This dissertation’s work is split into three parts (cf. Figure 1.1). First,
Chapter 3 dives into our developed experiment framework, which shows how to conduct multi-
modal fMRI experiments. We also present CODERSMUSE, a tool for multi-modal data exploration
specific to the needs of software-engineering research. Next, Chapter 4 investigates the neuro-
cognitive perspective of program comprehension in more detail. We present multiple studies
on aspects of top-down comprehension as well as programmer expertise. Last, Chapter 5
shows three practical applications of our framework: An objective view on the relationship
between code complexity metrics and programmers’ cognition, a re-analysis investigating various
aggregation levels of human responses, and an alternative fMRI analysis based on participant-
specific anatomies.

1https://github.com/brains-on-code/
2https://zenodo.org/record/5625142
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1.3 Outline

Conclusion and Future Work In Chapter 6, we take a step back and discuss our research on a
higher abstraction level and provide insightful suggestions on how our work contributes to the
overarching questions posted in the introduction. We also conclude this dissertation and outline
future work.
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2 Program Comprehension

In this chapter, we introduce the necessary background information that this dissertation is built
upon. In the following section, we introduce program-comprehension strategies. In Section 2.2, we
describe how past research measured program comprehension. In Section 2.3, we take a closer
look at more recently used measures, such as eye tracking and functional magnetic resonance
imaging.

2.1 Strategies of Program Comprehension

Programmer

Domain 
Knowledge

Experience

Source Code

Implementation 
Style

Readability

External Representation Internal Representation

Program 
Comprehension

Figure 2.1: Visualization of program comprehension as a connection between source code (exter-
nal representation) and a programmer’s mental model (internal representation).
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2 Program Comprehension

Program comprehension is the cognitive process of understanding source code. In essence, it
describes the transition in which a programmer understands an existing implementation model
formed in source code and constructs an analogous mental model [Ext02], which we visualize
in Figure 2.1. Its execution depends on numerous factors in the two realms:

1. Source code. The source code itself heavily influences how programmers understand it.
Code readability as well as understandability are key factors.

2. Programmer. Their experience and domain knowledge play essential roles in the cognitive
processes of program comprehension.

Both factors influence how a programmer can assimilate source code into a mental model.
Researchers have theorized multiple strategies of program comprehension, which we introduce
next.

2.1.1 Bottom-Up Comprehension

Bottom-up comprehension describes the most basic strategy of comprehending source
code [Pen87]: Programmers read code line by line, understand and extract the meaning of each
statement, and then group the semantic information of each individual statement to a larger
entity (i.e., chunking [SM79]). This recursive process is repeated until programmers achieve a
complete understanding of a source code [Pen87]. Since a programmer has to read every single
statement of a source code unit, individually comprehend it, and then assimilate all statements
until a final, abstract understanding is achieved, this process is slow and tedious. Thus, bottom-up
comprehension requires high cognitive effort of programmers [Sie+17].

More recent work further detailed bottom-up comprehension. Hosnieh and Haga investigated an
underlying cognitive process of slicing during bottom-up comprehension. They described how
programmers decompose source code into their atomic parts, which can be a function, group of
statements, individual line or a single variable [HH17]. Similarly, Shargabi et al. described multiple
abstraction levels that programmers work up to achieve an overall understanding [Sha+15b].

2.1.2 Top-Down Comprehension

Top-down comprehension, unlike bottom-up comprehension, is a fast and efficient pro-
cess [Bro78]. Programmers use prior experience and domain knowledge to quickly gain an
understanding of a source-code snippet’s intent. Programmers look for beacons (i.e., ”sets of fea-
tures that typically indicate the occurrence of certain structures or operations in the code” [Bro83])
to build an initial hypothesis of a source-code snippet’s intent. Then, programmers validate and
refine their hypothesis by quickly jumping between the snippets’ points of interest (e.g., input
variables, loop structures, return variable). If the implementation confirms their hypothesis,
programmers have quickly and efficiently understood a snippets’ intent. If an unexpected im-
plementation contradicts their initial hypothesis, programmers have to fall back to bottom-up
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2.1 Strategies of Program Comprehension

comprehension. Top-down comprehension requires lower cognitive effort than bottom-up com-
prehension, since the process starts with an initial hypothesis and statements do not need to be
understood separately [Sie+17]. Thus, programmers use top-down comprehension whenever
possible. Due to their lack of experience, novices often cannot employ top-down comprehension
and tend to use bottom-up comprehension [SE84].

Research has identified several drivers across the two realms of top-down comprehension. Wieden-
beck showed in several experiments how critical beacons in source code are for the initial phase
of program comprehension [Wie86; WS89]. They also showed that inappropriate beacons mislead
programmers’ comprehension [Wie91]. The code’s visual structure, that is the layout with sensible
indentation, aids programmers in building hypotheses [Mia+83]. Similarly, plans (i.e., “program
fragments that represent stereotypic action sequences in programming” [SE84]) aid programmers
by identifying programming structures based on their typical natures, such as a sort algorithm
typically consists of a loop structure with a swap statement [JS85; SE84]. Recently, Duran, Sorva,
and Leite viewed Soloway’s plan structure from a cognitive load theory standpoint and developed
metrics that reason about a program’s cognitive complexity [DSL18]. Pennington described how
priming also could induce top-down comprehension [Pen87].

For the realm of the programmer, Shaft and Vessey demonstrated how domain knowledge plays a
key role in program comprehension [SV95]. Experienced programmers may read source code like
a beginner if they are not familiar with the domain [SV95; KR91]. Belmonte evolved previously
described abstraction layers of mental models into three specific layers with increasing finer
granularity of the business layer (why?), the mapping layer (what?), and the implementation
layer (how?) [BDA14]. Nosal further details the abstraction layers of the situation model and the
program model [NP15]. Benomar et al. extended it further by separating program comprehension
of source code and comprehension of software evolution over time [BSP15]. All of these further
describe when and how programmers are able to employ top-down comprehension.

In a nutshell, programmers preferentially use top-down comprehension. However, several factors
can cause programmers to fall back for short moments or generally to bottom-up comprehension.
In particular, if the programmer’s expectations are violated, for example by missing indentation
or disrupted plans, top-down comprehension fails and programmers may fall back to tedious
bottom-up comprehension.

2.1.3 Extensions of Program-Comprehension Strategies

In addition to the main classifications of bottom-up and top-down comprehension, numerous
refinements extend the two basic strategies.

Letovsky described a hybrid strategy that consists of a programmer’s knowledge base, the current
mental model of the source code, and an assimilation process to map from the source code to
the mental model. A programmer applies—depending on the current inquiry and knowledge—both
strategies, top-down and bottom-up comprehension, during the assimilation process [Let87].
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Littman et al. suggested a further differentiation for individual programmers into an as-needed
comprehension versus a systematic comprehension. They observed that programmers who
only comprehend as much as necessary (”as-needed strategy”) more often could not correctly
modify source code. Programmers who systematically understood source code were more
successful [Lit+87]. Roehm et al. observed professional programmers across different companies
and tasks. They could not clearly identify an as-needed or systematic comprehension, but found
a recurring, structured comprehension strategy. The employed comprehension strategy varied
based on task, programmer, and prior knowledge [Roe+12].

Mayrhauser and Vans [MV95] assimilated previous research into one integrated strategy of pro-
gram comprehension: The program model (source code), plan model (more abstract view, in which
beacons indicate the role of an element), and the situation model (most abstract representation
of the program, acquired knowledge through bottom-up comprehension of the program model or
top-down of the plan model). Mayrhauser and Vans further described that programmers work on
multiple abstraction levels and apply a different strategy depending on the current abstraction
level [VMV96].

Follow-up research to Mayrhauser’s and Vans’ model extended it by applying learning theories to
the comprehension process. For example, Rajlich and Wilde viewed program comprehension from
the viewpoint of constructivism theories of learning and separated the comprehension process
into assimilation and adaption concepts [RW02].

2.1.4 Summary

From a high-level perspective, research on program comprehension has made substantial steps
to an overall theory. Over the decades, research has identified many factors that aid or hinder
program comprehension. Research has also established how programmers’ experience and
domain knowledge play a key role during the comprehension process.

In the next section, we describe how researchers empirically measured program comprehension
in the past and present.

2.2 Classical Measures of Program Comprehension

Measuring program comprehension has been the focus of researchers for almost seven decades.
The perspective with regards to program comprehension has changed over time. Harth and
Dugerdil classified the research on program comprehension into a classical period (until 1995),
optimistic period (1995 to 2015), and pragmatic period (after 2015) [HD17]. Overall, there have
been numerous measures of how programmers build up knowledge from source code [HD17;
Sto05], which we introduce in the following subsections.
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sortElements(int a, int b, int c, int d) {
if (a > b) { int t = b; b = a; a = t; }
if (c > d) { int t = d; d = c; c = t; }
if (a > c) { int t = c; c = a; a = t; }
if (b > d) { int t = d; d = b; b = t; }
if (b > c) { int t = c; c = b; b = t; }

return Arrays.asList(a, b, c, d);
}

Task Performance
(Response Time, Correctness)

Physiological Response
(Electrodermal Activity, 
Heart Rate, Respiration)

Visual Attention
(Eye Tracking)

Self Reflection
(Think-Aloud, Interviews)

Brain Activation
(EEG, fNIRS, fMRI)

Figure 2.2: Visualization of various measures to observe program comprehension.

Program comprehension is a multi-faceted phenomenon [DR00], so that researchers have used a
plethora of operational definitions. For example, typical operationalizations of program compre-
hension are code comprehension (e.g., [Lee+16; Sie+14a]), debugging (e.g., [Dur+16; Cas+19]),
and code review (e.g., [FSW17; Hua+20]. In empirical studies, researchers have many options to
measure program comprehension as visualized in Figure 2.2. In this and the following sections,
we provide an overview of the conventional methods, before diving into psycho-physiological
measures of program comprehension.

2.2.1 Think-Aloud Protocols

In the early days of research on program comprehension, researchers used conventional research
methods, such as behavior, think-aloud protocols, and comprehension summaries, to observe
programmers. These methods were used to develop the theories on comprehension strategies
presented in the previous section.

Think-aloud protocols are a widely used approach in cognitive science to understand participants’
thought processes by asking them to self-reflect and verbalize their thoughts aloud during a given
task. The collected data is often recorded, transcribed, and qualitatively analyzed, for example,
with coding schemes [ES84; SBS94a]. The data provide insights into the thought process and
help to shed light on the underlying cognitive processes.

Think-aloud protocols have found their way into program-comprehension research (e.g., Pen-
nington [Pen87], or Shaft and Vessey [SV95]). More recently, LaToza and Myers used in part
a think-aloud protocol to observe programmers asking reachability questions, which are com-
mon during debugging [LM10]. Gopstein et al. empirically identified small patterns of source
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code that consistently lead to programmer confusion and named the patterns atoms of confu-
sion [Gop+17]. In a follow-up study, they used a think-aloud protocol to understand how atoms of
confusion affect program comprehension [Gop+20].

Think-aloud protocols help to indirectly access the thought processes of programmers. However,
think-aloud protocols are time-consuming and can be imprecise or incomplete due to participants
filtering their thoughts before verbalization [SBS94a]. While thinking aloud generally does not
substantially interfere with a task [ES84], it does increase mental load [Pik+14]. This is especially
critical for demanding cognitive processes, such as programming, in which the additional effort
for thinking aloud can mentally overload participants, and entirely change their strategy.

2.2.2 Interviews

In the same vein as think-aloud protocols, interviews are a classic tool from psychology. The aim of
using interviews is to capture and understand the internal thought processes of participants [FF94].
However, unlike think-aloud protocols, the verbalizations of thoughts happen independently or
after a given task. Interviews allow follow-up questions to clear up uncertainties.

In program-comprehension research, interviews are commonly used in combination with quan-
titative approaches. For example, Xia et al. observed the integrated development environment
(IDE) interactions of 78 programmers during their workday to understand the role of program
comprehension in everyday work. They found that programmers spend a lot of their time with
program comprehension, especially for less experienced programmers. Xia et al. conducted
follow-up interviews with 10 programmers to confirm their quantitative data, such as extensive
use of web browsers to search for the function of unfamiliar code [Xia+17]. Similarly, Roehm
observed the actions of 28 programmers with a think-aloud protocol for 45 minutes and then
discussed the observations in detail in a subsequent interview. They found that programmers in
practice focus on solving the given task rather than a comprehensive understanding [Roe+12].

While research interviews as a method are simple, correctly conducting them is challenging [FF94].
The researcher has to be careful not to introduce their own bias—during the interview and when
interpreting the qualitative data [DBC06].

2.2.3 Subjective Rating

Subjective rating asks participants for their perceived comprehension. They are typically mea-
sured with questions on a Likert scale (e.g., “How well did you understand the presented code
snippet?” with five answering options: “not at all”, “a little”, “about half”, “mostly understood”,
“fully understood”, [Lik32]) or a semantic differential scale (e.g., “How difficult is the presented
code snippet?” with five answering options: “simple”, “somewhat simple”, “medium”, “somewhat
complex”, “complex” ) [OST57]). Subjective rating provides quantitative data into a participant’s
perception, but is limited to the asked question.
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Several program-comprehension studies used subjective ratings as a measure. For example,
Miara et al. studied the effect of different indentation depths on a programmer’s perception
with subjective rating and found that an indentation of 2 to 4 spaces is ideal for comprehending
code [Mia+83]. Subjective rating is also used to complement objective measures such as Kosti et
al. correlating EEG data of program comprehension with subjectively rated difficulty [Kos+18].

2.2.4 Task Performance

Unlike the subjective measures presented in the previous paragraphs, observing programmers’
task performance allows for an objective and quantitative perspective. Typically, researchers use
one or both of two measures: response time and correctness [DR00]. Measuring task performance
is a coarse proxy of participants’ understanding of a topic. Participants who are familiar with a
topic will likely be able to effectively and efficiently solve a task in this area. However, participants
who do not have the necessary knowledge or skill, will take much longer (response time) or fail to
correctly solve the task (correctness). This way, researchers collect an approximate measure of
cognitive processes with task-performance measures.

Task performance is one of the most straightforward measures to conduct with large groups.
They can be observed with individuals, in a lab with many participants at the same time, or even
online. Thus, it is less demanding to conduct an experiment with a large number of participants.
This makes it easier to reach minimum participation thresholds to expect significant effects.

Response Time The time a participant takes to complete a task, the response time, indicates
how long they need to think through a task (sometimes referred to as efficiency). In addition to
measuring differences between participants, researchers can use this to differentiate tasks. For
example, if a participant is presented with two tasks similar in nature, but varying complexity
(e.g., compute the faculty of 3 versus compute the faculty of 6).The basic assumption is that the
response time is a also proxy of individually perceived task difficulty: easy tasks can be solved
quickly, while cognitively challenging problems take longer.

While measuring response time provides an objective indicator of task difficulty, it fails to answer
why questions. Why does it take participant A longer than participant B? Why is task A more
difficult than task B? Response time is useful in identifying differences in behavior between
individual participants or groups, but typically requires follow-up studies with different measures
to understand a phenomenon fully.

Correctness Response correctness measures how often a participant correctly finishes a task.
Response correctness allows researchers to measure whether participants were able to correctly
solve a given task. Especially for cognitively demanding tasks such as program comprehension,
response correctness is useful to identify the limits of participants’ understanding of a subject. If
a participant (regularly) fails to solve a task correctly, their thought processes are likely flawed.
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Researchers often use this effect to objectively find robust differences between participants or
between tasks (e.g., comprehending a source code in C# versus source code in Haskell.)

Response correctness is typically independent of response time unless the researchers set a short
time limit. Similarly to response time, response correctness does not explain why participants
fail to solve a given task.

There have been an abundance of program-comprehension studies relying (in part) on task
performance as measure. For example, Soloway and Ehrlich presented a fill-in-the-blank code
task to novice and expert programmers. Task performance allowed them to (a) find significant
differences between their novice and expert group and (b) identify that violated programming
plans reduce performance, especially for experts [SE84].

2.2.5 Summary

In a nutshell, all of the presented methods are essential to research on programmers. As visualized
in Figure 2.1, all of these methods provide a different perspective to an observed phenomenon.
Behavioral and self-reflective methods, which were mostly used in past research, can identify
possible strategies of program comprehension. However, since they only provide limited objective
insights they cannot capture the entirety of the complex cognitive processes involved in program
comprehension. For example, the cognitive effort is subjective and difficult to assess with
conventional methods. Thus, in recent years, there has been a push towards using more psycho-
physiological and neuroimaging measures, which we introduce in the following sections.

2.3 Psycho-Physiological Measures of Program Comprehension

Psycho-physiological measures objectively capture participants’ physiological responses to a
given task that induces cognitive processes [Col89]. For example, a programmer thinking through
a code snippet containing a complex algorithm may show measurable physiological signals of
stress. The human body offers multiple “windows” into its psycho-physiological state, which have
been used for research. In the next subsections, we introduce the measures most relevant to
program-comprehension research.

2.3.1 Eye Tracking

One of the first measures that achieved broad usage in program-comprehension research was
eye tracking. Eye tracking records participants’ visual attention by following their eye movements
and eye behavior [Ray78; Hol+11; Duc17]. Primitive eye-trackers have been in use since the early
1900s [Sha+20b]. Modern, camera-based eye-trackers provide eye-gaze data with high temporal
resolution and accurate spatial resolution. Researchers have used eye tracking to understand
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human visual attention and eye-movement behavior in many science areas. For example, reading
natural text has been studied with eye tracking for decades providing detailed insights into reading
patterns [Ray98].

Figure 2.3: Visualization of a sequence of fix-
ations and saccades of one partic-
ipant comprehending a code snip-
pet.

Figure 2.4: Visualization of a heat map, which
aggregates the number of fixations
on a code snippet.

Technical Background The raw eye-gaze data typically contains a sequence of x,y coordinates
of the used screen. Most eye-trackers require a short setup which includes a calibration and
validation process.

An event detection algorithm is typically applied to the raw eye-gaze, which separates and assigns
the eye-gaze into (typically) two events of fixation and saccade. A fixation is a stable spatial
eye-gaze, which typically lasts for 100-300 ms. When a participant fixates on a specific visual
point, they can cognitively process the visual input. A saccade describes a continuous moving
eye-gaze. During a saccade, a participant is unable to process visual input in-depth [Hol+11].

The sequence of saccades and fixations can be concatenated to a scan path, which we visualize
in Figure 2.3. An alternative visualization of fixations is a heat map, which we show in Figure 2.4. In
addition to qualitative analysis of the visualized data, saccades and fixations can be quantitatively
analyzed regarding many metrics, such as the number of fixations, average saccade length,
and the number of visits to a specific area of interest (AOI) [Sha+20b]. Finally, there are many
algorithms that apply further aggregation. For example, the K coefficient classifies a sequence
of saccades and fixations into focal and ambient visual attention [Kre+16]. The latter has been
shown to be especially important to experts, including programming experts which, in contrast to
novices, can use longer saccades because of their larger extrafoveal vision [OB17].
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Table 2.1: Visualization of accuracy and precision in eye tracking.

Two concepts are related to data quality: accuracy and precision. Accuracy describes the differ-
ence between the actual and measured eye-gaze, which threatens results if data is misinterpreted.
If it is a systematic error, often named offset, it can be corrected by hand [Coh13]. There are also
automated corrections in development that would remove researcher bias [PS16]. In addition
to low accuracy, there can be low precision. Precision describes how consistent the difference
between the actual and measured eye-gaze is. We visualize accuracy and precision in Table 2.1.
Finally, drift describes how accuracy worsens throughout the experiment, for example, as a
consequence of changes in eye physiology [Sha+20b].

Use in Software Engineering All eye-tracking measures have massive potential for software-
engineering research, as they allow unintrusive, but objective measurement of program compre-
hension. Sharafi, Soh, and Guéhéneuc’s systematic literature review and Obaidellah, Al Haek,
and Cheng’s survey provided an in-depth overview of all eye-tracking studies in software engi-
neering [SSG15; OAHC18]. Sharafi et al. provided a practical guide to conducting eye-tracking
studies [Sha+20b]. Recent tool development focused on seamlessly integrating eye tracking in
more complex and realistic scenarios, such as programmers working in an integrated development
environment (IDE) [Gua+18; Sha+15a]. In the next subsection, we introduce a few key eye-tracking
studies along with the various eye-tracking measures.

2.3.1.1 Eye-Gaze Measures: Fixations and Saccades

The majority of eye-tracking studies in software engineering focuses on eye-gaze and eye-
movement measures (i.e., AOIs, fixations, saccades). One of the first to use eye tracking in
software engineering were Crosby and Stelovsky, who found differences between the eye-gaze
patterns of programmers with different experience levels [CS90]. In 2006, Bednarik and Tukiainen
called for using eye tracking in program-comprehension studies. They demonstrated with an
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experiment that it is possible to observe programmers with an eye-tracker [BT06]. Sharif and
Maletic replicated a behavioral study investigating variable naming styles with eye tracking. Their
replication results indicate that variable naming style affects program comprehension in that
programmers are able to read under score style faster than camelCase style [Bin+09b; SM10].
Previous research suggested that the linearity of the reading order could be an indicator of how
efficiently programmers comprehend source code [Bus+15]. Busjahn et al.’s study described
several eye-gaze measures to gauge programmers’ linearity of reading order. Their experiment
suggests that programmers read source code less linear than natural text. Furthermore, expert pro-
grammers read source code less linearly than novice programmers [Bus+15]. Ikehara and Crosby
showed that eye movement data could predict task difficulty in a programming context [IC05].

2.3.1.2 Advanced Eye-Tracking Measures

In addition to observing a participant’s eye-gaze stream, some advanced eye-tracking measures
are established in cognitive psychology, but not widely used in program-comprehension research
yet. Nevertheless, they may provide useful for observing programmers and therefore we introduce
them next.

Pupil Dilation One commonly measured property is pupil dilation, which is a task-evoked pupillary
response. Pupil dilation has been shown to directly reflect cognitive load with tasks involving
working memory, reasoning, and reading [BLW00]. For example, Beatty and Kahneman’s early
work showed that an increase in the number of digits to be remembered correlates positively with
pupil dilation [BK66]. Similarly, Hess and Polt demonstrated that pupil dilation correlates with
the difficulty of mathematical calculations [HP64]. Overall, research has established that pupil
dilation can be an accurate measure of mental states [LSG12; HF14].

While pupil dilation is straightforward to observe, it is affected by many external factors, especially
light. Thus, extensive preprocessing is necessary in addition to stable environmental conditions
throughout the experiment [KSS19].

Pupil dilation has intrigued some researchers as a measure in program-comprehension research.
Nolan et al. proposed a study in which novices learned to program. They planned to measure
cognitive load with remote eye tracking [NMB15]. In the same vein, Ford et al. proposed to use
a variety of eye-tracking metrics (i.e., pupil dilation, saccades, blink rates) to identify mental
states during remote interviews of programmers. This would allow interviewers to only interrupt
during light thinking phases [FBP15]. Similarly, Behroozi et al. used pupil dilation as a proxy of
cognitive load during programming interviews at the whiteboard [Beh+20]. Recently, Ioannou et al.
developed an IDE extension that visualizes areas of code, which induced large pupil dilation and
thus higher cognitive load in other programmers [Ioa+].
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Blink Rates and Duration Another eye-tracking measure is spontaneous blink rates, which
correlate with “levels of dopamine in the central nervous system, and can reveal processes
underlying learning and goal-directed behavior” [Eck+17]. Blink rates are determined at two levels:
The resting baseline and task-evoked blink rate. A higher individual’s blink-rate baseline is related
to “better cognitive flexibility but worse maintenance” [Eck+17]. Some research suggests that
“higher blink rate at baseline is related with lower distractibility on tasks that place high demands
on working memory” [Eck+17].

Using blink rates as a research measure is challenging due to the many factors that can influence it.
Blink rates increase with fatigue, which limits experiment length [SBS94b]. Environmental factors,
such as air humidity or room temperature, can also affect the observed blink rate [Dou01].

Ford et al. suggested that blink rates are an interesting measure in their proposal for observing
remote technical interviews [FBP15]. However, in follow-up work by Behroozi et al., blink rates
were not a significant measure to distinguish mental states. Nevertheless, blink durations showed
significant differences [Beh+18]. While there has been no study directly related to program
comprehension, blink duration reliably increases with a participant’s cognitive workload [VG98;
Ben+11; Che+11], and were therefore also consider it as a potential measure for our framework.

2.3.1.3 Summary

Eye tracking has been a valuable tool for cognitive psychologists to understand visual attention
for decades. It has made its way into software-engineering research. Most researchers use basic
eye-gaze measures, such as fixation count in AOIs, to understand how programmers are reading
code.

The advantage of eye tracking in software engineering is its universal applicability. Researchers
can use eye tracking from a controlled lab environment to realistic work scenarios.

While cognitive psychologists have used some advanced measures to better understand cognitive
processes using eye tracking, they are not as established in program-comprehension research.
This may be due to the complexity of programming as a task. Thus, researchers have been
exploring psycho-physiological measures as another alternative to understand participant mental
state via its body behavior.

2.3.2 Physiological Measures

Physiological measures comprise measures based on a participant’s physiological responses to
a given task, which is designed to induce specific cognitive processes [Col+94]. There are several
physiological measures at which we take a closer look in the following paragraphs.
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2.3.2.1 Electrodermal Activity

Electrodermal activity (EDA) describes the characteristic of skin to conduct electricity. This
characteristic of a participant’s skin can change depending on the experienced stress and arousal
and can be used to measure participants’ cognitive load [Bou12]. The physiological response
that results in a measurable change of electrodermal activity takes a few seconds. This delay
needs to be taken into account when analyzing electrodermal-activity data.

2.3.2.2 Heart Rate and Heart Rate Variability

There are two commonly used heart-rate measures. Heart rate (HR) describes the frequency of
heartbeats per minute [And13]. Heart-rate variability (HRV) is the variation of the interval between
two consecutive heartbeats [And13].

There is plenty of evidence that heart rate and heart-rate variability can be used to estimate
cognitive load [VG98; FVT05] and therefore has also been used to observe programmers [MF16;
Cou+19b]. For example, Müller and Fritz classified heart rate and heart-rate variability among
with other psycho-physiological sensors of ten professional programmers to predict future code
quality issues [MF16].

2.3.2.3 Respiration

The most robust respiration measures that have been linked to cognitive load are the respiratory
rate (RR) and respiration depth in which higher respiratory activity indicates higher cognitive
load [BRW94; Gra+16]. However, respiration has not been extensively explored in software-
engineering research.

2.3.2.4 Combination of Physiological Measures

In software-engineering research, the described physiological measures often were not used in
isolation, but in combination. For example, Fritz et al. used a combination of eye tracking, electro-
dermal activity, and EEG to observe programmers during various programming tasks. They were
able to train a classifier based on the three measures that predicted the experienced subjective
difficulty [Fri+14]. In a similar vein, Couceiro et al. built a framework to observe programmers
using eye tracking, HRV and electrodermal activity while they worked on tasks [Cou+19b]. In a
follow-up study, they combined HRV and pupil dilation to annotate potential problematic lines of
code [Cou+19a].

However, Züger et al. reported that simple computer interaction data (i.e., keyboard and mouse
interaction, active window) may be more accurate than physiological sensors, but also found that
a combination of both provides the best results [Züg+18].

19



2 Program Comprehension

Besides predicting task difficulty and code quality, physiological measures have been used to
investigate programmers’ emotional state. Girardi et al. showed that a combination of physio-
logical measures could identify emotional states without individual training [GLN17]. Müller and
Fritz used an approach which combined electrodermal activity and EEG to detect programmers’
emotional state and the resulting productivity. They found that it is possible to use physiological
measures to fairly reliably identify when a programmer feels stuck during their work [MF15].

2.3.2.5 Summary

Physiological measures show promise in real-world applications and lab research. In the real world,
they have been useful in providing real-time feedback during programmers’ regular workdays. As
descibed above, they may warn programmers before writing faulty code [Fri+14; MF15; Züg+18;
Cou+19a]. While the groundbreaking studies successfully leveraged physiological measures,
there are also many challenges ahead with noisy data from physiological sensors in addition to
privacy concerns during everyday work [FF20].

In lab research, physiological measures enable researchers to measure an objective proxy of a
programmer’s cognitive state and provide more insight than basic behavioral measures. Physiol-
ogy is closer to measuring programmers’ cognitive processes, but they are still insufficient in
identifying and explaining program comprehension’s underlying cognitive processes. To better
understand these, we need neuroimaging measures, which we explain in the next section.

2.4 Neuroimaging Measures

Neuroimaging allows researchers to measure the brain, such as determining a participant’s
individual anatomical brain structure. Functional neuroimaging measures the brain’s neural activity,
typically to a presented task. Functional neuroimaging relies on measuring the brain’s electrical
signals or underlying biological processes, such as the blood oxygenation level dependent (BOLD)
response.

The BOLD effect is based on the following principle: Oxygenated and deoxygenated blood have
different physical characteristics. On the one hand, oxygenated and deoxygenated blood reflects
light differently back to the light source. On the other hand, oxygenated and deoxygenated blood
also behaves differently when exposed to magnetic fields. Neuroimaging measures use these
characteristics to distinguish different levels of brain activation. The underlying BOLD effect
is based on the haemodynamic response to neural activity, which means the acquired brain-
activation data follow exposure to the stimuli onset by several seconds [Cha+93]. We visualize a
typical BOLD response in Figure 2.5. A statistical analysis of the data needs to account for such
activation delay.
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Figure 2.5: Visualization of a simplified BOLD response to a stimulus that is presented for 13
seconds.

There is substantial variability among BOLD responses. In particular, the response characteristics
can be different between participants. Within one participant, the BOLD response is reasonably
consistent even across multiple sessions [AZD98].

Several neuroimaging measures have explored for measuring program comprehension. We
describe the three major measures next.

2.4.1 Electroencephalography (EEG)

Electroencephalography (EEG) is a neuroimaging measure to detect brain activity via electrical
sensors typically placed on the participant’s scalp. EEG was discovered almost 100 years ago in
1924 [Ber29]. EEG receives the weak electrical potential (5-–100µV) of the simultaneous activity
of large groups of neurons in the brain [Phi+97]. We show an EEG device in Figure 2.6.

Background EEG can be used to capture brain activity related to an event (e.g., presentation of
a stimulus such as source code) or spontaneous brain activity that occurs without a presented
stimulus. Event-related potentials (ERP) describe the change in activity that occurs after presenting
a stimuli [Phi+97].

EEG data can be divided into different frequency bands: Delta (δ, 1–4 Hz), theta (θ, 4–8 Hz),
alpha (α, 8–13 Hz), beta (β , 13–30 Hz), and gamma (γ , 30–70 Hz) [CKS15]. Each band provides
a time series that varies in frequency, shape, and amplitude, of which we show an example
in Figure 2.7.
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Figure 2.6: Photo of 64-channel EEG de-
vice in a lab.

Figure 2.7: Visualization of different frequency bands
of EEG (taken from Figure 1.5 of [Sak17])

Alpha and theta frequency bands both have been shown to correlate to mental load and work-
ing memory. They act in opposite ways so that when alpha power increases, theta power de-
creases [Kli99].

EEG Studies in Program Comprehension EEG has been widely adopted in neuroscience, for
example, for studying working memory load [Ber+07]. EEG now also has found its way into several
studies focusing on software engineering. Crk et al. used EEG in software engineering to study
programmer expertise. They found that a programmer’s experience level induces higher levels of
alpha waves during program comprehension tasks [CKS15].

Yeh et al. studied atoms of confusions (small patterns of source code that lead to programmer
confusion, [Gop+17]) in C code with EEG. They found significant increases in alpha and theta
frequency bands for confusing code [Yeh+17].

Kosti et al. replicated the first fMRI study by Siegmund et al. [Sie+14a] with EEG [Kos+18]. They
confirmed that the comprehension tasks designed by Siegmund et al. are more demanding
than the control tasks of finding syntax errors. In addition, they were able to train a classifier
based on the participants’ brain wave patterns to predict the subjective difficulty of the presented
tasks [Kos+18].

Lee et al. first compared novice and expert programmers with EEG during comprehension tasks
and found significant activation in the left frontal lobe [Lee+16]. In a follow-up study, Lee et
al. extended their EEG study with eye tracking and successfully predicted task difficulty and
programmer expertise [Lee+17].

22



2.4 Neuroimaging Measures

Recently, Ishida and Uwano used EEG and eye tracking and found a significant increase in the
alpha frequency band for programmers who successfully finished a task [IU19]. Madeiros et
al. used EEG to investigate the accuracy of widely used software complexity metrics and found
little predictive power for all frequency bands [Med+19]. In a follow-up study, they investigated
several EEG measures to distinguish different experience levels [Med+21]. Fucci et al. used a
combination of EEG, EDA, and heart sensors to replicate an fMRI study of Floyd et al. [FSW17] on
program comprehension. Interestingly, the heart sensor alone could determine which condition
was presented to participants [Fuc+19]. Busechian et al. demonstrated on studying the cognitive
processes of pair programming with EEG [Bus+18]. In a similar study, Ikramov et al. found an
increased need for attention when fulfilling the navigator role in pair programming [Ikr+19].

Overall, research has shown that EEG can be used to study source code patterns, program
comprehension, and differences between programmers’ experience levels. Due to its low cost,
non-invasive nature, and few requirements, EEG has been suggested to be a constant, real-time
monitoring device during software development. Radevski et al. proposed to use EEG monitoring,
for example, to automatically alert programmers to take breaks when they become stressed or
overwhelmed with a task [RHM15].

2.4.2 Functional Near-Infrared Spectroscopy (fNIRS)

Figure 2.8: Photo of participant wearing an fNIRS in front of a computer (taken from Eliseni-
colegray, CC BY-SA 4.0, via Wikimedia Commons)

2blah blah blah
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2 Program Comprehension

Functional near-infrared spectroscopy (fNIRS) uses near-infrared light emitters to detect brain
activity. This idea of shining light into the skull to measure blood flow existed for a century
but finally came to fruition in 1993. Since then, many commercial versions of fNIRS have been
developed with wide adoption in neuroscience [Sch+14].

fNIRS Studies in Program Comprehension So far, a few studies have used fNIRS in a software-
engineering context. First, Nakagawa et al. showed the feasibility of using fNIRS while completing
programming tasks. They presented comprehension tasks with code snippets with two difficulty
levels and observed higher blood flow during the more challenging code snippets [Nak+14].
Ikutani and Uwano contrasted program and arithmetic tasks with several subtypes. They found
that programmers use their frontal pole for variable memorization, but observed no significant
differences for arithmetic tasks [IU14]. Fakhoury et al. combined fNIRS and eye tracking and
showed that problematic identifier names significantly increase cognitive load [Fak+18; Fak+20].
Endres et al. investigate program comprehension, natural language reading, and mental rotation
with fNIRS. They find distinct activation patterns of novices for each task and, unlike most
neuroimaging studies, a bilateral activation [End+21].

2.4.3 Functional Magnetic Resonance Imaging (fMRI)

Figure 2.9: Participant in our fMRI scanner. Participants can view stimuli on a small plastic
screen via a mirror on the head coil (cf. Figure 3.3). Participants respond to tasks
with fMRI-compatible two-button response device.

Functional magnetic resonance imaging (fMRI) is a measurement method that also allows re-
searchers to observe ongoing brain activation [HSM14]. In the same vein as fNIRS, it relies on the
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BOLD response and the haemodynamic response (cf. Section 2.4 and Figure 2.5). Observing partic-
ipants’ brain activation during tasks lets researchers infer occurring cognitive processes [GIM13].
We show an image of a participant in our fMRI scanner in Figure 2.9.

Collected fMRI data is structured in a sizable three-dimensional array of numerical values repre-
senting voxel (i.e., 3D pixel) intensities. Depending on the protocol, voxels have a typical edge
length of 2–3 mm. fMRI does not measure the entire brain at once, but rather in typically around
35 slices, one slice at a time. Each slice takes around 50 ms to record, which means that an entire
brain can be scanned in two seconds. More recently, multi-band protocols concurrently measure
multiple slices, allowing researchers to increase spatial or temporal resolution. All values can
be adjusted depending on the particular needs of an experiment. For example, one may reduce
spatial accuracy to gain a higher temporal resolution.

Besides functional magnetic resonance imaging to observe brain activation, MRI scanners can use
different protocols for different foci. One commonly used protocol is structural MRI to measure a
participant’s anatomy, which we describe in detail in Section 2.4.3.4.

2.4.3.1 Experiment Design
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Figure 2.10: Visualization of typical fMRI designs: (a) block design and (b) event-related design.

An experiment in an fMRI scanner is often different from conventional experiments. By necessity,
fMRI requires a specific experiment design.3 In particular, it typically requires at least two tasks:
One task for the cognitive process in question and a task that acts as the control condition.
Further, because we observe a change in the BOLD response to a presented task, we need to

3This section only provides a high-level overview without all variations and details, which can be found, for example,
in [Agu11].
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allow the change in brain activation to return to the baseline. To this end, standard experiment
designs have prolonged rest conditions between tasks in which participants are asked to rest
(e.g., by looking on a fixation cross on a screen).

In addition to the experiment task, control condition, and rest in between, the researcher needs
to configure the order and length of each task. We present two prototypical experiment designs
next.4

Block Design The most commonly used experiment design in fMRI research is the block design.
A block design uses long-lasting tasks of typically 15–30 seconds with intermittent rest conditions.
We visualize an experiment with block design in Figure 2.10. A block design can be used if the
presented tasks require prolonged thinking from participants. For example, understanding a code
snippet with 20 lines of code induces program comprehension for a significant time (i.e., more
than 5 seconds). A block design assumes brain activation and thus a BOLD response for the
entire block. The rest condition that follows the stimuli allows the brain activation to return to the
baseline.

Typically, a control condition will also be presented. The pattern of task-rest-control-rest se-
quences is repeated several times until the experiment is over. The overall time in the fMRI
scanner does typically not exceed 45 minutes.

Event-Related Design A different approach is an event-related design, which we also visualize
in Figure 2.10. An event-related design is typically used when a rapid cognitive process is
under observation. For example, recognizing a single face takes less than a second and thus is
inadequate to induce sufficient brain activation to be detectable by fMRI. Therefore, an event-
related design uses multiple similar repetitions of a task, for example, rapidly recognizing 15 faces
in a row. This combination of multiple instances of the cognitive process effectively induces a
sufficient BOLD response. Like the block design, a rest condition follows to allow a return to the
brain activation baseline.

2.4.3.2 Control Condition

When observing participants with fMRI, we collect all induced brain activation. In the context of
complex cognitive tasks, this can be problematic as there are plenty of basic cognitive activities
that are also triggered. For example, program comprehension induces a strong activation in
the visual cortex due to programmers physically moving their eyes and recognizing characters
on the screen. However, this is entirely irrelevant to understanding the essence of program
comprehension. Thus, we need to filter out such irrelevant brain activation with a suitable control
condition.

4There are various other options, such as mixed designs, but are outside of this dissertation’s scope.
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A control condition is designed to be very similar to the experimental task. It only differs in a way
that the key cognitive tasks are not involved. For example, a control condition for reading and
comprehending a word is presenting scrambled letters with the same amount of characters as
the original word. Both tasks require a participant to visually process the presented text, but only
the original task induces semantic processing. In this case, researchers can understand which
parts of the brain are involved in semantic processing during reading, which without the control
task, would not have been as clear-cut.

A suitable control condition for program-comprehension studies is not as obvious. The first fMRI
study by Siegmund et al. used the task of locating syntax errors as the control condition [Sie+14a].
The idea is that locating basic syntax errors, such as a missing semicolon, does not require
program comprehension, but induces similar basic cognitive processes (e.g., visual processing,
attention). More recently, Ivanova et al. instead contrasted program comprehension with the same
content in prose form [Iva+20]. These divergent control conditions result in different activation
patterns and show how critical choosing the control condition is. We outline current and future
work on this topic in Section 3.5.5.

2.4.3.3 Risks and Participant Requirements

Empirical experiments with human participants need to evaluate their risks. Despite exposure to
strong magnetic fields in the fMRI scanner, there is no known direct biological risk [Har+09b].

However, there are direct physical risks due to the strong magnetic field, which limit the participant
pool. In particular, participants with metallic implants or pacemakers can be at risk. Thus, we
screen all participants interested in our fMRI studies for such exclusion criteria, which also
includes claustrophobia, pregnancy, and tattoos (low-quality ink may contain iron interacting with
the MRI scanner). The informed consent and questionnaire used for the studies presented in this
dissertation are in the Appendix (Section 7.5).

2.4.3.4 Analysis of fMRI Data

Preprocessing of Functional Data Acquired fMRI data contains substantial amounts of noise
from various sources. Neuroscience has developed several preprocessing steps that are nowadays
standard to reduce artifacts’ influence on the analysis results and interpretation.

Typical preprocessing steps, which we also applied to all studies presented in this dissertation,
include the following:

• Slice-scan-time correction: An fMRI measurement observes the brain in separate
slices (cf. Section 2.4.3), so the first slice can be observed up to two seconds earlier than
the last slice. To correct this temporal offset, we apply a slice-scan-time correction that
corrects this offset by interpolating and smoothing the intensity series for each voxel.
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Figure 2.11: Visualization of a typical voxel intensity series with a strong linear drift. The x-
axis is experiment time in terms of fMRI scans. The y-axis is the voxel intensity
(i.e., brain activation strength). The image is from the BrainVoyager documentation
(online version, accessed 25th Nov 2020): https://www.brainvoyager.com/bv/doc/
UsersGuide/Preprocessing/TemporalHighPassFiltering.html

• 3D-motion correction: While foam paddings are used to minimize head movements,
there are still small head movements creating artifacts. These can significantly affect data
quality, especially if they are rhythmic to the presented stimulus. To ensure robust results,
a head-motion-detection algorithm can help researchers exclude data that has too many
artifacts (e.g., more than 3 mm of movement within one session). If a data set can be used,
a 3D-motion correction attempts to correct the data for minor and slow movements by
realigning the image.

• High-based filtering: Similar to head motion, low-frequency drifts throughout an experi-
ment can substantially affect the statistical analysis if not taken into account. We visualize
an example of a typical linear drift of a voxel intensity series in Figure 2.11. To correct such
drifts, we preprocess the data with a high-pass filter (GLM-Fourier) of typically three cycles
per scan.

• Spatial smoothing: Finally, as part of the statistical analysis, functional data is often
spatially smoothed. The parameters for the spatial smoothing differ between research
groups. We use 4 mm as configuration for the full-width-at-half-maximum (FWHM) param-
eter for spatial smoothing with a Gaussian filter. It is slightly wider than our voxel size
(3 mm) and provides a good balance between retaining spatial accuracy and ensuring data
robustness.

For our research presented in this dissertation, all steps above were conducted with BrainVoy-
ager™ QX 2.8.4.5. The specific configurations can be found in the description of the respective
study.

5Brain Innovation BV, Maastricht, The Netherlands, https://brainvoyager.com
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Figure 2.12: Visualization of the brain standardization process with BrainVoyager. One individual
raw anatomical scan is transformed into a Talairach-space brain with an overlayed
Brodmann atlas. For a full study, this process is repeated for every participant.

Standardization of Anatomical Data We collect anatomical data to understand each participant’s
individual brain anatomy. Since we average functional data across participants, we need to correct
for slight differences in brain anatomies. To this end, we use a standardization process, which
serves multiple purposes. First, most neuroimaging studies analyze and report their results on an
aggregated group level. Standardization of each participant’s brain to a common, corresponding
space enables group-level analysis and interpretation. Second, anatomical standardization allows
comparing and synthesizing activation clusters across different fMRI studies, but only if they are
using the same 3D-coordinate space.

There is a multitude of 3D-coordinate spaces and atlases of the human brain [Eva+12]. A commonly
used template is the Talairach space [TT88]. The Talairach space normalizes participants’ brains
by warping them along their anatomical structure. Specifically, brains are ACPC-aligned, which
means the cerebrum is rotated into an imaginary plane connecting two prominent anatomical
landmarks (i.e., anterior commissure and posterior commissure). Then, the brain’s six outside
edges are defined (i.e., the points that the most to the front, back, left, right, top, and bottom of
the brain). Based on these overall 8 landmarks, we can warp an individual brain onto the Talairach
template. We visualize the entire process in Figure 2.12.

A closely related space to the Talairach space is the Montreal Neurological Institute (MNI)
space [Eva+93]. It is newer than Talairach, but not as widely used yet. Additionally, there are
several versions with slightly different atlases. While closely related to the Talairach space, the
MNI space cannot directly be translated into Talairach space without errors [Bre+01].

The Talairach space and MNI space can be mapped to an atlas. A common atlas is the Brodmann
areas (BA), which serve as an anatomical classification system. The entire brain is split into
several areas based on cytoarchitectonic differences suggested to serve different functional brain
processes [Bro09; Bro06].

Functional and anatomical data are acquired with different MRI protocols, which leads to dif-
ferences in the structure of the data. For example, the field of view may be larger during the
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anatomical scan capturing the entire head in contrast to a focus on only the cortex for the
functional data. To correct for these differences, functional and anatomical data is typically co-
registered, which refers to a process that aligns the separately acquired functional and anatomical
data based on anatomical landmarks [Kle+09].

For the research in this dissertation, we follow standard procedures established in neuroscience.
We use the Talairach space with the Brodmann atlas. All group analyses are conducted and all
results reported on a study-averaged Talairach brain.

Statistical Analysis with GLMs After the anatomical and functional preprocessing, researchers
must conduct a statistical analysis of the acquired brain-activation data. Notably, conventional
parametric and nonparametric statistical tests cannot be used to analyze fMRI data, because of
the experiment-design complexity with many conditions, the amount of data, and its time-course
nature. Instead, a general linear model (GLM) is computed with a model of a haemodynamic
response function [WF95].

In a nutshell, the statistical analysis with a GLM entails two steps. First, on a participant-specific
level, each voxel’s time series is independently analyzed with a (univariate) statistic. Our data sets
contain around 90 000 voxels for each brain scan. Thus, there are 90 000 statistical results based
on the computed GLM. These results are then transformed into a three-dimensional map.

Second, we further process the voxel-based dimensional maps of each participant on a group
level. There are two main approaches to this: A fixed-effects analysis or a random-effects
analysis. In essence, a fixed-effects analysis concatenates the data from all participants together,
essentially creating one large data set. A fixed-effects analysis has higher statistical power, but
does not allow to draw conclusions on the population level. A random-effects analysis treats each
participant as a separate subject and considers between-subject variance. If the participants
were a representative sample of the population, random-effects analysis allows conclusions to
be drawn on a population level. Two further options are mixed-effects analysis and balanced
designs which are outside this dissertation’s scope.

The resulting group-level statistical map is then tested for significance. One crucial aspect that
needs to be considered is the sheer amount of data. In our case, we test 90 000 voxels, which
inevitably, due to random and systematic noise, will lead to false positives. Thus, it is imperative
to correct for multiple comparisons to avoid making false conclusions (see famous dead fish
example [BMW09]). We use false discovery rate (FDR) correction [BH95], because it provides a
good balance between correctly identifying voxels as significantly activated (i.e., rejecting null
hypothesis) and avoiding falsely identifying voxels as activated (i.e., incorrectly rejecting the
null hypothesis). Bonferroni correction [BA95] is an alternative, which, however, can be overly
conservative [Per98]. Additionally, activated voxels need to be part of a cluster of a certain size
(e.g., 27 mm3).
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Classifiers with Machine Learning In contrast to merely identifying activated brain areas, some
researchers aim to make a reverse inference, that is making predictions based on observed
brain activations. To this end, they use machine-learning classifiers to check whether the brain-
activation data can be distinguished between different tasks or participants. They generate
the same statistical maps as described in the previous section. However, instead of selecting
activation clusters exceeding a significance threshold, they feed the maps into classifiers.

A few fMRI studies in software engineering use machine learning or a similar approach
(e.g., [FSW17; Hua+19; Sie+21; Iku+21]), which we describe in further detail in the following
section.

2.4.3.5 fMRI Studies in Software Engineering

Siegmund et al. were the first to use fMRI in 2014 when they developed an experiment for studying
program comprehension with fMRI and applied it to provide a neuro-cognitive perspective to
bottom-up comprehension [Sie+12; Sie+14a]. Since then, around one dozen studies have used
fMRI to answer software-engineering research questions. We present them grouped in the targeted
cognitive process.

Program Comprehension Most studies used some form of a program-comprehension task
to induce brain activation. Specifically, the first study observed bottom-up comprehension and
identified a network of five areas in the left hemisphere of the brain [Sie+14a]. Our follow-up study
largely confirmed these results and found that programmers use the same network of brain areas
during top-down comprehension, just with higher neural efficiency [Sie+17].

Directly inspired by the first study, Floyd, Santander, and Weimer conducted an fMRI study with
three tasks: program comprehension, program review, and prose reading. They found similar
activation patterns and identified that program comprehension becomes neurally closer to reading
with more extensive programming experience [FSW17].

Duraes et al. published the second fMRI study on programmers debugging code snippets. Their
focus was on debugging tasks that required participants to locate possible defects. In general,
the observed activated areas are associated with language processing and mathematics. In
particular, they found brain activation in the right anterior insula when a bug was spotted and
confirmed [Dur+16] In a follow-up study, Castelhano et al. used a similar setting with expert
programmers to confirm the crucial role of the anterior insula [Cas+19].

More recently, there were studies using program comprehension tasks to understand different
phenomena. We conducted another bottom-up comprehension study, but with snippets varying
along various code complexity metrics revealing that most metrics show little predictive power
(cf Section 5.1, [Pei+21]).

Ivanova et al. used a novel approach and contrasted short Python snippets with content-matching
natural-language text. They found no strong left-lateralized bias of the brain activation with a
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direct contrast between these two conditions, but a bilateral response in the domain-general
network [Iva+20]. Liu et al. invited expert programmers for program comprehension and memory
tasks, including various localizer tasks. They identified a left-lateralized fronto-parietal network
that activates during program comprehension. It overlaps with brain areas related formal logic,
language, and math [Liu+20].

Various Programming Activities In addition to program comprehension and debugging, there
have been several one-off studies with various research questions. Huang et al. contrasted the
underlying cognitive processes between mental rotation tasks and data structure manipulation and
found overlapping brain activation, but distinct activation patterns. Notably, they used both, fNIRS
and fMRI, to also compare each measure’s power in the context of software engineering [Hua+19].
In a follow-up paper, they also included a comparison of eye tracking that was recorded during
the fMRI sessions [Sha+20a].

Huang et al. studied code review with fMRI, investigating how gender and humanity change
prospective reviewers’ perspectives. They identified that there are differences in code review
behavior between genders and identify several cognitive biases during code review (e.g., bias
against automatically generated code) [Hua+20].

Ikutani et al. used a program categorization task to understand the neural differences between
programmers with different expertise levels. Their classifier could predict programmers’ expertise
based on the observed brain activation [Iku+21].

Finally, unlike all previous studies that required mostly passive interaction with the stimuli, Krueger
et al. studied writing source code. In a commendable effort, they created a custom-designed key-
board that works in the fMRI environment and found a stronger activation in the right hemisphere
while writing source code [Kru+20]. This complements evidence of a mostly left-hemisphere
lateralization of program comprehension. In a follow-up analysis, Karas et al. investigated the
functional connectivity, that is how similarly different areas of the brain change in activa-
tion, of the same data set. They find a significant link between Broca’s area and the number
form area strengthening the combination of natural language processing and mathematics in
programming [Kar+21].

2.4.4 Comparison of Neuroimaging Measures

The presented neuroimaging techniques, due to their different approaches to observe brain activity,
have advantages and limitations. We provide a generalized overview of fMRI, fNIRS, and EEG as
measurement measures in Table 2.2.

EEG is a comparatively low-cost sensor for measuring brain activity. It provides a high temporal
resolution with typical measurements in 100 Hz. There is minimal delay between the neurons’
electrical discharge and the received EEG signal allowing to precisely pinpoint cause and effect
between stimuli and event-related potential.
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fMRI fNIRS EEG

Measures BOLD BOLD Electrical activity
Delay Several seconds Several seconds Milliseconds
Temporal Resolution ∼1–2 seconds ∼1–2 seconds Milliseconds
Spatial Resolution ++ + −
Participant Restrictions − + ++
Environmental Limitations − ++ +
Portable No Yes* Yes*
Financial Costs − + +

Table 2.2: Comparison of fMRI, fNIRS, and EEG as brain activity measures. Note that only a
general overview of an abstract, generalized perspective is provided. * it depends
on the device and may not be universally true. ++ very positive, + positive, and - a
(comparatively) negative characteristic.

However, EEG data have a low signal-to-noise ratio, because of the sensors’ sensitivity to body
and head movements as well as environmental influences. Thus, EEG experiments often require
averaging across many tasks, which dilutes the high temporal resolution. Further, as it measures
large groups of neurons, there is little spatial resolution, since the observed activity cannot be
linked to a specific source in the brain. A higher number of sensors of the EEG device allows a
more accurate spatial localization, but is also more tedious. Because EEG is quite sensitive to
the environment, a robust analysis requires extensive data preprocessing [Sha+08].

Similarly to EEG, fNIRS allows lab experiments that relatively closely resemble real-world scenarios.
For example, researchers could conduct experiments in which programmers sit in front of a
computer interacting with an IDE. It also would be possible to observe writing code with fNIRS.

Like EEG, fNIRS is limited in spatial accuracy and how deep into the skull it can measure. Specifi-
cally, it is limited to 2-3 cm into the skull and therefore cannot measure brain activation deep in
the skull.

Studies with fMRI provide the most detailed data on cognitive processes. A direct comparison of
mental rotation tasks in software engineering showed that fNIRS has a weaker signal in addition
to less skull-penetration depth than fMRI [Hua+19]. But, the setup comes with the inherent
restrictions with participants being in an fMRI scanner. Specifically, interaction with stimuli is
severely limited. Most experiments are designed with little interaction (i.e., only a button press at
the end of a task rather than continuous interaction with an IDE).

In essence, fMRI, fNIRS, and EEG all have advantages and disadvantages and their use depends
on the research question. EEG and fNIRS allow for more realistic scenarios and thus enable
higher external validity, for example, by conducting studies with programmers in front of a regular
computer and IDE. On the other hand, fMRI provides the most comprehensive measure of brain
activity.
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Synthesis of Neuroimaging Measures In the past decades, research on program comprehension
has been using more novel psycho-physiological measures to explore programmers’ cognition.
Research with eye tracking started in the early 1990s and has made substantial progress in method-
ology and gained significant insights into programmers’ visual attention patterns [Sha+20b]. A
yearly workshop6 discusses current topics on eye tracking in programming.

Research with neuroimaging measures, such as EEG, fNIRS or fMRI, is not as established yet. It is
already clear that neuroimaging measures have their advantages and disadvantages. Overall, the
community is still in the early, exploratory stages in which common standards for methodology
have to be defined. For example, the basic question on which control condition is suitable to
distill the essence of program comprehension is still unclear (cf. Section 3.5.5). This dissertation
is part of the effort to establish a standard framework for observing programmers with fMRI in
combination with further modalities.

2.5 Chapter Summary

In this chapter, we provided an overview of the state of program-comprehension research. Program
comprehension is a complex cognitive process that often requires a combination of top-down
and bottom-up processes, which are part of most strategy models. The measurement of program
comprehension is challenging and requires different approaches to fully understand it. In particular,
a lack of comprehensive measures of program comprehension prevented validation and refinement
of the program-comprehension models. Research with eye tracking and neuroimaging offers a
new perspective on program comprehension, but comes with its own drawbacks.

Having laid the groundwork, we apply fMRI to open research questions in software engineering
in the next chapters. We demonstrate how neuroimaging can open new doors for software-
engineering research.

6Eye Movements on Programming (EMIP), http://emipws.org
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3 A Framework for fMRI Studies of Program
Comprehension

This chapter shares material with several prior publications [PSB17; Pei+18a;
Pei+18b; Pei+18c; Pei+19; Han+20].

Past program-comprehension research mainly used conventional measures such as response
time or response correctness. Since they only look at the result of a comprehension task, it
is challenging to provide insights into the underlying cognitive processes. Thus, researchers
also relied on self-reflection measures, such as think-aloud protocols or interviews, to gather
data on cognitive processes that are part of program comprehension. But, these measures
tend to be somewhat unreliable when it comes to cognitively demanding tasks such as program
comprehension. In essence, program comprehension consists of internal cognitive processes
that are inherently difficult to observe [Sie16].

Researchers have begun to explore new psycho-physiological and neuroimaging methods to ob-
jectively measure program comprehension and its underlying cognitive processes. For example,
eye tracking allows researchers to observe eye movements while programmers comprehend
source code [Bus+15]. Functional near-infrared spectroscopy (fNIRS) [Fak+18] and electroen-
cephalogram (EEG) [Fri+14] provide insights into programmers’ cognitive load during tasks.
Siegmund et al. have been at the forefront of adopting functional magnetic resonance imaging
(fMRI) as one method to understand developers. Siegmund et al. developed the first framework
to study programmers with fMRI [Sie+14a]. This seminal work has inspired other researchers
to conduct fMRI studies on their software engineering sub-areas such as debugging [Dur+16;
Cas+19], data structures [Hua+19], and code comprehension [FSW17; Kru+20; Iku+21].

In summary, in addition to the conventional methods developed decades ago, software-engineering
researchers are adding novel psycho-physiological measures to their toolset. While neuroimag-
ing provides insights into ongoing cognitive processes in great detail, programming consists
of extremely complex cognitive processes that pose additional challenges. A programmer’s
behavior inside the fMRI scanner appears as a black box to researchers, as we cannot capture
the specific strategy to solve a presented task. While we can ensure the completion after a task
of 30 to 60 seconds, we miss details throughout the task. Also, due to the temporal resolution of
fMRI (i.e., depending on the protocol, 1 to 2 seconds) [HSM14], we may miss some rapid cognitive
processes when observing a programmer with fMRI only.

This dissertation contributes to the foundation of using fMRI as a measure in software engineering
by defining an experiment framework. We developed and tested several improvements, most
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importantly conjoint eye tracking, to allow researchers to understand even fine-grained effects
(Section 3.2). Further, we sketch a vision of a multi-modal future such as an eye-tracking-informed
fMRI analysis (Sections 3.3.2, 3.5.1 and 3.5.4). As a step into this future, we developed CODER-
SMUSE, a multi-modal data exploration tool specific for software engineering (Section 3.4). Finally,
we outline several steps that can further establish a robust framework for fMRI research in a
programming context (Section 3.5).

3.1 First fMRI Experiment from Siegmund et al.

3.1.1 Experiment Design

public static void main() 
int result = 1:
int num = 4;

while (num > 1) {
result == result * num;
num--

}

System.out.println(result);
}

+

public static void main() {
int result = 1;
int num = 4;

while (num > 1) {
result = result * num;
num--;

}

System.out.println(result);
}

Code 
comprehension

Control: 
locating syntax
errors

Rest ...

60 s 30 s ...30 s

Figure 3.1: Visualization of Siegmund et al.’s block-based fMRI experiment design. In this case,
a program-comprehension task with control condition (i.e., locate syntax errors, in-
dicated in red) and intermittent rest periods. The visualized sequence was repeated
with 12 different snippets.

In 2012, Siegmund et al. were the first to propose studying program comprehension with fMRI and
outlined an experiment design that contrasted bottom-up program comprehension with locating
syntax errors [Sie+12]. Siegmund et al. chose to use a fixed-length block design, switching
between a 1-minute program-comprehension task and 30 seconds of finding syntax errors, and
an intermittent 30-second rest condition (cf. Figure 3.1). This was repeated twelve times for a
total experiment duration of around 30 minutes. We show an example snippet in Listing 3.1. After
positive feedback, the experiment design was then applied to study bottom-up comprehension,
which was published at the top conference of software engineering [Sie+14a]. Besides the
methodological contributions, the study successfully identified a network of five activated brain
areas involved during program comprehension.
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1 public float arrayAverage(int[] array) {
2 int counter = 0;
3 int sum = 0;
4
5 while (counter < array.length) {
6 sum = sum + array[counter];
7 counter = counter + 1;
8 }
9

10 float average = sum / (float) counter;
11 return average;
12 }

Listing 3.1: Example code snippet in Java inducing bottom-up comprehension from [Sie+14a]
that computes the length of the last word in a string. The snippet uses non-meaningful identifiers
to induce bottom-up comprehension. Participants needed to figure out the output of this snippet
“5”.

3.1.2 Limitations of Experiment Design

A closer look at Siegmund’s experiment design reveals the structure visualized in Figure 3.1. This
design was effective for identifying the activated brain areas during bottom-up comprehension. In
addition to brain activation, Siegmund et al. recorded behavioral data (i.e., response correctness
and response time), but did not further use them beyond a basic analysis.

Initially, the research presented in later chapters of this dissertation was planned to apply Sieg-
mund’s experiment design without modification to further research questions (e.g., top-down
comprehension). However, during our study on top-down comprehension (cf. Section 4.1), we
encountered limitations in the experiment design. Specifically, our research question on under-
standing the effect of meaningful identifiers on top-down comprehension could not be answered
holistically. While participant comments and fMRI data hinted toward an effect of meaningful
identifiers, we did not find compelling evidence.

Limitations of fMRI With Siegmund’s experiment design, the sequence of cognitive (sub)processes
for each individual task and participant during an fMRI session cannot be easily inferred. Since
program comprehension is a complex task with many layers (e.g., attention, working memory,
problem-solving) and a sequence of different phases (e.g., [KR91; MW01]), this limits our gained
insights. Further, because the neuro-cognitive perspective of program comprehension is still
rather new, we lack the knowledge about brain activation during program comprehension to
accurately identify such program-comprehension phases. In addition, the temporal resolution
of fMRI is low (i.e., depending on the protocol, 1 to 2 seconds) and is delayed by about 5 sec-
onds [HSM14; Cha+93]. Thus, we are unable to observe rapid cognitive subprocesses (e.g.,
identifying a meaningful identifier). We may miss some cognitive subprocesses of program
comprehension assuming a uniform fMRI activation across the entire period of understanding a
presented source code.
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Figure 3.2: BOLD response in BA21 of top-down program comprehension.

For example, Figure 3.2 shows the BOLD response for BA21 (i.e., one of the activated areas
associated with language comprehension) of four conditions from our fMRI study on top-down
comprehension [Sie+17]. The BOLD response shows a higher activation strength between 5 to
10 seconds for both conditions, which include a meaningful identifier. A possible explanation for
the increased activation strength is that, if participants recognize a meaningful identifier, they
recall an appropriate programming plan [Bro83; Wie91]. However, because fMRI alone provides
insufficient insight into a participant’s comprehension strategy during a task, this is untested
hypothesis.

In summary, this observed effect and possible future fine-grained effects cannot be pinned down
to a cause highlighting a fundamental limitation of an experiment design relying only on fMRI.
Specifically, fMRI alone suffers from the following limitations:

1. It provides limited insight into participant behavior within a long-lasting, complex task. The
cognitive (sub)phases during a long task cannot easily be inferred.

2. The low temporal resolution of fMRI limits our insight in rapid cognitive processes.

3. A participant’s strategy to solve a program comprehension task cannot easily be understood
with fMRI alone.

To tackle these limitations, we initially outlined a possible solution: fMRI with simultaneous eye
tracking would provide insight into participants’ visual attention during long-lasting tasks such as
program comprehension [PSB17]. We then implemented and evaluated this vision of observing
programmers with fMRI and eye tracking simultaneously, which we describe in Section 3.2.

In this context, we applied further refinements to Siegmund’s original experiment design and also
evaluate them with studies in this chapter.
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Further Modalities While the combination of fMRI and eye tracking increases our insights during
program-comprehension experiments, there are further possible improvements. In another fMRI
study, we added a third modality to observing program comprehension besides fMRI and eye
tracking: psycho-physiological measures, which allow us to objectively measure a participant’s
physiological state (e.g., stress level). We delve further into this modality in Section 3.5.1.

fMRI Contrasts and Control Condition Another limitation is that Siegmund et al.’s experiment
design may not provide clean contrasts between rest and program comprehension (cf. Sec-
tion 2.4.3.1). A closer look at the BOLD responses of the first experiment showed that there is
substantial brain activation during the rest condition. Participants indicated that they may reflect
on the previously presented task if they were unable to solve it in time. In a follow-up fMRI experi-
ment, we improved fMRI data contrasts by reducing reflective thinking during rest and investigated
a possible candidate for a control condition. We describe this in detail in Section 3.5.4.

Similarly, the initially used control condition (cf. Section 2.4.3.2) of locating syntax errors may
trigger some level of program comprehension (as indicated by participants). We therefore tested
using a simple search task in the fMRI experiment described in Section 5.1. We describe this
possible refinement in Section 3.5.5.

Tool Support Finally, a conventional analysis of fMRI experiment does not maximize insights by
using the full potential of all modalities. For future multi-modal experiments, we need suitable
analysis protocols and proper tool support. We outline such analysis in Section 3.3 and present a
prototype implementation in Section 3.4.

Together, these improvements provide an experiment framework to conduct (multi-modal) fMRI
studies of program comprehension.

3.2 Simultaneous Measurement with fMRI and Eye Tracking

3.2.1 Motivation

In this section, we present and evaluate our vision of an fMRI study with simultaneous eye tracking.
By simultaneously recording eye movements, we aim to identify when a participant is dealing
with which part of the code [BT06], thereby connecting program-comprehension phases to the
resulting brain activation [PSB17]. Specifically for the example shown in Figure 3.2, we may
find participants fixating on a meaningful identifier shortly before an increased BOLD response.
In this case, eye tracking may provide evidence for the suspected fixation on a meaningful
identifier, which would support the theory of semantic recall of programming plans during top-
down comprehension [Sie+17; SE84]. In general, by observing and understanding programmer
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behavior with eye tracking, the brain-activation data become more valuable, because we may be
able to explain it.

With eye tracking, we can observe visuo-spatial attention by collecting eye-movement data [Hol+11],
from which we can infer what the programmer is focusing on. Thus, eye tracking allows us to
better understand the behavior of a programmer during a program-comprehension task. Fur-
thermore, due to the high temporal resolution of eye tracking (i.e., depending on the device,
50 – 2000 Hz), we can capture even rapid eye movements. Observing visuo-spatial attention
allows us to infer details of ongoing cognitive processes during program comprehension. For
example, Duchowski et al. have shown that high saccadic amplitudes patterns after fixations
indicate that the participants are scanning for a feature in a presented stimulus [Duc17]. However,
longer fixations with shorter saccades indicate a pursuit search, thus suggesting that a participant
is trying to verify a task-related hypothesis rather than overviewing a stimulus [Duc17].

Eye tracking as a lone perspective is becoming a commonly used measure to observe visual
attention during program comprehension (cf. Section 2.3.1). However, unlike neuro-cognitive
measures, such as fMRI, eye tracking is limited regarding insights into higher-level cognitive
processes (e.g., language comprehension, decision making, working memory). Thus, researchers
have begun to combine eye tracking with neuro-cognitive measures, for example, simultaneous
recording of electroencephalography (EEG) [Fri+14; Lee+17] or functional near-infrared spec-
troscopy (fNIRS) [Fak+18]. While an fMRI experiment is more restrictive than EEG or fNIRS, fMRI
offers a higher spatial resolution, which motivated us to integrate fMRI and eye tracking as
simultaneous measures.

We integrate simultaneous eye tracking to Siegmund’s fMRI experiment design to understand
programmers’ behavior and identify rapid cognitive (sub)processes. Eye tracking has been used
in previous fMRI studies in neuroscience, but mostly as an indicator of whether participants are
fulfilling the task (and not sleeping) [Hol+11]. At the time of this study, only Duraes et al. also
attempted to collect simultaneous eye tracking data during an fMRI session, but disregarded it
during analysis. They also did not report how successful and precise the recorded eye tracking was
in their experiment [Dur+16]. Hanke et al. observed the exact eye gazes during an fMRI session in
which participants watched a movie, but also did not provide further analysis [Han+16]. At the
time of this study, no prior study has combined fMRI and eye tracking in software-engineering
research.

Combining fMRI and eye tracking is promising for program-comprehension research, because the
two measures complement each other’s strengths. The high temporal resolution of eye tracking, in
combination with information about which part of the code a participant is focusing on, allows us
to identify the origin of brain activations more precisely in time. By combining the two measures,
we can reason about causal relationships: What part of a program gives rise to the activation of a
specific brain area or triggers a certain cognitive process? With a simultaneous observation with
fMRI and eye tracking, we intend to benefit from the strengths of both measures.

We describe a new experiment framework for observing programmers with simultaneous fMRI
and eye tracking in the following subsections. We include eye tracking into our experiment
framework for more fine-grained fMRI analysis. Further, we present a study in which we test the
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Figure 3.3: Eye-tracking setup with a long-range camera in an fMRI scanner.

new experiment design for its feasibility and reliability. Then, we use the acquired eye-tracking
and fMRI data for more fine-grained analysis.

3.2.2 Research Objectives

While the simultaneous measurement and analysis of fMRI and eye-tracking data would open the
door to a novel neuro-cognitive perspective of program comprehension, the strict non-magnetic
environment around an fMRI scanner poses a challenge for the use of an eye-tracker. A regular
camera-based eye-tracker is mounted outside the scanner bore, which is roughly 90 centimeters
away from a participant’s head. From this position, the camera and infrared light hit the small
mirror, on which participants see displayed program code, and then hits a participant’s eye through
a small opening of the head coil. We visualize the setup in Figure 3.3. Due to its complexity, we
first need to evaluate how stable and precise the eye-tracker is throughout an experiment of 30
minutes. We pose the first research question:

RQ 3.1: Can we simultaneously observe program comprehension with fMRI and eye track-
ing?

As a first step, we evaluate whether we can reliably collect fMRI and eye tracking simultaneously.
Both data streams capture a different aspect of program comprehension. We could separately
examine the fMRI and eye-tracking data. For example, we could analyze a participant’s reading
order linearity, which indicates expertise [Bus+15; PSA20], and match it to the resulting brain
activation.

For our goal of combining the information of both data streams, an eye-tracking-informed fMRI
analysis, we do not only require both data streams in parallel, but need to confidently recognize
and synchronize specific events of program comprehension with spatial precision (e.g., fixation on
a meaningful identifier). Thus, for our purposes, we need, at least, a word-level spatial precision.
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To evaluate whether we can expect such precision from our setup, we pose our second research
question:

RQ 3.2: Is eye tracking sufficiently precise for fMRI studies of program comprehension?

In our experiment to evaluate this new design, we used the same code snippets and display
configuration as in previous studies [Sie+14a; Sie+17]. It is possible that the font sizes and line
spacing were too small to reliably detect fixations at the word level and that we may need to
increase them in future experiments. This optimization is critical, as the display in the fMRI scanner
is restricted in size and resolution. Although possible, scrolling comes with new challenges, as
it may induce movement (which further reduces the number of usable fMRI data sets) and
continuously changes the visual input for each individual task (which makes the eye-tracking
analysis more complicated). An answer to RQ 3.2 helps us understand how to design appropriate
code snippets (regarding text size, line spacing) for our experiment framework.

To be certain that the eye-tracking data are consistently precise throughout an experiment, we
pose our third research question:

RQ 3.3: Is there a drift throughout the experiment?

After initial calibration, eye-tracking accuracy is expected to drift (a spatial imprecision worsening
over time) [Hol+11]. Participant movements challenge an eye-tracker to consistently capture
a precise result [Hol+11]. In conventional eye-tracking experiments in front of a computer, the
calibration can be repeated if the eye-tracking accuracy falls below a threshold [HH02; ERK08].
Such on-demand experiment interruption is infeasible in an fMRI study: The functional measure-
ment has a fixed length and cannot be stopped without the need for a full restart. A possible
split in multiple shorter runs (as done by Floyd et al. [FSW17]) with intermittent eye-tracking
re-calibrations increases the experiment length and thus participant discomfort. Furthermore, it
may decrease fMRI data quality due to participant movements in between the sections.

A common length for fMRI experiments is around 30 minutes, which is above our eye-tracker’s
recommended time for continuous eye tracking without a repeated calibration and validation
procedure. That is, our experiment design requires us to significantly exceed the recommended
eye-tracking time threshold, which raises the question of how precise eye tracking will be towards
the end of an experiment.

Despite these concerns, two aspects of fMRI experiments suggest that a stable measurement
throughout a 30-minute fMRI experiment is possible: First, a participant’s head is fixated during the
fMRI session. Head movement, which is a common cause for impaired eye-tracking accuracy, is
strictly limited. Second, the fMRI protocol includes a rest condition, which displays a fixation cross
in the screen center. We instruct participants to fixate the fixation cross during the rest condition.
The precision and accuracy of the eye-tracker during the periodic fixation-cross condition is a
clear indicator of the eye-tracking stability throughout an experiment. Answering RQ 3.3 will help
us to decide whether we need to split the experiment into multiple sections with intermittent
eye-tracker (re)calibrations.
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3.2.3 Experiment Design

We based our study design on an fMRI study of program comprehension, which we describe in Sec-
tion 4.1 [Sie+17]. Specifically, we have contrasted tasks of bottom-up comprehension, top-down
comprehension, and locating syntax errors. We induced bottom-up comprehension by removing
all semantic information from a code snippet. We facilitated top-down comprehension by famil-
iarizing participants with the code snippets in a training before the fMRI session. To understand
how meaningful identifiers (i.e., acting as beacons [Bro83]) influence top-down comprehension,
we operationalized two versions of top-down comprehension by manipulating how meaningful a
snippet’s identifiers are (e.g., arrayAverage versus a scrambled beebtBurebzr). All top-
down and bottom-up comprehension snippets were part of our previous top-down comprehension
study (more details in Section 4.1.1). The snippet complexity is similar to the previous studies:
7–14 lines of code (LOC), DepDegree of 10–24 [BF10]. In the fMRI scanner, participants had to
compute the output of a specific function call for each snippet.

Experiment Framework For the conducted study, we aimed at developing an experiment frame-
work with an improved experiment design based on the experiences from our previous fMRI
studies. In a nutshell, an fMRI analysis’s success depends on how suitable the chosen conditions
are. fMRI analysis is based on computing contrasts between appropriately different conditions
to carefully exclude cognitive processes from the brain-activation data unrelated to a research
question. For example, in the previous studies, we use locating syntax errors as a control condi-
tion, which we contrast with comprehension tasks to obtain brain activation specific for program
comprehension (e.g., working memory, but not the less relevant visual cortex). Thus, it is critical
that our control condition maximizes contrasts by eliminating all unrelated brain activation, but
also without triggering any comprehension-related brain activation. Furthermore, a rest condition,
in which participants think about programming as little as possible, is necessary to provide a
brain-activation baseline.

However, in our previous study [Sie+17], the data indicated that participants in fact partially
comprehend code when finding syntax errors, and furthermore reflect on the comprehension
tasks during the rest condition. Both reduce the statistical power of our fMRI analysis. Thus,
inspired by Mallow et al. [Mal+15], we attempted to mitigate these problems by adding a new
distractor task. For this purpose, we used a d2 task, which is a psychological test of attention
in which participants scan through a row of letters and decide for each letter whether it is a
d with two marks [BSAL10]. Integrating a distractor task may block snippet-related cognitive
processes during the rest condition and also provide a better control task (as it is not related to
programming).

To integrate simultaneous eye tracking, we made several changes at the technical level. First,
we calibrated and validated the eye-tracker, which was scheduled after the anatomical pre-
measurements (cf. Section 2.4.3.4), but before the functional fMRI scan. Second, we adapted the
used Presentation® software7 scripts to synchronize the eye-tracker and the presented source

7Version 19.0, Neurobehavioral Systems, Inc., Berkeley, CA, USA, https://neurobs.com
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code. We connected the Presentation software and the EyeLink eye-tracker with the PresLink
plugin. Third, we changed the presented source code from text-based to image-based stimuli.
The image-based snippets do not look any different for participants, but make the analysis of
eye-movement data more precise. From a participant’s perspective, there is almost no extra effort
with integrated eye tracking compared to a basic fMRI experiment. The calibration and validation
at the beginning usually take only an extra minute.

We provide more details on the experiment design, including materials and used scripts on our
project Web site.8

3.2.3.1 Experimental Conditions and Task Design

public static void main() {
int result = 1;
int num = 4;

while (num > 1) {
result = result * num;
num--;

}

System.out.println(result);
}

...

1. Top-down

[Beacons]
5. Syntax errors

public static void main() 
int result = 1:
int num = 4;

while (num > 1) {
result == result * num;
num--

}

System.out.println(result);
}

1. 

Rest
...

30 s 30 s 30 s

+

public float arrayAverage(int[] array) {
int counter = 0;
int sum = 0;

while (counter < array.length) {
sum = sum + array[counter];
counter = counter + 1;

}

float average = sum / (float) counter;
return average;

}

2. Bottom-up
2. 

Rest

30 s 30 s

3. Top-down

[No beacons]

3. 

Rest

30 s 30 s

4. Top-down

[Untrained]

4. 

Rest

30 s 30 s

5. 

Rest

30 s

Figure 3.4: Illustration of one (out of five) experiment trials for our study on simultaneous fMRI
and eye tracking.

Our experiment design essentially used the same design as our study on top-down comprehension,
which we present in more detail in the next chapter (cf. Section 4.1, [Sie+17]). The fMRI study
consisted of top-down and bottom-up comprehension tasks as well as a locating syntax-error
task. We asked participants to determine the output of a presented Java function call. Figure 3.4
visualizes one out of five trials. Figure 3.5 shows an exemplary snippet as seen in the fMRI
scanner. We kept the snippets’ computational complexity low (e.g., square root of 9 or 25), so
that participants focus on program comprehension. The participants responded to each task via
a two-button response device.

We asked participants to click the response button during the locating syntax-error task whenever
they found a syntax error. Each snippet contained three syntax errors, which did not require
comprehension of the snippet (e.g., missing semicolon).

44



3.2 Simultaneous Measurement with fMRI and Eye Tracking

Figure 3.5: Example code snippet as visible in fMRI scanner. Task on the top line is in German
and can be translated to “What is the result of”?

3.2.3.2 Study Participants

We recruited 22 students from the Otto von Guericke University Magdeburg via bulletin boards.
Requirements for participating in the study were some experience in object-oriented programming
and the ability to participate in an fMRI experiment (cf. Section 7.5). Every participant completed
a programming experience questionnaire [Sie+14b], which showed that our participants are
a relatively homogeneous group in terms of programming experience. Table 3.1 shows the
participants’ demographic data and their programming experience.

3.2.3.3 Experiment Execution

We invited interested participants to the study. When they arrived at our location, we explained
our study’s goals, the risks of fMRI, and asked for their informed consent. Then, they completed a
programming experience questionnaire and a brief training. We then conducted the fMRI session
and finished with a short post-session interview.

We describe the fMRI scanner configuration in the Appendix (Section 7.1). We used an MRI-
compatible EyeLink 10009 eye-tracker for our study. The EyeLink eye-tracker offers 1000 Hz
temporal resolution, <0.5° average accuracy, and 0.01° root mean square (RMS).

We tracked a participant’s left eye on a display with a resolution of 1280 by 1024 pixel. We
calibrated the eye-tracker with a randomized 9-dot grid, and we conducted a 9-dot validation to

8https://github.com/brains-on-code/simultaneous-fmri-and-eyetracking
9SR Research Ltd, Ottawa, Ontario, Canada, https://www.sr-research.com
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Characteristic N (in %)

Participants 22
Gender Male 20 (91%)

Female 2 (9%)
Pursued academic degree Bachelor 9 (41%)

Master 13 (59%)
Age in years ± SD 26.70 ± 6.16
Programming experience Years of experience ± SD 6.14 ± 4.57

Experience score [Sie+14b] ± SD 2.73 ± 0.75
Java experience [Sie+14b] ± SD 1.93 ± 0.33

Table 3.1: Participant demographics for our simultaneous fMRI and eye-tracking study.

identify possible issues with the calibration. If the error during validation exceeded the EyeLink’s
recommended thresholds, we repeated the calibration and validation process.

We calibrated and validated the eye-tracker after the (anatomical) pre-measurements but before
the functional fMRI scan. Once the eye-tracker was calibrated and validated, we started the
functional fMRI scan. Our Presentation script showed the first code snippet with the first scan
period and triggered the EyeLink eye-tracker to record eye movements. We logged the start time
to both systems (i.e., stimulus and eye-tracking computer). After every stimulus change (e.g.,
from comprehension to distractor task), we added a log with timestamp and stimulus name to the
eye-tracker output. This way, we were able to accurately pinpoint the observed eye movements to
the presented stimulus.

We used a combination of vendor-provided and custom scripts to extract and convert the obtained
eye-tracking data. We also imported the data into Ogama for further analysis [Voß+08]. We
provide the complete workflow, all custom scripts, and raw and processed eye-tracking data on
this project’s Web site.

3.2.4 Results

In this section, we present the results of this study, following our three research questions.

RQ 3.1: Can we simultaneously observe program comprehension with fMRI and
eye tracking?

3.2.4.1 Data Recording

We successfully calibrated, validated, and recorded eye-tracking data for 20 out of 22 invited
participants. We did not gather eye-tracking data from 2 participants, where calibration was
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impossible (once due to Strabismus [Bil03], once due to a technical failure). Due to the delicate
setup of the eye-tracking camera outside the bore, the angle to a participant’s eyes is not ideal.
When calibration initially could not be completed, we had to ask 8 out of 20 participants to widely
open their eyes. This way, we were able to complete the calibration. The validation with widely
opened eyes showed good precision. However, when this request was necessary, and participants
returned to their eyes’ natural state, the eye-tracker was unable to consistently capture the pupil,
which resulted in incomplete eye-tracking data (for all cases less than 30% of recorded frames).
Overall, for 10 out of 20 participants, the eye-tracker could not consistently capture the pupil.

3.2.4.2 Data Quality

An important aspect of eye-tracking data quality is how many frames the eye-tracker captured. In
general, 100% of recorded frames are not realistic because of blinks. This matter is more severe
in an fMRI environment due to participants looking into a bright, projector-backlit screen and the
ventilation with dry air increasing the number of blinks. For 8 out of 20 (40%) participants, the
number of recorded frames was excellent (more than 85%). For 10 out of 20 (50%) participants,
the eye-tracker captured, at least, 65% of all frames. For 8 out of 20 (40%), the eye-tracker captured
less than 10% of all frames.

RQ 3.1
Our study indicates that it is feasible to simultaneously measure program compre-
hension with fMRI and eye tracking. However, the comparatively high failure rate
of eye tracking due to the fMRI environment has to be considered when designing
experiments.

RQ 3.2: Is eye tracking sufficiently precise for our fMRI studies of program comprehension?

While the results of RQ 3.1 show that we can capture simultaneous eye tracking for around half of
our participants, it does not reveal how much we can rely on the eye-tracking data and its spatial
precision. Thus, we investigate the required degree of spatial precision in RQ 3.2. For our goal of
an eye-tracking-informed fMRI analysis, it is critical not only to record eye movements (e.g., to
analyze generic metrics such as fixation counts or average saccade lengths), but also to provide
eye-tracking data with high spatial precision (e.g., to detect fixation on meaningful identifier).
When eye tracking is successful, are the spatial errors small enough to confidently detect fixations
on an individual identifier? To obtain an accurate result, we only analyze the eye-tracking data for
all suitable participants (i.e., at least 65% of recorded frames, n = 10) for RQ 3.2.

To confidently detect fixations on a single identifier, we need appropriately small spatial errors.
For our stimuli, one line of code was 40 pixels high and a single character around 20 pixels wide.
Thus, we would require a spatial error of smaller than 40 pixels.
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Figure 3.6: Visualization of Inner, 25-px Extra, and 50-px Extra area-of-interests (AOIs) around the
task identifier of Figure 3.5 for the AOI analyses of RQ 3.2.

Inner AOI 25-px Extra AOI 50-px Extra AOI

Fixation Count 1 266 (46%) 2 244 (81%) 2 772 (100%)
Fixation Length (sec) 2 215 (48%) 3 885 (83%) 4 661 (100%)

Table 3.2: Summary of all fixation counts and lengths within AOIs around task identifiers. Number
in brackets is the overall percentage

3.2.4.3 Calibration Validation

Initially, we conducted a calibration validation to estimate the spatial error, which showed an
average error of 0.99°, or 22 pixels (horizontally) and 26 pixels (vertically). The estimated
horizontal spatial error of 22 pixels during calibration validation indicates that the eye-tracker is
precise enough to detect fixations on words, but not on single characters. The estimated vertical
spatial error of 26 pixels during calibration validation is problematic for us as it is close to the
used line height of 40 pixels. With such a spatial error, we might erroneously classify a fixation on
an incorrect code line.

The calibration validation only estimates the spatial error at the beginning of the experiment. The
fMRI block design prohibits us from repeating the calibration validation multiple times during
the experiment. Because the experiment includes a rest condition with a centered fixation cross
around every minute, we can use this condition as a continuing spatial-error estimation throughout
the experiment. Our analysis shows that if the eye-tracker consistently captured frames, spatial
precision was fairly stable throughout the full experiment of 30 minutes.

3.2.4.4 AOI Analysis: Overview

To analyze whether the assumed vertical spatial imprecision can lead us to incorrectly classify
a fixation, we conducted an area-of-interest (AOI) analysis on the task description at the top of
each presented code snippet. We added three AOIs with different heights around the instructed
function call, which we visualize in Figure 3.6. The inner AOI includes only the line of the function
call in question, while the extra AOIs span, respectively, 25 and 50 vertical extra pixels. Because
there is nothing above or below the task line, the eye-tracker should not record more fixations
in the extra AOIs than the inner AOI. Assuming there is no human error and no technical spatial
error, all fixations should be on the inner AOI directly on the task line. Every fixation on one of
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Figure 3.7: Fixation count for each AOI and code snippet

Figure 3.8: Fixation count for each AOI and participant
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Figure 3.9: Distribution of vertical distance from fixations on task identifier. indicates
current line height. indicates suggested line height

the extra AOIs could be later interpreted as a fixation on an incorrect line, and thus on a wrong
identifier. We applied the same AOI sizes to all 20 comprehension snippets and, again, analyzed
all eye-tracking data sets with, at least, 65% of recorded frames (n = 10).

In Table 3.2, we summarize the results of the AOI analysis. Over all comprehension snippets and
participants, there are 1266 fixations, spanning, in total, over 2215 seconds on the inner, correctly
sized AOI. On the two extra AOIs, which may lead to incorrectly classified fixations, there are,
respectively, 2244 and 2772 fixations. Thus, only less than half of the fixations around the task
identifier are actually detected on the actual task identifier line. 978 extra fixations are detected
within 25 pixels, and another 528 fixations within the next 25 pixels. That is, at the used line
height of 40 pixels, we cannot confidently detect fixations on an identifier level, because a vertical
spatial error of 50 pixels is too high.

3.2.4.5 AOI Analysis: Snippets

To mitigate possible outliers distorting our AOI analysis result, we further divided the data for
each comprehension snippet. In Figure 3.7, we show the number of fixations on all three AOIs
for each snippet. While there are large differences in absolute fixation count, the relative sizes
between the three AOIs is similar. We can conclude that it is a systematic error independent of
the appearance of each individual snippet.
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3.2.4.6 AOI Analysis: Participants

In the next step, we separately analyzed each participant to eliminate the chance that an individual
participant distorts our AOI analysis result. Figure 3.8 shows that there are significant differences
between our participants regarding fixation count and eye-tracking accuracy. Nevertheless, even
for participants for whom we captured accurate eye-tracking data, we observe a notable amount
of vertical spatial error. This supports the conclusion that 40 pixel line height is insufficient to
prevent the incorrect classification of fixations.

3.2.4.7 Optimal Line Height

Lastly, after all evidence points toward a need for larger than 40 pixel high lines, we need to find the
optimal line height. Larger font size and line spacing would create more vertical distance between
lines and would let us be more confident when detecting fixations. However, with increasing the
line height, the amount of code that we can display on the screen will be reduced (as we currently
do not permit scrolling). To find a balance, we analyzed the vertical distance from each fixation
around the task identifier. The maximum vertical distance considered in this analysis was three
line heights in each direction (i.e., 120 pixels above and below the center of the identifier).10 We
analyzed the same 10 participants with more than 65% of recorded frames. Figure 3.9 reveals
that the current line height catches many fixations, but there is a significant number of detected
fixations right below and above the line. Based on this result, if we would increase the line height
and spacing to 80 pixels, we could be confident that fixations are classified on the right line.

RQ 3.2:
Without correction, an estimated vertical spatial error of 30–50 pixels is too high
with the used line height of 40 pixels to confidently detect fixations at the level of
individual identifiers. An increase to 80 pixel line height would allow us to do so.

RQ 3.3: Is there a drift throughout the experiment?

To answer RQ 3.3, we analyzed the spatial error from the fixation cross during each of the 25 rest
conditions throughout our experiment. To obtain an accurate picture of the drift over time, we
included only participants for which the eye-tracker could consistently track the eyes (≥85%
of frames, n = 8). We excluded the first half second of fixations during the rest condition, as
participants were still concentrated on the previous task and needed some time to move their
gaze to the fixation cross. We also excluded all fixations off the screen (e.g., participants looking
above the screen at the eye-tracking camera) or with an absolute spatial error of larger than 300
pixels (e.g., participants looking around).
10Note that the increased fixations of 80 pixels and more below the identifier are due to fixations on actual code. For

some snippets, there was only an 80-pixel distance between task instruction and code.
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Figure 3.10: Spatial error of rest condition’s fixation cross over time. Standard deviation is shown
as shades.

Figure 3.10 shows the spatial error for the x-axis and y-axis over time. The observed spatial error
based on the fixation cross largely confirms the estimated error of our validation (cf. RQ 3.2). A
horizontal spatial error of around 25 pixels substantiates previous estimates. The vertical spatial
error of initially around 55 pixels is higher than the general validation error, but consistent with
the center middle’s validation error (average error of 47 pixels). Overall, the spatial error is slowly
growing, but mostly stable throughout the experiment. The estimated spatial error is slightly
worse at the end of the experiment, but the eye-tracking data are still usable.

Figures 3.11 and 3.12 respectively show the spatial errors on the x-axis and the y-axis for each
participant over time. For most participants, the horizontal spatial error is stable throughout the
entire experiment. We believe some individual outliers (e.g., rest condition 15) can be attributed
to participants looking around and not due to technical errors. However, the vertical y-axis reveals
a different result. For some participants, the spatial error is consistently small enough to provide
a useful data set. Nonetheless, for some participants, we observe a large spatial error of more
than 100 pixels from the beginning, which was not evident during the calibration validation.

RQ 3.3:
While there is a drift throughout the experiment it is negligibly small compared
to the general spatial error. A split of an fMRI session in multiple sections with
intermittent re-calibration is thus not required.
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Figure 3.11: Spatial error on x-axis over time for 8 participants with complete eye-tracking data

3.2.5 Discussion

Having presented our results, we now present our lessons learned and discuss implications from
the first study using simultaneous fMRI and eye tracking.

3.2.5.1 Eye-Tracking Optimizations

When we fine-tuned the eye-tracking setup in several pilot sessions, we knew that a perfect 100%
output of the eye-tracker is out of reach. Nevertheless, that the eye-tracker could only reliably
capture eye movements for 40% of our participants was unexpectedly low. After the study was
conducted, we investigated further optimizations of the eye-tracking camera vendor, but did not
find any substantial improvements.

In a later study, we investigated a fall-back solution for participants who show problems during
calibration with the EyeLink 1000. We used a video-based MRC 12M camera11 that is directly
positioned on the head coil. Depending on the position, it can either record facial expressions
(cf. Figure 3.13) or provide a close-up view of one eye. With an initial calibration, we can roughly
infer the eye-gaze position. It does not provide the same accuracy, precision, or temporal resolution
as the EyeLink eye-tracker, but appears to be sufficient for our AOI-based analyses.

In addition to the low recording success rate, our data showed a significant spatial error, especially
on the vertical axis. In all subsequent fMRI studies, we used a refined calibration procedure of
a 13-point calibration. We saw a small improvement, because spatial errors are smaller around
the calibrated points [Hol+11]. This way, we were able to increase spatial precision. Moreover,
11MRC Systems GmbH, Heidelberg, Germany, https://www.mrc-systems.de
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Figure 3.12: Spatial error on y-axis over time for 8 participants with complete eye-tracking data

we decreased the validation thresholds when we accept a calibration as successful to further
improve spatial precision [Hol+11].

While the refinements in our setup and calibration may improve spatial precision, we still saw
the need for optimizing the display of our code snippets. A significant point of action is the font
size and line spacing. When we designed our study, we based it on our previous successful fMRI
study design, which did not optimize the code-snippet display for the eye-tracking modality. In
follow-up studies, we maximized fonts and line spacing within a reasonable size (without the
need for scrolling). This way, we mitigated inevitable spatial errors and be more confident when
detecting fixations, for example, on concrete identifiers.

In our study, the drift estimated with the fixation cross appears small enough to reject the need
to split the fMRI run into multiple sessions. Nevertheless, if precise eye tracking is necessary
(e.g., fixations are used as an input method), an intermittent re-calibration and validation may be
effective.

3.2.5.2 Challenges and Benefits

Eye tracking in an fMRI scanner is challenging in multiple respects. Due to the suboptimal angle
of an eye-tracker outside the bore, it is sensitive to half-closed eyes, which leads to incomplete
data sets. In general, the same eye-tracking camera shows more accurate results outside of
the fMRI environment [Han+16]. The increase of spatial errors in comparison to conventional
eye-tracking experiments has to be kept in mind when designing code stimuli (and their font sizes,
line paddings, etc). Our analysis provides a rough orientation on suitable parameters.

Our study also exemplified a typical problem of multi-modal experiments. Both of our measures,
fMRI and eye tracking, have exclusion rates, where some participant’s data cannot be used, for
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Figure 3.13: MRI-compatible video camera of a participant’s face. Participant is wearing optional
MRI-compatible glasses. Alternative angles, such as direct focus on the eye, are
possible.

example, due to motion artifacts (fMRI) or half-closed eyes (eye tracking). In the presented study,
only 17 of 22 (77%) fMRI data sets and 10 of 20 (50%) of eye-tracking data sets were usable.
When considering both measures, only for 7 of 22 (32%) participants we obtained a complete
data set (i.e., fMRI and eye-tracking data are both usable). Thus, for simultaneous recording (e.g.,
an fMRI study that uses eye tracking as input), this has to be kept in mind during planning. We
may need to double the number of participants.

However, we believe the higher effort is worth it, because complete data sets, including both
fMRI and eye-tracking data, provide remarkable insights. We can test individual hypotheses, for
example, whether participants’ fixations on a beacon (detected with eye tracking) is linked to a
semantic recall (increased brain activation detected with fMRI). Specifically, we found the effect
of increased brain activation in BA21 from our previous study again providing evidence for our
hypothesis [Sie+17]. By adding simultaneous eye tracking, we were now also able to detect prior
fixations on beacons. Initially, we replayed the eye-tracking data with Ogama to qualitatively
detect fixations on task identifiers. Then, we used an AOI to identify fixations specifically for each
participant and snippet. We fed the detected fixation timestamps into our fMRI analysis for a
more fine-grained result. Thus, eye tracking is the basis to advance from a coarse block-based
fMRI analysis to a more detailed event-related analysis where we can distinguish fine-grained
effects of program comprehension (such as semantic recall after fixation on beacons, as we
discuss in Section 3.3.2). Overall, we were able to confirm our hypothesis of semantic recall in
BA21 in this study.

Simultaneous fMRI and eye tracking offers possibilities beyond testing particular hypotheses,
such as understanding programmers’ behavior better. For example, Figure 3.7 shows that, for all
trained top-down comprehension conditions, participants fixate more often on the task instruction,
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revealing that they focus more on the result computation than comprehending a code snippet.
Thus, further supporting how beacons ease program comprehension so that participants can
quickly shift their attention on result computation. Moreover, we can generate new hypotheses by
exploring the data (e.g., mental loop execution leads to increased working memory activation
in BA6) [Pei+18b]. Both measures combined offer a powerful way to observe and understand
program comprehension, which we describe in further detail in Section 3.3.2.

3.2.5.3 fMRI Experiment Framework

Overall, our study showed that simultaneous fMRI and eye tracking is possible, but challenging.
We demonstrated that it is feasible and already provides insightful data and therefore concluded
that our fMRI experiment framework is within reach. Based on our study’s experience, we can
encourage future fMRI studies to also include eye tracking as it can notably increase insights
from a study.

Nevertheless, there is a large extra effort for the principal investigator to design an fMRI study
with integrated eye tracking. The selection of an appropriate eye-tracking solution, technical
setup, stimuli preparation, and implementation of an analysis pipeline is time-consuming. To
support future endeavors of the research community, we share all of our materials and scripts.

3.2.6 Threats to Validity

Construct Validity We operationalized eye-tracking precision by identifying fixations on code
stimuli from previous fMRI studies. It is likely that a study specifically targeted at testing eye
tracking in an fMRI environment, say with only small visual inputs all across the screen, would have
lead to a more reliable and accurate answer. However, the results may not have been applicable
to our study purposes (e.g., detecting fixations on code identifiers, finding the correct line height
of code).

A post-processing correction of eye-tracking data is somewhat typical, where the fixations are
manually changed to fit the stimuli. This correction is often done by hand [Coh13], even though
automatic approaches are being evaluated [PS16]. We did not apply such correction, as it may
substantially influence the results and insights. However, it is possible that the imprecision
explored in RQ 3.2 can be reduced with such a correction, and thus our result, a recommended
line height of, at least, 80 pixels, is excessive. This is a first estimation based on our data, and it
may be reduced in future studies.

Internal Validity The nature of controlled fMRI program-comprehension experiments leads to a
high internal validity, while reducing external validity [SSA15]. For the presented technical analysis,
we only see the number of participants (n = 22) as a threat to internal validity, because the
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eye-tracking data quality is highly dependent on an individual and we may not have captured an
accurate representation of the population.

Statistical Conclusion Validity The analyses for RQ 3.2 and RQ 3.3 were conducted on a single
area/point of the screen (identifier on top of the screen and fixation cross in the middle center,
respectively). While the spatial precision slightly changes throughout the screen, we estimate the
chances for a significantly different result on other screen parts as low.

External Validity We conducted the fMRI study at a single location. Another environment (e.g.,
different fMRI scanner or eye-tracking solution) may lead to better (or worse) results. For example,
eye tracking built-in to the head coil12 may offer higher precision than a long-range camera-based
eye-tracker outside the scanner bore, but in turn may decrease fMRI data quality. We later used
an additional MRI-compatible video camera13 mounted on the head coil to observe participants’
eyes.

3.2.7 Related Work

Program comprehension is an established research field in software engineering. Nevertheless,
neuroimaging and psycho-physiological measures are still novel methods in our field. Closest to
our study is the study by Duraes et al., who observed debugging with fMRI and eye tracking [Dur+16].
It is unclear, though, what kind of eye-tracking data were recorded, and they did not appear to
use the eye-tracking data. At the time, all other fMRI studies only observed brain activation
data [Sie+14a; Sie+17; FSW17].

After our experiment framework was published, several studies started to use simultaneous
fMRI and eye tracking. Specifically, Castelhano et al. investigated experts during debugging and
(separately) analyzed fMRI and eye-tracking data [Cas+19]. Huang et al. first investigated mental
rotation and data structure manipulation [Hua+19] and then code review [Hua+20], both with fMRI
and eye tracking. In a follow-up paper, the team supported our view of the potential upside of a
multi-modal experiment framework [Sha+20a].

3.2.8 Conclusion

Observing programmers with simultaneous fMRI and eye tracking opens the door to a more
holistic understanding of program comprehension. In this section, we reported that simultaneous
measurement of program comprehension with fMRI and eye tracking is challenging, but promising.
In the first study of its kind, we were able to gather simultaneous fMRI and eye-tracking data,
12For example, Real Eye™, Avotec, Inc, http://avotecinc.com
13MRC Systems GmbH, Heidelberg, Germany, https://www.mrc-systems.de
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although the overall success rate was relatively low. We found that the eye-tracker’s spatial
imprecision in the challenging fMRI environment can be controlled sufficiently to confidently
detect fixations on identifiers if we design snippets properly. The drift throughout the experiment
was so small that it is not an issue for our studies.

3.3 Toward Multi-Modal Data Analysis of Program
Comprehension

So far, we have investigated simultaneous fMRI and eye tracking, and with the latter limited to its
eye-gaze data. In this section, we integrate further eye-tracking measures as well as additional
psycho-physiological modalities to our experiment framework.

3.3.1 Advanced Eye-Tracking Measures during an fMRI Study

First, we explore whether pupil dilation and blink rates offer insights in studying program compre-
hension. To this end, we re-analyze the collected eye-tracking data from the previous section. Our
long-term goal of observing pupil dilation and blink rates in addition to brain activation via fMRI is
to detect cognitive events of smaller granularity. While fMRI allows us to observe programmers’
cognitive load on a larger scope (e.g., difficulty to comprehend a Java method), observing the
effect of comprehending individual lines may currently be impossible with fMRI. The temporal
resolution is 1 to 2 seconds, which means that we may miss short-lived cognitive events, such as
a programmer stumbling over an unexpected implementation of a single line. We aim to integrate
pupil dilation to detect exact lines that cause programmers to struggle. Furthermore, pupil dilation
and blink rates may offer additional measures to observe cognitive load and, as such, can help us
to explain some of our fMRI results.

3.3.1.1 Objectives

The literature from psychology and cognitive science suggests that pupil dilation and blink rates
may be valuable measures in future studies of program comprehension (cf. Section 2.3.1.2). To
ensure robust results, we focus on participants with stable and accurate eye tracking.

Our goal for the exploratory analysis is to evaluate the following two research questions:

RQ 3.4 Can we consider pupil dilation and blink rates as a measure in future experiments?

RQ 3.5 Do we find the expected correlation between cognitive load and pupil dilation?
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Figure 3.14: Pupil dilation over time for each condition. A large drop at the beginning of each
task is a biological reaction due to the increased brightness of the screen.

3.3.1.2 Pupil Dilation

For comparison across participants, we normalized the pupil-dilation data for each participant to
zero mean and unit standard deviation (z-score).

Screen-Brightness Correction Any analysis of pupil-dilation data assumes that a change in
pupil dilation is only caused by a mental state transition and not by the environment (e.g., ambient
light). The environment around the fMRI scanner ensures that the ambient light does not change.
However, we present code snippets to the participants via a small plastic screen on which the
stimuli are projected. To reduce eye strain, we use white text on a black background. As our
snippets are not uniform in length, each snippet is different in its perceived brightness. Thus, the
snippets may influence pupil dilation by their brightness, independent of the cognitive load change.
This effect is clearly visible in Figure 3.14, where the adjustment from a dark rest condition to a
brighter comprehension condition is apparent: The pupil dilation briefly drops at the beginning of
the comprehension conditions as the pupils respond to the brighter light.

Because a standardized brightness of the stimuli is infeasible for us (i.e., snippets will generally
differ in length), we will need to correct the baseline pupil dilation for each snippet. Figure 3.15
shows that there is a general trend to a lower pupil dilation with brighter snippets. We computed
each snippet’s brightness variable as the relative luminance of the RGB color space for each
image (as an average of each pixel) [AF96]. The relative luminance is calculated based on the
luminosity function, in which each color is weighted dependent on the human’s perception (e.g.,
green color is perceived as much brighter than blue light):

Relative luminance = 0.2126 · red + 0.7152 · green + 0.0722 · blue

59



3 A Framework for fMRI Studies of Program Comprehension

Figure 3.15: Correlation between snippet brightness and measured pupil dilation

Figure 3.16: Visualization of pupil dilation, gaze position on x-axis and y-axis of participant 1
during the first minute of the experiment.

The r2 = 0.64 value shows that the screen brightness largely explains the difference in baseline
pupil dilation. However, there is still 36 % of variance that is not explained by screen brightness,
which could include comprehension strategy (top-down versus bottom-up), individual difficulty
comprehending a code snippet, or general error.

Eye-Movement Correction So far, we have considered the average pupil dilation throughout a
task. To extract the maximum value from pupil dilation, we would like to evaluate pupil dilation
changes within a task. Brisson et al. have shown that pupil size is overestimated for rightward
and upward gaze and underestimated for leftward and downward gaze for our used EyeLink 1000
eye-tracker [Bri+13]. They recommend proceeding with methodological caution. Ideally, tasks
are used that do not require any eye movement. However, this is infeasible for us, as program
comprehension requires programmers to quickly move across the screen. Thus, long and fast
saccades are necessary and common. The influence of eye movements on the pupil dilation
questions how much we can trust the data, even if corrected for screen brightness.

In Figure 3.16, we show a pupil-dilation chart of an individual participant across a few tasks. A
few significant spikes are noticeable (especially at the rest condition). The eye-tracker’s manual
warns that a fast change in pupil angle can lead to a flawed pupil dilation measurement. Based
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Figure 3.17: Visualization of normalized pupil dilation and corrected pupil dilation [Bri+13] of
participant 1 during the first minute of the experiment.

Condition Perceived Pupil Blink Blink
Brightness Dilation Rate Duration

Top-Down Comprehension (Beacon) 3.01 −0.49 12.0 245
Top-Down Comprehension (No Beacon) 3.07 −0.41 11.6 341
Top-Down Comprehension (Untrained) 2.09 −0.25 7.6 346
Bottom-Up Comprehension 2.13 −0.07 8.4 340
Locate Syntax Errors 1.89 −0.11 10.4 322

Distractor Task (d2) 2.15 0.16 10.1 327
Rest 0.01 0.31 7.9 490

Table 3.3: Mean perceived brightness, pupil dilation (z-score), blink rate (count/minute), and blink
duration (ms) for each experiment condition.

on the data, we confirm that fast saccades impair the pupil-dilation accuracy. In Figure 3.16, it is
visible that pupil dilation spikes correlate with eye movements, particularly on the vertical axis
(e.g., at time 520 and 550). Movements on the x-axis, that is, leftward and rightward gazes, also
seem to influence our pupil-dilation data. For example, the pupil dilation in Figure 3.16 for the
distractor attention tasks appears (e.g., between time 320 and 480) to rhythmically move with the
eye gaze. Thus, we cannot fully trust an individual raw data point of pupil dilation as it may be
influenced by prior eye movements.

For future analysis, we would like to correct the pupil dilation for such eye movements. We
evaluated the correction algorithm from Brisson et al. [Bri+13] to further improve the accuracy of
the pupil-dilation data. However, when we applied the correcting algorithm to the previous case of
participant 1, we observed a worsening of the estimated pupil dilation: the pupil-dilation offsets
appear even larger in rhythm to eye movements (cf. Figure 3.17).

As we only consider average pupil dilation across an entire task as an potential approximation of
cognitive load for the following sections, we did not apply the correction algorithm.
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Pupil Dilation Blink Rate Blink Duration

Code Complexity Metric: DepDegree 0.22 0.15 0.09
Code Complexity Metric: Halstead 0.38 0.07 0.04

Task Correctness 0.00 0.01 0.05
Response Time 0.01 0.12 0.00

Table 3.4: Correlation matrix (in r2) of observed pupil dilation for each snippet’s code complexity
and participant behavior.

Task Condition In a later chapter, we present an fMRI study that shows top-down comprehension
eases programmers’ cognitive load (cf. Section 4.1, [Sie+17]). Can we support this finding purely
based on pupil dilation? In Table 3.3, we show the average pupil dilation across all participants
and tasks per condition. Top-down comprehension with or without a beacon reveals a difference
in pupil dilation, even though the screen brightness is almost identical. This difference hints at
participants using a beacon for an eased comprehension of a snippet. Bottom-up comprehension
shows a slightly higher pupil dilation than untrained top-down comprehension, which may be due
to the additional mental effort necessary to comprehend a snippet. The d2 attention task has a
much higher pupil dilation, even though the brightness is similar to the bottom-up snippets. None
of these findings are statistically significant as there were only five trials for each condition. As
the other conditions are unbalanced in brightness, and we did not find a reliable way to correct
for the screen brightness yet, we do not compare them.

Code Complexity Metrics Next, we correlated code complexity, measured in DepDegree [BF10]
and Halstead complexity metrics [Hal77], with the observed pupil dilation. We show the results
in Table 3.4. They indicate that, with increasing code complexity, the pupil dilation decreases,
but only explains a part of the variance. We also must consider that code complexity is generally
correlated with snippet brightness (r = 0.56), as longer snippets tend to be more complex. It
appears that code complexity actually increases pupil dilation (when controlling for screen bright-
ness), a result that is plausible based on the available neuro-scientific literature. In Section 5.1,
we present a dedicated fMRI study to evaluate a possible relationship of program comprehension
and code complexity metrics.

Task Difficulty Instead of considering the objective code complexity, we may observe a more
significant difference in subjective difficulty. To this end, we correlated the averaged pupil dilation
with the task correctness and response time. The results show no correlation (cf. Table 3.4).

Stepwise Regression Finally, we conducted a stepwise regression to select the significant
variables that explain the variance in pupil dilation. The result revealed that screen brightness
(p < 0.001) and response time (p < 0.1) significantly influence pupil dilation.
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3.3.1.3 Blink Rates and Durations

Next, we analyzed the blink rates and blink duration (cf. Section 2.3.1.2). Our experiment in the
fMRI scanner lasted for around 28 minutes. There was no notable increase in blink rates towards
the end of the experiment. Fatigue does not seem to have set in after 28 minutes yet, and eye
movements do not influence blinks, thus we can analyze the blink rates without correction.

Task Condition In Table 3.3, we show the average blink rate and blink duration for each task
condition. We cannot identify any clear-cut patterns. However, it is notable that top-down
comprehension with a beacon has a shorter average blink duration than any other comprehension
task.

Code Complexity Metrics We correlated the observed blink rate and duration with code com-
plexity, again measured in terms of DepDegree and Halstead complexity metrics. The results
presented in Table 3.4 indicate that, with increased code complexity, the blink rate decreases,
but the effect explains only a minor part of the variance. Blink duration has the same negative
correlation and explains less variance.

Task Difficulty We also correlated the observed blink rate with the task correctness and response
time. We found a weak negative correlation between blink rate and task correctness. The same
holds for blink duration (cf. Table 3.4).

3.3.1.4 Conclusion

We set out to include pupil dilation and blink rates as promising measures to increase the reliability
of measuring program comprehension with fMRI. However, our exploratory analysis showed that,
so far, pupil dilation largely depends on screen brightness and that blink rates and blink durations
do not seem to follow a pattern, which leads us to answer our research questions:

RQ 3.4
We generally could consider pupil dilation and blink rates as a measure for program
comprehension, but need to find a way to correct for the influence of different
snippet lengths on pupil dilation.
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RQ 3.5
The data indicate that for different snippet versions with identical screen brightness,
the pupil dilation varies (e.g., depending on meaningfulness of identifiers), which
suggests an effect of cognitive load on pupil dilation.

In conclusion, our analysis confirms our belief that there is value beyond the usual eye-gaze-based
analysis of eye-tracking data. Pupil dilation and blink rates may provide fascinating insight for
studies of program comprehension. However, before we can use them in an fMRI scanner, we
need to find ways to control for environmental factors, such as screen brightness, and develop
appropriate analyses.

3.3.2 Conjoint Analysis of Multi-Modal Data

In the previous sections, we explored that simultaneous measurement of programmers with
fMRI and eye tracking offers detailed insight toward a more holistic understanding of program
comprehension. We described that integrating simultaneous and accurate eye tracking into our
fMRI experiment framework is challenging on a technical level. We resolved the method synchro-
nization details and successfully conducted a full study, which revealed difficulties regarding the
eye-tracking data quality (cf. Section 3.2).

However, acquiring simultaneous brain and eye-movement data is only half the problem: The
next challenge is to actually apply fruitful analyses to the two data streams. They could be
viewed independently (e.g., observe top-down and bottom-up comprehension and separately
compare brain activation strength and fixation count). However, in our view, the true value lies in
integrating observations from the two separate data streams (i.e., a conjoint analysis of both
data streams).

An analysis of simultaneous fMRI and eye tracking is challenging, because the two data streams
have fundamentally distinct characteristics. They are not just different in temporal resolution,
but fMRI relies on the haemodynamic response, which means observed brain-activation data are
delayed by around five seconds [Cha+93]. A conjoint analysis of instant eye-tracking data and
delayed fMRI data will need to take this into account.

In our view, the future of program-comprehension research will exemplify this struggle of cre-
ating valuable analysis as we are moving toward multi-modal experiments. While this section
focuses on combining fMRI and eye-movement data, it also applies to our prior expansions of
our fMRI experiment framework. Specifically, we experimented with recording pupil dilation and
spontaneous blink rates (Section 3.3.1) and physiological data (i.e., heart rate, respiration, and
electrodermal activity, Section 3.5.1), which also acts as an indicator of cognitive load. Thus, we
will have numerous characteristically different measures observing the same cognitive process
in the upcoming future. We will make the first step into aligning them in the next section for our
multi-modal data exploration tool (cf. Section 3.4).

We again reconsider the data from our previous fMRI experiment with simultaneous eye tracking
presented in Section 3.2.
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3.3.2.1 Strategies for Data Analysis

As far as we are aware, there are no established procedures to conjointly analyze simultaneous
fMRI and eye-tracking data. In this section, we present three possibilities on how we may benefit
from simultaneous fMRI and eye-tracking data.

Informed fMRI Analysis We have the vision of an eye-tracking-informed fMRI analysis for
program-comprehension studies. Currently, a comprehension task of 30 to 60 seconds is viewed
as one black box of program comprehension. However, it actually consists of many smaller
phases and cognitive subprocesses with varying intensity. In such eye-tracking-informed fMRI
analysis, we would like to use eye tracking to gather information on the programmers’ behavior and
then feed it into a general linear model (GLM) analysis of the fMRI data. This way, we can unlock
the black box of program comprehension. The fMRI data analysis could be more fine-grained and
allow us to separately evaluate phases of, for example, identifier recognition, loop execution, and
result computation. Such detailed analysis may help us to understand the brain activation for
each phase in more detail, and in the long-term, make fMRI experiments more valuable to our
community.

Hypothesis Generation We can use the two data streams to observe a programmer’s behavior
to generate new hypotheses. Investigating programmers individually with fMRI or eye tracking
already offers an interesting perspective on programmers’ minds. If we can simultaneously
explore both data sets, for example, by a real-time video replay, we may generate new hypotheses
of program comprehension. An intuitive exploration of fMRI and eye tracking and, if applicable,
also behavioral data, pupil dilation, and physiological data, would allow us to delve into many
aspects of program comprehension, such as stress levels. We show an implementation toward
this goal in Section 3.4.

Hypothesis Testing A further possibility is to analyze the data to test specific hypotheses and
cover another step in the scientific method. Hypothesis testing is essential, as each measure
offers unique insights into program comprehension. For example, we initially found no significant
effect of meaningful identifiers in our study on top-down comprehension when analyzing the
averaged brain activation strength across the entire 30-second task length (cf. Section 4.1,
[Sie+17]). However, Figure 3.2 illustrates a stronger activation in a language-processing brain
area between 5 and 10 seconds after task onset, which fits the typical delay of the haemodynamic
response [Cha+93]. With simultaneous eye tracking, we could evaluate our hypothesis that
programmers fixate on a meaningful identifier and recall a matching programming plan.

In general, we may detect specific events with eye tracking indicating particular behavior (e.g.,
mentally executing a loop) and use that as starting point for the resulting haemodynamic response
of brain activation. Such individual analysis of cognitive (sub)phases of program comprehension
would allow us to test more detailed hypotheses on the programmers’ brains inner workings.
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Figure 3.18: Mockup of tool user interface for data exploration

3.3.2.2 Envisioned Tool Support

After presenting our vision for multi-modal experiments and, more specifically, our ideas for
conjoint analyses of fMRI and eye-tracking data, we would like to stress a clear-cut need for
proper tool support for each of the three analyses. Ogama is an established eye-tracking analysis
tool [Voß+08], which provides capabilities for replaying recorded data, heat maps, area-of-interest
(AOI) analysis, and statistical analysis (e.g., fixation counts, saccade lengths, regressions). We
see the need for a dedicated open-source tool that similarly sets the base for simultaneous fMRI
and eye-tracking experiments and, in the long term, for multi-modal experiments of program
comprehension.

We see the need for two different modes: Data exploration and data analysis, which we describe
further in the following paragraphs.

Data Exploration To support hypothesis generation based on exploring observations of fMRI
and eye tracking, the envisioned tool needs to provide a compelling data-exploration view. To
implement such a view, the tool should be able to import the brain activation data, either as raw
data or pre-processed, and the eye-tracking data. The tool would need to take the haemodynamic
response, which delays the brain activation by several seconds, into account. We cannot directly
map the instant eye-tracking observation to the delayed brain activation.

Moreover, the exploration view should be configurable and provide different views. For example,
on the eye-tracking side, it may offer a scanpath or fixation view. On the brain-activation side, it
may offer a whole-brain activation view or a focus on specific regions-of-interest. We created a
mock-up for our vision in Figure 3.18, which presents eye-tracking replay (left side), whole-brain
activation (top-right), and a selected subset of brain areas (bottom-right).
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Figure 3.19: Screen of multi-modal annotation tool ATLAS [MBS12]

While we focused in this section on eye-tracking and brain-activation data, future studies will
move toward multi-modal experiments. We experimented with other data streams: pupil dilation,
spontaneous blink rates, and physiological data (heart rate, respiration, electrodermal activity).
We potentially may integrate simultaneous EEG as well. Thus, in the long-term, the tool should be
further generalized beyond fMRI and eye tracking. This way, it would be flexible and support any
multi-modal view of the data, depending on the collected data set.

Data Analysis The second mode of the tool should cover hypotheses testing and informed
fMRI analysis. To support these analyses, we split the requirements in two parts: (manual or
automated) data annotation and informed fMRI analysis.

Manual Data Annotation To conduct an eye-tracking-informed fMRI data analysis, we would
need to annotate eye-tracking events, such as a fixation on a meaningful identifier or mental
loop execution. In the first stage, we could manually detect eye-tracking events. The proposed
tool should allow us to manually annotate data streams. We envision a user interface similar to
ATLAS, which is a tool for annotating multi-modal data streams of human-computer interaction
experiments [MBS12]. Figure 3.19 shows ATLAS with multiple data streams. Initially, the tool
may only support fMRI and eye tracking, but eventually could be extended to support multi-modal
annotation (e.g., behavioral or physiological data).

Automated Eye-Tracking Event Detection The manual detection of events in the first stage
introduces human error and inconsistencies to the data annotation. Thus, in the long term, we
would prefer to automatically detect eye-tracking events. We would need to describe the event
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criteria in a flexible manner and store them in a database. Similarly, much like Ogama allows
researchers to define and store AOIs, we would need to describe complex eye-tracking events
(e.g., fixation for at least half a second on an AOI with a meaningful identifier). As our experiments
do not permit scrolling, we can still use static AOIs. Once we extend our studies to allow scrolling,
and thus the code display is dynamic, we may need to implement an automated detection of AOIs
similar to Barik et al. have done [Bar+17].

Informed fMRI Analysis An important feature of the envisioned tool would be connecting the
annotated eye-tracking data to an fMRI data analysis tool. For example, the tool could feed
the insights as a parameter input into nipype, a Python-based neuroimaging data processing
tool [Gor+11]. Nipype could, with the event-enriched data, create an individualized GLM model
and enable a thorough analysis of the fMRI data.

3.3.2.3 Conclusion

In this section, we have discussed why a conjoint analysis of fMRI and eye-tracking data is
insightful but also challenging. Once we can conjointly analyze both data streams, we may
generate new hypotheses for program comprehension, test existing hypotheses, and eventually
create a more holistic theory of program comprehension.

To properly support all these goals, we see the need for extensive tool support to facilitate a
more fine-grained analysis of brain activation and to increase the fMRI studies’ value on program
comprehension. In the following section, we present our prototype for such tool support.

3.4 Tool Support for Multi-Modal Data Exploration

After outlining the need for tool support to explore and analyze multi-modal data in the previous
section, we present our open-source prototype implementation CODERSMUSE. The prototype is
designed to allow researchers a synchronous exploration of all relevant data streams. Specifically,
in addition to brain activation, we also collect behavioral data (i.e., response time and correct-
ness), eye-tracking data, and psycho-physiological data (i.e., heart rate, respiration, electrodermal
activity). With CODERSMUSE, we can jointly explore all data streams instead of relying on indi-
vidual tools and analysis for each data stream. This way, CODERSMUSE enables us to generate
substantially new and more holistic hypotheses for studies of program comprehension.
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Figure 3.20: Screenshot of CODERSMUSE. On the top right, the user can select a specific task 2 .
A time slider allows the user to explore data across a task’s timeline 1 . Then,
several data streams will be displayed: eye-tracking data 3 , behavioral data 4 ,
psycho-physiological data 5 , and fMRI data 6 7 .

3.4.1 Prototype Implementation of CODERSMUSE

In Figure 3.20, we show a screenshot with annotated feature explanations, which are numbered in
yellow circles and which we explain in detail in this section.14

3.4.1.1 Integrated Modalities

Currently, CODERSMUSE supports four different modalities, of which we provide an overview
in Table 3.5.

Behavioral Data 4 Behavioral data include events derived from a participant’s actions, including
response correctness, response time, and click duration (i.e., time between button-down and
button-up events).

14We provide a demo video and an open-source implementation with sample data on the project’s Web site.15
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Eye-Tracking Data 3 Eye-tracking data are visualized on top of an image of the current task
(e.g., a code snippet). We currently support static images, which is the most common type in
eye-tracking experiments. Dynamic content (such as scrolling on a Web site) is not supported,
but may be added in the future. Eye-tracking data are visualized as a scanpath [Hol+11]. Fixations
and saccades are highlighted with different colors. Other visualizations, such as heat maps, can
be added in the future.

fMRI Data fMRI data provide insights into the underlying cognitive processes during program
comprehension. CODERSMUSE supports two visualizations of fMRI data. First 6 , it shows the
brain activation strength over time for a specific brain region of interest (e.g., to observe working
memory load during a task). Second 7 , CODERSMUSE visualizes the full-brain activation with the
Python library nipy16 to observe higher-level patterns (e.g., to identify involvement of a brain area
at a specific time).

Psycho-Physiological Data 5 Lastly, CODERSMUSE visualizes heart rate, respiration, and elec-
trodermal activity in the form of numeric time series.

3.4.1.2 Features and Challenges

The key feature of exploring data with CODERSMUSE is essentially a real-time replay of collected
data 1 . That is, experimenters can (re)play data of an experiment session and simultaneously
observe all data streams. The user can also use the time slider to dynamically move through a
task’s timeline to examine an event more closely 1 . In Figure 3.20, we set CODERSMUSE to show
the data of an experiment that are split into individual tasks. That is, we select a specific task
from the entire experiment and show the data of a specific task 2 . CODERSMUSE may also show
the entire data set of all tasks, but this limits the usefulness of the eye-tracking-data view (as the
presented code typically changes with each task).

The complexity of CODERSMUSE stems from the inherent differences in the characteristics of the
integrated modalities, which poses major challenges for a proper conjoint exploration (cf. Ta-
ble 3.5).

Data Preprocessing Data preprocessing is a crucial step to ensure high data quality, a pre-
requisite to obtaining meaningful insights. Neverthless, the mandatory preprocessing varies
between modalities. For example, eye-tracking data require fundamentally different preprocessing
than fMRI data (cf. Table 3.5). There are also no golden standards for preprocessing across all
modalities yet.
16http://nipy.org/nipy/, [MB07]
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A re-implementation of every necessary preprocessing step for each modality would be inefficient
and error-prone. Thus, the current prototype of CODERSMUSE relies on already preprocessed
data before importing them into CODERSMUSE. We provide template scripts and guides on how
to integrate your own data, including the necessary preprocessing, on the CODERSMUSE’s Web
site.

Data Synchronization Another challenge of CODERSMUSE is to properly synchronize the timing of
each data visualization. The integrated modalities exhibit different temporal delays. For example,
fMRI measures the biological effect of cognitive processes (i.e., haemodynamic response), which
means that the data stream is delayed by around five seconds [Cha+93]. To counteract this effect,
the displayed fMRI data are offset by six seconds. Similarly, the underlying biological response
of electrodermal activity is typically delayed by about two seconds [Bou12], so we offset the
presented time frame by the same amount. Eye-tracking data have no delay. All offsets are default
settings and can be customized depending on the experiment.

Data Visualization Each modality provides fundamentally different data, so we need an appro-
priate visualization for each modality. For example, visualizing one-dimensional eye-tracking
data is different from visualizing three-dimensional neuroimaging data. Thus, each data stream
implements its own visualization, which is inspired by state-of-the-art tools.

3.4.1.3 Implementation

Due to the performance requirements of handling the wealth of data, CODERSMUSE’s prototype is
implemented as a desktop program. It is based on Python 3.6 and Qt 5.11, making it available
cross-platform.

CODERSMUSE follows a plug-in architecture, such that each modality is implemented as a separate
plug-in. This way, different modalities can be easily supported: For example, researchers can
swap the fMRI plug-in with a new plug-in (e.g., for EEG, currently not implemented). Generally,
multiple plug-ins can be active (e.g., fMRI and EEG, if the experiment setup allows for simultaneous
capture). Furthermore, each plug-in can be further enhanced to individual needs, for example,
with additional view options. This way, CODERSMUSE is also customizable.

Each plug-in creates a view for its respective data set. When the user explores data along the
time slider, CODERSMUSE’s core triggers a view update with the current timestamp to each plug-in.
When the user interacts with a specific view (e.g., to change the observed position in the brain),
the respective plug-in accepts the request and renews the view. An interaction between plug-ins
is currently not supported.
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3.4 Tool Support for Multi-Modal Data Exploration

3.4.2 Future Work

Due to the complexity and novelty of this endeavor, there is still substantial work left. We share
the current version to enable the community, which is starting to embrace multi-modal program-
comprehension experiments, to shape the further development of CODERSMUSE or to implement
their own vision. For our purposes, we foresee the inevitable need for further extensions, which
we discuss next.

3.4.2.1 Additional Modalities

So far, we have focused on supporting fMRI as neuroimaging method, but there are alternatives,
such as functional near-infrared spectroscopy (fNIRS) [Sch+14]. fNIRS does not require such
a physically restrained setting as fMRI. fNIRS measures the same underlying biological effect
as fMRI, and therefore fNIRS data are similarly delayed as fMRI data. However, fNIRS does not
provide a three-dimensional data set (in the order of about 100,000 time series), but instead
aggregates the measured brain activation into a handful of data streams. To support fNIRS data
in CODERSMUSE, we could develop an according plug-in and extend the guidelines to describe
how to use this plug-in.

Another extension would be to integrate electroencephalography (EEG) data, for example, to
observe the cognitive load of programmers, as done by Crk et al. [CKS15], which can also be
recorded simultaneously with fMRI data. EEG data differ from fMRI data in that they are not
delayed, but have a higher temporal resolution (in the order of milliseconds), and provide typically
32 or 64 data streams, collected via channels located at different positions around the skull.

3.4.2.2 Data Annotation and High-Level Patterns

In Section 3.3.2, we outlined the need for data exploration and analysis. To deal with the wealth
of data obtained from a multi-modal experiment, researchers should be able to annotate in-
dividual events in each individual data stream or across data streams, such as a peak in the
neuronal response. At first, this may merely be a manual process, but could be extended by
automatic techniques (e.g., based on a classifier) to detect similar events in other parts of an
experiment (e.g., as ATLAS is offering [MBS12]). Eventually, we aim at extracting higher-level
patterns across data streams. For example, CODERSMUSE may indicate that long fixations on
loop initializations (eye tracking) trigger an activation in working memory (neuroimaging) and
increased cognitive load (psycho-physiological data). Such extracted high-level patterns would
allow researchers to generate new hypotheses for follow-up studies and eventually lead to a more
holistic understanding of program comprehension.
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3.4.2.3 Data Aggregation

In Figure 2.10, we visualized typical neuroimaging experiment designs. Currently, CODERSMUSE dis-
plays data per participant and per task, allowing us to perform an in-depth analysis. Of course,
typical experiments use aggregated data to answer hypotheses and draw conclusions. To support
this, we are currently exploring suitable aggregation methods and implement appropriate visual-
izations (especially, a heatmap from the eye-tracking data and aggregated neuronal responses
across participants and tasks).

3.4.3 Use Cases for CODERSMUSE

Analyzing empirical studies of program comprehension, particularly multi-modal ones, is time-
consuming. The goal of CODERSMUSE is to not only compute numerical results for publication,
but to support insightful data exploration, which is necessary to build a holistic understanding
of program comprehension. By exploring data, we can build new hypotheses to be tested in
follow-up studies. CODERSMUSE aids both, discovery and testing of hypotheses.

Experimenters can investigate the behavior (behavioral and eye-tracking data) and measurements
of program comprehension (neuroimaging, psycho-physiological) for each participant. The real-
time replay of data lets researchers dive into and, hopefully, understand detailed events during an
experiment. CODERSMUSE’s views are designed to provide a comprehensive observation of each
data stream.

3.4.4 Related Work

A meaningful combination of neuroimaging and eye-tracking data, in addition to other modalities,
is still in its infancy, not only in program-comprehension research but also in neuroscience. At the
time of initial development, we were not aware of any commercial or scientific tool that integrates
several modalities in one offline data-exploration tool that fits our needs. ATLAS is a multi-modal
data-annotation tool [MBS12], but it does not offer a convenient integration of eye-tracking data,
which is essential for understanding a programmer in action [Pei+18c].

After our initial publication of CODERSMUSE, two related tools were developed and presented to
the community. VITALSE follows a similar goal as CODERSMUSE. It visualizes eye tracking and
biometric data in the form of line graphs. However, it currently does not have support for fMRI
data yet [RFA20]. Another new tool is COGNIDE, which is an extension to the Visual Code IDE. It
annotates source code with psycho-physiological data, for example, to assist in prioritizing code
reviews [VF20]. Unlike CODERSMUSE, COGNIDE is not for exploring research data, but targets
practitioners.

There are numerous tools for exploring and analyzing single modalities. For example, Ogama is an
open-source tool to record, explore, and analyze eye-tracking data [Voß+08]. BrainVoyager™and
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Statistical Parametric Mapping (SPM)17 are two tools to explore and analyze fMRI data. While none
of these tools combine different data streams, they inspired individual views of CODERSMUSE (e.g.,
visualizations for the eye-tracking data are inspired by Ogama).

3.4.5 Conclusion

CODERSMUSE enables researchers to explore synchronized and integrated multi-modal data. This
way, we intend to unravel the mysteries of program comprehension, which has been possible
only to a limited degree, so far. In the future and with the community’s input, we aim to mature
CODERSMUSE, thereby making the analysis of multi-modal experiments accessible to a wide range
of users. While the future work is a long road ahead, it offers a revolutionizing perspective and, in
our mind, is worth to be pursued.

3.5 Chapter Summary and Future Work

This chapter presented an experiment framework on how to study programmers with fMRI. We
evaluated several improvements over the original experiment design of Siegmund et al. We also
outlined a multi-modal future, in which we combine the strength of several modalities. Such
multi-modal experiment framework enables software-engineering researchers to objectively study
even small effects.

While we made considerable progress in this dissertation toward a multi-modal experiment frame-
work to understand programmers’ brains, several further improvements are to be implemented. In
addition to further work already outlined in previous sections, we see the need for some major
research on psycho-physiological measures, the topic of operationalization of programming tasks,
and a suitable selection of contrast conditions.

3.5.1 Integration of Psycho-Physiological Measures

A direct avenue of future work is to integrate an analysis of psycho-physiological measures.
Psycho-physiological measures have shown promise in cognitive psychology and, to a degree,
in dedicated studies on program comprehension (cf. Section 2.3.2). In all fMRI studies in this
dissertation, we collected psycho-physiological data. Specifically, we measured heart rate and
respiration and, in the latest fMRI study, also electrodermal activity (cf. Section 5.1).

In Figure 3.21, we show collected psycho-physiological data during an fMRI experiment. However,
as psycho-physiological data tends to be noisy, which might be amplified in an fMRI environment,
appropriate data cleaning and analysis procedures need to be applied. In the future, we shall
17https://www.fil.ion.ucl.ac.uk/spm/
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Figure 3.21: Example of psycho-physiological data (i.e., heart data, electrodermal activity, res-
piration, pupil dilation) during an fMRI study of a single participant. Heart data,
respiration, and pupil dilation are in arbitrary units.

explore whether we can use psycho-physiological measures and pose the following research
question:

RQ Can we link psycho-physiological measures to programmers’ cognition in fMRI
experiments?

In addition to analyzing psycho-physiological data, there are basic questions regarding tasks and
contrasts that fundamentally change the outcome of an fMRI experiment. To enable comparisons
across experiments, the influence of these experiment design factors need to be systematically
investigated.
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3.5.2 Effect of Task Design

One deciding experiment design factor is the task design. Program comprehension is a multi-
faceted and multi-layered cognitive process, which can be induced through various tasks [DR00].
For example, researchers could ask programmers to simply comprehend a code snippet, or calcu-
late input-output behavior, or consider program invariants. Many aspects from the programmer
to the source code affect the observed cognitive processes (cf. Section 2.1). Over the past
seven years, the early fMRI studies in a software engineering context used various approaches to
operationalize program comprehension.

To put upcoming fMRI studies on a solid foundation, we need a systematic exploration of how the
task design to induce program comprehension drives the observed cognitive processes and its
data. Since fMRI data measures underlying cognitive processes, researchers need to be confident
how the presented task directs how programmers comprehend source code.

Besides the task itself, there are further details on the operationalization that shall be investigated.
For example, we always enabled syntax highlighting in our experiments, since it aligns to the
programmers’ natural environment based on the results of Beelders and du Plessis [BP16]. They
conducted an eye-tracking study on the influence of syntax highlighting, and while there is no
measurable advantage, participants preferred the snippets with syntax highlighting. However,
this does not provide insights on whether it changes underlying cognitive processes and thus
needs to be replicated in an fMRI study.

3.5.3 Increasing External Validity with Complex Snippets

The presented experiment framework, including all of our fMRI studies that follow in later chapters,
limits the code snippets to around 30 lines of source code. This limitation is mainly driven due
to the limited screen size inside the fMRI scanner. Longer snippets would require some way to
scroll or navigate, which may induce unwanted head motions.

Nevertheless, longer and more complex snippets or working with multiple files would enable
researchers to target a different set of cognitive processes. For example, comprehending an
entire software project likely requires a different set of cognitive processes. To observe these
aspects of program comprehension, an fMRI-compatible mouse18 can be used. Such experiments
with more complex snippets would also allow us to increase external validity.

However, neuroscience currently identified an estimated upper limit of around 60 seconds for
each task block [Smi+07]. If a task takes longer, the BOLD response begins to be overshadowed
due to fMRI noise and participant habituation [MB15]. Thus, tasks for longer snippets must either
be solvable within a relatively short time frame or use a different experiment design.

18For example, Scroll Click from Current Designs, USA: https://www.curdes.com
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3.5.4 Reduce Task Reflection during Rest Condition
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Figure 3.22: BOLD response in BA21 of bottom-up comprehension. An uptick in brain activation
is visible during the rest condition between 30–35 seconds.

During data analysis of our first fMRI study, we noticed a surprising uptick in brain activation
during the rest condition. We show an average BOLD response with more than expected activation
during the rest condition in Figure 3.22. This effect appears to be especially pronounced when
participants were unable to complete the previous task in time. In combination with participant
comments, we believe that participants at times reflect on the code snippet they just had seen.
While such behavior is natural, it affects our data quality, since it reduces contrast strengths.

To counteract reflective thinking during the rest condition, we took inspiration from Mallow et
al. They conducted a study on superior memorizers, in which participants first had to memorize
40 digits, and then recall them after a rest condition. Mallow et al. ensured that no further
memorization would occur during the rest condition by distracting them with an attention task.
We adapted this approach and implemented a d2 attention task [BSAL10] directly after the
comprehension task in a later fMRI study. We show an example in Figure 3.23. Participant
comments indicated that it successfully removed their focus from the previous code snippet
but also is somewhat strenuous. In the future, we shall explore further options to reduce task
reflection during the rest condition without exerting participants.

3.5.5 Evaluation of Control Conditions

The first fMRI study of Siegmund et al. used locating syntax errors as control condition. This may
be problematic as participants indicated that looking through source code still triggers some
program comprehension. To maximize contrasts and thus our data quality, we need to find a
better contrast condition that allows us to filter out unrelated activation, but does not remove
brain activation essential to program comprehension.
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Figure 3.23: Example of a distraction task inspired by d2 attention task. Participants had to check
every letter and identify whether it was a “d” with exactly two lines above or below
it [BSAL10] .

In our latest fMRI study on code complexity metrics, which we present in Section 5.1, we changed
the contrast task. We still show code, but now participants had to only scan for opening brackets
(i.e., “[” and “{”). Such simple visual scan requires less cognitive effort than locating syntax
errors, in which some syntax-based checking must be done. Overall, our data hints that it may be
more suited, but further work is necessary.

Figure 3.24: fMRI contrast between program comprehension and d2 attention task.

We also evaluated the distraction task from the previous paragraph as a suitable contrast condition.
It forces participants to pay attention and triggers visual attention. However, we explored a
computed contrast between program comprehension and the distraction task. As visualized
in Figure 3.24, we find many brain activation clusters that seem irrelevant to the essence of
program comprehension, for example, a strong activation in the visual cortex. We also observed
a strong difference in the motor cortex, which is due to the difference in clicking behavior (i.e,,
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one click at the end for program comprehension task or many clicks throughout the distractor
task). Thus, the distraction task does not seem to be ideal. Thus, there still is an open question
of what a good contrast condition for program comprehension is.

In summary, this chapter presented a robust experiment framework that allows researchers to
study programmers from a neuro-cognitive perspective. While there are still improvements to be
made, we use the multi-modal experiment framework to investigate several important research
questions in the next two chapters.
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4 Neuro-Cognitive Perspective of Program
Comprehension

This chapter shares material with several prior publications [PSP17; Sie+17;
Pei+20; PSA20].

In the previous chapter, we presented our state-of-the-art fMRI experiment framework. In this
chapter, we apply our experiment framework to observe programmers from a neuro-cognitive
perspective. This chapter and the subsequent chapter will demonstrate how a neuro-cognitive
perspective of programmers yields novel insights into the underlying cognitive processes of
program comprehension. This opening of a previously locked black box facilitates researchers and
practitioners to develop more reliable code and better educate and train future programmers.

We first present our fMRI study validating the theory of top-down comprehension in the follow-
ing Section 4.1. We provide objective evidence that top-down comprehension eases programmers’
cognitive load, but also show that it principally shares the underlying cognitive processes with
bottom-up comprehension. In Section 4.2, we present a replication of a previous eye-tracking study
to understand the effects of programmer expertise, code structure, and comprehension strategy
on programmers’ reading order of source code. We find that the code structure substantially
influences programmers’ reading order. Our data also supports previous beliefs that program-
mers’ expertise and comprehension strategy affect programmers’ reading order. In Section 4.3,
we outline a study to investigate the neural differences between beginning and experienced
programmers. In combination, the three studies extend our knowledge on how programmers
comprehend source code. It also shows the potential of fMRI studies to validate theories of
program comprehension.

4.1 Neural Efficiency of Top-Down Comprehension

In this study, we contrast bottom-up comprehension with top-down comprehension with fMRI. For
many decades, researchers have intensely debated these contrasting theories of program com-
prehension and the role of concepts such as semantic chunking, plans, and beacons without any
clear consensus (cf. Section 2.1). Some researchers have argued that bottom-up comprehension
cannot be avoided because meaning always needs to be extracted from perceptual and syntactical
information. Others have argued that programmers actively avoid bottom-up comprehension,
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1 public float arrayAverage(int[] array) {
2 int mgqakyy = 0;
3 int sum = 0;
4
5 while (mgqakyy < array.length) {
6 sum = sum + array[mgqakyy];
7 mgqakyy = mgqakyy + 1;
8 }
9

10 float average = sum / (float) mgqakyy;
11 return average;
12 }

Listing 4.1: Example code snippet of averaging an array with beacons and pretty-printed layout
[BY, LP].

1 public float ayyaoAwyyaky(int[] array) {
2 int mgqakyy = 0;
3 int equ = 0;
4
5 while (mgqakyy < array.length) {
6 equ = equ + array[mgqakyy];
7 mgqakyy = mgqakyy + 1;
8 }
9

10 float awyyaky = equ / (float) mgqakyy;
11 return awyyaky;
12 }

Listing 4.2: Example code snippet of averaging an array without beacons but with pretty-printed
layout [BN, LP].

1 public float ayyaoAwyyaky(int[] array) {
2 int
3 mgqakyy
4 = 0;
5 int sum = 0;
6
7 while (mgqakyy
8 < array.length) {
9 sum =

10 sum + array[mgqakyy];
11 mgqakyy
12 = mgqakyy + 1;
13 }
14
15 float average
16 = sum /
17 (float) mgqakyy;
18 return
19 average;
20 }

Listing 4.3: Example code snippet of averaging an array without beacons and disrupted layout
[BN, LD].
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Figure 4.1: Overview of designing the snippets and conducting the fMRI study.

because it is an inherently tedious process with a high cognitive load [SE84]. Still others have
debated the mechanics of how plans and beacons are used in program comprehension. This
study aims to understand how top-down comprehension differs from bottom-up comprehension
as cognitive processes in the programmer’s brain. One possibility is that entirely different brain
areas can be activated when top-down comprehension is possible, which would provide evidence
of divergent cognitive processes. Another possibility is that both processes activate similar brain
areas; however, they differ in neural efficiency. Neural efficiency is a phenomenon where lower
brain activation indicates that a cognitive process is more efficient and thereby is perceived as
requiring less effort [NF09].

To investigate these hypotheses, we address two research questions:

RQ 4.1: What is the difference between bottom-up comprehension and top-down compre-
hension in terms of involved brain areas and their activation strengths?

Bottom-up comprehension is inherently a tedious and time-consuming process and causes a high
cognitive load. In contrast, top-down comprehension is very efficient but requires prior experience
and knowledge. The activated brain areas and their intensity of activation should reflect these
differences. Such a result would strengthen our understanding of both bottom-up comprehension
and top-down comprehension.

RQ 4.2: How do layout and beacons in source code influence program comprehension?

Different aspects of source code are believed to influence top-down comprehension, such as
beacons (i.e., meaningful identifiers that indicate a program’s purpose) or the program layout
(e.g., the indentation of nested loops). We test their impact in this study.

4.1.1 Experiment Design

To address our research questions, we extended Siegmund et al.’s study on bottom-up compre-
hension by including additional code snippets that facilitated top-down comprehension. The fMRI
session was preceded by a training session, in which participants studied the code snippets to
gain familiarity with them. The training ensures that participants can employ top-down compre-
hension. Once in the fMRI scanner, participants comprehended code snippets. For each code
snippet, participants determined whether it implemented the same functionality as one of the
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Top-Down Bottom-Up Syntax

ArrayAverage CommonChars Average
BinaryToDecimal CrossSum DoubleArray
CrossSum DoubleArray Power
FirstAboveThreshold Factorial ReverseIntArray
Power MaxInArray ReverseWord
SquareRoot SumUpToN Swap
ContainsSubstrings
CountSameCharsAtSamePosition
CountVowels
IntertwineTwoWords
Palindrome
ReverseWord

Table 4.1: All code snippets used in this fMRI study on top-down comprehension. Snippets in
bold were part of the original fMRI study by Siegmund et al. [Sie+14a].

snippets they looked at in the training session. To evaluate the role of beacons and code layout
on top-down comprehension, we created four snippet versions for top-down comprehension:

• Beacons and pretty-printed layout [BY, LP]

• Beacons and disrupted layout [BY, LD]

• No beacons and pretty-printed layout [BN, LP]

• No beacons and disrupted layout [BN, LD]

In the fMRI scanner, participants read snippets of all four versions, enabling us to observe how
each variation affected the activated brain areas and their intensity. Based on these data, we
conclude on the cognitive processes that occurred during program comprehension. Figure 4.1
provides an overview of the experiment-design process and the experiment procedure.

Next, we describe the experimental setup in detail. We include the design of the code snippets,
the training session, and the imaging setup used in the fMRI scanner.

4.1.1.1 Experimental Conditions

Our experiment design contains two independent variables: Comprehension strategy (i.e., top-
down comprehension vs. bottom-up comprehension), beacon (i.e., beacons vs. no beacons), and
layout (i.e., pretty-printed layout vs. disrupted layout). The dependent variable was the observed
brain activation in terms of brain area and activation strength.
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Comprehension Strategy To influence which comprehension strategy participants used, we
introduced several mechanics to control the content and presentation style of code snippets
viewed during the experiment.

Bottom-Up Comprehension For bottom-up comprehension, we need to ensure that participants
go through the snippets statement by statement. To this end, we use the same methodology as
in the original study of Siegmund et al.: We used meaningless identifier names, such that they
did not convey the meaning of a variable, but only its usage (e.g., a variable holding the result of
an algorithm was named result, not reversedWord). The snippets that we used for each
condition are summarized in Table 4.1. The snippets had comparable complexity and length to
maintain comparability to the study by Siegmund et al. [Sie+14a].

Top-Down Comprehension For top-down comprehension, we need to ensure that participants
can identify beacons and generate hypotheses for the presented code snippet. Beacons give
hints about a program’s purpose and set corresponding expectations [Bro78]. For example, a
method named arrayAverage implies that the method computes the average of an array
of numbers. Prior knowledge on averaging helps programmers to quickly confirm whether the
method actually computes the average. In Listing 4.1, we show a corresponding algorithm. In
lines 5–7, the expected loop starts the statements to compute the sum and to increment the
counter. Confirming that this method indeed computes the average of an array of numbers is then
straight-forward.

We also re-used some snippets of the study by Siegmund et al. for the top-down-comprehension
part of our experiment. We modified them to be more amenable to top-down comprehension (cf.
Table 4.1 for the snippets that we used).

This condition, contrasted with bottom-up comprehension, enables us to address RQ 4.1.

Controlling Beacon and Layout Conditions To further discern which code aspects guide top-
down comprehension, we created four different versions for each top-down-comprehension
snippet. To do so, we manipulated two aspects of source code that have been the focus of
early studies on top-down comprehension and are believed to have an enormous impact on the
comprehension process: beacons [Bro78] and layout [Mia+83]. Beacons constitute a semantic
aspect of source code, layout constitutes a structural one. In this study, we look at how different
code layouts affect the comprehension process. If code layout considerably violates standard
coding conventions, it might impair top-down comprehension. We show an example in Listing 4.2
with blank lines and line breaks in unusual locations.

We created a snippet version for each combination of the two aspects, that is: Beacons and pretty-
printed layout (BY, LP), beacons and disrupted layout (BY, LD), no beacons and pretty-printed
layout (BN, LP), and no beacons and disrupted layout (BN, LD). The experiment’s snippets in all
versions are available on the project’s Web site.
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These four snippet versions enable us to address RQ 4.2. If beacons and code layout affect
top-down comprehension, we should see a difference in the brain activation pattern between
these four conditions. For example, beacons might drive the top-down comprehension process,
but not code layout. In that case, the beacon versions should lead to a different brain activation
pattern than the versions without beacons, independent of the code layout. Next, we describe in
detail the process of how we created the snippets.

4.1.1.2 Designing and Selecting Code Snippets

When using fMRI, it is typically necessary to compute averages over many conditions [HSM14],
so we needed code snippets of similar size and complexity. Furthermore, we had to choose
short snippets that fit on the screen inside the fMRI scanner to avoid scrolling. To develop
suitable snippets, we followed the procedure established in the original study [Sie+14a]. First, we
conducted several pilot studies, from which we requested feedback from participants, studied
response times, and determined correctness. Based on these data, we selected snippets that did
lead to our desired 20 to 30 second comprehension time for an optimal BOLD response, and did
not cause too many incorrect answers. We excluded snippets when participants indicated that
they were unsuitable (e.g., requiring mainly visual search).

In the end, we selected twelve snippets that had all similar response times, length, and complexity.
The shortest snippet was eight lines long and the longest had 19 lines. The snippet in Listing 4.1,
which computes the average of an array, was included in our study. The other snippets were
similar in size and complexity.

We balanced the snippets’ content, such that six snippets manipulated words (e.g., reverse a
word) and six manipulated numbers (e.g., compute the average, factorial). This way, we ensured
that a snippet’s content did not overshadow the activation of comprehension (e.g., in that words
might result in a specific activation pattern and not the comprehension process itself).

The largest issue we faced was ensuring that participants spend 20 to 30 seconds to understand
a snippet. Understanding small code snippets with top-down comprehension is very efficient, so
snippets as the one in Listing 4.1 are understandable almost instantaneously making it difficult to
measure the BOLD response. Thus, we decided to obfuscate the code through word scrambling
of identifiers.

To find an optimal scrambling degree (i.e., we obtain response times between 20 to 30 seconds
but do not bias the comprehension process), we conducted a series of small studies with graduate
students in computer science. The methodology is explained in detail on the project’s Web site.
In a nutshell, we first experimented with scrambling the code to use Japanese characters, but
found that it interfered too much with program comprehension. Next, we tried Caesar shifting (a
cipher in which each letter is replaced by another in a static scheme), which was more suitable to
elicit top-down comprehension, but participants adapted to the shifting (e.g., they learned that
qom means int). Thus, we used a variable Caesar shifting, such that each snippet was created
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with a different scrambling scheme. Furthermore, we decided not to scramble keywords and calls
to library functions, to ensure that each code snippet remained compilable.

Having found a suitable scrambling method, we evaluated the operationalization of the indepen-
dent variables. To this end, we conducted two pilot studies with undergraduate computer-science
students at NC State University.

Testing Beacons We conducted our first pilot study with 81 students who were all junior and
senior undergraduate students in a software-engineering course. To ensure that participants
can use top-down comprehension for the snippets, we trained them before the study. To this
end, participants viewed, recalled, and reviewed the snippets to establish familiarity with them.
Subsequently, we split the students into two groups: one worked with beacons (BY) and the other
without (BN). The participants had to determine whether a code snippet fulfilled the same function
as a snippet from training as correctly and quickly as possible. At the end of the study, students
described their cognitive processes in an online questionnaire (see the project’s Web site19).
They stated that they indeed used top-down comprehension independent of whether beacons
were present or not. Their response times also fit into our target interval of 20 to 30 seconds.

Testing Layout To evaluate the operationalization of code layout, we conducted a second pilot
study with 12 students who did not participate in the first pilot. The pilot study’s overall design
was the same (train, understand, reflect), except that the tested snippets had a different layout
with beacons present or not. The response times and correctness were similar to the first pilot
study and were suitable for our purpose. The students reported that the cognition process is
challenged differently but stayed within the understanding of top-down comprehension. Thus,
also the operationalization of code layout proved suitable for our case.

4.1.1.3 Participants of the fMRI Study

We recruited 11 programmers from Otto von Guericke University Magdeburg by posting on online
and local bulletin boards. Besides fulfilling the prerequisites for fMRI studies (e.g., no metallic
implants), participants needed to have basic knowledge in object-oriented programming and
algorithms. All participants were right-handed. Most participants were familiar with Java or C, at
least, at a medium level (answer on a 3-point scale). Only one participant was rather inexperienced
with both, Java and C, but had 16 years of Python experience. We designed the snippets to have
minimal Java-specific features, and we clarified any questions of participants during the training
sessions. We show further demographic data in Table 4.2.

3 participants agreed to a second session, which results in 14 measured fMRI sessions overall.

19https://github.com/brains-on-code/paper-esec-fse-2017
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Characteristic N (in %)

Participants 11
Gender Male 9 (82%)

Female 2 (18%)
Occupation Computer-science student 5 (45%)

Mathematics student 3 (27%)
Professional programmer 3 (27%)

Age in years ± SD 25.30 ± 3.82
Programming experience Experience score [Sie+14b] ± SD 2.70 ± 0.39

Java experience [Sie+14b] ± SD 3.09 ± 1.38

Table 4.2: Participant demographics for our fMRI study on top-down comprehension.

4.1.1.4 Task Design

We used the tasks of Siegmund et al.: Participants should determine the output of code snippets
with given input values. Here, we also made sure to use easily computable results (e.g., factorial
of 3), to focus participants on comprehending the program, not computing the output. As control
condition, participants also located syntax errors in code snippets that they had not seen before.
None of the syntax errors required participants to understand the code (e.g., missing semicolons
or closing brackets).

To enable participants to use top-down comprehension (RQ 4.1 and RQ 4.2), we familiarized them
with the top-down snippets and programming concepts in a training session before they entered
the fMRI scanner. Each code snippet had a canonical representation, as would occur in a typical
program (e.g., with beacons, pretty-printed layout, syntax highlighting, not scrambled). In training,
participants viewed a snippet, recalled it, and then reviewed it again. This process was repeated
for each of the 12 snippets.

In the fMRI scanner, participants had to decide whether a snippet correctly implemented the same
functionality as the snippets seen during training. This task involved recognizing a snippet’s
purpose and evaluating whether it was working as intended. Participants had to make these
decisions as quickly and correctly as possible, with a time limit of 30 seconds for each snippet.

4.1.1.5 Experiment Execution

Prior to the training session, participants completed a questionnaire on their programming experi-
ence [Sie+14b]. In the fMRI scanner, the participants went through twelve trials, in randomized
order for each participant. One trial is visualized in Figure 4.2.

From past experience, we know that participants have difficulty lying motionless for more than
30 minutes while concentrating on their tasks. Hence, we split the 12 trials into two sessions
measured on different days, each preceded by the view-recall-review training outside the fMRI
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...

1. Top-down

[BY, LP]

5. Syntax errors
or bottom-up

public static void main() 
int result = 1:
int num = 4;

while (num > 1) {
result == result * num;
num--

}

System.out.println(result);
}

1. 

Rest
...

30 s 30 s 30 s

+

public float arrayAverage(int[] array) {
int mgqakyy = 0;
int sum = 0;

while (mgqakyy < array.length) {
sum = sum + array[mgqakyy];
mgqakyy = mgqakyy + 1;

}

float average = sum / (float) mgqakyy;
return average;

}

2. Top-down

[BY, LD]

2. 

Rest

30 s 30 s

3. Top-down

[BN, LP]

3. 

Rest

30 s 30 s

4. Top-down

[BN, LD]

4. 

Rest

30 s 30 s

5. 

Rest

30 s

public static void main() {
int result = 1;
int num = 4;

while (num > 1) {
result = result * num;
num--;

}

System.out.println(result);
}

Figure 4.2: Illustration of one (out of twelve) experiment trials for our study on top-down compre-
hension. For half of the trials, bottom-up comprehension was the fifth task. For the
other half, we presented a control condition (i.e., locating syntax errors).

scanner. When the participants entered the fMRI scanner, they spent their first 6 minutes conduct-
ing (anatomical) pre-measurements. Then, they looked at four top-down comprehension tasks
(everyone used the same order) followed by alternating bottom-up and syntax-error discovery
tasks. Participants could react to each task with a two-button response device. In each condition,
we asked the participants to be as fast and correct as possible. After each trial, the participants
rested to allow their BOLD response to return to their baseline.

Once the participants exited the fMRI scanner, we asked them to explain to us how they solved the
tasks. This post-session interview provided valuable insights into their comprehension strategies,
helping us interpret the results.

4.1.1.6 fMRI Data Analysis

We describe the fMRI setting and imaging sequence in the Appendix (Section 7.1). After standard
fMRI data preprocessing (Section 7.1), we conducted a random-effects GLM analysis, defining one
predictor for each of the comprehension tasks, and one for the syntax task. To test for differences
between bottom-up and top-down comprehension (RQ 4.1), we calculated the balanced contrast
between the bottom-up condition and the 4 top-down conditions. To this end, we chose the
same level of significance as in the original study (i.e., p<0.01, FDR corrected). The resulting
clusters of voxels were defined as volumes of interest (VOI) and attributed to their respective
Brodmann areas by using the Talairach daemon.20 Then, we extracted the beta values of the GLM
for each participant and condition to identify differences in activation for each of the program
comprehension conditions within the defined VOIs.

20http://www.talairach.org
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Figure 4.3: Significant brain activation during top-down comprehension. BAs 6, 21, 44 are in the
left hemisphere.
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Figure 4.4: Average BOLD response. BA 39 is activated/deactivated in both hemispheres, BAs 6,
21, 40, and 44 in the left hemisphere. The whiskers indicate the standard error of the
mean of the activation in the different participants.

4.1.2 Results and Discussion

In this section, we present and discuss the results of our study, structured along the two research
questions.

RQ 4.1 What is the difference between bottom-up comprehension and top-down compre-
hension in terms of involved brain areas and their activation strengths?

Data Figure 4.3 shows the activated BAs, which contrast top-down comprehension with bottom-
up comprehension. The areas largely overlap with those defined in the original study [Sie+14a].
Specifically, BAs 21 and 44 in the brain’s left hemisphere are also activated. We also found a
significant effect in BA 6, albeit at a slightly different location compared to the previous study.
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The activation level during top-down comprehension for all three areas is, however, significantly
lower than for bottom-up comprehension.

Figure 4.4 shows the activation averaged across the code snippets for each condition (cf. Sec-
tion 4.1.1). For example, the left group of bars indicates the activation of BA 6 for 3 individual
conditions, that is, top-down, bottom-up, and syntax errors. A positive value indicates an activa-
tion. A negative value indicates a deactivation in that area during the task, when compared to the
average value across the entire session (which includes resting time).

The BOLD response for BA 39 in both hemispheres shows a deactivation during top-down compre-
hension and activation during bottom-up comprehension. Thus, BA 39 showed significantly less
activation for top-down comprehension than for bottom-up comprehension as well as during rest
(cf. Section 4.1.2).

Even though the direct contrast between bottom-up and top-down comprehension did not reveal
significant activation in BA 40 at the conservative significance level, we show values for this region
as defined in the original study, because we found a significant difference between bottom-up
and syntax. This indicates that there is also a considerable difference between the bottom-up
and the top-down conditions.

Discussion The activation of the BAs 6, 21, 40, and 44 indicates that, for top-down compre-
hension, all participants perform the same cognitive activities, that is, extracting the meaning
of words and symbols and combining them to create a general understanding of a snippet’s
purpose. There is evidence of a similarity between top-down and bottom-up comprehension
at a basic level, which implies a similarity between both processes. However, we expected to
observe activation in memory-related areas, since theory suggests that top-down comprehension
should activate programming plans. Several possibilities exist: 1) Our participants may not have
formed programming plans in their minds due to low levels of expertise, 2) programming plans
are embedded in the same neural circuits as comprehension so we cannot see differences in our
study, or 3) the theory is simply wrong. Future studies shall dig deeper into the lack of memory
retrieval during top-down comprehension.

The lower activation strength in these brain areas corresponds to better neural efficiency and indi-
cates lower cognitive load. Thus, we assert that top-down comprehension requires less cognitive
effort than bottom-up comprehension. This difference is not caused by differences in task length,
since all tasks lasted for 30 seconds. Looking at the response times of participants in Figure 4.5,
we see no difference between the experimental conditions. The lower activation for top-down
comprehension aligns well with our understanding of both comprehension processes, suggesting
that top-down comprehension is more efficient than bottom-up comprehension. Evidence from
other neuroimaging studies agrees with our result. Crk and Kluthe found that expertise leads
to lower EEG signals (higher neural efficiency), indicating lowered cognitive load [CK14]. In our
study, we primed the participants with the code snippets (cf. Section 4.1.1), resulting in lower
activation levels, and indicating lowered cognitive load.
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Figure 4.5: Response times in seconds per condition.

In BA 39, top-down comprehension led to less activity compared to bottom-up comprehension and
even the resting condition. This particular brain area has been shown to be part of the default mode
network [Rai+01], which is active during resting periods between cognitively demanding tasks
(e.g., [Wir+11]). Thus, the task context of program comprehension induces cognitive processes
during the resting condition (i.e., between the program-comprehension tasks). The fact that the
study by Siegmund et al. did not mention this brain area can be explained by the roughly similar
levels of activity in the bottom-up and the syntax condition. Underestimating which brain areas
are involved in cognitive tasks is a common problem, especially for areas belonging to the default
brain network [SS01]. Thus, future fMRI studies must be extra careful when devising their control
conditions. Since BA 39 has been suggested to be involved in a number of cognitive processes,
such as semantic processing, word reading and comprehension, number processing, memory
retrieval, attention, and reasoning (which all seem relevant for all tasks of the current study), it is
crucial to replace the resting condition with tasks that distract participants from activities related
to program comprehension.

It is important to discern the degree of involvement of BA 39 in program comprehension, because
it acts as a cross-modal hub, in which converging multisensory information is combined and
integrated to comprehend and give sense to events, manipulate mental representations, solve
familiar problems, and reorient attention to relevant information [Seg13]. Regarding deactivation
relative to rest, it has been suggested that reading affords fewer semantic associations than free
association [Bin+99]. This may also be true for program comprehension as applied to the current
study.

Our control condition (locating syntax errors) was designed to subtract activation related to
visual processing of the source code. We intended to avoid program comprehension by letting
participants locate syntax errors (e.g., a missing closing bracket) that could be completed by
a simple visual search. However, we did not find a difference in the activation pattern between
top-down comprehension and syntax-error location. On the one hand, it could mean that top-down
comprehension is very similar to locating syntax errors. Looking at the tasks, it could be argued
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that deciding whether a snippet is familiar to participants requires pattern matching rather than
full comprehension. On the other hand, the result could indicate that for locating syntax errors,
participants at least partially comprehended the source code. Evidence from other studies shows
that developers typically deploy an as-needed strategy. That is, they use understanding only
as necessary to get a task done [Roe+12]. This is in line with the feedback we received from
participants, who said they were not able to ignore the functionality of the code when reading it
while locating errors. Syntax-error finding may mask other cognitive processes related to top-down
comprehension. We will look into alternative control tasks, such as the bottom-up task, for future
studies.

Thus, we can answer RQ 4.1:

RQ 4.1
Top-down comprehension activates the same regions as bottom-up comprehension,
except for BA 39, which is deactivated during top-down comprehension, but acti-
vated during bottom-up comprehension. For all areas, the activation is significantly
lower for top-down comprehension than for bottom-up comprehension.

RQ 4.2 How do layout and beacons in source code influence program comprehension?

Data We compare our 4 different top-down-comprehension conditions with one another. Overall,
we found no significant differences, as supported by similar values of activation in the brain areas
depicted in Figure 4.6.

Discussion We could not find any influence of beacons and layout on program comprehension.
This might indicate that the role of beacons and layout for program comprehension is different
than previous studies suggest [Bro78; Mia+83]. One reason may be due to our operationalization
of top-down comprehension, which may have encouraged simple recognition of familiar snippets
rather than comprehension, such that beacons and layout may not have played a large role.
The demand of program comprehension processes may have been too low due to the intense
engagement with highly comparable code snippets immediately before the fMRI experiment.
Nevertheless, the results make clear that the effects resulting from different efforts to foster
comprehension seem to be small.

Still, we observed activation differences at specific time points of comprehending the code
snippets. For example, looking at the BOLD response for BA 21 in Figure 3.2 for each of the
4 top-down conditions, the versions with the beacons both show a peak a few seconds after
task onset, independent of whether the layout was pretty-printed or disrupted. The temporal
differences in activation may indicate differences in how long a programmer may spend in specific
phases of a cognitive process. It would be interesting to explore whether one of these effect
manifests in further studies, because BA 21 is a classical natural-language processing area. More
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Figure 4.6: Average BOLD response. BA 39 is deactivated in both hemispheres, BAs 6, 21, 40, and
44 are activated in the left hemisphere. The whiskers indicate the standard error of
the mean of the activation in the different participants.

introspective information about the dynamics during the program comprehension are needed.
Eye tracking during fMRI acquisition may provide additional information and should be integrated
in future studies.

RQ 4.2 Neither beacons nor program layout seem to significantly affect the program com-
prehension process.

4.1.3 Perspectives

4.1.3.1 Relation to Theories of Comprehension

The different activation patterns between top-down and bottom-up comprehension provide evi-
dence in support of some aspects of theories of program comprehension, while casting doubt on
others.

Semantic Chunking The theory of bottom-up comprehension suggests that developers start
with details of source code and group these to semantic chunks, until they gain a high-level
understanding of the program [SM79]. Based on the activation of BA 39 during bottom-up
comprehension, and its role as an integration hub for semantic information, the evidence supports
semantic chunking. Its absence during top-down comprehension is consistent with successive
hypothesis refinement [Bro83].
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Neural Efficiency Studies of brain activity find that experts demonstrate more efficient neuronal
activation patterns than novices with the same tasks [NF09]. More experienced programmers
also demonstrate lower activation than less experienced programmers [CK14; CKS15]. Similarly,
we have observed reduced activation during top-down comprehension. Our evidence is consistent
with the view that semantic cues reduce cognitive load.

Plans Software-engineering researchers have proposed that programmers use knowledge struc-
tures [Ric87] called plans that encode semantic and domain information about a program [Bro83].
We found evidence that is inconsistent with some theoretical aspects of plans. Unlike previous
experiments that manipulated syntax layout and beacons [SE84], we could not confirm any influ-
ence on the cognitive processes developers used when comprehending source code. Even if the
code is scrambled or the layout is changed, a programmer’s cognitive processes may be robust
enough to deal with them, just as programmers can understand code that is incomplete or has
syntax errors. We did not find any specific cognitive processes that would be consistent with plan
activation outside of the program comprehension process. An alternative theory may be that, if
plans exist, they are embedded in the same circuits used during program comprehension. Overall
reduced activation in the network of program-comprehension brain areas could then be the result
of plan activation. But, it also might be that our paradigm induced more recognition rather than
in-depth comprehension, in which plans may play a stronger role.

4.1.3.2 Implications

Tool Support A recent fMRI study by Sato et al. found that having access to Euler diagrams
during logical-reasoning tasks allowed participants to offload the content of their working memory
used to represent the logical statements onto the diagram itself [Sat+15]. As a result, this freed
up resources to solve the reasoning tasks faster. The ability to support cognitive offloading has
several important consequences. For example, the right hemisphere of the brain can take on
a secondary task if both the primary task and secondary task are simple and do not require
access to the same types of information [CK10]. Both hemispheres are recruited in complex
tasks [Ban98]. The diagram used by Sato et al. would enable a person to perform more complex
logical-reasoning tasks, because they can offload the representation onto the diagram. Likewise,
if a programming tool is able to free up cognitive resources, such as a visualization or debugger
tool, then programmers may be able to perform increasingly complex cognitive tasks, both that
were not possible before, and with a reduced chance of mental errors. As we found in our work,
the programmer is better able to integrate information when they do not have to perform semantic
chunking. If a tool could be found to reduce the need to activate a particular brain region, then
direct evidence could be offered about the ability of a tool to reduce cognitive load and potential
mental errors. In the long run, this will help us and other researchers to develop tools (e.g., those
similar to debuggers that show how values of variables change, but which are more customizable)
that support developers in relieving cognitive resources. Developers would then be able to focus
more on the actual task at hand, without being restricted by their own cognitive limits.
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4 Neuro-Cognitive Perspective of Program Comprehension

Experimental Paradigm Besides largely replicating the results of the study by Siegmund et al.,
we went beyond the state of the art by providing new evidence regarding the neural efficiency
of top-down comprehension. This paves the way for fMRI and other neuroimaging techniques
to be used in future research on program comprehension and related cognitive processes. We
show that the lengthy process of conducting series of pilot studies is worth the effort, so we can
add a neuro-cognitive perspective to the understanding of human factors in software engineering.
With neuroimaging studies becoming more and more prevalent in software-engineering research,
our study on top-down comprehension makes an important contribution toward establishing this
modality as standard measurement instrument.

4.1.4 Threats to Validity

4.1.4.1 Construct Validity

The operationalization of top-down comprehension is closely linked with recognition and may
not require much comprehension. This might explain why we did not observe a difference in
activation between top-down comprehension and syntax-error finding. However, since recognition
is also vital for top-down comprehension, and because our participants indicated that they did
read the source code to locate syntax errors, we argue that our current operationalization of
top-down comprehension was suitable for the study.

4.1.4.2 Internal Validity

Identifying BAs based on Talairach coordinates (used by the fMRI analysis software to identify
voxels) requires a lot of expertise. Other researchers may attribute the same activated clusters of
voxels to nearby Brodmann areas. However, our team has considerable experience with mapping
voxels to Brodmann areas, and by double-checking all assignments the identification of BAs does
not pose a threat in this study.

4.1.4.3 External Validity

Our limited experiment setup cannot generalize to program comprehension in different settings (for
example, large software projects). Additionally, our operationalization of top-down comprehension
captures only one aspect of this complex process, meaning we may have missed some. This is
a fundamental trade-off in empirical studies. We have to control external influences as much
as possible (internal validity), or strive for a more generalizable experimental setting (external
validity) [SSA15].
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4.1.5 Related Work

At the time of this study, a few neuroimaging studies have been employed in software-engineering
research. The first fMRI study in this context was conducted by Siegmund et al. [Sie+14a], as we
have discussed. Directly inspired by that study, Floyd et al. also conducted an fMRI study, but
focused on a comparison of the representation of programming and natural languages [FSW17].
Our study was first to directly investigate top-down comprehension from a neuro-cognitive per-
spective.

4.1.6 Conclusion and Future Work

Top-down comprehension is a very efficient process for understanding source code compared
with the tedious, statement-by-statement process employed during bottom-up comprehension. In
this study, we replicated an fMRI study to deepen our understanding of program comprehension.
First, we were able to replicate the previous fMRI study results, confirming the role of several
Brodmann areas and related cognitive processes for bottom-up program comprehension. This
replication strengthens the role of fMRI as a vital measurement instrument in software-engineering
research. Second, we found that top-down comprehension leads to a lower activation intensity
than bottom-up comprehension, increasing support from a neuroscience perspective for the
hypothesis that top-down comprehension leads to neural efficiency. Finally, we found no evidence
that beacons or program layout affect the comprehension process. However, it may be that the
effect is just too small to detect with our experimental setup at the time.

Future Studies In the future, we would like to further explore which aspects of source code have
a substantial influence on the comprehension process. Our study began this endeavor by looking
at beacons and layout, which prior work focused on. In addition to the study presented here, we
conducted a follow-up study on code layout. We used eye tracking to understand the effect of
indentation levels on the programmers’ visual effort. However, we found no significant evidence
that indentation levels play a substantial role for program comprehension either [Bau+19].

In future studies, we shall also investigate other aspects of code, such as patterns [LMW79] and
plans [Ric87] and various operationalizations of top-down program comprehension. This would
help the community to gain a more holistic understanding of program comprehension. In the
long run, this will allow us and other researchers to derive new rules for how to semantically
and syntactically structure source code (for example, to highlight beacons in source code).
Furthermore, we to improve programming education by helping novices focus on relevant parts of
source code (e.g., to more quickly learn to identify and make use of beacons).

In the next two sections, we switch realms and shift the focus from source code to the programmer.
In particular, we explore different experience levels change how programmers comprehend source
code.
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4.2 Reading Order of Novices and Experienced Programmers

After validating the neuronal difference between bottom-up and top-down comprehension, we
tackle the next knowledge gaps: When and how can programmers apply top-down comprehension?
In this section, we present an eye-tracking study that focuses on the way programmers read source
code, which is a critical aspect of program comprehension.

Eye tracking has proved useful for observing programmers reading source code and answering
such fundamental research questions on program comprehension as we introduced in Sec-
tion 2.3.1. For example, Sharif and Maletic replicated a conventional study with eye tracking
and found that naming style affects program comprehension in that programmers can read
under score style faster than camelCase style [Bin+09b; SM10].

Previous research suggested that the linearity of the reading order could be an indicator of how
efficient programmers comprehend source code [Bus+15]. Busjahn et al.’s seminal study described
several eye-gaze measures to gauge the linearity of reading order. They showed that programmers
read source code less linear than natural text and also that expert programmers read source
code less linearly than novices [Bus+15]. This study indicates that comprehending source code
is a skill that needs to be developed and honed with experience. A replication of Busjahn et al.’s
study by Peachock et al. supports the adequacy of the developed eye-gaze measures and partially
corroborated Busjahn’s study results with student participants [PIS17].

In this study, we further dig into the role of the linearity of reading order for program comprehension.
Specifically, we aim at understanding how programmers’ comprehension strategy and linearity of
source code itself affect programmers’ reading behavior. Understanding all factors that influence
programmers’ linearity of reading order is critical to measure program comprehension more
accurately with eye tracking. To this end, we conducted a non-exact replication of the studies by
Busjahn et al. and Peachock et al. with novice and intermediate programmers.

4.2.1 Original Study and Replication

Before describing our study, we briefly summarize the original study by Busjahn et al. as well as
the replication study by Peachock et al.

4.2.1.1 Original Study (Busjahn et al.)

Busjahn et al. conducted a novel study on programmers’ linearity of reading order [Bus+15]. They
compared the linearity of reading order of novice and expert programmers as well as the novices’
linearity of reading order for natural text and for source code. Busjahn et al. observed the eye
movements of 14 computer-science students while reading source code as well as natural text in
their weekly Java beginners course. The natural texts were short English passages of four to five
lines. In addition, they asked 6 professional programmers to comprehend the source code and
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observed their eye movements. Due to the novelty of this research question, they also described
appropriate eye-gaze measures to quantify the linearity of reading order.

Experiment Design Ultimately, Busjahn et al. ran 17 trials of novices reading natural text,
101 trials of novices reading source code, and 21 trials of experts reading source code. As the
novices were still learning to program, their snippets were simpler than the expert participants’
snippets. Only two snippets had to be comprehended by both participant groups. For all snippets,
participants were randomly asked one of three possible tasks: write a summary of the source
code, compute the output, or answer a multiple-choice question. To observe eye movements,
Busjahn et al. used an SMI RED-m remote eye-tracker with a sample rate of 120 Hz.

Participants 7 of the 14 novices were females. They were between 19 and 33 years old, had,
at most, little programming experience, and all had, at least, medium English proficiency (while
German being the native language). The experts were all professional programmers with, at least,
5 years of programming experience, and were between 26 and 49 years old. One of the 6 experts
was female.

Measure Definition Computation

Vertical Next Text % of forward saccades that either stay
on the same line or move one line down

% of all Fi, where
L (Fi) − L (Fi+1) ∈ {0, −1}

Vertical Later Text
% of forward saccades that either stay
on the same line or move down any
number of lines

% of all Fi, where L (Fi) ≤ L (Fi+1)

Horizontal Later Text % of forward saccades within a line % of all Fi, where
L (Fi) = L (Fi+1) ∧ W (Fi) ≤ W (Fi+1)

Regression Rate % of backward saccades of any length % of all Fi, where W (Fi) > W (Fi+1)

Line Regression Rate % of backward saccades within a line % of all Fi, where
L (Fi) = L (Fi+1) ∧ W (Fi) > W (Fi+1)

Saccade Length Average Euclidean distance between every
successive pair of fixations

∑︁n−1
i=1

Distance(Fi,Fi+1)
|F |−1

Story Order N-W alignment score of fixation order
with linear text reading order Alignment(L(F ), story-order pattern)

Execution Order N-W alignment score of fixation order
with the source code’s execution order Alignment(L(F ), execution-order pattern)

Table 4.3: Overview of gaze-based measures taken from Table 1 from Busjahn et al. [Bus+15]. In
each trial, F is the set of all recorded fixations. Fi (where i = 1, ..., n) is the fixation
recorded at time index i. L(Fi) is the line number of the fixation at index i. In each
trial, W is the set of word indices in the text. W (Fi) is the word number of the fixation
at index i.
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Variables The study of Busjahn et al. had two independent variables: programming experience
(novice or expert, between-subject) and, for novices, whether the presented stimuli were source
code or natural text (within-subject). Busjahn et al. analyzed the data in two steps: First, they
contrasted how novices read source code versus natural text (within-subject). Second, they
contrasted linearity of reading order between experts and novices (between-subject).

Dependent Variables To quantify the participants’ linearity of reading order, Busjahn et al.
describe a set of six eye-gaze measures, which we summarize in Table 4.3 and which we will
also use for our data analysis.21 In essence, Busjahn et al.’s eye-gaze measures abstract a
fixation sequence of (x,y) coordinates on the screen to higher-level concepts, such as regressions.
Regressions are a sign that a participant had to revisit a previous part, which could be due to an
insufficient understanding or following a snippet’s execution (e.g., loop structures).

Operationalization of Reading Order In addition to the six fixation-based eye-gaze measures,
Busjahn et al. analyzed the order in which each source code line was fixated and contrasted it
with (a) the “story order” and (b) the execution order of a source code. The story order of a source
code snippet is the sequence of each line from top to bottom, similar to natural text (e.g., 1, 2, 3,
4). The execution order of a source code snippet is the sequence of lines in which the code is
executed, which may differ significantly from the story order (e.g., 3, 4, 2, 1, 2, 4).

The presented source code snippets contained up to 30 lines of source code. To efficiently
compare long sequences of line numbers, Busjahn et al. relied on the Needleman-Wunsch (N-W)
algorithm, which was originally designed for molecular comparisons of proteins [NW70] and later
applied for use in eye-tracking research by Cristino et al. [Cri+10]. The N-W algorithm computes
the similarity between two sequences. In this study, it can be interpreted as how similar an
observed linearity of reading order is to a line-by-line reading order or a computer’s execution
order of the source code. Furthermore, as programmers often cannot comprehend a piece of
source code in a single read, Busjahn et al. added a dynamic version of the N-W algorithm that
tolerates multiple reads. In our data analysis, we also use both versions of the N-W algorithm to
assess our participants’ linearity of reading order.

Results Busjahn et al. reported two main findings: First, novice programmers read source code
less linearly than natural text. Second, expert programmers read source code less linearly than
novice programmers.

21Busjahn et al. also describe an element coverage measure, which we did not include due to our experiment
setup.
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4.2.1.2 Replication Study (Peachock et al.)

Experiment Design Peachock et al. replicated Busjahn et al.’s original study [PIS17]: It was also
a mixed-model experiment with two independent variables (programming experience, between-
subject) and stimuli (source code or natural text, within-subject). They also invited student
programmers (33 overall, 18 male, 15 female) and asked them to comprehend seven short source
code snippets and three pieces of natural language text. They used the same natural language
snippets as Busjahn et al., but different source code snippets in C++. The source code contained
some variety in complexity, but all on a rather low level. Similar to Busjahn et al., Peachock et al.
asked three random comprehension questions after each task to ensure that participants fulfill
the given task. Novice participants had no or only little contact with programming. The “expert”
participants already had some programming experience, but were still undergraduate students.

There were some differences in their experiment design compared to the original study. Specifi-
cally, Peachock et al. used C++ (instead of Java) snippets; the natural language content was the
same, but due to the different participant pool, it was in their native language (English). Unlike
Busjahn et al., they did not invite expert programmers, but advanced undergraduate students
referred to as “non-novice” participants. Peachock et al. used a Tobii X60 eye-tracker with a
sample rate of 60 Hz.

Analysis Peachock et al. analyzed the dependent variable eye movements in terms of the
Busjahn et al.’s linearity measures.

Results Peachock et al. reported the following results: First, programmers read source code
less linear than natural text based on eye-gaze measures (replicated). Second, there is no
significant difference in linearity of code reading order between novice and expert participants
(not replicated). Third, there are significant differences between natural text and source code in
terms of linearity of reading order based on the N-W score (replicated).

Implications for Future Research Busjahn et al. developed a tested way to quantify program
comprehension: How linear do programmers read source code? With their methodology, re-
searchers can tackle further research questions about source code readability and programmer
education with affordable and reliable eye tracking. The two presented studies by Busjahn et
al. and Peachock et al. consistently show that programmers read source code less linear than
natural text.

As a next step, we were interested in how the linearity of the source code itself may affect
programmers’ linearity of reading order. Since the two studies did not explicitly manipulate the
source code linearity, we conducted a non-exact replication.
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4.2.2 Experiment Design

The overarching goal of our study is to gain a deeper understanding of how source code, program-
ming experience, and comprehension strategy affect linearity of reading order. Specifically, we
pose the following research questions:

RQ 4.4
Can we resolve the contradicting results of Busjahn et al. and Peachock et al.
regarding whether more experienced programmers read source code less linear
than novice programmers?

To evaluate RQ 4.4, we conducted a non-exact replication with novice programmers as well as
more experienced programmers that can be categorized as intermediate programmers according
to Dreyfus’ taxonomy of skill acquisition [DD86; Mea+06]. Since we presented the same source
code snippets to both groups, we can reduce the bias caused by differences between the source
code snippets and increase internal validity compared to the original studies.

RQ 4.5 Does the comprehension strategy, that is, bottom-up and top-down comprehension,
affect linearity of reading order?

To address RQ 4.5, we need to control the programmers’ comprehension strategy. We opera-
tionalized the comprehension strategy by using meaningful versus obfuscated identifier names in
the source code snippets to induce top-down or bottom-up comprehension (cf. Section 4.2.2.2,
[Sie+17]).

RQ 4.6 Does the linearity of source code affect programmers’ linearity of reading order?

To address RQ 4.6, we operationalize the linearity of source code. For this purpose, we have
developed and validated a metric that quantifies source code execution order, which we describe
next.

We provide a replication package, which includes all stimuli, acquired data, and analysis scripts
on our project Web site.22

22https://github.com/brains-on-code/eyetracking-linearity-replication/
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4.2.2.1 Source Code Linearity Metric i

To investigate how source code linearity affects linearity of reading order, we define source code
linearity i as follows:

i = ∆
Λ̄

, where ∆ =
|M |∑︂
i=1

δmi
and Λ̄ = 1

|M |
×

|M |∑︂
i=1

λmi
for mi ∈ M

with

λm := length of a method
M := {m | m ∈ P, m is a method)

δm := |Cm − Dm|
Dm := ιe for e := Declaration(m)

Cm := ιe for e := Call(m)
ιe := index(e) for e ∈ P

P := ΩProgram

The linearity i of a source code snippet is the relation between the distances between jumps ∆
and the average method length Λ̄. A jump δm for a method m is the absolute distance between
line ι where it is called (Cm) and the line where it is declared (Dm).

When programmers comprehend source code, they may follow its execution flow. When they
encounter a method call while reading source code, their eyes may “jump” to the declaration of
that method. Throughout the process of a thorough understanding of a source code snippet, over
time this adds up to an overall “jump distance” ∆, which depends on the number of jumps and the
distance of each jump. The distance of a jump is substantially influenced by method length, that
is, when programmers have to jump to the subsequent method, they have to skip the entire length
of the current method. Thus, we need to normalize the overall “jump distance” by the average
length Λ̄ for each method λm of all methods in a given source code snippet.

For example, the snippet Calculation in Figure 4.7 contains two methods, one with 7 and
one with 4 lines. Thus, this source code snippet has an average method length Λ̄ of 5.5 lines.
The snippet contains only one method jump from line 11 to 2 (i.e., overall jump distance ∆ is
9 lines). We divide the overall jump distance ∆ by Λ̄ and obtain a result of i = 1.64, a rather
low value indicating a fairly linear snippet. We visualize the three large jumps of the less linear
snippet Student in Figure 4.8.

Prerequisites For these definitions to work, we assume that a given source code is a syntactically
correct Java program, containing the declaration of a package, a class, and a static main
function. Although only evaluated for Java source code, this principle can also be applied to other
programming languages.
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Snippet Comparability with i The source code linearity i allows us to compare source code
snippets with higher sensitivity than other metrics (e.g., number or size of methods) with each
other. The lower the source code linearity i, the more linear a source code snippet is (i.e., the
flow of calls follows the order from the top of the screen to the bottom). The higher i is, the less
linear is a source code snippet (i.e., the methods in the source code are not located in a position
corresponding to the sequence of their calls).

Validation Study To evaluate whether the source code linearity i captures the intuitive notion of
linearity, we conducted a validation study with ten advanced graduate students. In the validation
study, participants compared two snippets regarding their perceived linearity. To this end, we
selected 20 snippets with a wide range of linearity, as reflected in the source code linearity
i. Then, we divided the snippets into three categories: linear, medium, and non-linear, and
asked participants to compare two snippets of different categories (e.g., a linear and a medium
snippet) and of the same category (e.g., two linear snippets). This way, we evaluated whether
differences and similarities in linearity predicted by our source code linearity i are also reflected
in programmers’ intuitive notion of linearity.

We found that, for most of the snippets, the linearity metric reflected the perception of participants
well. For the few snippets in which both judgments were different, we excluded such cases from
the actual study to avoid having different linearity estimations. It would be interesting to refine
the definition of source code linearity i in future studies.

4.2.2.2 Material

Figure 4.7: Source code snippet that elicits top-down comprehension with meaningful identifier
names, which calculates the mathematical result of 23. The source code can be largely
read along its linear execution order from top to bottom (visualized with →).

In line with our research goals, we used source code snippets that both novices and intermediate
programmers can understand. We selected 10 snippets, 2 from each category (cf. Table 4.4). We
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Figure 4.8: Source code snippet with obfuscated identifiers that prints a student’s age after a
birthday. The snippet requires programmers’ eyes to vertically jump between methods
to follow execution flow (visualized with →).

re-used 8 Java snippets from the original study by Busjahn et al. (including both snippets that were
shown to novices and experts). In addition, we created 2 new snippets (CheckIfLetters,
SumArray), comparable in complexity and content. All snippets are relatively short with, at most,
30 lines of code. The source code snippets implement algorithms commonly used in computing
education (e.g., insertion sort). For example, Figure 4.7 shows a snippet that calculates the cubed
number of 2.

Each snippet contains a single class with one main method, up to 4 helper methods, and, at
least, one System.out.print() statement composing the snippet’s result.

4.2.2.3 Independent Variables

Our study design contains three independent variables:

• Programming experience (novice vs. intermediate programmers, between-subject)

• Top-down vs. bottom-up comprehension (meaningful vs. obfuscated identifier names,
within-subject)

• Linearity of snippets (5 categories of A, B, C, D, E, with A being most linear and E being
least linear, within-subject, cf. Section 4.2.2.1)
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Figure 4.9: Visualization of the areas-of-interest (AOIs) of the snippet “Calculation”. The AOIs are
wrapping individual code lines and functions, as described by Busjahn et al. [Bus+14].

To operationalize comprehension strategy, we created a second version of all 10 snippets, in
which we used obfuscated (instead of meaningful) identifier names (as done in Section 4.1). The
motivation to distinguish bottom-up and top-down comprehension, and to observe them sepa-
rately, is two-fold: First, bottom-up comprehension reduces the advantage of prior programming
experience [Pen87] as done by previous studies [Sie+14a; Bau+19; Nak+14; IU14; Lee+16; Lee+17;
Iku+21]. Second, the direct contrast between meaningful and obfuscated identifier names allows
us to investigate how eye movements change depending on the comprehension strategy. We
show an example of an obfuscated snippet that computes the age after a birthday in Figure 4.8.

To operationalize source code linearity, we calculated i for all candidate snippets and assigned
them to a category (A, B, C, D, or E). The category of a snippet indicates to which 20% percentile
its linearity i belongs. For example, a linearity i = 1.64 belongs to the 30% percentile and thus
is part of category B.

Table 4.4 lists all snippets, their linearity values, and an overview of the behavioral results. All
snippets in both versions, meaningful and obfuscated, along with their solutions, are available in
our replication package.

4.2.2.4 Dependent Variables

We consider two dependent variables: behavioral data (i.e., response time and correctness) and
eye gaze. We define response time as the time from a participant first viewing a snippet until
the time they submit their answer. The raw data of the observed eye gaze is a stream of (x,y)
coordinates on the screen, which we used to compute the study’s measures by Busjahn et al.
(cf. Table 4.3, [Bus+15]).
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4.2.2.5 Task

We asked participants of both experience levels and both snippet versions to enter the result of
the final print statement for all presented snippets. For example, for the snippet of Figure 4.7,
the correct output is “8”. This task setup is a simplified version from the original study, where
Busjahn et al. randomly selected between computing output, a comprehension summary, or
multiple-choice questions. The rationale of fixing the task to computing the output is that we
aimed to eliminate the chance that the kind of task affects participants’ comprehension strategy
(in addition to the source code linearity and snippet obfuscation).

4.2.2.6 Participants

University Passau University Weimar University Magdeburg

Novices 5 2 5
Intermediates 0 17 2

Table 4.5: Recruitment universities for our two participant groups with basic programming experi-
ence (Novices) and intermediate programming experience (Intermediates).

Novices (n=12) Intermediate Programmers (n=19)

Male 9 (75%) 18 (95%)
Female 3 (25%) 1 (5%)
Age (in Years) ± SD 21.4 ± 2.3 29.9 ± 4.6
Years of Programming ± SD 3.3 ± 1.8 12.2 ± 6.1
Years of Java Programming ± SD 3.0 ± 2.3 6.8 ± 5.5

Table 4.6: Demographic data of our participants. Our intermediate programmers tend to be older
but also have more experience specific to Java and general programming.

We recruited participants for both groups from three universities, which we detail in Table 4.5.
Novice participants had a fundamental understanding of Java and object-oriented programming
(i.e., passed, at least, an introductory programming class). Our intermediate programmers were
advanced graduate students of computer science (i.e., higher-level master or PhD students
in computer science or a related field). We verified our selection with a small programming
questionnaire during the experiment [Sie+14b]. We summarize our participants’ demographics
and programming experience in Table 4.6. The experience of our intermediate programmers lies
between the two previous studies’ “expert” groups. We categorized our participant groups as
novice and intermediate programmers according to Dreyfus’ taxonomy of skill acquisition [DD86;
Mea+06].
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4.2 Reading Order of Novices and Experienced Programmers

Due to our eye-tracker’s requirements, only programmers without eye-vision conditions (e.g.,
strabismus; corrective glasses or lenses were acceptable) were eligible to participate in our
study.

4.2.2.7 Experiment Procedure

Eye-Tracker We used a Tobii EyeX eye-tracker with a sample rate of 60 Hz. Since we col-
lected data at three different universities, different screen sizes and resolutions were in use:
1920×1200, 1920×1080, and 1680×1050. We scaled all analyses according to the respective
screen resolution.

Data Collection The experimenter led participants by explaining the experiment, all program
comprehension tasks, and finally demographic and eligibility questions.

We assigned most participants 10 snippets, except for the first 3 novices, who got only 7 snippets.
The first three participants were faster than expected and reported little exhaustion from the
meaningful snippets. Thus, we increased the number of meaningful snippets from 4 to 7. For
all subsequent participants, we presented 3 obfuscated (bottom-up comprehension) snippets
and 7 meaningful (top-down comprehension) snippets, which led to an imbalance between the
number of the two comprehension strategies (cf. Table 4.4). We pseudo-randomized the order
and the selection in which snippets were presented (i.e., we ensured the split between obfuscated
and meaningful snippets, but besides that, everything else was random). This way, we avoided
bias due to ordering effects.

Execution We obtained 15 eye-tracking data sets from novices and 19 from intermediate pro-
grammers. We excluded three data sets from novices, because the eye-tracker failed to track
more than one minute of data due to a setup issue. Therefore, all subsequent data analyses
(including behavioral data) are based on 12 novice participants.

Deviation Three obfuscated snippets contained (by mistake) an error that would prevent com-
pilation. We discuss an interesting observation on how programmers with different experience
levels handle this issue in Section 4.2.5.1.

4.2.3 Data Analysis

4.2.3.1 Behavioral Data

To decide whether an answer was semantically correct, we manually evaluated each response.
We interpreted responses with only minor formatting inaccuracies as semantically correct (e.g., if
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a participant responded with a value of “1.4” instead of “1.40”).

4.2.3.2 Eye-Tracking Data: Preprocessing

The eye-tracker provides a stream of (x,y) coordinates. We applied several standard preprocessing
steps to ensure high data quality and reliability.

First, we smoothed the stream of (x,y) coordinates with a Savitzky-Golay filter (window length of
5, polynomial order of 3) [NH10]. Next, we applied a velocity-based algorithm to detect fixations
and saccades from the eye gaze. We used a velocity threshold of 150 pixel in 100 millisec-
onds. If the velocity was below the threshold, it was interpreted as a fixation, otherwise as a
saccade [Hol+11].

Second, we created areas-of-interest (AOIs) for each line and block of each snippet. The AOIs
allow us to compute the measures that describe the linearity of reading order as described by
Busjahn et al. For all subsequent analyses based on AOIs, we filtered out all fixations outside of
defined AOIs (e.g., participants looking around the room). Following Busjahn et al., we included
fixations with a maximum of a 100-pixel horizontal deviation (≈ 7–8 characters), as small AOIs
can otherwise be easily missed (e.g., a closing bracket) and may distort the results.

4.2.3.3 Eye-Tracking Data: Analysis Procedure

After preprocessing, we computed the measures capturing linearity of reading order developed
by Busjahn et al. (cf. Table 4.3) for each participant group and experimental factor.

Since we have more than one independent variable, we compute a linear mixed regression model,
which allows us to also detect possible interaction effects [LB88]. This analysis differs from
Busjahn et al., who only had one independent variable and used Mann-Whitney-U tests to test
for significant differences. For each of the Busjahn et al.’s measures described in Table 4.3, we
computed a linear mixed regression model with three factors: programming experience (novice
or intermediate programmer), comprehension mode (top-down or bottom-up), and source-code
linearity (in five categories: A, B, C, D, E). We used the R lme4 package, version 1.1.21, to compute
the linear model [Bat+15]. Data across all measures yielded in a converged model, indicating that
the provided factors can explain the observed variance. We subsequently tested the fitted model
for statistical significance with the car package [FW19], version 3.0.6, which internally uses a
type II Wald chi-square test.

To avoid an inflated probability of the type-I error (i.e., incorrect rejection of a null hypothesis) due
to multiple statistical testing, we adjusted the significance threshold with a false-discovery-rate
(FDR) correction [BH95]. This resulted in an adjusted p-level significance threshold of 0.033.
Thus, we consider only results with a p-level below 0.033 as statistically significant.
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4.2.4 Results

In this section, we report the results of the behavioral and eye-tracking analysis, followed by our
interpretation in Section 4.2.5.

4.2.4.1 Behavioral Data

Novices
(n=12)

Intermediate Programmers
(n=19)

Correct Responses (All) 86% 91%
Correct Responses (Meaningful) 87% 90%
Correct Responses (Obfuscated) 83% 93%
Response Time (All, in sec) 83.0 ± 55.1 65.4 ± 49.4
Response Time (Meaningful, in sec) 76.3 ± 54.0 55.0 ± 39.9
Response Time (Obfuscated, in sec) 96.9 ± 55.6 89.6 ± 60.4
Compiler Errors Detected 7 of 11 (64%) 2 of 7 (28%)

Table 4.7: Behavioral data separated by programming experience. Intermediate programmers are
faster but miss more compiler errors. Gray font color marks non-significance.

We show a summary of the behavioral results between the two participant groups in Table 4.7
and a detailed version for each snippet, variant, and group in Table 4.4. While novices achieved a
similar correctness rate as the intermediate programmers (86% vs. 91%, Mann-Whitney-U test23:
U = 11121, p = 0.072), they were across all snippets significantly slower, on average
(83 sec vs. 65 sec, U = 8001, p = 0.000). Intermediate programmers showed a faster
comprehension when snippets contained meaningful identifier names, which facilitate top-down
comprehension (76 sec vs. 55 sec, U = 3562, p = 0.000). But, when we obfuscated identifier
names enforcing bottom-up comprehension, intermediate programmers fall back close to the
speed of novices (97 sec vs. 90 sec, U = 889, p = 0.142).

Unlike intermediate programmers, most novices found the accidental compiler errors in the
obfuscated snippets (cf. Section 4.2.2.7). However, this difference is non-significant (U =
52, p = 0.079).

4.2.4.2 Eye-Tracking Data

In Table 4.8, we provide an overview of the eye-tracking results for all three RQs. In essence,
we can partially replicate Busjahn et al.’s results that intermediate programmers read source
code less linear and contradict Peachock et al.’s negative result (RQ 4.4). Specifically, we found
23t tests are inappropriate as Shapiro-Wilk tests [SW65] showed non-normality for response correctness and times.
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evidence that intermediate programmers show significantly more vertical next and vertical later
eye movements, that is, their eye gaze jumps to the next or a source code line further down
(cf. Table 4.3). In contrast to Busjahn et al., we observed that intermediate programmers use
more vertical regressions, that is, that the percentage of their eye gaze movements going upwards
in source code is larger than that of novices. We cannot confirm Busjahn et al.’s findings with the
N-W algorithm in our data set, which yielded non-significant results. In other words, novice and
intermediate programmers’ reading order is not different for our sample.

We observed mixed results about whether and how programmers’ comprehension strategy affects
their linearity of reading order (RQ 4.5). First, programmers using top-down comprehension
show percentage-wise less vertical regressions, but more horizontal later eye movements than in
bottom-up comprehension. In other words, programmers’ eyes seem to move horizontally within
a line more during top-down comprehension. Although programmers use longer saccades during
top-down comprehension, this effect is not significant (after FDR correction). The N-W scores for
bottom-up comprehension are significantly smaller than for top-down comprehension, indicating
that bottom-up comprehension is closer to a top-to-bottom reading order, whereas top-down
comprehension expresses itself in more wandering eye movements.

In our study, source code linearity i significantly affects all observed linearity measures (RQ 4.6).
In general, a higher linearity score i (indicating source code with many large vertical jumps in its
execution order) leads to longer vertical eye movements, but fewer short eye movements (i.e.,
within one or two neighboring source code lines). While the order of the linearity categories A, B,
C, D, E appear sensible for vertical and horizontal eye movements, they are mostly inconsistent
for saccade length and the N-W scores. In other words, source code linearity does neither seem
to influence the average eye jump distance, nor how similar the reading order is to execution or
story order.

4.2.5 Discussion

4.2.5.1 Behavioral Data

We expected that more experienced programmers are generally faster [Shn77; McC11], but when
bottom-up comprehension is enforced, the differences may vanish based on a contradictory
result from studies of Soloway and Ehrlich [SE84] and Gilmore and Green [GG88]. We indeed
observed that intermediate programmers are significantly faster than novices when meaningful
identifier names facilitate top-down comprehension. While the performance gap is significantly
reduced during bottom-up comprehension, novices are still slower. Our result is thus in between
Soloway and Ehrlich’s vanishing effect [SE84] and Gilmore and Green’s result that experienced
programmers stay faster [GG88].
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1 Cjviij cjviij = new Cjviij(5);
2 cjviij.cijTqmniv(15);
3 System.out.print(cjviij1.wijTqmniv());

Listing 4.4: Part of the obfuscated snippet Street, which contains a compiler error. Most
intermediate programmers miss the non-initialized variable in Line 3, while novices tend to notice
it.

Spotting Compiler Errors in Snippets Three of the obfuscated snippets (i.e., Street,
SignChecker, CheckIfLettersOnly) mistakenly contained undefined function and vari-
able identifiers (e.g., the variable cjviij1 in Listing 4.4 should be cjviij). This results in a
compiler error and therefore not to a determined output. Interestingly, many novices spotted this
error, while most intermediate programmers did not.

An early study of Shneiderman and Mayer showed that experts focus on semantic aspects of
source code, while novices concentrate on syntax [SM79]. We discussed this phenomenon with
three of our intermediate programmers. They generally confirmed that these early results still
hold true in modern times, especially with IDE support. They reported that they are used to an IDE
highlighting basic compiler errors due to their daily work. One reported that “you have to look for
compiler errors to find them”, which due to the missing IDE highlighting (e.g., red underline) may
not be on the mind of a programmer. In addition, one reported that “at that spot, you recognize
the object based on the name without checking every individual character”. Novices appear to
be less likely to take such mental shortcuts and need to learn to focus on semantic aspects of
source code.

4.2.5.2 Eye-Tracking Data

RQ 4.4
Can we resolve the contradicting results of Busjahn et al. and Peachock et al.
regarding whether more experienced programmers read source code less linear
than novice programmers?

The two studies by Busjahn et al. and Peachock et al. did not draw a clear picture of whether
there is a distinguishable difference in linearity of reading order with increased programming
experience: Busjahn et al.’s expert programmers were significantly different across several reading
linearity measures, while Peachock et al.’s “non-novices” were not. It is interesting to learn that
our data partially replicate Busjahn’s results with an intermediate programmer group, which brings
us closer to learn with what experience level programmers change their reading order.

Unlike Busjahn et al., we find that intermediate programmers use significantly more eye movements
across all three vertical measures. This result is consistent with the notion that experienced
programmers’ eyes jump through source code, looking for “beacons” [Bro83; SFM12]. Intuitively,
it also makes sense that all three measures capturing vertical eye movements point in the same
direction (in our case, intermediate programmers use more vertical eye movements).
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Busjahn et al. also observed that experts more often stay on a single line and read it from left to
right, which, however, appears contradictory to the interpretation that novices read source code
more “book like” from top to bottom and left to right, while experts’ eyes jump around more. Our
data support the view that more experienced programmers use less horizontal eye movements
than novices. This result is plausible because novices use more bottom-up comprehension, which
leads to reading entire source code lines from left to right. Our result is in general agreement
with the notion that experts apply a more erratic but intentional search through source code and
novices a more repetitive gaze pattern [Bed12].

Again, in contrast to Busjahn et al., we did not observe significant differences in saccade length
or reading order between the two participant groups. We suspected that our results diverge from
Busjahn et al., because we showed both participant groups the same snippets. The average
saccade length for both participant groups was the same, while Busjahn et al. showed longer
snippets to experts. However, when we normalize the observed saccade length with the snippet
length, this actually reverses, such that longer snippets lead to shorter (normalized) saccades.
Thus, our results are inconclusive, and we cannot be confident how snippet length, saccades, and
experience interact.

RQ 4.4
Overall, we were able to partially corroborate Busjahn et al.’s result and contradict
Peachock et al.’s result. Intermediate programmers read source code less linear
than novices.

RQ 4.5 Does the comprehension strategy, that is, bottom-up and top-down comprehension,
affect linearity of reading order?

We aimed at understanding whether the comprehension strategy, that is, top-down or bottom-up
comprehension, leads to a significant difference in programmers’ eye movements (RQ 4.5). We
expected that programmers using top-down comprehension show more vertical eye movements
and less horizontal eye movements, as top-down comprehension is instead a hypothesis-driven
comprehension strategy, whereas bottom-up comprehension requires building up a source code
snippet’s meaning by reading every line.

However, our eye-tracking results are inconclusive: The differences in the fixation-based linearity
measures were only significant for two measures, which do not converge to an apparent inter-
pretation. All other measures were non-significant, leading to an overall unclear picture about
whether top-down comprehension entails more vertical movements.

Interestingly, the reading order based on the N-W scores, which did not discriminate between our
novice and intermediate programmers, shows highly significant differences between bottom-up
and top-down comprehension. In other words, on average, the reading patterns during bottom-up
comprehension are closer to a snippet’s story order, whereas reading patterns during top-down
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comprehension are closer to a snippet’s execution order. But, we note that all scores are rather low
(smaller than −100), indicating that there still are large differences between expected reading
order and actual eye movements during program comprehension.

RQ 4.5
While we partly uncover a less linear reading order during top-down comprehension,
most measures are inconclusive. Thus, a difference of eye-movement patterns
between bottom-up and top-down comprehension is not supported by our data.

RQ 4.6 Does the linearity of source code affect programmers’ linearity of reading order?

One goal of our study was to understand whether the linearity of source code significantly affects
programmers’ eye movements. The linearity of source code showed a strong effect on reading
order, for both novice and intermediate programmers and both comprehension strategies. In
other words, linearity of source code seems to be the major driving factor that determines the
reading order, whereas experience and the comprehension strategy play a more minor role. While
this may not be surprising, we have provided empirical evidence that this actually is the case.

The two original studies paved the way to study programmers’ reading order. We took one further
step and varied source code linearity in a systematic way to understand its influence. With our
setup, we found that there are two separate effects that influence the reading order: On the
one hand, efficient program comprehension by more experienced programmers or top-down
comprehension leads to larger vertical eye movements, because programmers search for certain
features to quickly verify their hypothesis of a snippet’s purpose. These are intentional eye
movements that are necessary to adeptly comprehend source code. On the other hand, less
linear source code forces programmers’ eyes to make large vertical jumps when they try to
follow a snippet’s method call chain. Thus, while the former are eye movements initiated by the
programmer’s internal cognitive processes to make the comprehension process efficient, the
latter are eye movements that are imposed by external factors. Both types of eye movements
may also interact, such that a less linear structure makes it more difficult for the programmer to
make the intentional, hypothesis-confirming eye movements. In other words, linearly structured
source code could reduce the required eye movements and make the comprehension process
more efficient, if it supports the programmer’s hypothesis-confirming eye movements.

However, our less linear snippets tend to be more complex, so we cannot draw robust conclusions
from the conducted study. Instead, we call for further dedicated studies that specifically contrast
source code with different internal structures, but implement the same algorithm to understand
how programmers shall organize methods in a class [GM16]. Our source code linearity mea-
sure i, although incomplete for some exceptional cases, can be a starting point to systematically
operationalize the linearity of source code.
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RQ 4.6 The linearity of source code strongly affects programmers’ reading order: Less
linear source code leads to large vertical eye movements.

4.2.6 Threats to Validity

4.2.6.1 Construct Validity

Several of our used eye-movement measures are based on matching a fixation to a source code
line. This leaves some room for interpretation, as participants may use peripheral vision and do
not need to focus precisely on a source code line [Orl17]. Like Busjahn et al., we interpreted a
fixation to be on a source code line if it was horizontally less than 100 pixels away.

Similarly, there is room for interpretation when computing the execution order of source code. For
example, how to interpret lines that only contain a closing bracket (}) is debatable or whether class
definition code (public class Example) should be considered as part of the execution
order. We included all brackets and boilerplate code in the execution flow (as an interpreter would
step through the code). This technical interpretation may divert from how humans read code and
likely contributed to low N-W scores.

To operationalize linearity, we developed a source code linearity metric and validated it with
intuitive notions of linearity of programmers. Although there are some deviations of the intuitive
perception and the linearity metric, this did not pose a threat to construct validity, as we excluded
such cases from our study.

4.2.6.2 Internal Validity

There are several threats arising from our participant sample. First, we have a skewness in
gender distribution, which, however, is close to the actual population in computer science for our
universities. Second, we have to question whether our participant group division was reasonable:
Are our intermediate programmers actually sufficiently experienced programmers? To ensure a
correct assignment, we asked participants a few questions regarding their experience, based on a
questionnaire developed by Siegmund et al. [Sie+14b]. Furthermore, the behavioral data indicate
that our assignment was reasonable.

Finally, regarding our eye-tracking data: We did not apply a manual correction of the scan paths,
which can be error prone [PS16]. A visual exploration of the obtained data showed reasonable
preciseness, so we do not consider our results threatened without a manual correction. We also
did not apply a drift correction [Hol+11], as our experiment was comparably short, so we do not
expect meaningful drift.
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4.2.6.3 External Validity

Our study exhibits the typical threats of having small Java programs and recruited students.
Our results can only be carefully generalized to other contextual factors. Reading behavior of
larger snippets with higher control-flow complexity may show different results [CS90; JF17].
Nevertheless, our setting targets a critical population.

Our study used comparably small Java snippets with up to 30 lines. Program comprehension
of larger systems is driven by a different cognitive process and therefore our results may not
transfer to large systems.

4.2.7 Related Work

Original Study and Replications In addition to the original study and its first replication intro-
duced in Section 4.2.1, Blascheck and Sharif conducted another replication, albeit focused on
introducing a new methodology of visualizing the linearity of reading order [BS19].

Eye Tracking on Program Comprehension As introduced in Section 2.3.1, numerous studies
used eye tracking to observe program comprehension besides Busjahn’s original study and Pea-
chock’s replications. For example, Turner et al. used eye tracking to investigate the difference
in bug searching tasks between C++ and Python source code, which yielded no significant dif-
ference [Tur+14]. Binkley et al. investigated the difference in identifier styles (under score vs.
camelCase) and found that it is mostly a matter of preference, with experts’ comprehension
being more affected by the identifier style [Bin+13; SM10]. There are several other studies related
to program comprehension covering method summarization [Abi+19; RM15], syntax highlight-
ing [BP16], code review [Uwa+06; SFM12], and programmer education and expertise [Bus+14;
Pet+19]. They all investigate one specific aspect of program comprehension, but did not focus on
reading order.

Source Code Metrics and Readability While there is a plethora of source code metrics [Var+17],
we are not aware of one that is designed to specifically capture the linearity of source code.
We consider the linearity of source code as an element of code readability, which captures all
syntactic factors that affect programmers. For example, Buse and Weimer asked programmers
how readable source code is and, based on the results, build a predictive model to estimate
source code readability [BW08; BW10]. A follow-up by Posnett et al. showed that more common
metrics can similarly predict readability [PHD11]. But, Jbara and Feitelson provide evidence that
common metrics overestimate repeated code constructs (e.g., if/else) [JF17]. Furthermore,
these readability studies work on individual methods rather than (small) classes. On a class-level,
many studies focus on maintainability [Col+94] or complexity [Les+08], rather than fundamental
readability.
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4.2.8 Conclusion

In this section, we set out to investigate the effect that source code linearity, programming
experience, and comprehension strategy have on reading order of source code. Our results
indicate the linearity of source code is a major driving factor that determines programmers’
reading order, while experience and comprehension strategy seem to play more minor roles. With
our intermediate programmers’ experience level lying between the two previous studies, we seem
to have found a turning point when programmers switch from a linear reading order to a reading
order following the execution order. The strong effect of linearity implicates that the structure of
the source code should be matched to the programmer’s expectations to avoid unnecessary eye
movements, which may make program comprehension more efficient.

In the next section, we dig deeper into the effects of different experience levels of program-
mers with the knowledge that there is a significant difference between novice and intermediate
programmers in how they comprehend source code.

4.3 Brain-Activation Patterns of Novices and Experienced
Programmers

Based on our fMRI study on top-down comprehension (cf. Section 4.1) and our eye-tracking study
on reading linearity (cf. Section 4.2), we gathered preliminary evidence that there is a measur-
able difference in cognitive processes of programmers with varying levels of experience. From
past program-comprehension research, there are also (unvalidated) theories that experienced
programmers are more likely to employ top-down comprehension than novices [SE84].

In this section, we describe our preliminary work to contrast the cognitive processes of program
comprehension of novice programmers to those of experienced programmers. We aim to gather
insights into how experienced programmers think differently when comprehending source code.
To this end, we set up the following plan: First, we draw from literature to understand how we can
measure expertise from a neuro-cognitive perspective (Section 4.3.1). Second, we explore our
previous fMRI data set to generate hypotheses (Section 4.3.2). Third, we outline an fMRI study to
objectively observe the brain-activation patterns of novice programmers to those of experienced
programmers (Section 4.4.1).

4.3.1 Literature Review

In this section, we draw from literature to bridge together several insights into programmer exper-
tise. To this end, we view expertise from three perspectives: cognitive psychology, neuroscience,
and past software-engineering theories and pose the following research question:
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RQ 4.7 How can expertise modulate programmers’ cognitive processes based on insights
from cognitive psychology, neuroscience, and software engineering?

4.3.1.1 Insights from Cognitive Psychology

Research in cognitive psychology revealed that experts demonstrate a mastery of skills obtained
through many years of deliberate practice [EL96]. In understanding what makes an expert an
expert, scientists have studied the training strategies, cognitive representations, and problem-
solving strategies used when performing tasks with exceptional skill. Initial research focused
on the training strategies and researchers found that there is a consistent difference between
experience (in terms of years spent) and expertise (performance levels) [CJ91; SS92]—the primary
difference in performance arises from how experts were trained and not necessarily how long.
For example, when comparing chess experts who have spent equal time in gaining experience,
the consistently best performers are the ones who repetitively studied specific chess positions
and scenarios, as opposed to lower performers who just practiced in tournaments [CKM96].

Cognitive expertise involves chunking of information, or organizing a stream of perceptual cues
into a more meaningful pattern [DG78]. Experts use more effective problem representations and
generate better “next steps or moves” (in chess) [Sim90] or select the best diagnostic option (in
medicine) [ESS90]. Experts differ from novices in how they process information and arrive at
an answer, such that they look a bit deeper and process next steps faster [Hol92], resulting in
improved qualities of answers [ESS90].

4.3.1.2 Insights from Neuroscience

Neuroimaging studies found that experts demonstrate more efficient neuronal activation patterns
than novices with the same tasks [NF09]. Expert brains work differently than non-expert brains.
When novices are compared with experts performing the same kinds of tasks, the differences
can be remarkable. When novice golf players try to perform a golf swing, their brains are alight
with activity throughout many areas of the brain as they clumsily try to coordinate the swing in
their mind, whereas experts have conceptualized the movements of a golf swing into a simple,
focused, and energy-efficient action in the brain [Mil+07]. Not only does an expert’s brain act more
efficiently, experts sometimes also have a larger brain mass in these areas. A larger right posterior
parietal cortex is seen in expert video game players [Tan+13]. Experienced London taxi drivers
have larger parahippocampal regions with size correlated with years of experience [MWS06].

Although the brain appears to have specialized areas for specialized tasks, when humans develop
new skills, there is often no specific area of the brain that supports that skill. Instead, learning
processes often recruit existing information-processing networks of the brain in support of the
new skill. For example, the fusiform face area is strongly associated with face perception, but it
also gets recruited when identifying a specific object, such as for bird experts who can distinguish
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between a vast variety of bird species or for car experts who can identify distinct differences
between many models and makers of cars. Interestingly enough, bird experts who are not car
experts do not use the fusiform face area when observing cars, and vice versa [Gau+00]. Other
studies also show the involvement of the fusiform face area in experts of tasks that require visual
perception, including the categorization of chest radiographs [Har+09a] or understanding chess
positions [Bil+11].

4.3.1.3 Insights from Software Engineering

Syntax vs. Semantic Processing Software-engineering researchers have proposed that program-
mers use knowledge structures that encode semantic [SM79] and domain information [Bro83]
about a program as well as prime structures [LMW79], which include elements of syntax, control-
flow and data-flow [Pen87] of the program. These knowledge structures [Ric87] have been
formalized referred to as programming plans. Motivation for programming plans was inspired
from theoretical constructs in text comprehension, such as scripts, which are mental representa-
tions of common activities (e.g., eating in a restaurant) and can aid humans in understanding and
remembering narrative text [BBT79]. Programming plans act like schemas that are first instanti-
ated and then its slots are filled with concrete values as a programmer builds an understanding
of the code [SEB82]. Plans may help programmers fill in the “gaps” when trying to understand
code. Finally, it was proposed that programs follow basic rules of discourse and that any violation
to “accepted conventions of programming” should as a result hamper an expert’s ability to use
programming plans [SE84].

Evidence that expert programmers have different mental representations from novices has been
described in several studies, however not all evidence is consistent with the theory of programming
plans. In a series of studies, participants were asked to understand a piece of code and later recall
text of the program. Experts recall programs better than novices when the order of presentation is
correct [Shn76], but performance difference disappears when programs are presented in random
order. Further, when examining the details of what is recalled [SM79], researchers found that
experts could recall semantic information about source code, but incorrectly recalled the exact
details. Novices did the opposite: They could more accurately replicate the source code syntax,
but often mistook the meaning of the source code. In another study, when categorizing related
code snippets, experts and novices differed in their organization (procedural similarity vs. syntax
similarity) [Ade81]. Finally, Soloway and Ehrlich [SE84] evaluated the theory of rules of discourse
by varying the style of the snippets, such that there were versions that followed typical coding
conventions (plan-like) and versions that explicitly violated such conventions (unplan-like). For
example, they changed the variable naming, such that in the violated version, the naming did
not convey the purpose of the variable, but rather the opposite (max was renamed to min). The
results showed that novice programmers were not affected by the violated coding conventions.
However, experts were significantly slower with these version and made significantly more errors—
specifically, experts became as slow and as incorrect as novices.

However, another series of studies cast doubt on the nature of programming plans. Gilmore and
Green failed to replicate Soloway and Ehrlich’s previous results [SE84] when using programming
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plans from Pascal programs with Basic programmers [GG88]. They suggested that program-
ming plans may not generalize across different languages, and that plans cannot represent the
underlying deep structure of programs. Bellamy and Gilmore [BG90] examined the protocols
generated from experts in different languages as they created programs. Using two different
models of programming plans, they found neither model was well supported by protocols; further,
different programming language experts generated different types of representations. Finally,
Pennington [Pen87] theorized that if programmers form plan-based mental representations, then
they should recognize lines faster when preceded by lines from the same plan structure. Un-
fortunately, in the study, stronger priming effects were observed from syntax structure vs. plan
structure. Subjects also made fewer errors on control-flow questions, compared with data-flow
and functional questions. Pennington concluded that:

“While plan knowledge may well be implicated in some phases of understanding and
answering questions about programs, the relations embodied in the proposed plans
do not appear to form the organizing principles for memory structures.”

In summary, expertise is not as simple as we might sometimes think. Although high-level, efficient
representations of programming knowledge develop with experience, it seems that this knowledge
is not the sole determinant of programming success. Besides chunking of knowledge structures,
experts seem to acquire a collection of strategies for performing programming tasks, and these
may determine success more than does the programmer’s available knowledge. Programming may
be rather like riding a bike, or some other motor skill, without practice it cannot be mastered.

Ikutani et al. conducted an fMRI study to contrast different levels of programmer expertise.
Unlike previous studies, they used a program categorization task. They trained a classifier to
distinguish between different programming categories, which achieved a higher accuracy on
expert programmers’ brain activation patterns than for novices, confirming that expertise leads
to a fine-tuning of programmers’ brains [Iku+21]. While the classifier could detect expertise
differences based on the observed brain activation, they could not be causally connected to the
underlying differences in cognition (e.g., mental representations).

RQ 4.7

Literature from cognitive psychology has identified deliberate practice and different
problem representations as key differentiator between different expertise levels.
Neuroimaging studies have confirmed that these different cognitive processes
show measurable difference in brain activation patterns. Program-comprehension
studies have provided several possible explanations for similar effects on program-
mers, but are rather inconclusive.

4.3.2 Data Exploration

After our literature review confirmed that we can expect a measurable difference in cognitive
processes between programmers of different experience levels, we re-analyze data from Siegmund
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et al.’s first fMRI study on bottom-up comprehension. Its simple experiment design offers the
most robust data from the available studies. While the experiment was not designed for this
research question, it should enable us to generate hypotheses for our dedicated follow-up study.
Thus, we pose the following research question:

RQ 4.8 When exploring an existing dataset, does programming experience correlate with
brain activation strength during bottom-up program comprehension?

4.3.2.1 Method

Siegmund et al. found five activated brain areas (i.e., BAs 6, 21, 40, 44, 47) during program
comprehension. For RQ 4.8, we computed the Kendall correlation between the brain activation
strength in the five activated brain areas during program comprehension and a participant’s
experience and Java knowledge, which was collected based on a validated questionnaire [Sie+14b].
We use Kendall’s τ (rather than Pearson’s correlation coefficient) because of its robustness with
repeated values and against outliers [CC83].

4.3.2.2 Results
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Figure 4.10: Scatterplot of programming experience and brain activation strength of BA 6, BA 21,
BA 40, BA 44, and BA 47. Each dot represents one participant. The strength of brain
activation for each cluster is the average beta value across all snippets.

We visualize the correlations between programming experience and Java knowledge with the
observed brain activation strength in Figures 4.10 and 4.11).

The distribution of programming experience scores [Sie+14b] is clustered around a low score
value of 2.0. This is due to the target of a homogeneous participant group of computer science
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Figure 4.11: Scatterplot of Java knowledge and brain activation strength of BA 6, BA 21, BA 40, BA
44, and BA 47. Each dot represents one participant. The strength of brain activation
for each cluster is the average beta value across all snippets.

students, which we classify between novice and intermediate programmers according to Dreyfus’
taxonomy of skill acquisition [DD86; Mea+06] . Nevertheless, it is noteworthy that the correlations
are different between the five brain areas. BA 21 shows a weak positive correlation (0.211). BA
6, BA 40, BA 44, and BA47 show a weak negative correlation (−0.089, −0.027, −0.202, and
−0.148, respectively).

Self-estimated Java knowledge provides a more varied distribution. That means while the par-
ticipants are overall relatively inexperienced, their individual Java knowledge is diverse. The
correlation between the Java knowledge and the brain activation strength is negative for all
five activated brain areas. Hence, participants with more Java experience tend to have a lower
activation strength. The data indicate that programmers familiar with Java require less cognitive
effort to understand Java source code. In particular, BA 6 and BA 21 show a strong and significant
negative correlation (−0.514, and −0.601, respectively). The activation strength of BA 40, BA
44, and BA 47 is also negatively correlated with the Java knowledge (−0.219, −0.379, and
−0.21, respectively).

4.3.2.3 Discussion

The expected, but missing correlation between programming experience (based on the experience
score) and brain activation strength indicates that a higher general programming experience
does not seem to lead to a reduced cognitive effort. Earlier in this chapter, we showed that
top-down comprehension leads to a lower activation strength (neural efficiency) than bottom-
up comprehension. However, our analysis here indicates that experienced programmers do
not automatically show higher neural efficiency for a comprehension task in any programming
language. Only experience in the specific programming language leads to a lower cognitive effort,
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as indicated by the negative correlation between knowledge of the Java programming language
and brain activation. In other words, programming skills might not be efficiently transferred [PS92]
to any domain, so an expert programmer might fall back to the neural efficiency of a novice when
working with an unfamiliar language or domain. Floyd et al. found a similar result in their fMRI
study to analyze the difference in brain activation across programming-experience levels. Their
results show that program comprehension becomes increasingly similar to prose reading with
higher programming experience [FSW17].

The strength of the correlations, especially for BAs 6 and 21, is surprising, as the experimental
design was not targeting this research question. This indicates that it is a promising direction
to further look into the role that the familiarity of a programming language plays for neural
efficiency. The reduced activation strength in BA 21 indicates that being familiar with Java
allowed our participants to be more efficient in analyzing the words and symbols of the source
code. Consequently, the number of values the participants had to keep in their working memory
was reduced as well, which would explain the lower activation in BA 6.

These results are based on a small and rather homogeneous sample. Nevertheless, based on
these results, we can formulate a set of hypotheses for our dedicated fMRI study of programming
experience:

(H1) Specific programming knowledge has a strong effect on neural efficiency of program
comprehension.

(H2) General programming experience has, at most, a small effect on neural efficiency of program
comprehension.

(H3) Higher-level semantic (represented in BAs 40, 44, and 47) is only moderately affected by
familiarity with the specific programming languages.

The dedicated follow-up study that we outline in the future-work section will build on the literature
review and the exploratory results to fully understand the relationship between brain activation
strength, cognitive effort, and programming experience.

4.3.3 Summary

In this section, we outlined results from a literature review and a data exploration for a planned
study on programmers with different levels of experience. From cognitive psychology, we trans-
ferred possible explanations how experienced programmers employ different cognitive processes
during program comprehension. With a future fMRI study, we will be able to gather evidence to
better understand the minds of experienced programmers.

These insights will enable us to improve training and education for programmers. For example,
should (student) programmers deliberately practice their skills through daily exercises, such
as code kata [TH19] or performance checks [HJP16]? Alternatively, if specific knowledge is
more important, should educators focus on teaching domain knowledge as much as on general
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programming concepts? With our planned neuro-cognitive perspective of programmer expertise,
we can contribute answers to such fundamental questions.

In the future, we may be objectively measure programming experience with fMRI, which has
substantial implications for the hiring process of programmers. The current style of technical
interviews for programmers are heavily debated for the objective evaluation accuracy [Beh+20].
Moreover, the process could be severely biased [BPB19]. A future in which applicants can
demonstrate their skill level with a single fMRI would remove barriers from the hiring process and
allow organizations to draw better candidates from a wider pool. However, there are concerns
regarding privacy that need to be addressed (e.g., how to proceed with applicants that are
medically or personally unable to safely participate in such fMRI test?).

4.4 Chapter Summary and Future Work

In this chapter, we presented several studies that reveal a neuro-cognitive perspective of program-
ming. With an fMRI study, we could validate a decade-old theory on top-down comprehension
and could objectively show that it requires less cognitive effort. However, we were also able to
show that — from a cognitive perspective — top-down comprehension is similar to bottom-up
comprehension but exhibits higher neural efficiency. In an eye-tracking study, we identified several
factors that influence the reading order of programmers. This included an already suspected
effect of programmer expertise, but we uncovered that the code structure plays a dominant role
as well. Finally, we outlined another fMRI study that investigates the neuronal basis of program-
mer expertise in further detail. While our studies shed light on several key factors of program
comprehension, there are many further research questions to be answered. With our framework
presented in Chapter 3 and the conducted studies in this chapter, we provide a template for future
studies investigating further important topics of program comprehension. We delve into three
concrete topics next.

4.4.1 fMRI Study on Programming Experience Levels

In this planned fMRI study, we go beyond the influence of comprehension strategy (i.e., bottom-
up vs. top-down comprehension) and activated brain areas: We seek to understand how a
programmer’s experience, measured with a suitable questionnaire, influences the strength of brain
activation and deactivation. Based on the literature review and the data exploration (cf.Section 4.3),
we expect that novices need to concentrate more than experienced programmers showing stronger
brain activation. In particular, we expect that general programming experience will be less
influential than specific programming knowledge. We also expect that novices display a stronger
deactivation in brain areas of the default mode network as they must concentrate more to solve
the tasks.
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One advantage of identifying such measurable differences is that we could estimate the effect of
a programmer’s experience as a confounding variable. Furthermore, objectively evaluating a pro-
grammer’s experience based on their brain activation and structure may offer future applications
beyond research (e.g., teaching).

Challenge of Measuring Programming Experience For the success of this fMRI study, it is
critical to select a representative sample for novice and experienced programmers. This way, we
can clearly distinguish cognitive differences between the groups. However, it is a challenge to
establish a sound measure of programming experience. Many studies in software engineering
used simplistic measures, for example, Soloway and Ehrlich categorized undergraduate students
as novices and graduate students as experts [SE84]. Siegmund et al. developed and validated
a questionnaire to measure programmers experience [Sie+14b]. While this questionnaire was
useful for our previous studies, it is limited here, since Siegmund et al. only investigated under-
graduate students (and graduate students as validation). This raises doubts of the robustness
for professional programmers with many years of experience.

We therefore extended Siegmund et al.’s questionnaire to capture elements we drew from the
literature review, that is elements of deliberate practice, specific domain knowledge, and work
distribution. Siegmund et al.’s basic questionnaire and our extended version are in the Appendix
(Section 7.2 and Section 7.3, respectively).

Challenge of Materials and Task The previous fMRI studies presented in this dissertation used
source code with comparatively lower complexity due to the restrictions of the fMRI scanner. For
this study, we cannot simply re-use the same snippets. On the one hand, code snippets that are
too simple may be insufficient in triggering enough cognitive demands to distinguish novices
from experienced programmers. On the other hand, code snippets that are too complex may
be too difficult to solve for novice programmers in the given time frame of an fMRI experiment
(i.e., one minute per task). We therefore conducted an online pilot study to test various snippet
candidates.

All snippets contain semantic cues, such as beacons, to allow top-down comprehension, be-
cause we expect experienced programmers to be employing top-down comprehension more than
novices.

4.4.2 Experiment Execution

The experiment will be conducted in line with our previous experiments. We use a similar fMRI
protocol (cf. Section 7.1). Similarly to the study on code complexity described in Section 5.1, we
will use a semi-structured interview after the fMRI session to gather qualitative insights in the
participants’ problem-solving strategies.
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4.4.3 Neural Representations of Programming Constructs

In our fMRI study on top-down comprehension, we considered two code factors: beacons and
layout. But, there are other code aspects that affect program comprehension. Specifically, the
programming constructs, such as if-then-else, iteration, and recursion may substantially change
how programmers think through source code. In a future study, we aim to uncover the neural
representations of if-then-else, iteration and recursive constructs. This way, we can understand the
influence of such programming constructs for program comprehension. Novices often struggle
with the rather unfamiliar concept of recursion [Gin05]. Recursive methods call themselves
(unlike iterative methods), making it difficult to grasp the single components of such methods.
Understanding the neural correlates of if-then-else statements, iteration, and recursion provides
insights into the cognitive processes that are part of understanding and learning such code
constructs.

In an exploratory study with remote eye tracking, we translated our previously used snippets
into iterative and recursive versions and contrasted behavior and visual effort [Aqe+21]. 117
undergraduate students participated in the study and, on a high level, showed no significant
differences regarding their behavior or visual effort. It might be that the participants were too
inexperienced to develop a preference yet. For example, in our study on code complexity metrics,
which we present in Section 5.1, we also used recursive and iterative snippets. Interestingly, these
more experienced participants held strong opinions on their preference for iterative or recursive
code.

In the future, we shall conduct an fMRI study that investigates this topic further along the following
guiding research question:

RQ What are the neural representations of if-then-else statements, iteration, and recur-
sion?

4.4.4 Neural Representations of Data Types

Similar to programming constructs, source code can manipulate different types of data such as
words and numbers. In this study, we will look deeper into the neuronal representation of types of
data, which leads us to the following research question:

RQ Do words and numbers, when manipulated in source code, have different neuronal
representations?

In previous studies, our code snippets manipulated words (e.g., reversing a word) and numbers
(e.g., compute factorial), which may have different neuronal representations (i.e., visual word form
area [Sok+17] and number form area [ND09; Han+15]). Can we find this difference in representation
also during program comprehension? Understanding whether the neuronal representation of
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Figure 4.12: fMRI study on simultaneous fMRI and eye tracking (cf. Section 3.2): 2 clusters with
stronger activation for snippets containing words, 12066 voxels, TAL -1, -76, 3 (BA18);
1285 voxels, TAL 22, -76, 32 (BA19)

different data types during program comprehension is the same as during non-programming
activities helps us to identify all relevant cognitive processes for program comprehension. If
we cannot find a difference in activated areas between word or number processing, this would
indicate that they are handled differently during programming compared to when we are not
programming. This could help us to explain the steep learning curve, as novices cannot rely on
their existing cognitive processes to manipulate words or numbers.

In a preliminary data exploration, we re-analyzed our previous fMRI studies with the same proce-
dures. It is important to note that the experiments were not designed for this research question,
but by design had a balanced distribution of snippets containing either numbers or words. We
directly contrasted the brain activation between snippets containing numbers against snippets
containing words. We visualize the results in Figures 4.12 to 4.14. Overall all three fMRI studies,
there is no consistent result. It appears that the brain activation is largely the same, except some
difference in the visual cortex (BA 18 and BA 19). This is likely due to the (on average) larger size
of snippets containing words, which require more visual effort. This result indicates that in the
context of programming typical brain structures for words and numbers does not play a role, but
a dedicated study is necessary to provide a definite answer.
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Figure 4.13: fMRI study on top-down compre-
hension (cf. Section 4.1): No sta-
tistically significant differences

Figure 4.14: fMRI study on code complexity
metrics (cf. Section 5.1): 1 cluster
with stronger activation for snip-
pets containing words, 1408 vox-
els, TAL -10, -91, 13 (BA18)
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Engineering

This chapter shares material with several prior publications [Pei+20; Pei+21;
Sie+21; Neu+21].

After introducing our experiment framework in Chapter 3 and presenting conducted studies with
the framework in Chapter 4, we apply our framework to further practical issues in this chapter.
First, in the following Section 5.1, we evaluate commonly used code complexity metrics with an
fMRI study and investigate their unclear link to programmers’ cognition. Second, in Section 5.2,
we re-use data from three fMRI experiments to prove how different levels of data aggregation
significantly influences results. Thus, program-comprehension researchers need to carefully
consider this effect when balancing costs and reliability of experiments. Third, we introduce an
alternative approach to analyze fMRI data in Section 5.3. We demonstrate how using anatomical
information of participants can increase signal strength for an analysis of fMRI data.

5.1 Code Complexity Metrics and Program Comprehension

In the past 40 years, the software engineering community has been using various complexity
metrics to predict how programmers understand code [Cur+79; Zus93; Sne95], implement quality
gates in continuous integration [FP14; GMGVEB16], and predict the likelihood of defects [OSH76;
MPS08; Hud+17]. For example, from 2010 to 2015, a total of 226 studies proposed or analyzed
nearly 300 code metrics alone, with code complexity being one of the most frequent categories
of study [Var+17]. Many of these metrics are widely used in software analysis tools. For example,
SONARQUBE, a popular static analysis tool used in continuous integration, supports a multitude
of metrics, such as cyclomatic complexity, across dozens of programming languages. For this
particular metric, the tool will report a “Methods should not be too complex” violation for any
method that exceeds the default threshold of 10.

While code metrics help to describe properties of code, they are notoriously limited in capturing
human cognition and behavior: Already 15 years ago, Kaner and Bond warned that too simplistic
software metrics can do more harm than good, because it is doubtful whether they actually
measure what we think they measure [KB04]. Several studies underline this point. For example,
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Scalabrino et al. found in an empirical study, at most, minuscule correlations between complex-
ity metrics and the observed code understanding [Sca+17]. Ajami et al. found that complexity
metrics fail to consider how humans process code, for example, that flat structures are easier
to comprehend than nested ones [AWF17]. In the same vein, Jbara and Feitelson provide ev-
idence that complexity metrics miss the increased ease of comprehension of repeated code
constructs [JF17]. Despite these warnings, it is tempting to use complexity metrics to predict how
complex programmers perceive code or how much cognitive load it would require understanding
a piece of code. With our fMRI experiment framework, we are able to objectively test whether
(and which) source code complexity metrics are suitable as a proxy for program comprehension
by examining cognitive load, operationalized by (de)activation patterns in the brain. We start by
examining data of the original fMRI study.

5.1.1 Data Exploration

5.1.1.1 Method

We selected code complexity metrics among four major classes: code size, vocabulary size, control-
flow complexity, and data-flow complexity. For each, we picked a commonly used representative
metric. The underlying idea is that, the more code lines (code size, LOC as representative) or
vocabulary (vocabulary size, Halstead) to understand, or the more possible execution paths
(control flow, McCabe) or data dependencies to keep track of (data flow, DepDegree), the higher
the programmers’ cognitive load is.

In our previous fMRI studies, we focused only on brain activation, which revealed a network of
several areas. Another approach is to measure the deactivation in the default mode network, which
can be used as an indicator of cognitive load [McK+03]. The default mode network comprises
several brain areas (e.g., cingulate cortex, prefrontal midline regions) and is related to self-
referential processing [Rai+01; GIM13]. When left to think about nothing specific (e.g., in the rest
conditions), we often think about self-related aspects, for example, our plans for after the fMRI
scanner session or previous experiences. This is reflected in an increased blood flow within the
default mode network, that is, the default mode network shows high activation during rest states.
When we concentrate on tasks, the default mode network deactivates, so that this self-referential
processing does not interfere with the task. Hence, with the level of deactivation of the default
mode network, we can measure the cognitive load of participants: The stronger the deactivation,
the higher the cognitive load.

For our exploration, it seems plausible to expect that programmers exhibit higher cognitive load
with increasing complexity of source code.
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BA32 BA31ant

BA31post

Figure 5.1: Visualization of significant deactivation during program comprehension in the default
mode network.

5.1.1.2 Results

In Figure 5.1, we show the significantly deactivated brain areas, that is, areas with less activation
compared to the rest condition (color-coded with blue). In the reanalysis, we found deactivation
in brain areas that are key components of the default mode network (DMN).

Next, we looked at the correlation between the strength of deactivation and code complexity
for the four metrics: LOC, McCabe, Halstead, DepDegree. Figure 5.2 visualizes the correlation
of the code complexity metrics with the beta value for each deactivated areas averaged across
participants. By using the mean, we can reduce the influence of peculiarities of individual
participants. Each dot in the plot indicates one comprehension task. We found that all deactivated
areas correlate negatively with Halstead and DepDegree; that is, the higher the value for these
complexity measures, the lower the level of the beta value for the deactivated areas (indicating
higher cognitive load). One correlation, that is, the correlation of BA 32 with DepDegree (−0.591,
bottom right) is strong. Given our small sample size, we can actually expect that, although some
of the correlations have a high value, these are not necessarily true relationships. Interestingly,
the correlation with McCabe is positive, indicating that with a higher control-flow complexity, the
deactivation of the found areas is less pronounced, or in other words, requires lower cognitive
load. The weakest correlations are with LOC, indicating that there is no relationship between lines
of code and cognitive load in this sample. However, it is important to note the code snippets were
designed to be similar in length and complexity and do not have a high variation in the values of
the metrics. Thus, while we demonstrated how we can analyze the data, the code snippets need
to show a higher variation in length and complexity to reliably evaluate whether a relationship
between cognitive load and complexity exists.

Despite this, the results motivate us to design a dedicated experiment to evaluate teh relationship
between complexity metrics and cognitive load: The high correlation values with DepDegree and
Halstead indicate that data-flow complexity and vocabulary size as operationalized by these
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Figure 5.2: Scatterplot of code complexity metrics and strength of deactivation of BA 31ant, BA
31post, and BA 32. Each dot represents one comprehension task. The strength of
deactivation is the average beta value across all participants.

measures modulate cognitive load of participants, which is in line with McKiernan’s result of
a stronger deactivation during more difficult tasks [McK+03]. This also fits well to bottom-up
comprehension, because there are no beacons to act as cues that could relieve cognitive load
during comprehension. Instead, variable names remain rather abstract, and data-flow cannot
easily be associated with certain variables.

5.1.2 fMRI Study

After our data exploration confirmed the feasibility of a dedicated fMRI study, we can go one step
further and start with the overarching question that drives this work:

RQ Can variations in (classes of) code complexity metrics explain differences in
programmer cognition during program comprehension?

To address this question, we first draw on insights from neuroscience studies on cognitive load
and from linguistic studies on sentence complexity. An extensive body of previous research
has examined how syntax complexity in natural language can influence brain activation and
processing difficulty. For example, complex sentences such as “The girl that the boy is tickling is
happy” can be difficult to process for patients with Broca’s aphasia [CZ76] (a cognitive deficiency
due to an acute brain lesion); these patients cannot reliably distinguish between the girl or the
boy being happy. In healthy patients, such sentences will cause distinct activation of specialized
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language processing regions in the brain not seen with simpler grammatical structures. To perform
these studies, neuro-linguists typically conduct a parameterized analysis of sentences, where they
intentionally construct sentences that vary along several metrics of interest (such as left-branching
complexity [Udd+19], movement distance [SG07], or filler-gap dependencies [FSF01]) observing
differences in behavioral measures and brain activation. Such studies provide deep insights into
why—not only whether—comprehension of certain language constructs can be difficult, gaining
insights into the inner processing of language cognition.

Inspired by parameterized analysis of sentence complexity, we conducted a study, in which
19 participants comprehended 16 code snippets. To this end, we explore the relation of code
complexity metrics to behavioral and cognitive correlates of program comprehension. We use the
same four representatives for different classes of code complexity (i.e., LOC, Halstead, McCabe,
DepDegree) as a baseline before exploring 37 further complexity metrics. We also investigate the
reliability of subjective perception of code complexity to include the programmer’s perspective.

Based on their aim and definition as well as prior neuro-linguistic studies, we expect different
outcomes for different kinds of complexity metrics:

(a) a higher number of symbols (as measured by vocabulary-size metrics) induces higher
cognitive processing demands, as seen when increasing the number of words in a sen-
tence [Sch+20]. This is also supported by early studies on the relationship of Halstead’s
complexity and comprehensibility [Cur+79];

(b) an increased number of control paths (as measured by control-flow metrics) increases
activation of areas associated with rule-guided conditional reasoning, such as reading
conditional propositions [Liu+12] and counterfactual [Kul+13] sentences: “If Mike pressed
the brake pedal, then the car would have stopped”;

(c) a higher number of data-flow dependencies (as measured by DepDegree) increases activa-
tion of Broca’s area (syntactic working memory) [FSF01], as seen with sentences where
assignment of values must occur later in the sentence (i.e., filler-gap dependencies), “Which
cowgirl did Mary expect to have injured herself due to negligence?”.

5.1.3 Experiment Design

Our fMRI study of neuronal and behavioral correlates of code complexity metrics builds on the
data exploration that we presented in Section 5.1.1. We specifically implemented this study
with our multi-modal experiment framework to unveil this relationship. We selected proper code
snippets that vary across different metrics, and analyzed a total of 41 metrics regarding their
predictive power.

We provide an online replication package24 to share experiment design, tasks, and analysis
protocols.
24https://github.com/brains-on-code/fMRI-complexity-metrics-icse2021
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5.1.3.1 Research Goals

In this study, we aim at answering the following research questions:

RQ 5.1 Do different (classes of) code complexity metrics correlate with programmers’
behavior during program comprehension?

RQ 5.2 Do different (classes of) code complexity metrics correlate with programmers’
cognitive load in terms of brain (de)activation during program comprehension?

RQ 5.3 Do different (classes of) code complexity metrics correlate with programmers’
subjective perception of code complexity?

5.1.3.2 Pilot Studies

To answer our research questions, we carefully designed our experiment. First, we compiled a set
of 50 Java code snippets by obtaining snippets from previous studies on program comprehen-
sion [Sie+14a; Sie+17; Bus+15] and by augmenting this set by searching for code snippets with
similar complexity in public code repositories. Second, from this pool of code snippets with a
wide range of complexities, we selected the most suitable snippets for an fMRI study by running
two pilot studies. We asked 7 pilot-study participants (2 professional programmers and 5 PhD
students) to understand the snippets as fast and accurately as possible and to verbally share
their thoughts afterwards. Unlike in the fMRI scanner, we did not set a time limit per snippet,
because the actual comprehension time is an important factor to select appropriate snippets for
an fMRI study. In the pilot studies, we also asked for a subjective evaluation of each snippet’s
complexity, but, unlike in the subsequent fMRI study, we did not ask them to rank all presented
snippets. Third, we selected snippets for the fMRI study that were associated with a range of
complexity metrics values balancing our final selection across the four classes of complexity
metrics.

For illustration, we show one of the snippets in Listing 5.1, which computes the length of the
last word in a string: The code exhibits large values for some of the metrics, not being trivial to
solve (pilot participants took about 45 seconds), while still staying within the 60 seconds limit
allowed in the fMRI study. Feedback from participants indicated that they needed a high level
of cognitive effort to understand the snippet, but could still succeed. In particular, they noted
that the snippet did not allow them to take a “mental break”. That is, it was difficult to analyze
individual statements while keeping other statements in mind, and that they were unable to match
the code to any known algorithm.
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1 public static void main(){
2 String text = "The quick brown fox jumps";
3 System.out.print(compute(text));
4 }
5
6 static int compute(String text){
7 int result = 0;
8 boolean flag = false;
9 for (int i = text.length() - 1; i >= 0; i--){

10 char c = text.charAt(i);
11 if ((c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')){
12 flag = true;
13 result++;
14 } else {
15 if (flag)
16 break;
17 }
18 }
19
20 return result;
21 }

Listing 5.1: Complex code snippet that computes the length of the last word in a string. The
output for this snippet is “5”.

Finally, consistent with previous studies [Sie+14a; Sie+17], we excluded all context information
from snippets to enforce bottom-up comprehension. This way, we reduce the influence of pre-
vious experience on cognitive load, because employing a more efficient top-down approach is
impeded, and because expertise can moderate the relationship between complexity and perfor-
mance [Cur+79]. In Table 5.1, we provide information on the code snippets and code complexity
metrics that we selected for the study in the fMRI scanner (see the supplementary Web site for
all code snippets and all 41 metrics).

In Table 5.3, we show the correlations among the four metrics for all code snippets. Although
we designed the snippets to vary in complexity, we were restricted by requirements of the fMRI
scanner (especially the limited screen size to show a maximum of 30 lines of code and that each
snippet is comprehensible within 60 seconds). Thus, a certain correlation among the metrics is
unavoidable.

5.1.3.3 Experiment Design & Execution

Participants Participants were 19 (including one whose fMRI data had to be excluded from
analysis due to excessive head movements) late undergraduate or graduate students at the
University Magdeburg. We determined their programming experience based on a validated
questionnaire [Sie+14b]. The participants are intermediate programmers according to the Dreyfus’
taxonomy of skill acquisition [DD86; Mea+06]. All participants had normal or corrected-to-normal
vision and were right-handed. We show further demographic data in Table 5.2.
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Characteristic N (in %)

Participants 19
Gender Male 17 (89%)

Female 2 (11%)
Pursued academic degree Bachelor 9 (41%)

Master 13 (59%)
Age in years ± SD 26.47 ± 2.68
Programming experience Years of experience ± SD 6.79 ± 4.96

Experience score [Sie+14b] ± SD 2.83 ± 0.53
Java experience [Sie+14b] ± SD 3.47 ± 1.09

Table 5.2: Participant demographics for our fMRI study on code complexity metrics.
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Figure 5.3: Illustration of one (out of five) experiment trials for our study on code complexity
metrics.

Design and Tasks The study design builds on our developed framework. We presented three
tasks in the fMRI scanner. First, participants should comprehend a code snippet. To this end, they
should determine what would be printed on screen if the snippet was executed. The experiment
moved on when they responded, but there was an upper limit of 60 seconds for a comprehension
task. This was followed by a 10 second distractor task (cf. Section 3.5.4). Finally, a 30 second rest
condition followed. After three comprehension snippets, a control condition followed, in which
participants saw another snippet and should click whenever they spotted an opening bracket.
This was repeated until the participant completed all 16 comprehension snippets. In Figure 5.3,
we illustrate one out of five experiment trials.

Data Collection We describe the fMRI setting and imaging sequence in the Appendix (Sec-
tion 7.1). During the fMRI session, we collected behavioral data with an fMRI-compatible two-
button response device. Participants indicated whether they could compute the result of a snippet.
We showed a warning after 58 seconds that the time was almost up.

After the fMRI session, we conducted a semi-structured interview with each participant, which
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was based on the results of the pilot studies. In addition to open-ended questions investigating
the participants’ individual perception of snippet complexity, we showed them the code snippets
again and asked them to order the snippets regarding complexity. Such categorization tasks
can produce insights into how participants approach a task (e.g., physics novices and experts
categorize problems based on different aspects [Sny00]). We allowed participants to self-choose
the number of categories, because we noticed in the pilot runs that participants had difficulties
when a fixed number of piles did not match their expectation of different complexity levels. As in
the pilot studies, this helps us to understand what made a snippet difficult or easy to comprehend.
If participants made only two piles (“simple” and “complex”), we encouraged them to distinguish
it further, often leading to three or four piles (see Section 5.1.4.3).

fMRI Data Analysis After the standard fMRI preprocessing described in Section 7.1, we con-
ducted a random-effects general linear model (GLM) analysis, defining one predictor per condition:
program comprehension, distraction, control, and rest. To identify brain areas related to program
comprehension, we filtered the data to all voxels that showed a positive deflection of the BOLD
response during the comprehension condition. We computed the contrast between program
comprehension and control condition (p < 0.05, false discovery rate (FDR) corrected [BH95],
minimum cluster size: 27 mm3). To identify deactivated brain areas, we obtained all voxels that
show a negative BOLD deflection when contrasting comprehension and rest (p < 0.001, FDR
corrected, minimum cluster size: 27 mm3). For correlation analysis, we computed the mean
amplitude of positive or negative BOLD deflection in percent for each cluster, task snippet, and
participant, and correlated with the complexity metrics.

In addition to brain activation, we collected two further dependent variables: First, we observed
participant behavior (response time, response correctness). This helps us to evaluate whether
participants actually worked on understanding the snippets. We excluded snippets where partici-
pants (accidentally) responded too fast (response time less than 3 seconds), which happened in 3
out of 304 comprehension tasks. Second, we recorded subjective complexity in a post-interview:
We converted the piles into equidistant values between 0 and 100. For example, if a participant
created 4 piles, we assigned snippets of the first pile a complexity score of 0, the second pile a
score of 33, the third 66, and the fourth 100. 3 piles translate to 0, 50, and 100, and 2 piles to 0
and 100.

To analyze the relationship between complexity metrics and cognitive processes, we use Kendall’s
τ to compare each metric’s complexity value with the observed brain (de)activation across all
snippets. We use Kendall’s τ (rather than Pearson’s correlation coefficient) because of its power
with interval data and robustness against outliers [CC83].

5.1.4 Results

In this section, we present the results of our data analysis, including behavioral, fMRI, and
subjective complexity data. We summarize the correlation results in Table 5.3. We separate results
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5 Applications of fMRI Research in Software Engineering

from discussion (see Section 5.1.5) to prevent mixing interpretation with data. To streamline
the presentation, we concentrate here on the four representative metrics. In Section 5.1.5.1, we
consider further metrics providing more evidence on the link between complexity metrics and
cognitive processes.

5.1.4.1 Complexity Metrics and Behavioral data

On average, participants needed 32 seconds to solve a task, and solved 72 % of the tasks correctly
(cf. Table 5.1). All participants were able to complete all tasks before the maximum experiment
time was reached.

We present the observed correlations between behavioral data and complexity metrics in Table 5.3.
They let us answer our first research question:

RQ 5.1
McCabe has no correlation to neither response time nor correctness. LOC, Halstead,
and DepDegree all show a small correlation with response time and a medium
correlation with correctness.

5.1.4.2 Complexity Metrics and fMRI Data

LR

A

P

LRA P

Figure 5.4: Visualization of the activated brain areas (all in the left hemisphere): BA 6 (4315 voxel,
TAL: -35, 10, 47), BA 21 (3306 voxel, TAL: -57, -39, 1), BA 39 (3527 voxel, TAL: -37, -65,
35), and Broca’s area (1618 voxel, TAL: -49, -22, 14). A: anterior, P: posterior, L: left, R:
right.

Brain Activation In Figure 5.4, we visualize the activated brain clusters. In our study, four brain
areas are significantly activated during program comprehension: BA 6, BA 21, BA 39, and Broca’s
area (BAs 44 and 45). Notably, these activation clusters were found also in previous fMRI studies
of program comprehension [Sie+14a; Sie+17; Cas+19; Iku+21].

The relationship of the complexity metrics and activation strength of the four Brodmann areas
corroborates the behavioral data, but provides a stronger and more nuanced view (cf. Table 5.3).
Again, McCabe shows no correlation. LOC has a medium correlation with BA 21, and a small
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5.1 Code Complexity Metrics and Program Comprehension

LR
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LRA P

Figure 5.5: Visualization of the deactivated brain areas: BA 32 (10’651 voxels, TAL: -1, 51, 14) and
BA 31 (2672 voxels, TAL: 3, -20, 40), which both are part of the default mode network.
A: anterior, P: posterior, L: left, R: right.
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Figure 5.6: Relationship of the four complexity metrics with BA44/45 (Broca’s area). Each dot
represents the mean activation for a single snippet. McCabe shows no correlation.
LOC, Halstead, and DepDegree show small positive correlations, meaning that higher
complexity values increase load in BA44/45. However, each metric only explains part
of the observed variance in activation.

correlation with BA 6, BA 39, and Broca. Halstead and DepDegree show a small correlation with
Broca (cf. Figure 5.6) and consistent medium correlations across BA 6, BA 21, and BA 39.

Brain Deactivation Figure 5.5 visualizes the specific positions of the two clusters that we found
in BA 31 and BA 32, which belong to the default mode network. Regarding the relationship with
the metrics, McCabe again shows no correlation with brain deactivation. DepDegree shows a
small correlation that explains almost none of the observed variance in brain deactivation. LOC
and Halstead have medium correlations with both deactivated areas (cf. Table 5.3).
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Behavioral Data and fMRI Data We analyzed the relation of the behavioral data with the
(de)activated areas: We found strong correlations with the response correctness for BA 6, BA 21,
BA 39, and a medium correlation with Broca. For response time, we found mostly small correla-
tions, and one medium correlation (BA 39).

RQ 5.2
McCabe shows no correlation with the strength of brain activation or generic
cognitive load. LOC, Halstead, and DepDegree show small to medium correlations
with brain activation and cognitive load.

5.1.4.3 Subjective Complexity

In addition to objective measures of brain activation, we investigated the relationship between code
complexity metrics and subjective complexity based on the participants’ rating. Two participants
created two piles (cf. Section 5.1.3.3), nine participants created three piles, and eight participants
created four piles of complexity. Participants generally balanced the size of each pile. We
transformed the piles into numerical values (42.42 ± 40.92). Regarding the relationship to the
metrics, we observe only low correlations, with McCabe showing no correlation and the other
metrics a small correlation only.

Subjective Complexity and Behavioral Data We observe a medium correlation between response
time and the subjective complexity rating. With number of correctly solved tasks, the subjective
rating shows the strongest correlation, in general.

Subjective Complexity and fMRI Data All (de)activated areas show mostly stronger correlations
with the subjective complexity ratings than with the code complexity metrics. The deactivated
areas of BA 31 and BA 32 show a medium and strong correlation, respectively. The four activated
brain areas show only small correlations with subjective complexity.

RQ 5.3
While subjective complexity has, at best, small correlations with complexity metrics,
it accurately depicts whether participants were able to solve a task. Subjective
complexity also strongly correlates with our measure of cognitive load.
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5.1 Code Complexity Metrics and Program Comprehension

5.1.5 Discussion

We start the discussion by answering our overarching research question, followed by a detailed
discussion of the relationship of code complexity metrics with cognitive processes. We conclude
by formulating a set of hypotheses and outlining perspectives that arise from our study.

5.1.5.1 Overarching Research Question

RQ Can variations in (classes of) code complexity metrics explain differences in
programmer cognition during program comprehension?

Yes, and no. Based on plausibility and prior neuro-linguistic studies, we hypothesized some defini-
tive relationships between code complexity metrics and programmers’ cognition. For example,
we expected that code with more data flow shows a direct positive correlation with Broca’s area
due to increased memory load [FSF01]. While we indeed observe a positive correlation between
DepDegree (as an indicator for data-flow complexity) and Broca’s area, we also observe small
to medium-strength correlations with all other cognitive processing measures (i.e., all activated
and deactivated brain areas and their levels) as well as behavioral data (i.e., response time and
correctness). Similarly, LOC and Halstead exhibit small to medium-strength correlations with
all behavioral and cognitive processing measures. McCabe, however, consistently lacked any
significant correlation with our observed measures.

All of the observed relationships between complexity metrics and cognitive processing measures
are nuanced and contextual, into which we delve in more detail next.

Deactivated Areas: Cognitive Load When we must allocate attention to a task with perceived
difficulty, areas of the brain that are associated with wandering and reflective thinking (default
mode network) [McK+03] are deactivated. The level of deactivation is an indicator for cognitive
load [McK+03]. Two classes of complexity metrics exhibited medium correlations with this
shutdown: code size (LOC) and vocabulary (Halstead). In other words, the size of code, either as
pure textual length or in terms of vocabulary size, drives cognitive load. We also observed a small
correlation of data flow (DepDegree), but no correlation of control flow (McCabe) with deactivation.
Perhaps, size-based metrics naturally interact with a programmer’s sense of gestalt [Gol02], and
thus induce stronger anticipation for higher cognitive load.

The results of our study on complexity metrics substantiates our possibly spurious findings from
the previous exploration, but differ in a few key ways: We previously also observed a default mode
network deactivation relationship with vocabulary size, but not code size. In contrast, now, with
more varied snippets and complexity values, we found that code size exhibits also a medium
correlation, in the same range as vocabulary size.
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Activated Areas: Link to Cognitive Processes When faced with solving a complex task, we
perform additional cognitive operations (e.g., extracting the meaning of identifiers) and recruit
additional cognitive resources and processes to fulfill the extra demands of the task. The areas
of the brain that are stronger activated in a complex task (as compared to a simple task) indicate
increased demands for cognitive processes and resources hosted by these particular areas.

The LOC metric hints at an increased demand on a single area (as indicated by a medium-strength
correlation), the middle temporal gyrus (BA 21). BA 21 is typically associated with semantic pro-
cessing during language comprehension [Bin+09a; Dro+04] and program comprehension [Sie+14a].
Its role for program comprehension is interpreted as extracting the meaning of individual identifiers
and symbols from code [Sie+14a; Sie+17; FSW17; Cas+19]. When processing complex sentences,
an increased activation of BA 21 indicates higher grammatical processing load [KS02]. So, we
conclude that simply increasing LOC increases the cognitive processing of identifiers and symbols,
but otherwise does not necessarily pose a strong demand on other cognitive resources.

Halstead and DepDegree hint at increased demands (as indicated by medium-strength correla-
tions) across three areas (BA 21, BA 6, and BA 39). The middle frontal gyrus (BA 6) is activated
when attention and working memory is required [Neb+05]. Several fMRI studies on program com-
prehension found strong activation, albeit with slightly changing location in the brain [Sie+14a;
Sie+17; Cas+19]. The angular gyrus (BA 39) is a part of the brain that is associated with complex
cognitive processes; it acts as a hub for integrating incoming information. Like a reservoir, as
processing areas are filled to capacity, other areas are recruited to share the load. Collectively,
this result indicates that increasing the number of symbols and the number of data dependencies
requires a broader network of processing than with increases in other factors. McCabe showed
no relationship with an increased demand in any brain area.

Our results align well with the study by Schuster et al. [Sch+20], who found that an increasing
number of words in a sentence leads to higher activation in BA 21. Furthermore, we found support
for early results of Curtis et al. [Cur+79] that program size relates to whether programmers
successfully comprehend a piece of code. However, we did not find a link to McCabe, as Curtis et
al. did.
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BA 39 .29 .56 .29 .45 .22 .32 .34 .26 .31 .33 .10 .32 .17 .21 .27 −0.01 .31 .14 .13 .25 .19 .12
Broca .16 .50 .20 .41 .12 .16 .18 .14 .15 .17 .06 .16 .12 .16 .11 .03 .27 .04 .01 .07 .08 .00

Table 5.4: Kendall’s τ correlation between brain activation and the unique, differentiating top 20
of the 37 explored complexity metrics (based on average correlation). The metric’s
text color indicates its class (size, vocabulary, control flow, data flow, other). The cell
shading highlights strong correlations (cf. Table 5.3). All metrics, raw data, and results
are available on our supplementary Web site.
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5.1 Code Complexity Metrics and Program Comprehension

Exploration of Further Complexity Metrics So far, our analysis concentrated on commonly
used representatives of each complexity metric class. However, while widely used, some of the
selected representatives exhibit alleged limitations regarding human cognition. For example, the
control-flow metric McCabe fails to consider the added complexity of nested structures, such as
nested loops or recursion with complex break conditions. More recent control-flow metrics, such
as “cognitive complexity” [Cam18], take code repetition, layout, and modern program constructs
into account and promise relief of such weaknesses.

To understand whether more advanced (or any) metric predicts cognitive load better, we com-
puted our snippets’ complexity values of 43 further metrics provided by our analysis tools (i.e.,
MetricsReloaded and SONARQUBE). We included metrics that target the method level. Then, we
excluded all complexity metrics that were unable to differentiate between our snippets (e.g., a
metric counting the number of TODOs would yield 0 for all snippets and have no differentiating
value for our analysis), which left 37 metrics, partially shown in Table 5.4. We categorized the
metrics into: 2 size metrics, 8 vocabulary metrics, 12 control-flow metrics, 0 data-flow metrics,
and 15 others.

Overall, the 37 complexity metrics show a wide range of correlations with the observed brain
activation. Interestingly, some simple control-flow metrics, such as the number of branching
statements or the maximum loop depth, correlate more strongly than McCabe. SONARQUBE’s
“cognitive complexity” shows an improvement over McCabe, but only a small correlation, at best.
This corroborates a prior meta-analysis on the limitations of the cognitive complexity regarding
physiological data [BWW20]. In addition to Halstead, the number of parameters is a second
vocabulary-based metric that shows a strong correlation with brain activation in Broca’s area.

These findings corroborate that program comprehension is a complex cognitive process. While
some simple metrics are well-suited to predict cognitive load in some brain areas, there is no single
metric that predicts the overall cognitive effort. Advanced methods that try to capture all aspects
are not an accurate predictor for cognitive load. Rather than trying to devise complex metrics
with sophisticated and all-encompassing views on complexity, it may instead be worthwhile to
use a basket of simple, but targeted metrics, with well-understood relationships with code and
cognitive effort. For example, a continuous integration process could check simple metrics with
well-understood cognitive relationships: maximum loop depth for constraints on programmers’
working memory (BA6) or the number of parameters as indicator for load on semantic processing
(BA39 and Broca).

Summary Considering the four representative complexity metrics, the vocabulary-size-based
metric Halstead’s complexity, followed by the data-flow-based metric DepDegree, have shown
the most consistent relationship with the various measures of cognitive effort. Control-flow
complexity, as measured by McCabe, consistently lacked any relationship with cognitive effort.
An exploration of other method-level metrics did not reveal any individual metric that accurately
predicts cognitive load. However, beside DepDegree, none considered data-flow despite promising
results. Future research shall consider data flow as a predictor for cognitive effort. While no
single metric of complexity is sufficient for comprehensively explaining all observed data, we
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conclude that programmers should aim at minimizing the number of variables, branching depth,
and amount of data flow within methods to reduce cognitive load when comprehending code.

Size-based metrics (Halstead and LOC) align well with the anticipation of work, and therefore with
the amount of attention needed to allocate toward a task. Data-flow-based metrics (DepDegree)
were less likely to capture this anticipation, yet demonstrated a link to increased cognitive
demands during program comprehension. These results imply that complexity estimates that
use an assessment of the appearance of code, as is common in readability studies, rather than
requiring actual comprehension of code, could misrepresent complexity.

Finally, a useful metric may involve the subjective complexity rating after the completion of a
comprehension task. In other words, when participants struggled in grasping the meaning of a
code snippet, they find it more complex, and they seem to be well aware of their struggle. They
are likely to predict their correctness (τ = −.77), and their rating often matches their level of
concentration (τ = −.69), and relates to increases in cognitive effort.

5.1.5.2 Hypotheses

During the analysis and interviews, we found some further interesting insights that we formulate
in terms of hypotheses to be addressed in future studies.

Size is a Preattentive Indicator for Cognitive Load We found that, when a snippets consisted
of more lines of code, the deactivation of the default mode network was rather strong. Thus,
participants might use simply the amount of material to comprehend as heuristic of how much
cognitive load they expect. This is an easy to assess property, which might not even require atten-
tion and might be a feature of perception [Gol02]. However, this could also lead to overestimation
as the comprehension process progresses.

Novel Metric of Data Flow versus Control Flow Although DepDegree builds on McCabe, McCabe
shows no relationship to cognitive effort, whereas DepDegree does. Thus, everything that dis-
tinguishes DepDegree from McCabe might be responsible for the small to medium correlations.
Thus, a metric capturing only the part that differs between DepDegree and McCabe might be a
good predictor for cognitive load.

5.1.5.3 Perspectives

Mental Shortcuts during Program Comprehension Programmers tend to minimize efforts for
program comprehension by actively looking for efficient ways to solve a task [Roe+12]. In the
context of our experiment, this means that participants try to find the simplest path to solve the
task. For example, a participant reported, upon recognizing a list of square numbers, they expected
an algorithm dealing with square roots (see top-down comprehension in Section 4.1, [Bro78;
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Sie+17]). Complexity metrics seem to neglect that programmers try to take such mental shortcuts.
For example, McCabe counts the number of all possible execution paths, but programmers often
do not have to consider all paths; just enough to solve the current task. For example, in our
“hurricane check” snippet, participants could skip some if statements after they have found the
solution. Further work shall investigate this phenomenon by carefully controlling which mental
shortcuts during comprehension are available. This would produce further insights into the
context sensitivity of complexity metrics.

The Effects of Extreme Complexity Some metrics may not have a relationship with human
cognition, until the values exceed some extreme threshold. Although a higher number of possible
execution paths did not increase the cognitive load of participants, there are only 6 different
values for McCabe, and the largest (i.e., 8) might not even be considered sufficiently complex.
Still, we selected them for their widespread use in practice. Some static analysis tools, such
as SONARQUBE, consider a McCabe value of 10 to be so complex that it should not even be
checked into a repository. Unfortunately, it is almost impossible to vary the code along all 4
classes of metrics while also adhering to presenting the full code on one screen within the fMRI
scanner. Thus, future studies could either use longer code, which would require the participants
to scroll up and down, or could focus more on control flow to have more extreme ranges so that
the relationship of complexity and cognitive load can be observed in more depth.

Activation of Broca’s Area for High Performers We confirmed the activation of the inferior
frontal gyrus (Broca’s area), which is crucially involved in establishing a unified understanding
between alternatives (e.g., combining the meaning of words to a sentence) [Hag05] and which
was consistently activated in previous fMRI studies on program comprehension [Pei+20; Sie+17;
Iku+21] and sentence complexity [KS02].

Correlations between our complexity metrics and the observed activation in Broca’s area are
mostly small. One reason could be that activation of Broca’s area was modulated by individual
performance. That is, some participants, finding the code too complex, did not activate later
stages of language processing. Another possibility could be that the code snippets were more
mentally challenging than in previous studies, and as a result, some participants needed to recruit
Broca’s area as syntactic working memory [FSF01]. Both explanations are consistent with our data,
as we found stronger activation in Broca’s area among the high-performing participants (i.e., who
correctly solved, at least, 13 of the 16 comprehension tasks, n = 9). Studies examining complex
sentence comprehension of individuals have also observed activation differences between high-
performing individuals with good comprehension (increased activation of Broca’s area) and poor
comprehension (decreased activation of Broca’s area) [VEV+16].

Future experiments shall examine when and why Broca’s area is activated by high performers,
increasing our understanding of expertise. Furthermore, if we want code to be understandable by
everyone, then we can use these methods to design metrics that predict truly simple code, code
that does not require the brain circuity associated with complexity.
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Overcoming Shortcomings of Complexity Metrics Based on the participants’ feedback and
the observed relationships to various measures of programmer cognition, we found that popular
complexity metrics fail to capture some comprehension aspects that participants used in their
subjective rating:

• Long, diffuse code lines can cause particular difficulties. For example, Line 11 of Listing 5.1
obfuscates the intention (is it a non-letter?), which needs to be extracted from the code.

• Identifiers with similar names lead to confusion (e.g., number1, number2, numbers in
one snippet), likely because participants have to pay specific attention not to confuse these.
Thus, code readability may be just as important as structural complexity, as suggested in
previous studies [BW08; BW10; PHD11].

• DepDegree fails to consider the “distance” or the locality of data-flow relationships. For
example, in an unrolled sort algorithm the swap operations are localized to each line and
can be abstracted away once a line has been processed. Incorporating other factors, such
as the variable lifetime or lexical distance, would be worthwhile to explore.

These and other aspects shall be considered when using code complexity metrics to describe
human cognition (e.g., Jbara and Feitelson consider repeated statements [JF17]). Our experiment
design provides a structured way to test and refine code complexity metrics to make them a
more accurate proxy for program comprehension and elevate them beyond simple code size
predictors [GL17].

5.1.6 Threats to Validity

5.1.6.1 Construct Validity

We carefully designed our experiment to limit threats to validity. With regard to construct validity,
we operationalized code complexity with four widely used metrics covering different concepts
of code complexity (e.g., control-flow or data-flow complexity). An exploration into 37 further
metrics did not reveal any candidates with consistently strong correlations. The four selected
metrics correlate with each other even with our carefully designed experiment. Nevertheless, in
addition to our conceptual insights, our study outlined how to investigate a possible cognitive
complexity metric with a multi-modal experiment.

Another threat arises from our operationalization of program comprehension, which is a multi-
faceted phenomenon in which the chosen experiment task is decisive for observed cognitive
processes [DR00]. In our study, we asked programmers to evaluate snippets regarding input and
output, and we found, at most, a medium correlation with code complexity metrics. An experiment
with another type of task (e.g., deriving program invariants) may emphasize a different facet of
program comprehension and thus may show stronger or weaker correlations with complexity
metrics. However, our task operationalization is typical to specify program behavior and in line
with previous fMRI studies on program comprehension [Sie+14a; Sie+17; FSW17; Dur+16; Cas+19].
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While no single metric of complexity is sufficient for comprehensively explaining all observed data,
we can conclude that programmers should aim at minimizing the number of variables, branching
depth, and amount of data flow within methods to reduce cognitive load when comprehending
the code.

5.1.6.2 Internal and External Validity

Several threats to validity arise from our participant sample.

Participants First, we have a skewed gender distribution, which, however, is close to the pop-
ulation in computer science for most universities. Second, participants may have encountered
algorithms used in our snippets before. However, we mitigated this threat by enforcing bottom-up
comprehension.

Code Snippet Selection Due to the nature of controlled fMRI experiments, we intentionally
focused on high internal validity to control for confounding parameters as much as possible. Our
snippets are rather small, in one programming language, and we selected a homogeneous sample
in terms of programming experience. Thus, our results apply only to similar circumstances and
cannot easily be generalized, for example, to expert programmers or large code bases. This is an
unavoidable trade-off between targeting either high internal or high external validity [SSA15].

Code Complexity Granularity We need to be aware that, in our experiment, we studied program
comprehension at the method level, but software systems consist of many methods and higher-
level components. Nevertheless, our results still have practical impact: When we know that
intermediate programmers work at the method level, code complexity metrics can help to predict
their cognitive effort and that they might need longer than expected. Furthermore, different
complexity metrics have been devised beyond the method level (e.g., Weighted Methods per
Class [CK94], Lack of Cohesion in Methods [HS95; HM95]), which shall be addressed in future
research. Our study provides a starting point for dedicated follow-up studies that shall investigate
these metrics and associated cognitive processes.

5.1.7 Related Work

Beside the work that evaluates how software metrics are related to human cognition (cf. Sec-
tion 5.1), several neuroimaging studies exist that shed light on how programmers work with
code[Sie+14a; Sie+17; Yeh+17; CK14; Nak+14; FSW17; Fak+18; Kos+18; Iku+21; Hua+19; Kru+20].
While all these studies considered neuronal correlates of processes related to program compre-
hension, none establishes a link to software metrics.
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5.1.8 Conclusion

Code complexity metrics are relevant for researchers and practitioners alike, especially as proxy
for difficulty during comprehending code. Despite their widespread use, the validity of code
complexity metrics is debated and, despite substantial research, their usefulness is still unclear.
To shed light on this issue, in an fMRI study, we investigated 41 complexity metrics and their
behavioral and neuronal correlates during program comprehension. We found corroborating
evidence with mostly weak to medium correlations with programmers’ correctness and response
time. More importantly, since we observed participants’ brain activation with fMRI, we enriched
previous research by offering a novel perspective and explaining why code and certain aspects of
it are difficult to comprehend. In particular, we found that the code’s textual size drives cognitive
load due to programmers’ expected attention and that vocabulary size of code particularly burdens
programmers’ working memory.

Despite these encouraging results, further studies need to dig deeper to better understand the
suitability of code complexity metrics as a proxy for programmers’ cognition. Data-flow-based
metrics, such as DepDegree, showed promise and need further investigation. Future work shall
also address the gap on how individual programmer behavior and knowledge enables mental
shortcuts, which likely reduce generic precision of complexity metrics.

5.2 The Role of Aggregation in Human Studies

Besides the dedicated experiment to understand the link between code complexity metrics and
programmers’ cognition, we used our gathered data in two projects to further contribute to using
neuroimaging methods in software-engineering research. Due to space considerations, we only
provide a high-level overview and refer to the publications for full details (Section 5.2: [Sie+21]
and Section 5.3: [Neu+21]).

In the first project, we tackled the prevalent issue of optimally analyzing human-response
data [Sie+21]. Human studies often fail to use the full potential of analysis methods by combining
analysis of individual tasks and participants with an analysis that aggregates results over tasks
and/or participants. This may hide interesting insights of tasks and participants and may lead
to false conclusions by overrating or underrating single-task or participant performance. Here,
we show that studying multiple levels of aggregation of individual tasks and participants allows
researchers to have both, insights from individual variations, and generalized, reliable conclusions
based on aggregated data. First, we conduct a literature survey to reveal that most human studies
perform either a fully aggregated analysis or an analysis of individual tasks. To show that there is
important, non-trivial variation when including human participants, we re-analyze 12 published
empirical studies, thereby changing the conclusions or making them more nuanced. Moreover, we
demonstrate the effects of different aggregation levels by answering a novel research question
on four sets of fMRI data. We show that, when more data are aggregated, the results become
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more accurate. This proposed technique can help researchers to find a sweet spot in the tradeoff
between cost of a study and reliability of conclusions.

We support replication by providing relevant material.25

5.2.1 Literature Analysis

Total Number Percentage

Published Papers 1584 100%
. . . include empirical study 1579 99%
. . . with human participants 397 25%
. . . with defined tasks 165 10%

Table 5.5: Overview of number of papers that include an empirical study with human participants,
in which tasks were defined in ICSE, ESEC/FSE and EMSE between 2011 and 2018.

We first gained an overview of software-engineering literature with human experiments. The
human factor in software-engineering research has grown more and more important: Between
1993 and 2002, only 1.9 % of all empirical studies included human participants [Sjø+05]. In 2010,
this number has increased to 18 % [BSW11], and between 2011 and 2018, it increased further to
25 %. We conducted a literature survey of the past eight instances of the International Conference
on Software Engineering (ICSE), the ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE), and the Empirical Software
Engineering Journal (EMSE) as primary venues for empirical research on software engineering.
We show a high-level overview in Table 5.5.

We further examined how the empirical studies are typically analyzed, that is, per task or ag-
gregated over (categories of) tasks. We illustrate different aggregation methods of task-wise,
participant wise, and both in Table 5.6. Of 165 studies that have defined tasks with human
participants, 22 studies used a task-wise analysis, 71 conducted an aggregated analysis, and 51
used a combined approach. Thus, the question of whether to aggregate or not to aggregate is
relevant.

5.2.2 Re-Analysis of Behavioral Studies

Second, we re-analyzed studies that conducted a task-wise analysis to understand how aggre-
gation can affect the results. To this end, we aggregated the response data of 12 papers and
reran the analysis on the data that we aggregated. In a nutshell, we found instances where the
aggregation changed the conclusions (6) and where it led to the same conclusions (6). So, in
25https://github.com/brains-on-code/conducting-and-analyzing-human-studies
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5 Applications of fMRI Research in Software Engineering

Participant Task 1 Task 2 Task 3 Total

Expert 1 5 2 8 5
Expert 2 4 4 4 4
Expert 3 2 3 4 3
Expert 4 5 4 6 5
Experts 4 3.25 5.5 4.25

Novice 1 3 6 9 6
Novice 2 3 3 3 3
Novice 3 6 4 5 5
Novice 4 8 6 10 8
Novices 5 4.75 6.75 5.5

Table 5.6: Illustration of aggregation per participant (i.e,. participant-wise ), per task (i.e.,
task-wise ), and a combination of both . The values represent fictional response

times [min] of four novice and four expert participants to three tasks.

half of the cases analyzed, aggregation changed at least partially the conclusion, indicating that
researchers need to be aware of the effects.

5.2.3 Re-Analysis of fMRI Studies on Program Comprehension

1

Trial 1

Fine
Aggregation

Original 
Data

2 3 4 5 6 7 8 9 10 11 12 13

Trial 2

14 15 16 17 18 19 20 21 22 23 24 25

Trial 3

26 27 28 29 30 31 32 33 34 35 36 37

Trial 4

38 39 40 41 42 43 44 45 46 47 48

1 - 3 4 - 6 7 - 9 10 - 12 13 - 15 16 - 18 19 - 21 22 - 24 25 - 27 28 - 30 31 - 33 34 - 36 37 - 39 40 - 42 43 - 45 46 - 48
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Aggregation

(3x2)
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Trial 5 Trial 6

49 – 51, 61 – 63 55 – 57, 67 – 69

49 – 51, 61 – 63 55 – 57, 67 – 69

49 – 51, 61 – 63 55 – 57, 67 – 69…
1 – 3, 13 – 15, 25 – 27 7 – 9, 19 – 21, 31 – 33 4 – 6, 10 – 12, 16 – 18, 22 – 24, 28 – 30, 34 – 36

1 – 3, 13 – 15, 37 – 39 7 – 9, 19 – 21, 43 – 45 4 – 6, 10 – 12, 16 – 18, 22 – 24, 40 – 42, 46 – 48

1 – 3, 13 – 15, 49 – 51 7 – 9, 19 – 21, 55 – 57 4 – 6, 10 – 12, 16 – 18, 22 – 24, 52 – 54, 58 – 60

37 – 39, 49 – 51, 61 – 63 43 – 45, 55 – 57, 67 – 69 40 – 42, 46 – 48, 52 – 54, 58 – 60, 64 – 66, 70 – 72

25 – 27, 49 – 51, 61 – 63 31 – 33, 55 – 57, 67 – 69 28 – 30, 34 – 36, 52 – 54, 58 – 60, 64 – 66, 70 – 72

25 – 27, 37 – 39, 61 – 63 31 – 33, 43 – 45, 67 – 69 28 – 30, 34 – 36, 40 – 42, 46 – 48, 64 – 66, 70 – 72

Intermediate
Aggregation

(2x3)

…

Figure 5.7: Visualization of fine, intermediate, and coarse aggregation levels. Blue boxes rep-
resent brain scans of comprehension tasks , yellow boxes represent brain scans of
syntax tasks , and gray boxes represent brain scans of rest .

Third, we trained a classifier on the data of three previous fMRI studies in which participants
completed different kinds of tasks [Sie+14a; Sie+17; Pei+18c]. The classifier should predict the
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Figure 5.8: Accuracies of the classifier for the ICSE (left), FSE (center), and ESEM study (right).
Each figure shows different aggregation variations, from a coarse aggregation on the
left to no aggregation on the right. The numbers denote to how many groups data
were aggregated. The colors denote the set of voxels; purple: activated voxels, yellow:
deactivated voxels, green: union.

kind of tasks that participants were completing, similar to the study by Floyd et al. [FSW17]. To
evaluate how aggregation affects the accuracy of the classifier, we applied an aggregation function
to the data and fed both, the aggregated data and raw data, to the classifier. With the aggregated
data, the classifier performed better, which contradicts the assumption that more data means
higher accuracy. In other words, aggregation also affects results in this case. Furthermore, we
defined intermediate aggregation levels, such that a subset of tasks is aggregated (cf. Figure 5.7).
As visualized in Figure 5.8, the more tasks are aggregated, the better the prediction accuracy.

Our re-analysis of fMRI data demonstrates how aggregation of several tasks in can improve
reliability and validity of measurement. If many task repetition are an unfeasible effort for a
software-engineering study, we propose using intermediate aggregation levels. They are compro-
mise between study effort (in terms of task creation and duration) and reliability and validity of
measurement.

5.2.4 Conclusion

In this project, we combined three methods for a triangulation approach. We show the prevalence
of how often researchers face the decision of whether to aggregate or not to aggregate. Sub-
sequently, with the re-analysis of human studies and re-using the data of our fMRI studies, we
demonstrate the effect of aggregation on the results and conclusions. In one case, we obtained
even a reversed result. Thus, we make the community aware that the decision of whether and
how data should be aggregated is not trivial and should be considered carefully.
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5.3 fMRI Analysis with Participant-Specific Brain Parcellation

In the second project, we also re-analyzed of a previous fMRI study but with a different objective.
Here, we use the fMRI data from our study on top-down comprehension (cf. Section 4.1) to
demonstrate how using participant-specific brain parcellation can fundamentally change how
we analyze fMRI data [Neu+21]. In conventional fMRI data analysis, voxels can be grouped into
regions of interest on which we carry out tests for statistical significance. Grouping the signal of
many voxels into a region typically leads to a higher sensitivity when compared with voxel-wise
multiple testing approaches. In the case of a multi-subject study, we propose to define the regions
for each subject separately based on their individual brain anatomy, represented, for example,
by so-called Aparc labels. The aggregation of the subject-specific evidence for the presence of
signals in the different regions is then performed by means of a combination function for p-values.
We apply this methodology to our fMRI data on top-down comprehension and demonstrate that
our approach can perform comparably to a two-stage approach.

Siegmund et al. initiated using fMRI as measurement method for program comprehension and
located a network of activated brain areas based on a voxel-wise analysis [Sie+14a]. To confirm
their findings, we conducted a follow-up experiment and tested the identified brain areas (cf. Sec-
tion 4.1, RQ 4.1). This process to establish brain areas that are activated for a cognitive process
requires two independent studies. The first study defines the regions of interest with a voxel-wise
analysis and the second study confirms the findings with a regions-of-interest analysis.

5.3.1 Method

In this project, we propose an alternative analysis method which only requires one study. Instead
of a voxel-wise analysis, we group the functional data based on a participant-specific parcellation
of the anatomical data. To this end, we chose the Harvard-Oxford brain atlas [Mak+06; Des+06]
that provides a parcellation based on gross anatomical landmarks and delivers an Aparc label for
each voxel of each individual brain space. Next, we conduct statistical tests on the group data
for each anatomical Aparc label. We illustrate this process in Figure 5.9. Such a priori definition
increases the statistical power [STD16].

5.3.2 Example Use Case

We demonstrate this analysis method with the fMRI data of the top-down comprehension study. We
do not use the defined regions of interest by Siegmund et al. Instead, we only use the anatomical
parcellation of each participant. We used FreeSurfer to segment and parcellate the brain of each
participant based on their anatomical scan [Fis+02; Fis+04]. We used the Destrieux’ cortical atlas
to assign Aparc labels on an individual participant basis [Des+10]. We then conduct a statistical
test for each Aparc label outlined in the original paper [Neu+21].
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Figure 5.9: Illustration of processing of the fMRI data. The box in Harvest Gold indicate analysis
steps that have already been performed in Section 4.1. The box in Monte Carlo
indicates the processing steps conducted for this project.
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Figure 5.10: Comparative visualization of significantly activated brain areas. On the left are the left-
lateralized brain areas (i.e., BAs 21, 40, 44) activated during program comprehension
confirmed in Section 4.1. On the right are the significantly activated Aparc labels
identified in this analysis, particularly in the middle and inferior temporal lobe.

We compare the found network of brain areas to our previous results in Figure 5.10. While they
are not directly comparable due to the differences in their atlases, the advantage of the proposed
method is clear. It found activation clusters in similar areas, in particular in the middle and inferior
temporal lobe without prior knowledge. These areas have been found in many other fMRI studies
as well [Pei+18c; Cas+19; Iku+21].
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5 Applications of fMRI Research in Software Engineering

The presented analysis method is not limited to fMRI studies of programmers. Rather, this project
illustrated how our neuro-cognitive studies of programmers can help to improve neuroscience
methods.

5.4 Chapter Summary

In this chapter, we presented three applications of our neuro-cognitive experiment framework.
First, we conducted a dedicated fMRI study on code complexity metrics. In a nutshell, we found
that changes in complexity metrics can explain differences in programmer cognition to different
extents. Size-based and vocabulary-based metrics correlate with the anticipation of work, whereas
data-flow metrics correlate with higher cognitive demands in a network of brain areas activated
during program comprehension. Simple control-flow metrics (e.g., number of branches) predict
cognitive load better than more complex control-flow metrics (e.g., McCabe). In general, not
many code complexity metrics incorporate data flow, which seem to capture a distinct aspect of
cognition, showing a promising avenue of further work. From a more abstract view, this study
showed how researchers can use fMRI to tackle critical, open questions in software engineering.
The framework presented in this dissertation and conducted studies demonstrate the value of a
neuro-cognitive perspective.

In addition to direct contributions to software engineering, our interdisciplinary projects provided
further insights for empirical software-engineering research with human participants as well as
analysis of any fMRI studies with dedicated tasks. We re-analyzed several of our fMRI studies
to show how different aggregation levels strongly affect the robustness of drawn conclusions.
We also re-analyzed our fMRI study on top-down comprehension to demonstrate the feasibility
of an alternative fMRI analysis method. While the neuro-cognitive perspective of programmers
and its methodology are still in the early stages, this chapter showed how we already can make a
practical impact on industry and research.
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6 Conclusion and Future Work

Programming is on the verge of becoming the fourth literacy. Understanding the underlying cogni-
tive processes of programming is therefore fundamentally important to shape future education
and practice. While understanding program comprehension as a core activity of programming has
been the focus of many decades of research, conventional methods have limited researchers. In
this dissertation, we introduced a novel neuro-cognitive perspective of program comprehension
that establishes methodological standards of using fMRI in combination with other modalities.
We demonstrated the potential of our framework with several studies shedding new light on our
existing understanding of program comprehension. Overall, the research in this dissertation made
progress in key areas:

Multi-Modal Experiment Framework Adopting fMRI for software-engineering research is still in
its infancy. But, researchers are quickly adapting it with an ever-increasing number of studies.
While these studies already provided plenty of new insights, methodological standards are neces-
sary to establish fMRI as a widely accepted measure. We explored several aspects on how to
properly design fMRI studies and outlined further topics.

In Chapter 3, we showed how fMRI provides objective evidence on cognitive processes of program-
mers. We then discussed a limitation regarding fast cognitive processes, such as recognizing
beacons. Thus, we evaluated a combination of fMRI with simultaneous eye tracking to further
understand program comprehension and its phases. Our experiment showed that, despite some
technical limitations in our setup regarding eye-tracking data quality, it is feasible and insightful to
combine fMRI with eye tracking. In an exploratory data analysis, we evaluated whether secondary
eye-tracking measures, such as pupil dilation or blink behavior, can provide an additional perspec-
tive to a programmer’s mind. While generally pupil dilation and blink behavior showed promise,
the fMRI environment introduces confounding factors that must be controlled. We identified value
in further testing experiment designs and analysis procedures that enable researchers to use
secondary eye-tracking measures.

In a follow-up step, we pushed for a multi-modal experiment framework that combines fMRI and
eye tracking with further modalities. Specifically, we added psycho-physiological measures to
capture high-level physiological and psychological states, such as stress. In combination, all
these measures provide a more comprehensive view on a programmer’s mind. Finally, we also
outlined several methodological refinements that shall be explored in future research.

Throughout Chapter 3, we showed that multi-modal experiments are highly promising. However,
they require sound analysis procedures and, to amplify their benefits, effective tool support. We
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described how to maximize our insights from an experiment with a set of multi-modal analysis
strategies. To further support future efforts, we developed a prototype of CODERSMUSE that
enables researchers to explore multiple multi-modal data streams at once and generate new
specific hypotheses for future work. Due to its multi-modality, CODERSMUSE allows identifying
complex relationships across modalities, such as a programmer’s focus on a loop structure (eye
tracking) leads to an increase in stress (psycho-physiological measures) due to a high load of
working memory (fMRI). Overall, our multi-modal framework provides a novel neuro-cognitive
perspective of program comprehension. This way, we now have a new methodology to objectively
study a programmer’s mind for a wide range of questions in research and practice.

Neuro-Cognitive Perspective of Program Comprehension Following the establishment of our
experiment framework, we tackled open issues in our understanding of program comprehension
in Chapter 4. In particular, we investigated a neuro-cognitive view of the historical theories
of top-down comprehension and bottom-up comprehension. In an fMRI experiment, we found
that top-down comprehension largely activates the same network as bottom-up comprehension,
but with a much higher neural efficiency. This experiment demonstrates how our experiment
framework provides a way to validate and refine theories on how a programmer’s mind works.

In a second research avenue, we started to demystify programming expertise. For decades,
software-engineering research has observed substantial differences in productivity and skill
level, even between programmers of comparable backgrounds. In an eye-tracking study, we
showed how programmers with different levels of experience use different reading patterns when
understanding source code. Next, we explored insights from psychology, neuroscience, and
software engineering on expertise to understand potential factors in programming expertise.
In a data exploration of an fMRI experiment on bottom-up comprehension, we identified that
knowledge in a programming language appears to reduce cognitive load. General programming
experience, however, does not show such a relationship. With our experiment, we paved the way
for future studies on programmer experience with a neuro-cognitive perspective.

Overall, Chapter 4 showed how insightful fMRI experiments are in software engineering. This
further substantiates the value of our experiment framework. In the near future, many open
questions in program-comprehension research and software engineering can be tackled and
provide novel insights.

Feedback to Software-Engineering Research This dissertation focused on program comprehen-
sion. But, a neuro-cognitive perspective is applicable to further fields of software engineering. In
another fMRI study, we demonstrated one important use case by linking programmers’ cognition
to code complexity metrics, which have been widely debated. Our experiment revealed that widely
used complexity metrics are limited regarding how much they can predict programmers’ cognitive
load. Through interviews, we identified several shortcomings of existing complexity metrics and
outlined a way to develop a set of more accurate complexity metrics. Our experiment framework
can here also be valuable in follow-up experiments to test and refine complexity metrics that
precisely reflect programmers’ cognitive load.
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In conclusion, software-engineering researchers gained a valuable method to objectively measure
programmers’ minds. The research in this dissertation made important contributions in establish-
ing this new methodology of a neuro-cognitive perspective. We also demonstrated its potential
across several studies.

Future Work

The research presented in this dissertation laid the foundation for future work on the methodology
and application. We opened up a multitude of further research avenues which we briefly discuss
next.

Further Establish Methodology The work in this dissertation facilitated fMRI studies in software-
engineering research. But, our work has uncovered several further improvements that must be
made to further establish fMRI as a standard measurement in software engineering. Thus, we
need to continue our research efforts to further establish and refine our experiment framework.

Specifically, we underline that fMRI studies require a well-designed experiment with proper tasks
and control conditions. Throughout our fMRI studies, we observed the importance of a suitable
task instruction and control condition. They play a major role in clearly isolating the correct
cognitive process. Our framework enabled future studies that explore various options for tasks
and control conditions. This is critically important as a growing number of fMRI studies on
programmers show a wide range of experiment designs. Without a common standard, it becomes
difficult to compare and synthesize results across these studies. We continue to investigate how,
depending on the research question, to correctly operationalize program comprehension in the
context of fMRI studies.

While this dissertation concentrated on fMRI along with eye tracking, there are other neuroimag-
ing measures that have been established in neuroscience. Specifically, EEG and fNIRS offer
alternatives to measure programmers’ minds. Software-engineering researchers already have
experimented with EEG and fNIRS, but there is a need to establish methodological guidelines
on choosing the correct measure along with a proper design for the research question. Further,
a sound combination of several measures, such as fMRI with simultaneous eye tracking, is an
option that shall be established.

Advance Multi-Modal Research of Program Comprehension This dissertation started a push
towards a multi-modal experiment design benefiting from the strengths of several modalities.
We established a combination of fMRI and eye tracking. We also outlined an option to include
psycho-physiological measures. With these first steps already made, future work can further
develop an all-encompassing experiment framework that provides a comprehensive view on a
programmers’ mind.
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Although there is a large potential for such multi-modal research, it comes with its own set of
challenges. In particular, ensuring high data quality across all modalities requires a fine-tuned
setup. Further, exploiting the gathered multi-modal data to its full potential requires new analysis
procedures including proper tool support. In this dissertation, we already started the development
that shall be fine-tuned to the needs of future research.

Continue Exploring Program Comprehension In this dissertation, we presented one study to
contrast top-down comprehension and bottom-up comprehension. But, there are many further
facets of program comprehension that would prosper under a neuro-cognitive perspective. With
our framework and conducted studies, we provide a template for future studies. We already
drafted an experiment on the differences of underlying cognitive processes of programmers
with various experience levels. But, this is only the beginning. There are many theories that
have been formulated in the past and could be validated and refined with our experiment design.
Ultimately, the work in this dissertation helps us to work toward a comprehensive theory of
program comprehension.

Examine Additional Applications of fMRI in Software Engineering We have demonstrated
in Chapter 5 that, beyond just the field of program comprehension, there are other areas of
software engineering that could benefit from our experiment framework. Neuroscience has made
substantial progress in their theories of the human brain with consistent use of fMRI. By applying
the same methods, we can make similar progress in understanding the programmers’ minds in
the context of software-engineering practice. Our study on complexity metrics serves only as a
starting point.

In summary, this dissertation already made the first steps, but there are many open challenges
in software engineering that shall be explored with neuroimaging. We are convinced that the
neuro-cognitive perspective will further emphasize its value to software-engineering research and
practice.
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7 Appendix

7.1 fMRI Scanner Setting and Analyses Procedures

We conducted all fMRI experiments described in this dissertation at the Leibniz Institute for
Neurobiology in Magdeburg, Germany. When the participants arrived, they gave their consent to
participate in the study. We then conducted the study described in the respective sections.

fMRI Scanner Setting

We carried out the imaging sessions on a 3-Tesla scanner,26 equipped with a 32-channel head
coil. The participants’ heads were fixed with a cushion with attached ear muffs containing fMRI-
compatible headphones .27 Participants wore earplugs to further reduce scanner noise by 40 to
60 dB. We obtained a T1-weighted anatomical 3D data set with 1 mm isotropic resolution of the
participant’s brain before the functional measurement.

To capture a whole-head fMRI, we acquired functional volumes using a continuous echo planar
imaging (EPI) sequence. The study on code complexity metrics used a multi-band EPI sequence.
The number of volumes and scan time depended on the study which we present along with further
details in Table 7.1.

fMRI Data Preparation

For all fMRI studies, we used BrainVoyager™ QX 2.8.428 to process the data. We preprocessed
the functional data with 3D-motion correction, slice-scan-time correction, and temporal filtering
(high-pass GLM Fourier, 2 cycles). We transformed each participant’s anatomical scan into the
standard Talairach brain [TT88] (to account for anatomical differences between participants’
actual brains). Before group analysis, we spatially smoothed each participant’s functional data
with a Gaussian filter (FWHM=4 mm). Based on this transformation and smoothing, we could
then analyze the fMRI data with the specific needs of each study.
26Philips Achieva dStream, Best, The Netherlands
27MR Confon GmbH, Magdeburg, Germany, http://www.mr-confon.de
28Brain Innovation BV, Maastricht, The Netherlands, http://brainvoyager.com

163

http://www.mr-confon.de
http://brainvoyager.com


7 Appendix

Study # of Volumes Scan Time EPI Sequence Configuration

fMRI & Eye Tracking
(Section 3.2, [Pei+18c]) 878 28 min

EPI sequence
echo time [TE]: 30 ms;
repetition time [TR]: 2000 ms;
flip angle, 90°;

Top-Down Comprehension
(Section 4.1, [Sie+17]) 930 31 min

matrix size, 80 x 80;
field of view, 24 cm x 24 cm;
35 slices of 3 mm thickness
with 0.3 mm gaps

Code Complexity Metrics
(Section 5.1, [Pei+21]) Dynamic Dynamic

(up to 30 min)

multi-band EPI sequence
echo time [TE]: 30 ms
repetition time [TR]: 1200 ms
flip angle [FA]: 60◦

multi-band acceleration factor: 2
36 slices of 3 mm thickness
with 0.3 mm gaps

Table 7.1: fMRI scanner configuration for EPI sequence of the three fMRI studies.
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7.2 Programmer Experience Questionnaire of Siegmund et al.

7.2 Programmer Experience Questionnaire of Siegmund et al.

D1: What is your age (in years)?
D2: What is your gender?

□ Male □ Female
D3: Which year did you start your current degree?
D4: What is your major?
E1: On a scale of 1−10, what do you estimate is your programming experience?
E2: How long have you been programming (in years)?
E3: How many courses did you take in which you had to program?
E4: How experienced are you with the following programming languages?

Java: □ Very inexperienced □ Inexperienced □ Medium
□ Experienced □ Very experienced

C: □ Very inexperienced □ Inexperienced □ Medium
□ Experienced □ Very experienced

Haskell: □ Very inexperienced □ Inexperienced □ Medium
□ Experienced □ Very experienced

Prolog: □ Very inexperienced □ Inexperienced □ Medium
□ Experienced □ Very experienced

E5: How many further programming languages do you know with on at least a medium level?
E6: How experienced are you with the following programming paradigms?

Logical: □ Very inexperienced □ Inexperienced □ Medium
□ Experienced □ Very experienced

Functional: □ Very inexperienced □ Inexperienced □ Medium
□ Experienced □ Very experienced

Imperative: □ Very inexperienced □ Inexperienced □ Medium
□ Experienced □ Very experienced

Object-oriented: □ Very inexperienced □ Inexperienced □ Medium
□ Experienced □ Very experienced

E8 Have you contributed to a large software project at a company or your university?
□ Yes □ No

If yes, for how long (in years)?
If yes, in which domain?
If yes, how many lines of code did the projects have on average?

□ <900 LOC □ 900−40 000 LOC □ ≥40 000 LOC
E9: How do you estimate your programming experience with other students in your

study year and programmers with 10 years of experience?
Other students: □ Much worse □ Worse □ Identical

□ Better □ Much better
Programmers: □ Much worse □ Worse □ Identical

□ Better □ Much better
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7.3 Programmer Experience Questionnaire (Extended for
Professionals)

Demographics

D1: What is your age (in years)?
D2: What is your gender?

□ Male □ Female □ Diverse □ Prefer not to answer
D3: What is your handedness?

□ Left □ Right □ Noth
D4: Do you have a color vision deficiency?

□ Yes □ No □ Prefer not to answer
D5: Do you have trouble concentrating?

□ Very little □ Little □ Sometimes □ Often □ Very often
D6 Do you have trouble reading?

□ Very little □ Little □ Sometimes □ Often □ Very often
D7: What is currently your profession?

□ University student (undergraduate, bachelor) □ University student (graduate, master)
□ University employee (PhD, postdoc, professor) □ Professional programmer, developer
□ Other:

D8: What is your formal education in computer science, software engineering?
□ No formal qualification, self-taught □ Vocational training program, course
□ University degree (undergraduate, bachelor level) □ University degree (graduate, master level)
□ University degree (graduate, PhD level) □ Other:

Programming Experience

Programming Education

Q1.1: How many years have you worked at a company or studied in a tech-related field?
□ 0−5 years □ 5−10 years □ 10−15 years □ ≥15 years

Q1.2: How long have you been learning programming (in years)?
Q1.3: How long have you been programming professionally (in years)?
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Programming Languages and Paradigms

Q2.1: Which programming languages are you familiar with?
Q2.2: Which programming languages are you most experienced in?
Q2.3: Which programming language(s) are you currently working with?
Q2.4: How many years have you been programming in Java?
D2.5: How experienced are you with the following programming paradigms?

Logical: □ Very inexperienced □ Inexperienced □ Mediocre
□ Experienced □ Very experienced

Functional: □ Very inexperienced □ Inexperienced □ Mediocre
□ Experienced □ Very experienced

Imperative: □ Very inexperienced □ Inexperienced □ Mediocre
□ Experienced □ Very experienced

Object-oriented: □ Very inexperienced □ Inexperienced □ Mediocre
□ Experienced □ Very experienced

Q2.6: How do you estimate your programming experience with other students in your
study year and programmers with 10 years of experience?
Other students: □ Much worse □ Worse □ Identical

□ Better □ Much better
Programmers: □ Much worse □ Worse □ Identical

□ Better □ Much better

General Interest in Programming

Q3.1: Which of the following technical/programming-specific content do you regularly consume?
□ Online courses/seminars □ Video tutorials (Youtube, . . . ) □ Articles/books
□ Tech news □ Other: □ None

Q3.2: Which of the following technical/programming-specific content have you produced
in the past?
□ Online courses/seminars
□ Video tutorials (Youtube, . . . )

Do you produce video (tutorial) content on a regular basis? □ Yes □ No
□ Articles/books
□ Contribution to open-source projects

How many open-source projects have you worked on so far?
How many lines of code did these projects have on average?

□ Other:
□ None
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Professional Programmers

Q4.1: How much time do you typically spend on the following activities per week?
Total work time per week (in hours): h
□ Meetings h
□ Code reviews/process h
□ Programming h
□ Tests h
□ Deploy/Operations h
□ Mentoring h
□ Learning/Training h
□ Other: h

Q4.2: Your primary development activities include (check all that apply)?
□ APIs □ Front-end □ UI design □ Automation testing □ Database
□ Data analysis □ Configuration management and orchestration □ CI/CD
□ Security □ Other:

7.4 Comprehension Snippets

In Table 7.2, we provide an overview over all used snippets for comprehension tasks across the
studies presented in this dissertation. The full versions with all variations of the used snippets
are provided on their respective project Web sites.29 30 31 32

29https://github.com/brains-on-code/simultaneous-fmri-and-eyetracking/tree/master/images/code
30https://github.com/brains-on-code/paper-esec-fse-2017/tree/master/snippets
31https://github.com/brains-on-code/fMRI-complexity-metrics-icse2021/tree/master/replication/

task-comprehension
32https://github.com/brains-on-code/eyetracking-linearity-replication/tree/master/1 stimuli/Snippets
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7.5 Informed Consent and Participant Safety Questionnaire

Modality fMRI Eye Tracking
Study fMRI & Eye Tracking Top-Down Comprehension Code Complexity Metrics Reading Order
Chapter Section 3.2 Section 4.1 Section 5.1 Section 4.2

Number

ArrayAverage ArrayAverageListings 4.1, 4.2, 4.3 ArrayAverage Calculation
BinaryToDecimal BinaryToDecimal BinaryToDecimal InsertSort
CrossSum CrossSum CrossSum MoneyClass

DoubleArray Rectangle
Factorial Factorial Factorial SignChecker

FibonacciVariation Student
FirstAboveThreshold FirstAboveThreshold SumArray

GreatestCommonDivisor Vehicle
hIndex

MaxInArray MaxInArray
Power Power Power
SumUpToN SumUpToN

SortFourElements
SquareRootOfArray SquareRootOfArray SquareRootOfArray

Word

CommonChars CheckIfLetters
ContainsSubstrings ContainsSubstrings ContainsSubstrings StreetListing 4.4

ContainsYesOrNo
CountSameChars CountSameChars
CountVowels CountVowels CountVowels
IntertwineTwoWords IntertwineTwoWords

HurricaneCheck
LengthOfLastWordListing 5.1

Palindrome Palindrome Palindrome
ReverseWord ReverseWord

Table 7.2: Overview of all snippet algorithms used in studies of this dissertation. While the
algorithm name may be identical across studies, the implementation can vary (e.g.,
different identifier naming, recursion instead of iteration).

7.5 Informed Consent and Participant Safety Questionnaire

For our studies, we used the informed consent and participant questionnaire presented in Fig-
ure 7.1.
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 1

Fragebogen für Teilnehmer/innen an Magnetresonanztomographie-

untersuchungen an der Klinik für Neurologie der OvG-Universität Magdeburg 

oder am Leibniz-Institut für Neurobiologie Magdeburg 

 

Name:.............................................................................................................. 

Vorname:........................................................Geschlecht:...............................Gewicht:………. 

Geburtsdatum:................................................................................................. Größe:………… 

Straße und Hausnummer:............................... .………………………………PLZ:………….. 

Wohnort..........................................................eMail:................................................................... 

Telefon:....................................................................................................................................... 

Beruf:..............................................................IBAN:................................................................. 

Bank…………………………………………BIC…………………………………………….. 

 

Beantworten Sie bitte folgende Fragen zu möglichen Gegenanzeigen für Ihre 
Teilnahme an den Untersuchungen (Zutreffendes unterstreichen): 
 

Sind Sie Träger eines Herzschrittmachers oder anderer  
elektrischer Geräte? ja weiß nicht nein 

Tragen Sie metallische Implantate (zum Beispiel Zahn- 
schrauben, künstliche Gelenke, Knochennägel 
oder metallische mechanische Verhütungsmittel)? ja weiß nicht nein  

Befinden sich an oder in Ihrem Körper andere metallische  

Fremdkörper (z.B. Piercing) ? ja weiß nicht nein 

Haben Sie Tattoos? ja weiß nicht nein 

Wurde bei Ihnen eine Gefäßoperation durchgeführt? ja weiß nicht nein 

Haben oder hatten Sie einen Tinnitus? ja weiß nicht nein 

Haben Sie ein Anfallsleiden (Fallsucht, Epilepsie)? ja weiß nicht nein 

Leiden Sie unter Platzangst? ja weiß nicht nein 

Besteht die Möglichkeit, dass Sie schwanger sind? ja weiß nicht nein 

 

Beantworten Sie bitte folgende für unsere Untersuchungen wichtigen Fragen:  
 

Sind Sie Brillenträger/in? ja weiß nicht nein 

Tragen Sie Kontaktlinsen? ja weiß nicht nein 

Haben Sie Hörprobleme? ja weiß nicht nein 

Sind Sie linkshändig oder rechtshändig? links weiß nicht    rechts  
 

Ich habe alle Fragen auf dieser Seite wahrheitsgemäß und nach bestem Wissen 
beantwortet. 
 

___________________________________________________________________________ 

Ort  Datum    Unterschrift der Probandin/des Probanden 

Informationsblatt 
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Sehr geehrte Probandin, sehr geehrter Proband, 
 

wenn Sie Ihr Einverständnis erklären, nehmen Sie an Untersuchungen teil, bei denen die Methode 
der Magnetresonanztomographie (MRT) angewandt wird. Im Folgenden erhalten Sie einige 
Informationen zu derartigen Messungen. Selbstverständlich können Sie sich mit allen Fragen zu 
diesem Thema jederzeit auch nach Beginn der Untersuchungen an die Mitarbeiter des Labors für 
Magnetresonanztomographie wenden. 
 
Allgemeine Informationen 
 

Vor Beginn einer Untersuchung werden Sie vom Untersuchungsleiter ausführlich über die für den 
Tag geplanten Messungen und deren Zielstellung informiert. Sie haben das Recht, ohne Angabe 
von Gründen die Teilnahme an der Messung abzulehnen. Auch während der gesamten 
Untersuchung werden Sie vom Untersuchungsleiter jederzeit gehört und können ohne Angabe von 
Gründen den Abbruch der Untersuchung verlangen. 
 

Die Untersuchungen dürfen erst beginnen, wenn Sie den Probandenfragebogen und die Einver-
ständniserklärung ausgefüllt und unterschrieben haben.  
 

Die bei den Untersuchungen mit Ihnen gewonnenen Daten werden mit Computern weiterverarbeitet 
und sollen eventuell für wissenschaftliche Veröffentlichungen verwendet werden. Die Verarbeitung 
und Veröffentlichung erfolgt in anonymisierter Form, damit ist eine Zuordnung zu Ihrer Person 
nicht möglich.  
 

Für Ihren Weg zur und von der Untersuchung besteht kein Unfallversicherungsschutz. 
 
Ablauf einer Untersuchung 
 

 
Für die Untersuchungen müssen Sie sich auf eine Liege legen. Bei einigen Messungen wird in der 
Nähe des zu untersuchenden Körperteils eine Spule angebracht. Auf der Liege werden Sie dann 
langsam in die Röhre des Magnetresonanztomographen geschoben oder gefahren. Dort befinden Sie 
sich während der gesamten Untersuchung, die normalerweise 60 bis 90 Minuten dauert, in einem 
starken Magnetfeld, das für die Untersuchung benötigt wird. Während der eigentlichen Messung 
werden zusätzliche Hochfrequenzfelder, die Sie weder spüren noch hören können, und sogenannte 
Magnetfeldgradienten, die sich als klopfendes oder piepsendes Geräusch bemerkbar machen, 
eingeschaltet. Während der gesamten Untersuchungen sollten Sie versuchen, möglichst ruhig liegen 
zu bleiben. Bei Untersuchungen mit der funktionellen Magnetresonanztomographie müssen Sie 
zusätzlich einige Aufgaben erfüllen, die Ihnen zuvor vom Untersuchungsleiter erklärt werden. Auch 
bei diesen Untersuchungen ist es von großer Bedeutung, dass Sie sich wenig bewegen. Um dies zu 
erleichtern, wird Ihr Kopf während einer funktionellen Magnetresonanzresonanztomographie-
untersuchung mit Polstern und anderen Hilfsmitteln schmerzfrei fixiert. 
 
Methode der Magnetresonanztomographie (MRT) 
 

Die MRT ist ein weitverbreitetes Standardverfahren der bildgebenden Diagnostik, das bei 
Einhaltung der Sicherheitsvorschriften nach heutigem Wissensstand keine schädigenden 
Nebenwirkungen verursacht. Sie nutzt den Effekt, dass die Atomkerne des Wasserstoffs, aus dem 
wir zu einem ganz großen Teil bestehen, magnetisch sind. Bildlich kann man sich diese als winzig 
kleine Kompaßnadeln vorstellen. In einem starken Magnetfeld orientieren sich die Atomkerne des 
Wasserstoffs nun so, wie sich eine Kompaßnadel im Erdmagnetfeld ausrichtet. Mittels geeigneter 
Antennen, die hier Spulen genannt werden, strahlt man für Bruchteile von Sekunden Radiowellen 
mit geeigneter Frequenz, der sogenannten Resonanzfrequenz, aus, die den Orientierungszustand der 
Wasserstoffatomkerne stören. Veranschaulicht drehe man mit dem Finger die Kompassnadel in 
Ost-West-Richtung. So wie beim Loslassen der Kompaßnadel diese sich wieder in Nord-Süd-
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Richtung zurückdreht so drehen sich die Atomkerne des Wasserstoffs nach Abschalten der 
Radiowellen zurück in ihre ursprüngliche Richtung. Dabei senden sie nun ihrerseits Radiowellen 
zurück, deren Stärke und zeitliches Verhalten vom Gewebetyp abhängt. Zudem kann man durch das 
zusätzliche Schalten von sogenannten Magnetfeldgradienten den räumlichen Ursprung der 
Radiowellen eindeutig festgelegen. Ein Computer errechnet schließlich aus den aufgezeichneten 
Radiowellen die Schnittbilder, welche man fachlich auch als Tomogramme bezeichnet. 
 
Ziele der Untersuchungen 
 

Mit einer Magnetresonanzresonanzuntersuchung können verschiedene Ziele verfolgt werden. 
Beispielsweise kann ein Bild aufgenommen werden, mit dem Abstände und Volumina von 
unterschiedlichen Strukturen vermessen werden sollen. Eine andere Variante, nämlich die 
sogenannte funktionelle Magnetresonanztomographie (fMRT), misst die die Vorgänge im Gehirn 
begleitenden Durchblutungsänderungen mit hoher räumlicher Auflösung. Sie werden vor jeder 
Untersuchung ausführlich über das konkrete Ziel der Messung informiert. 
 
Mögliche Risiken der Methode 
 

Der Magnetresonanztomograph hält alle für die Sicherheit des Betriebes und insbesondere die 
Sicherheit der Probanden oder Patienten erforderlichen Grenzwerte ein. Er wurde vom TÜV einer 
Sicherheitsprüfung unterzogen und wird darüber hinaus in den vorgeschriebenen Intervallen 
überprüft. Dennoch müssen die nachfolgenden Punkte beachtet werden: 
 

(a) Herzschrittmacher können im Magnetfeld ihre Funktionsfähigkeit verlieren. Deshalb dürfen 
Personen mit Herzschrittmachern nicht an den Untersuchungen teilnehmen. 

 

(b) Personen mit Cochlea-Implantaten, Neurostimulatoren, Defibrillatoren oder Pumpen-
systemen sollten nicht einem hohen Magnetfeld ausgesetzt werden, da es auch in diesen 
Fällen zu Risiken durch magnetische Kräfte oder Felder kommen kann. 

 

(c) Metallische Implantate und andere Fremdkörper wie Geschossteile können ebenfalls 
ferromagnetisch sein, durch magnetische Kräfte ihre Position im Körper verändern und 
dadurch innere Verletzungen hervorrufen. 

 

(d) Auf ferromagnetische Gegenstände (z. B. Gegenstände, die Eisen oder Nickel enthalten) im 
Bereich des Magneten (z. B. Messer, Schraubenzieher, Münzen, Haarspangen, ...) wird eine 
starke Anziehungskraft ausgeübt. Die Gegenstände werden mit großer Geschwindigkeit in 
den Magneten gezogen und können Versuchspersonen erheblich verletzen. 

 

(e) Kleine Metallsplitter im Auge können durch magnetische Kräfte bewegt oder gedreht werden 
und das Auge verletzen. 

 

(f) Bei einer Messung mit der Magnetresonanztomographie kommt es zur Abstrahlung von 
hochfrequenter elektromagnetischer Strahlung, wie sie z. B. bei Radiosendern und 
Funktelefonen auftritt. Dies kann zu einer geringfügigen, aber nicht spürbaren Erwärmung 
des untersuchten Gewebes führen. 

 

(g) Bei großflächigen Tattoos kann es zu starken Erwärmungen kommen. 
 

(h) Das Schalten der Magnetfeldgradienten erzeugt als unerwünschten Nebeneffekt Lärm, der 
Schallpegel von über 100 dB(A) erreichen kann. Deshalb müssen Sie bei allen Messungen 
entweder schallabsorbierende Kopfhörer oder Lärmschutzohrenstopfen tragen, die von uns  
zur Verfügung gestellt werden. Bei Einhaltung dieser Vorsichtsmaßnahme kann eine 
Schädigung des Hörsystems ausgeschlossen werden.  
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Einwilligungserklärung  
 

 

Name der Probandin/des Probanden ______________________________________________ 

 

 

 

Ich bin über Wesen, Bedeutung und Tragweite der geplanten Untersuchungen mit der 
Magnetresonanztomographie eingehend unterrichtet worden. Dazu lagen mir ein entsprechender 
Fragebogen zu Kontraindikationen sowie ein Informationsblatt vor. Zu dem Ablauf und den 
möglichen Risiken konnte ich Fragen stellen; die mir erteilten Informationen habe ich inhaltlich 
verstanden. Ich willige hiermit in die Teilnahme an den Untersuchungen ein. Mir ist bekannt, dass 
ich meine Einwilligung jederzeit ohne Angabe von Gründen widerrufen kann. 
 

 

Ich weiß, dass die bei Untersuchungen mit mir gewonnenen Daten mit Computern weiterverarbeitet 
und eventuell für wissenschaftliche Veröffentlichungen verwendet werden sollen. Hiermit bin ich 
einverstanden, wenn die Verarbeitung und Veröffentlichung in einer Form erfolgt, die eine 
Zuordnung zu meiner Person ausschließt. Auch diese Einwilligung kann ich jederzeit ohne Angabe 
von Gründen widerrufen.  
 
 
 
Ich weiß, dass die Erstellung einer individuellen Diagnostik nicht das Ziel der hier durchgeführten 
Messungen ist und dass die aufgenommenen Bilder nicht systematisch auf Auffälligkeiten 
untersucht werden. Sollten dennoch zufällig in den erhobenen Daten Besonderheiten bemerkt 
werden, bin ich damit einverstanden, dass die Bilder zur Beurteilung an einen Arzt weitergeleitet 
werden. Erscheint es nach dieser Beurteilung sinnvoll und notwendig, werde ich über den Befund 
informiert und beraten. 
 
 
 

Mir ist bekannt, dass für meine Wege zur und von der Untersuchung kein 

Unfallversicherungsschutz besteht. 

 

 

___________________________________________________________________________ 

Ort  Datum    Unterschrift der Probandin/des Probanden 

 

 

___________________________________________________________________________ 

Ort  Datum    Unterschrift der Mitarbeiterin/des Mitarbeiters, 
die/der das Informationsgespräch geführt hat 
ührt hat 

Figure 7.1: Pages 1–4 of the informed consent and participant questionnaire (in German) for our
fMRI studies.
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[Bat+15] Douglas Bates, Martin Mächler, Ben Bolker, and Steve Walker. “Fitting Linear
Mixed-Effects Models Using lme4.” In: Journal of Statistical Software 67.1 (2015),
pp. 1–48.

[Bau+19] Jennifer Bauer, Janet Siegmund, Norman Peitek, Johannes Hofmeister, and Sven
Apel. “Indentation: Simply a Matter of Style or Support for Program Comprehen-
sion?” In: Proc. Int’l Conf. Program Comprehension (ICPC). ACM, 2019, p. 11.

171



Bibliography

[BBT79] Gordon Bower, John Black, and Terrence Turner. “Scripts in Memory for Text.” In:
Cognitive Psychology 11.2 (1979), pp. 177–220.

[BDA14] Javier Belmonte, Philippe Dugerdil, and Ashish Agrawal. “A Three-layer Model of
Source Code Comprehension.” In: Proc. India Software Engineering Conf. ACM,
2014, pp. 1–10.

[Bed12] Roman Bednarik. “Expertise-Dependent Visual Attention Strategies Develop over
Time during Debugging with Multiple Code Representations.” In: Int’l Journal of
Human-Computer Studies 70.2 (2012), pp. 143–155.

[Beh+18] Mahnaz Behroozi, Alison Lui, Ian Moore, Denae Ford, and Chris Parnin. “Dazed:
Measuring the Cognitive Load of Solving Technical Interview Problems at the
Whiteboard.” In: Proc. Int’l Conf. Software Engineering (ICSE). IEEE. 2018, 4 pages.

[Beh+20] Mahnaz Behroozi, Shivani Shirolkar, Titus Barik, and Chris Parnin. “Does Stress
Impact Technical Interview Performance?” In: Proc. Europ. Software Engineering
Conf./Foundations of Software Engineering (ESEC/FSE). 2020, pp. 481–492.

[Ben+11] Simone Benedetto, Marco Pedrotti, Luca Minin, Thierry Baccino, Alessandra Re, and
Roberto Montanari. “Driver Workload and Eye Blink Duration.” In: Transportation
Research Part F: Traffic Psychology and Behaviour 14.3 (2011), pp. 199–208.

[Ber+07] Chris Berka, Daniel Levendowski, Michelle Lumicao, Alan Yau, Gene Davis, Vladimir
Zivkovic, Richard Olmstead, Patrice Tremoulet, and Patrick Craven. “Eeg Correlates
of Task Engagement and Mental Workload in Vigilance, Learning, and Memory
Tasks.” In: Aviation, Space, and Environmental Medicine 78.5 (2007), B231–B244.
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Catarina Duarte, Cesar Teixeira, Nuno Laranjeiro, Júlio Medeiros, Paulo Carvalho,
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Züger. “Using Psycho-Physiological Measures to Assess Task Difficulty in Soft-
ware Development.” In: Proc. Int’l Conf. Software Engineering (ICSE). ACM, 2014,
pp. 402–413.

[FSF01] Christian Fiebach, Matthias Schlesewsky, and Angela Friederici. “Syntactic Work-
ing Memory and the Establishment of Filler-Gap Dependencies: Insights from ERPs
and fMRI.” In: Journal of Psycholinguistic Research 30.3 (2001), pp. 321–338.

[FSW17] Benjamin Floyd, Tyler Santander, and Westley Weimer. “Decoding the Representa-
tion of Code in the Brain: An fMRI Study of Code Review and Expertise.” In: Proc.
Int’l Conf. Software Engineering (ICSE). IEEE, 2017, pp. 175–186.

[Fuc+19] Davide Fucci, Daniela Girardi, Nicole Novielli, Luigi Quaranta, and Filippo Lanubile.
“A Replication Study on Code Comprehension and Expertise Using Lightweight
Biometric Sensors.” In: Proc. Int’l Conf. Program Comprehension (ICPC). IEEE. 2019,
pp. 311–322.

178



[FVT05] Stephen Fairclough, Louise Venables, and Andrew Tattersall. “The Influence of
Task Demand and Learning on the Psychophysiological Response.” In: Int’l Journal
of Psychophysiology 56.2 (2005), pp. 171–184.

[FW19] John Fox and Sanford Weisberg. An R Companion to Applied Regression. Third.
Thousand Oaks CA: Sage, 2019.

[Gau+00] Isabel Gauthier, Pawel Skudlarski, John Gore, and Adam Anderson. “Expertise
for Cars and Birds Recruits Brain Areas Involved in Face Recognition.” In: Nature
Neuroscience 3.2 (Feb. 2000), pp. 191–197.

[GG88] David Gilmore and Thomas Green. “Programming Plans and Programming Exper-
tise.” In: The Quarterly Journal of Experimental Psychology 40.3 (1988), pp. 423–
442.

[GIM13] Michael Gazzaniga, Richard Ivry, and George Mangun. Cognitive Neuroscience:
The Biology of the Mind. Norton & Company, 2013.

[Gin05] David Ginat. “The Suitable Way is Backwards, but They Work Forward.” In: Journal
of Computers in Mathematics and Science Teaching 24.1 (2005), pp. 73–88.

[GL17] Yossi Gil and Gal Lalouche. “On the Correlation between Size and Metric Validity.”
In: Empirical Softw. Eng. 22.5 (2017), pp. 2585–2611.

[GLN17] Daniela Girardi, Filippo Lanubile, and Nicole Novielli. “Emotion Detection Using
Noninvasive Low Cost Sensors.” In: Proc. Int’l Conf. on Affective Computing and
Intelligent Interaction (ACII). IEEE. 2017, pp. 125–130.

[GM16] Yorai Geffen and Shahar Maoz. “On Method Ordering.” In: Proc. Int’l Conf. Program
Comprehension (ICPC). IEEE. 2016, pp. 1–10.

[GMGVEB16] Javier Garcı́a-Munoz, Marisol Garcı́a-Valls, and Julio Escribano-Barreno. “Improved
Metrics Handling in SonarQube for Software Quality Monitoring.” In: Proc. Int’l
Conf. Distributed Computing and Artificial Intelligence. Springer. 2016, pp. 463–
470.

[Gol02] Bruce Goldstein. Sensation and Perception. Cengage Learning Services, 2002.
[Gop+17] Dan Gopstein, Jake Iannacone, Yu Yan, Lois DeLong, Yanyan Zhuang, Martin Yeh,

and Justin Cappos. “Understanding Misunderstandings in Source Code.” In: Proc.
Int’l Symposium Foundations of Software Engineering (FSE). ACM, 2017, pp. 129–
139.

[Gop+20] Dan Gopstein, Anne-Laure Fayard, Sven Apel, and Justin Cappos. “Thinking Aloud
about Confusing Code: A Qualitative Investigation of Program Comprehension and
Atoms of Confusion.” In: Proc. Europ. Software Engineering Conf./Foundations of
Software Engineering (ESEC/FSE). ESEC/FSE 2020. Virtual Event, USA: Association
for Computing Machinery, 2020, 605–616.

[Gor+11] Krzysztof Gorgolewski, Christopher Burns, Cindee Madison, Dav Clark, Yaroslav
Halchenko, Michael Waskom, and Satrajit Ghosh. “Nipype: A Flexible, Lightweight
and Extensible Neuroimaging Data Processing Framework in Python.” In: Frontiers
in Neuroinformatics 5 (2011), 13 pages.

179



Bibliography

[Gra+16] Mariel Grassmann, Elke Vlemincx, Andreas Von Leupoldt, Justin Mittelstädt, and
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“Beyond Gaze: Preliminary Analysis of Pupil Dilation and Blink Rates in an fMRI
Study of Program Comprehension.” In: Proc. Int’l Workshop on Eye Movements in
Programming. ACM, 2018, 4:1–4:5.

[Pei+18b] Norman Peitek, Janet Siegmund, Chris Parnin, Sven Apel, and André Brech-
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narik, and Martha Crosby. “A practical guide on conducting eye tracking studies
in software engineering.” In: Empirical Software Engineering (2020), pp. 1–47.

[Shn76] Ben Shneiderman. “Exploratory Experiments in Programmer Behavior.” In: Interna-
tional Journal of Computer & Information Sciences 5.2 (1976), pp. 123–143.

[Shn77] Ben Shneiderman. “Measuring Computer Program Quality and Comprehension.”
In: Int’l J. Man-Machine Studies 9.4 (1977), pp. 465–478.
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