
Bachelor’s Thesis

N E T W O R K - B A S E D C L A S S I F I C AT I O N O F
D E V E L O P E R R O L E S I N

O P E N - S O U R C E - P R O J E C T S :
A N E M P I R I C A L S T U D Y

nils alznauer

November 18, 2020

Advisor:
Thomas Bock Chair of Software Engineering

Examiners:
Prof. Dr. Sven Apel Chair of Software Engineering

Prof. Dr. Andreas Zeller Professor for Software Engineering

Chair of Software Engineering
Saarland Informatics Campus

Saarland University

Nils Alznauer: Network-based Classification of Developer Roles in Open-Source-Projects:
An Empirical Study, © November 2020

Erklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement

I hereby confirm that I have written this thesis on my own and that I have not used
any other media or materials than the ones referred to in this thesis

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in
die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken,______________________ _____________________________
 (Datum/Date) (Unterschrift/Signature)

A B S T R A C T

For many Open-Source Software (OSS) projects, no official core developers or project leaders
can be found. Identifying core developers for these projects is crucial as OSS projects
have very high turnovers in their community. To mitigate this turnover and ensure a
smooth-running project, consistency in some developers is needed. This consistency is
provided by people maintaining the project for an extended period of time. As Open-Source
Software is used by many people worldwide due to it being free, there is an obligation
for many projects that the program is secure and follows specific quality standards. To
identify responsible people maintaining the project, we employ network-based centrality
measures on socio-technical networks. To allow for a comparison of all network-based
centrality measures, we create in our study a Ground Truth based on issue data from
GitHub. This Ground Truth uses the different event types that can be triggered in GitHub

by differentiating them into three groups of permission levels and, thus, finding core
developers. Comparing the different centrality measures with the Ground Truth shows that
different network classification metrics perform best depending on the project size and
activity. This comparison further indicates that the combination of both the Issue Networks
and Cochange Networks provides the most information for the classification. We notice,
however, that different centrality measures lead to vastly different results on the same
project. Hence, our findings help in identifying network classification metrics that correctly
classify core developers.

v

C O N T E N T S

1 introduction 1

1.1 Goal of this Thesis . 3

1.2 Overview . 3

2 background 5

2.1 Networks . 5

2.1.1 Socio-technical Network . 6

2.1.2 Input Data . 6

2.1.3 Count-based Metrics . 7

2.1.4 Network Classification Metrics . 7

2.2 GitHub Permissions . 11

3 approach 15

3.1 Ground Truth . 15

3.2 Measurement . 16

3.2.1 Similarity Measure Data Setup . 16

3.2.2 Jaccard Index . 18

3.2.3 Overlap Metric . 19

3.2.4 Classification Measures Data Setup . 19

3.2.5 Recall (TPR) . 20

3.2.6 Specificity (TNR) . 21

3.2.7 Precision (PPV) . 22

3.2.8 F1 score (F1) . 22

4 implementation 23

4.1 Complete Setup . 23

4.1.1 Data Collection . 23

4.1.2 Running Coronet . 24

4.1.3 Data Analysis . 24

4.2 Coronet . 24

4.2.1 Core Developers . 25

4.2.2 Peripheral Developers . 25

4.2.3 Other Developers . 25

4.3 Building the networks . 26

4.3.1 Directed vs. Undirected . 26

4.3.2 Simplified vs. Unsimplified . 26

4.3.3 Time Window . 27

4.3.4 Core Threshold . 27

4.3.5 Cochange vs. Issues vs. Mail . 28

4.3.6 Combined Networks . 29

5 projects 31

5.1 General Information . 31

5.2 Angular . 32

vii

viii contents

5.3 Data Transfer Project (DTP) . 33

5.4 Keras . 33

5.5 Nextcloud . 34

5.6 Node.js . 35

5.7 OpenSSL . 36

5.8 Owncloud . 36

6 evaluation 37

6.1 Results . 37

6.1.1 General Results . 37

6.1.2 Project Results . 38

6.2 Discussion . 56

6.2.1 RQ 1 . 57

6.2.2 RQ 2 . 59

6.2.3 RQ 3 . 60

6.3 Threats to Validity . 61

7 related work 65

8 concluding remarks 67

8.1 Conclusion . 67

8.2 Future Work . 68

a appendix 69

a.1 Issue Event Types . 69

bibliography 97

online ressources 98

L I S T O F F I G U R E S

Figure 2.1 Node Degree - Undirected Network 8

Figure 2.2 Node Degree - Directed Network . 9

Figure 2.3 Eigenvector Centrality - Undirected Network 9

Figure 2.4 Hierarchy - Undirected Network . 11

Figure 3.1 Similarity Measure - An example . 18

Figure 3.2 Classification Measure - An example 21

Figure 5.1 Keras - Lines of Code . 34

Figure 6.1 Angular - Undirected - Issue-based Ground Truth 40

Figure 6.2 Angular - Ground Truth Comparison 42

Figure 6.3 Data Transfer Project - Undirected - Issue-based Ground Truth . . . 43

Figure 6.4 Keras - Undirected - Issue-based Ground Truth 45

Figure 6.5 Keras - Ground Truth Comparison . 46

Figure 6.6 Nextcloud - Undirected - Issue-based Ground Truth 48

Figure 6.7 NodeJS - Undirected - Issue-based Ground Truth 49

Figure 6.8 NodeJS - Ground Truth Comparison 51

Figure 6.9 OpenSSL - Undirected - Issue-based Ground Truth 52

Figure 6.10 OpenSSL - Ground Truth Comparison 54

Figure 6.11 OwnCloud - Undirected - Issue-based Ground Truth 55

Figure A.1 Angular - Directed - Issue-based Ground Truth 78

Figure A.2 Angular - Undirected - Official Committer List 79

Figure A.3 Angular - Undirected - Issue-based Ground Truth + collaborative
privileges . 80

Figure A.4 Data Transfer Project - Directed - Issue-based Ground Truth 81

Figure A.5 Data Transfer Project - Undirected - Issue-based Ground Truth +
collaborative privileges . 82

Figure A.6 Keras - Directed - Issue-based Ground Truth 83

Figure A.7 Keras - Undirected - Issue-based Ground Truth + collaborative privileges 84

Figure A.8 Keras - Undirected - Official Committer List 85

Figure A.9 Nextcloud - Directed - Issue-based Ground Truth 86

Figure A.10 Nextcloud - Undirected - Issue-based Ground Truth + collaborative
privileges . 87

Figure A.11 NodeJS - Directed - Issue-based Ground Truth 88

Figure A.12 NodeJS - Undirected - Issue-based Ground Truth + collaborative privileges 89

Figure A.13 NodeJS - Undirected - Official Committer List 90

Figure A.14 OpenSSL - Directed - Issue-based Ground Truth 91

Figure A.15 OpenSSL - Undirected - Issue-based Ground Truth + collaborative
privileges . 92

Figure A.16 OpenSSL - Undirected - Official Committer List 93

Figure A.17 OwnCloud - Directed - Issue-based Ground Truth 94

ix

Figure A.18 OwnCloud- Undirected - Issue-based Ground Truth + collaborative
privileges . 95

L I S T O F TA B L E S

Table 3.1 Categorized Issue Events . 17

Table 5.1 General Project Statistics . 32

Table 6.1 Research Question 1 - Answers for each project 57

Table 6.2 Research Question 2 - Answers for each project 59

Table 6.3 Research Question 3 - Answers for each project 61

A C R O N Y M S

TP True Positives
FP False Positives
TN True Negatives
FN False Negatives
TPR True Positive Rate
TNR True Negative Rate
PPV Predictive Positive Rate
DTP Data Transfer Project
GT Ground Truth
OSS Open-Source Software
TSC Technical Steering Committee
TLS Transport Layer Security
SSL Secure Sockets Layer
OMC OpenSSL Management Committee
OTC OpenSSL Technical Committee
SIG Keras Special Interest Group

x

1
I N T R O D U C T I O N

Software projects and software companies get bigger and bigger. More and more software
developers are employed and continue to write code for libraries or applications that can
often be used by everybody. In addition to these commercially driven companies, many
software developers write code that is protected under specific licenses but is fully accessible
to anybody. These are the so-called Open-Source Software (OSS) projects.

OSS projects are a major way to distribute programs to people as they often fill gaps in
workflows or provide a free alternative to standing software solutions.1 Some of the most
famous open-source projects include the office suite LibreOffice, the browsers Mozilla Firefox
and Chromium, and the Linux Kernel. Since this code is freely accessible and changeable
by anyone, any developer that takes a liking to the project can work on it. This kind of
contribution leads to a very decentralized way of creating code as these developers can
be distributed all around the world. To still ensure that the project is a success, much
communication must take place. Consequently, many OSS projects use GitHub

2 or similar
tools as software development platforms since they enable the project to use issues to track
questions and bugs as well as comment on another person’s work, create documentation,
project boards, etc.

As developers continue to write an ever-growing amount of code, the probability of writing
code that will generate bugs or fatal flaws increases. In addition to having bugs in the
code that can lead to data leaks and, in the end, to the failure of a project, some of
these bugs can even lead to deaths3,4. Since bugs can lead to a huge extent of damage5,6,
software companies implement various possibilities [6, 14] to get everything right, from
the initial idea for the project to the deployment and following support. To help to prevent
software failure, extensive testing of the project and its functions is done. Project leaders
are responsible for leading developers through the project and ensuring that the targets are
met. Additionally, they set up the working environment for everybody to work together.
In OSS projects, there must be people (maintainers) who know what they are doing, that
possibly know how to lead a project and that are aware of quality checks and how to work
with people. Additionally, it would be best if these maintainers were around and did not

1 For a full definition of open-source, take a look at the official site of the Open-Source Initiative (https:
//opensource.org/osd).

2 https://github.com/

3 Crash of American Airlines Flight 965 resulting in the deaths of 151 passengers partially due to an auto-
completion error https://reports.aviation-safety.net/1995/19951220-1_B752_N651AA.pdf

4 Death of 5 patients due to an overdose during radiation treatment https://web.stanford.edu/class/cs240/
old/sp2014/readings/therac-25.pdf

5 Approximately 370 Million US $ on the Ariane 5 launch https://esamultimedia.esa.int/docs/

esa-x-1819eng.pdf

6 Approximately 327 Million US $ on the crash of the Mars Climate Orbiter, due to conversion problems
https://llis.nasa.gov/llis_lib/pdf/1009464main1_0641-mr.pdf

1

https://opensource.org/osd)
https://opensource.org/osd)
https://github.com/
https://reports.aviation-safety.net/1995/19951220-1_B752_N651AA.pdf
https://web.stanford.edu/class/cs240/old/sp2014/readings/therac-25.pdf
https://web.stanford.edu/class/cs240/old/sp2014/readings/therac-25.pdf
https://esamultimedia.esa.int/docs/esa-x-1819eng.pdf
https://esamultimedia.esa.int/docs/esa-x-1819eng.pdf
https://llis.nasa.gov/llis_lib/pdf/1009464main1_0641-mr.pdf

2 introduction

change every other month, so that consistency is kept in the work and code. The difference
between developers in OSS projects from all over the world, even if a tool like GitHub

is used, is generally still very big and, therefore, leads to many developers leaving the
project [9, 10] after some time while other developers will join to help out. Some of these
joining collaborators attention may only lie on one single feature they would like to have
implemented, while others want to help out with the general work. This focus on specific
features or ideas will lead to a high turnover and much evolution of the connection between
all developers.

To still keep an OSS project running smoothly, it is thus critical that there is consistency
in, at least, some of the developers so that cases like deaths through software bugs are
less likely. Furthermore, this consistency is vital to keep people on track and target since
only the maintainers know why the targets were set in that way and how they all come
together [2]. To achieve all this, the maintainers help others, answer questions, and have a
general overview of the project. However, who exactly are these people? Who are the people
one can ask if there are misunderstandings? With whom can one discuss where a particular
feature should be implemented? Moreover, who will review one’s code and decide whether
it is good enough to be used?

These questions could be quickly answered in a company since the hierarchy is clear, and
everybody knows whom to talk to. For OSS projects, this is not the case. A list of the
maintainers and administrators are rarely found, may it be on the website for the project
(if one exists) or the GitHub project page itself. From the seven projects discussed in this
study, only four had such a list (and those were not visible without making an effort to
find them). Moreover, even for these projects, there remains the question of whether this
list is up to date or depicts the complete history of former project leaders. To circumvent
the problem of not knowing who the leaders are, developers choose measures to help them
find the maintainers. Some of them might be:

• Is it the number of commits somebody has made to the project?

• Is it the number of issues this person has worked on?

• Is it the way they answer one’s questions?

These are only some ideas of the measures somebody can come up with. However, no one
knows whether these measures will lead to a definitive answer and if a measure exists what
can be predicted for future evolution?

To understand the evolution of software projects and the role each developer plays, Joblin
et al. [12] and Joblin, Apel, and Mauerer [13] classified developers into different categories
like core developer and peripheral developer by using metrics based on counts and networks.
Using this distinction into core and peripheral, in this thesis, we compare them to a Ground
Truth that is created based on GitHub issue data and analyzes how they overlap and,
therefore, how useful this distinction is in different OSS projects. To create the Ground Truth,
we analyze which of the issue events in the GitHub issue data can only be triggered by
maintainers and hence filter all issues for these issue events. If there is an official committer
list for a project, we also analyze the network classification metric according to this list and
compare our Ground Truth to the official committer list.

1.1 goal of this thesis 3

1.1 goal of this thesis

This thesis aims to create a Ground Truth for developers that should be classified as core
developers based on GitHub issue data depending on the project. Furthermore, we split
our data using nine months time windows to retain a dynamic within the networks and our
Ground Truth. This Ground Truth is then used to check the output of different metrics, in our
case, count-based and network-based metrics, for their validity and similarity. Additionally,
these metrics are evaluated against the actual core developer lists of individual projects, if
such a list exists. From this, the following research questions are derived:

RQ 1: Which of the network metrics classify core developers correctly when compared
with our Ground Truth?

RQ 2: Which of the network metrics classify core developers correctly when compared to
an official core developer list?

RQ 3: Is our Ground Truth comparable to the official core developer lists?

To answer these questions, we build different networks based on the data of seven different
projects. These projects are independently tested, and using network classification metrics,
we evaluate each of these projects. For this, we compare the results of the network classifica-
tion metric against our Ground Truth and the official committer list, respectively. We find
that, out of the tested network classification metrics, the eigenvector centrality classification
performs best on most projects. Furthermore, we conclude that combining of both GitHub

issue data and commit data is the most accurate in classifying core developers.

1.2 overview

Starting with a general background in Chapter 2, we give an overview of networks and how
they are built. In addition to this, all metrics and their advantages and disadvantages are
explained in detail. It is also mentioned how the Ground Truth is created. Chapter 4 shows
how the metrics and the following evaluation were implemented. Furthermore, all variables
that are evaluated are explained. In the following chapter, all projects are described by
giving a short overview of their history and some information concerning the list of core
developers and possible events that impacted this project. After explaining the projects in
Chapter 5, we perform a full evaluation and discussion of the performance of the network
classification metric using different similarity metrics under certain variable combinations
in Chapter 6. Later, in Chapter 7, there is a discussion of our threats to validity and how
this thesis can impact research. Furthermore, we also explain other steps on how future
work can be done with the knowledge of the best combination of networks and network
classification metrics. Last but not least, we conclude by summing up the most critical
takeaways and results.

2
B A C K G R O U N D

In this chapter, we introduce terminology and concepts that are used in our study. We
provide general information on these ideas and explain the utilization of each. In Section 2.1,
we mention networks, how they are built, and explain their use in a general setting.
Additionally, five different metrics are presented, three of which are used to find central
nodes in networks. In Section 2.2, the permissions of GitHub are described, as we use these
permissions to compute our Ground Truth.

2.1 networks

In our study, we utilize networks to analyze our data. Networks are used to show connections
between objects. These connections can then be analyzed through different algorithms that
return a set of objects in each network that satisfy certain constraints.

In a mathematical sense, networks are graphs [7, pp. 2–4]. Graphs (G) consist of nodes
(V) and edges (E). The node can be any object that the user wants, while the edges are
connections mentioned above between these objects. To describe any graph, two sets are
needed. One set of nodes and one set of edges:

G = (V ,E)

Every edge is connected to two nodes and is thus described as a pair formed by two nodes
taken from the set of nodes:

E = {(vi, vj)|vi, vj ∈ V}

In General, there are two different ways a graph can be described. It can be undirected or
directed. The difference being that every edge in a directed graph has a direction from one
node to another. Additionally, every graph can be described as a matrix denoting every
edge. The rows and columns of the matrix are the nodes, while the values within the matrix
describe the number of edges, which is dependent on whether the graph is directed or
undirected. These matrices are presented for each of the two graphs, one being directed, the
other undirected.

First, we take a look at undirected graphs. In these graphs, there is no orientation. Having
no orientation means that when an edge is introduced between two nodes, there is no
information from where this edge starts or where it ends. Therefore, the edges are unordered
pairs, which means that there is no difference between (v1, v2) ∈ E or (v2, v1) ∈ E. Both of
them describe the same edge. The matrix A for undirected graphs is represented like this:

aij = |(vi, vj)|+ |(vj, vi)|

5

6 background

Directed graphs, on the other hand, introduce a direction and, therefore, orientation for
edges. Hence, every edge now has a start and an end node to which they connect. This
means that the start point has a connection to the endpoint but not the other way around
except for the case that such an edge exists. The edges are thus ordered pairs. It is now
essential which node is put in the front. The edges (v1, v2) ∈ E and (v2, v1) ∈ E are therefore
not describing the same edge. This means that matrix A is built as follows:

aij = |(vi, vj)| (2.1)

From this point on, we use the term network as a synonym for graph.

2.1.1 Socio-technical Network

In this study, we also use a special kind of network, the so-called socio-technical network. This
network consists of two datasets where one is based on technical data, while the other uses
social data.

In our case, developers and different connections between them make up the network. We
consider the developers from the different projects to be the nodes of the network, while the
edges are special ways of interaction between these developers. Later on, we differentiate
between different networks that are analyzed. Some of them are more in the technical,
others more in the social branch of networks. All our networks are explained in Section 4.3.

2.1.2 Input Data

To build such socio-technical networks, we use three data sources:

• Commit data contain everything about all commits done on a project. This includes
the author, e-mail address, and the respective commit hash to make the commits
identifiable. This data is used in a technical way, as they only contain information on
technical connections between developers.

• Mailing list data contain the header information of every e-mail sent to the mailing
list. The mailing list data contain the author, date, e-mail address, and the subject and
the thread to which the e-mail belongs. This data only contains information on social
connections between developers.

• GitHub issue data contain all issues and pull requests. This means that any comment
and any interaction between developers that happened on one issue is taken into
account. Our data include the issue number, the title, the author, the e-mail address
as well as the current state of the issue or pull request. Additionally, it also contains
the date on which each of the issue events (Section A.1) happened as well as the
exact event that happened, such as e. g., commented or reviewed. These data are both
technical and social information, as an issue is an easily comprehensible connection of
a technical discussion.

2.1 networks 7

Based on the data provided, we are able to create developer networks in many different
ways, e. g., using the developer relations cochange, issue, and mail. In addition, we also build
developer networks based on combinations of all three relations.

2.1.3 Count-based Metrics

Count-based metrics are some of the easiest to compute metrics. In most cases, they can be
computed quickly and give a concise summary of the participation a developer had in a
project. This, however, does not mean that this participation is meaningful to the project.
This leads to great threats to validity because any developer "cleaning" the code, meaning
changing the code style, correcting spelling mistakes, and simply moving files or code
around, artificially increases their count-based score without adding anything meaningful
to the project’s organizational workflow.

In the following, we present an overview of the two count-based metrics, Commit Count and
Lines of Code Count. They are explained in a concise manner, including their advantages,
disadvantages, and how they are computed.

2.1.3.1 Commit Count

Commit Count is a simple metric which, as its name suggests, counts the number of commits
for each author. It is not important how much was committed during one of these commits,
how many lines were added or deleted, or whether some files were moved to another place
in the repository. Every commit is as valuable as any other commit, and no weights are
used.

An advantage of this metric is that it is easily computed and understood. However, a clear
disadvantage is the fact that all commits, no matter their size or importance for the project,
are considered the same. This leads to a problem in which the moving of files or changing
the style of code is counted the same as fixing a crucial security bug. Changing code style
could, therefore, lead to an artificial increase in the centrality of a developer, putting them
at the same level of contribution as someone that contributed a crucial feature to the project.

2.1.3.2 Lines of Code Count

Similar to Commit Count, Lines of Code Count is a metric that counts all lines that were added
and deleted by an author in all their commits and adds them all up.

As with Commit Count, the computation of Lines of Code Count is rather easy since we need
to iterate over all commits and save the total number of deleted and created lines for each
author. This metric can be easily understood but has the same glaring disadvantage as
Commit Count.

2.1.4 Network Classification Metrics

Network classification metrics are very different from Count-based metrics in a way that they
are not computed as easily in most cases. They provide a more in-depth understanding of

8 background

A B

C

D

EF

Node (v) deg(v)

A 3

B 2

C 2

D 2

E 4

F 1

Figure 2.1: An example network for the values of Node Degree using an undirected network.

the underlying data and the different characteristics of the nodes and their connections that
were not obvious or even visible before.

We focus mainly on these network metrics since the flaws in the classification of developers
through Count-based metrics are too relevant, to not consider them.

2.1.4.1 Node Degree

One of the simplest metrics for networks is based on the degree of nodes [7, pp. 4–6]. The
degree of a node is either the total number of outgoing edges, the total number of incoming
edges, or simply the number of edges connected to this node. In our study, we use the sum
of the outgoing as well as the incoming edges as its degree. For an undirected network,
this computation is ignored, and we are given the number of connections of the node. The
formula for undirected graphs is as follows:

deg(vi) =
∑
j

aij

For directed graphs, it is a little different, since to add all outgoing and incoming edges:

deg(vini) =
∑
j

aji

deg(vout
i) =

∑
j

aij

deg(vi) = deg(vini) + deg(vout
i)

The degree of a node is very useful when it is important to find out which nodes have the
most connections in a local setting and, therefore, possibly people that are very intercon-
nected with other people or are doing a lot, depending on the built network.

In Figure 2.1, we present an example of an undirected network. Right beside it is a table
that denotes the degree for each of the nodes. As there are only undirected edges, every
node simply counts its connections.

In Figure 2.2, we present an example of a directed network in which all outgoing nodes are
counted.

2.1 networks 9

A B

C

D

EF

Node (v) deg(vout)

A 1

B 1

C 1

D 2

E 2

F 1

Figure 2.2: An example network for the values of Node Degree using a directed network.

2.1.4.2 Eigenvector Centrality

The eigenvector centrality [20, pp. 169–172] is a centrality measure that is not as intuitive
and easy to compute as the node degree metric. Instead of concerning itself with a "local"
setting, eigenvector centrality works on a global level. This is done using the idea that a
central node is mostly connected to other nodes that are considered central as well. To
get to know the eigenvector centrality, the adjacency matrix is multiplied with a special
eigenvector of the adjacency matrix (A). This eigenvector (x) is chosen to be the one that only
consists of positive values. To get the eigenvector centrality of a network, this eigenvector
(x) is repeatedly multiplied with the adjacency and subsequently normalized. Once this
eigenvector diverges, it displays a value for every node within the network and assigns it a
centrality value. The higher this centrality value is, the higher the centrality in the network.
The following is a formula for the computation of the eigenvector centrality:

xt = A ∗ xt−1

The eigenvector at time t is denoted as xt. When xt and xt−1 converge, the eigenvector
centrality for each node is found. In Figure 2.3, we show a network and the eigenvector
centrality values for each node.

A B

C

D

EF

Node Eigenvector Centrality

A 0,498

B 0,408

C 0,323

D 0,341

E 0,563

F 0,217

Figure 2.3: An example network for the values of Eigenvector Centrality using an undirected network.
The results were obtained using the eigenvector computation from UCINET [27]

10 background

2.1.4.3 Hierarchy

Another rather simple network metric is Network Hierarchy [24]. This network metric tries to
find nodes that are connected to many nodes that are well connected to other nodes but
at the same time are not connected to each other. This means that the hierarchy is similar
to a mathematical tree where the root has connections to its children, but these children
do not have any or very few connections between each other. To compute the hierarchy,
we use the degree of a node, as mentioned in Section 2.1.4.1 and the so-called clustering
coefficient. The clustering coefficient is used to find clusters in networks, i. e., where there
are nodes that are connected to nodes that are connected with each other. The formula of
the clustering coefficient is as follows:

cc(vi) =
2ni

ki(ki − 1)

ki = #neighbors connected to vi

ni = #edges between all ki

The clustering coefficient, therefore, shows how well connected all the neighbors are since
all ki nodes can have a maximum number of ki(ki−1)

2 edges between them (not counting
loops of edges to themselves).

Since we are not interested in the points in the network where people are really clustered
but in the people that are highly connected with neighbor nodes that are not interconnected,
we divide the degree of a node by its clustering coefficient:

hierarchy(vi) =
deg(vi)

cc(vi)

A high centrality value for a network computed with the hierarchy metric is, therefore,
created, when a node has a high degree and all its neighbors are not connected. Developers
with a high hierarchy value are interesting for us, as these are developers that link small
clustered groups together [24]. An example of this would be that there are many small
groups within a network denoting issues on which people worked together. The developers
with a high hierarchy value are now those people that took part in many of these groups
and they are, therefore, the link between them. This coincides very well with the idea of a
core developer.

An example network and its corresponding hierarchy computation can be seen in Figure 2.4.
In the last line of the table, we can see that the value of the clustering coefficient is NaN. The
reason for this is, that this node has only one neighbor. The clustering coefficient is therefore
not defined and gets the tag "Not A Number". This is propagated to the hierarchy value
as well, since a node can not be in a position of hierarchy, when it only has one neighbor.
Additionally, in lines 3 and 4 of the table the clustering coefficient is 0. As the hierarchy
value would, therefore, be inf and distort our centrality classification. Hence we set every
node’s hierarchy value to 0 when the clustering coefficient is 01.

1 Documentation of Coronet (https://github.com/se-passau/coronet)

https://github.com/se-passau/coronet

2.2 github permissions 11

A B

C

D

EF

Node deg(v) cc(v) Hierarchy

A 3 1 3

B 2 1 2

C 2 0 0

D 2 0 0

E 4
1
6 24

F 1 NaN NaN

Figure 2.4: An example network for the values of Hierarchy and clustering coefficient using an
undirected network.

2.2 github permissions

To test whether or not the network classification metrics are sensible, we need to know what
should actually be their output. In our study, we create a Ground Truth (see Section 3.1) and
test the outputs of the network classification metrics against it. Using different measurements,
we evaluate the network classification outputs against our Ground Truth, to suggest a
dominating network classification metric.

To compute our Ground Truth, we choose to take a look at the issues and pull requests on
GitHub. Issues and pull requests on GitHub have many different meanings and different
tasks. Pull requests are used when a developer submits changes to the repository so that
other developers can evaluate and review the changes so that the changes can be merged into
the official repository. Any developer that does not have write permission on a repository
has to use this way to get their changes approved and merged into the project. This approval
is in most cases done by requesting other developers to review the changes and once the
changes are accepted by the reviewers, the pull request is usually pushed to the main
branch. Issues, on the other hand help people coordinate and work in the organization.
They can also be used to comment on other people’s work and serve as a general Q&A
board where outside users can reach core developers and discuss new ideas. Issues and pull
requests are, therefore, a good way to distinguish between outside users, core developers, and
maintainers, since their interaction is very different. Core developers and maintainers for
example are able to create pull requests and subsequently merge them onto the main work
branch. Outside users on the other hand have to go through a difficult process of getting
their pull request approved so that it can then be merged. To make this differentiation,
we take a look at the permissions that are implemented on GitHub repositories and the
privileges that come with each of these permission levels.

The aforementioned organization in which people can work and discuss, is a shared
account that enables the collaboration "across many projects at once" [30]. Additionally,
organizations in GitHub have the feature that the owner can hand out permissions on a
team level. Furthermore these teams can be structured in the same way a company has
structured its hierarchy. This means that a company can be mirrored on GitHub, therefore,

12 background

maintaining the outside structure and also the different permission and responsibility levels
of different individuals.

However, it is important to know that an organization owner and users with admin
permission can limit interactions between users [80]. Furthermore, the organization owner
can give certain privileges to users with admin permission. As we do not distinguish
between admin users and organization owners in our analysis and as there is no possibility
to view all the individual permissions for each project and the individual permission levels
for each organization, we assume that all permissions are default and unchanged. The
following are the permission levels a person can have on a GitHub repository:

• Read. The read permission on GitHub repositories is generally "Recommended for
non-code contributors who want to view or discuss your project" [86]. This is the
default permission for any GitHub user seeing and following a project. In a more
concrete matter, users with read permission can view the project, open issues, submit
reviews on pull requests and communicate with other users through comments and
the wiki. Furthermore they are able to fork and send pull requests from their own
fork to the main project where it can then be evaluated. Any newly created public
repository has the read permission as its default permission for any GitHub user.

• Triage. The triage permission on GitHub repositories is generally "Recommended for
contributors who need to proactively manage issues and pull requests without write
access" [86]. This permission level can only be given to a user by the owner of an
organization for any repository of this organization or an administrator of a repository
to this repository only. A user with triage permission can do anything users with read
permission can do and additionally has the ability to apply labels and clean up issues
by marking them as duplicate or closing and reopening issues they themselves did
not author, as well as assigning issues to other users. They are able to request pull
requests from people, meaning assigning them to the task.

• Write. The write permission on GitHub repositories is generally "Recommended for
contributors who actively push to your project" [86]. This permission level can only be
given to a user by the owner of an organization for any repository of this organization
or an administrator of a repository to this repository only. A user with write permission
can do anything users with triage permission can do as well as push to the repository
they are a part of. Furthermore, the user can publish packages and submit relevant
reviews on pull requests that "affect a pull request’s mergeability" [86]. There are
numerous other privileges that do not come into play for issues such as viewing draft
releases and are, therefore, not mentioned here.

• Maintain. The maintain permission on GitHub repositories is generally "Recom-
mended for project managers who need to manage the repository without access to
sensitive or destructive actions" [86]. This permission level can only be given to a
user by the owner of an organization for any repository of this organization or an
administrator of a repository to this repository only. A user with maintain permission
can do anything users with write permission can do and additionally have the abil-
ity to push to protected branches. They can "limit interactions in a repository" [86]
meaning they can restrict other users from opening issues, commenting and creating

2.2 github permissions 13

pull requests [88]. Additionally, users of maintain permission are able to "configure
pull request merges" and "manage topics" [86]. "Configure pull request merges" does
not mean that the maintainer can merge a pull request regardless of the number of
reviews, it just means that they can change the way this merge is done, e. g., deciding
between rebasing, squashing and simply merging the commits [82].

• Admin. The admin permission on GitHub repositories is generally "Recommended
for people who need full access to the project, including sensitive and destructive
actions like managing security or deleting a repository" [86]. This permission level
can only be given to a user by the owner of an organization for any repository of this
organization or an administrator of a repository to this repository only. A user with
admin permission can do anything users with maintain permission can do and manage
anything in the project. As they are the administrators they can do anything to the
project and have only marginally fewer privileges than the organization owners.

It is very important to note that these permissions are built on top of each other with read
permission being at the bottom and admin permission being at the top. Using this analogy,
every developer of a higher level has all the permissions below them as well, i. e., even
though it is not specifically mentioned, any developer having admin permission can also
comment on any issue like developers with read permission can.

3
A P P R O A C H

In this chapter, we introduce how our Ground Truth is constructed and on what it is based.
We further introduce the way in which we measure the similarity between our Ground
Truth and the outputs from the network classification metrics.

3.1 ground truth

The Ground Truth we compute is an important part of understanding the network classifi-
cation metrics. The idea for this Ground Truth (GT) is to compare it and the outputs of the
network classification metrics using the measurements described in Section 3.2.

To compute the GT, we use the GitHub issue data (2.1.2) as our input data in conjunction
with the GitHub permissions presented in Section 2.2.

The goal of the GT is to differentiate developers on GitHub into two distinct groups, core
developer (4.2.1) and peripheral developer (4.2.2). We define a core developer, in this context, as a
developer that has contributed to the project and was therefore granted write, maintain or
admin permission on the analyzed project. All developers that do not fulfill this criteria are
considered peripheral developers. To find all developers in a project that are considered as core
developers, we analyze all the issue events that can be triggered by GitHub using issues or
pull requests.

Every issue event that is triggered by GitHub has a minimum permission level that a
developer needs to have, e. g., only developers with admin permission or organization
owners can trigger the issue event user_blocked by blocking a user from working on a
repository. On the other hand, all users that have the read permission can trigger the
event commented, by commenting on any issue within the project, this includes basically
every person with a GitHub account. In order to find all the issue events, we analyze the
documentation of GitHub and the permission levels provided. A detailed explanation and
discussion for each issue event can be found in Appendix A.1.

Since there are multiple issue events that we are not able to place exactly into either the core
developer group or the peripheral developer group, we distinguish all event issues into three
different groups.

common privileges In common privileges, we group all issue events of which we are
sure that they can be used by all permission levels, i. e., they are accessible to developers
with read permission. Since any user with a GitHub account has this permission level, these
issue events are not considered for the computation of the GT. An example of such an issue
event is commented. This issue event is triggered every time someone comments on any issue
or pull request.

15

16 approach

collaborative privileges In collaborative privileges, we group all issue events of which
we are unsure whether they belong to common privileges or elite privileges. Furthermore, we
add triage permission level developers to this list as well, as they do not have write permission
to the project, meaning they do not have the privileges a core developer should have. However
they do have some privileges, so they can not be put into the common privileges category. An
example of such an issue event is assigned. This issue event is triggered when a developer
is assigned to an issue or a pull request. This suggests that the one being assigned is a
core developer as they are trusted with answering or reviewing this issue. However the one
assigning, namely the author, can also only have the rights to help out with the organization
within the project.

elite privileges In elite privileges, we group all issue events of which we are sure that
they can only be used by permission levels write and above, i. e., they are only accessible
by core developer. All issue events that are grouped in this category are used to compute
the GT. An example of an issue event that is in elite privileges is pinned. This issue event is
triggered when a developer having the write permission level pins an issue to the top of the
issue board. Only three such issues can exist. In Table 3.1, we present all issue events and
differentiate them into the three groups of privileges. Using these three groups of privileges,
the GT can be computed. Since our GT needs to consist of a list of core developers, we can not
utilize the elite privileges directly. We therefore analyze the GitHub issue data, by getting all
events that are found in the elite privileges group and put all the authors of these events in a
set. This set is then used as the official GT.

3.2 measurement

To get an accurate representation of how reasonably the network classification metrics
classify developers into core developers and peripheral developers, we are comparing these
output lists against our issue-based Ground Truth and the official committer lists that were
found for some projects. Simply comparing them will however not yield any meaningful
results due to differing sizes of the groups of developers. Overall, we use six different
measures that give us meaningful feedback. These different measures are divided into two
groups:

The first group consists of the similarity measures Jaccard Index and the Overlap Metric. They
are concerned with a rough overview of the data, using the data and comparing it as a
whole. However, they only work on two sets of data.

The second group consists of the classification measures Recall, Specificity, Precision and
the F1 metric. For this group the data is further processed into False Positives, True Positives,
False Negatives and True Negatives.

3.2.1 Similarity Measure Data Setup

The data setup for the similarity measures is simple, since two sets are taken into account.
The first set consists of the core developer list created by the network classification metrics. The

3.2 measurement 17

Table 3.1: Categorized Issue Events. A detailed explanation of all issue events can be found in the
Appendix A.1

Elite Privileges Collaborative Privileges Common Privileges

added-to-project assigned automatic-base-change-
failed

converted-note-to-issue demilestoned automatic-base-change-
succeeded

deployed labeled base-ref-changed

deployment-environment-
changed

marked-as-duplicate closed

locked milestoned comment-deleted

merged review-requested commented

moved-columns-in-project unassigned committed

pinned unlabeled connected

removed-from-project unmarked-as-duplicate convert-to-draft

review-dismissed created

review-request-removed cross-referenced

transferred disconnected

unlocked head-ref-deleted

unpinned head-ref-restored

user-blocked mentioned

ready-for-review

referenced

referenced-by

renamed

reopened

review-request-removed

reviewed

subscribed

unsubscribed

18 approach

second set consists, depending on the research question at hand, of either the issue-based
GT or the official committer list.

3.2.2 Jaccard Index

The Jaccard Index or Jaccard similarity coefficient is a similarity measure named after french
botany professor Paul Jaccard. He used this coefficient as a way to describe how similar the
distribution of plants is in different areas that have mostly the same conditions while some
conditions are vastly different [11]. Today, this similarity measure is not only used in botany
but also in computer science and many other scientific fields to show how similar two finite
sets are. The formula of the Jaccard Index is as follows:

J(A,B) =
|A∩B|
|A∪B|

with A and B being finite sets of data. Should both sets be empty, we set the value to
J(A,B) = 1. This index can show us very easily how similar our data is while still accounting
for different sizes of A and B.

Anna
Bernd

Charlie

David Emil

Fred

(a) Two sets of names with a small
overlap.

Anna
Bernd

Charlie

David Emil

Fred

(b) A border case in which a big overlap
between the two sets appears.

Figure 3.1: An example of two sets of names overlapping.

The following example is based on Figure 3.1a:

J(A,B) =
|David|

|Anna,Bernd,Charlie,David,Emil, Fred|
=

1

6

In Figure 3.1b, we can see a border case of the Jaccard Index in which one of the sets is
contained within the other:

J(A,B) =
|David,Emil, Fred|

|Anna,Bernd,Charlie,David,Emil, Fred|
= 0, 5

Even though one set is contained within the other we still only get a value of 0, 5. This
means we lose the information that they are still very similar. In order not to lose this
information, we use the Overlap Metric which accounts for the differing sizes in the sets.

3.2 measurement 19

3.2.3 Overlap Metric

The Overlap Metric computes the similarity between two finite data sets in a slightly different
way as the Jaccard Index, since we want to be able to discount the differing sizes [25]. To
achieve this, we use the following formula:

O(A,B) =
|A∩B|

min(|A|, |B|)

with A and B being finite sets of data again. Should one or both sets be empty, the value
is set to O(A,B) = 0. We use this metric in conjunction with the Jaccard Index since we
are not able to discern whether we created a GT that included everything returned by the
network classification metric or whether the measure was simply bad. As we want to find
out whether the output of the network classification metric is a list of core developers, we
need to take a look at which of the sets is bigger and if the network classification metrics
output is encased in the GT. If this is not the case, we know that the network classification
metrics are not doing a good job and we have to find the reason for it.

Computing Figure 3.1a with the Overlap Metric results in:

O(A,B) =
|David|

min(|Anna,Bernd,Charlie,David|, |David,Emil, Fred|)
=

1

3

We find that for the border case (Figure 3.1b), the difference to the Jaccard Metric is even
clearer:

O(A,B) =
|David,Emil, Fred|

min(|Anna,Bernd,Charlie,David|, |David,Emil, Fred|)
= 1

We can see that through the usage of both the Jaccard Index and the Overlap Metric, we get
vastly different information on the same data and the actual similarity between the two sets.

3.2.4 Classification Measures Data Setup

The data setup for the classification measures [23] consists of different parts. In general, a
given data set is divided into two distinct sets, one containing the data that is considered
relevant and one containing the data that is considered irrelevant for a certain data clas-
sification. In most cases, a classification results in a subset of the original data consisting
of relevant and irrelevant data points. The ratios between correctly classified elements and
incorrectly classified elements can then be compared between different classification tasks
as they additionally concern themselves with the size of the data sets. Every data point that
is in the classification result and is within the relevant data points (i. e., all the data points
that were correctly classified as relevant) is called True Positives (TP). All data points that
are in the classification result and are in the irrelevant data (i. e., all data points which were
incorrectly classified as relevant) are called False Positives (FP). All remaining data points in
the relevant set (i. e., the ones that should be classified as relevant, but are not) are called
False Negatives (FN) and all the remaining data points in the irrelevant data set (i. e., the
ones that are correctly classified as irrelevant) are called True Negatives (TN).

20 approach

In our setup, the interpretation of these groups is slightly different. For the comparisons
done, we evaluate the distinct sets (core and peripheral developers) against the classification
result (GT) and not the other way around. This also means that certain border cases need to
be taken care of and that the terms TP, FP, TN and FN have slightly different definitions:

1. True Positives The true positives are all the data points that are contained in the core
developers set identified by using network classification metric and are also included in
the GT, i. e., all the correctly as core developer classified developers.

2. False Positives The false positives are all the data points that are situated in the core
developers set identified by using network classification metric but not in the GT, i. e.,
all the developers incorrectly classified as core developers.

3. True Negatives The true negatives are all the data points that can be found in the
peripheral developers set but not in the GT, i. e., all the developers that were correctly
classified as peripheral developers.

4. False Negatives The false negatives are all the data points that are found in the
peripheral developers set and in the GT, i. e., all the developers that were incorrectly
classified as peripheral developers.

5. Border Case The problem that can arise in our data setup is the fact that the GT

can contain developers, which are not accounted for in either the core developer or
the peripheral developer list. This leads to incorrectly computed measures. The reason
for this problem is because the GT only works on the GitHub issue data. This does
not pose a problem when using GitHub issue data however every case in which the
GitHub issue data is not used as an input, e. g., in a Mail Network, the computation
can potentially result in failure. To circumvent this case, all data points from the GT

that are not found in either the core developers nor the peripheral developers, are added
to the peripheral developers. They are therefore classified in the FN category.

3.2.5 Recall (TPR)

The classification measure Recall (also called True Positive Rate (TPR)) computes the ratio of
the correctly as relevant identified data points to the number of all as relevant identified
data points. The formula is as follows:

TPR =
TP

TP+ FN

In the case of this study, Recall computes the ratio between the developers that are correctly
identified as core developers and all the developers that are part of the GT. This is a very
important measure, as it shows whether the network metric identifies more relevant or
irrelevant data points as relevant. This means that for us a high Recall value is desirable as
this shows, that most of the core developers that are in the GT are also found by the network
classification metrics.

Using the classification in Figure 3.2, we compute a Recall value of:

TPR =
|Charlie,David,Emil|

|Charlie,David,Emil|+ |Fred|
= 0, 75

3.2 measurement 21

FP TP FN TN

Anna

Bernd

Charlie

David

Emil
Fred

Gustav

Hans

Figure 3.2: An example of a group of core devel-
opers consisting of True Positives and
False Positives, and a group of periph-
eral developers consisting of True Neg-
atives and False Negatives. The com-
puted Ground Truth consists of True
Positives and False Negatives.

3.2.6 Specificity (TNR)

The classification measure Specificity (also called True Negative Rate (TNR)) computes the
ratio of correctly as irrelevant identified data points to the number of all as irrelevant
identified data points. The formula is as follows:

TNR =
TN

TN+ FP

In the case of this study, Specificity computes the ratio between the developers that are
correctly identified as peripheral developers and all those developers that are not part of the
GT (this includes both core developers and peripheral developers). This is another important
measure, as this shows whether the network metric identifies more relevant or irrelevant
data points as irrelevant.

This means that for us a high Specificity value is desirable as it shows that most peripheral
developers are correctly identified as such.

Using the classification in Figure 3.2, we compute a Specificity value of:

TNR =
|Gustav,Hans|

|Gustav,Hans|+ |Anna,Bernd|
= 0, 5

Overall it is best, if Specificity as well as Recall have both very high values as this shows
that the classification works really well.

22 approach

3.2.7 Precision (PPV)

The classification measure Precision (also called Predictive Positive Rate (PPV)) computes
the ratio of correctly as relevant identified data points to the number of all that should be
identified as relevant. The formula is as follows:

PPV =
TP

TP+ FP

In the case of this study, Precision computes the ratio between the developers that are
correctly identified as core developers and all those that are classified as core developers by the
network classification metric. This measure shows how many of the ones we identified as
core developers are actually identified as such.

We therefore hope for a high Precision value as it shows that out of those that are identified
as core developers most actually are.

Using the classification in Figure 3.2, we compute a Precision value of:

PPV =
|Charlie,David,Emil|

|Charlie,David,Emil|+ |Anna,Bernd|
= 0, 6

3.2.8 F1 score (F1)

The classification measure F1 score computes the harmonic mean of TPR and PPV. The
formula is as follows:

F1 = 2 ∗ PPV ∗ TPR
PPV + TPR

The F1 score is another important measure for our study as it mainly takes the values of
relevant data into account as opposed to looking at relevant and irrelevant data at the
same time. As it could be the case that the irrelevant data is huge compared to the relevant
data, measures on both of them can have misleading results. A high value in the F1 score
therefore means that both TPR and PPV are high, suggesting that the network classification
metric is good at finding relevant data, even though the irrelevant data might be way bigger.

Using the classification in Figure 3.2, we compute the F1 score with the help of TPR and PPV:

F1 = 2 ∗ 0, 6 ∗ 0, 75
0, 6+ 0, 75

=
2

3

4
I M P L E M E N TAT I O N

In this chapter, we explain how all our results are computed. For this we first provide a
workflow and introduce Coronet, after which we show how the networks are build and
which variables are chosen in which way.

4.1 complete setup

The complete setup of our workflow consists of three main parts: (1) the collection of all the
data, (2) processing the data and building networks using the tool Coronet, and (3) the
analysis of the resulting data.

4.1.1 Data Collection

The data collection is done by two tools, namely codeface
1 and codeface-extraction

2.
codeface is a tool that can analyze and extract data from version control systems like
GitHub and from mailing lists. codeface-extraction is an extension to codeface with the
possibility to extract data from the database built by codeface.

The commit data is extracted from the official GitHub page of the project using codeface,
codeface-extraction and the GitHub REST API3. This data includes all commits that were
ever done on this repository. The data contains the time of the commit, the author, their
e-mail address and the commit hash. More data can be extracted using GitHub but this
data is not relevant for building the networks so it is discarded.

The GitHub issue data is extracted from the official GitHub page of the project using
codeface, codeface-extraction and the GitHub REST API. This data includes all issues
and all pull requests as well as anything that was a contribution to the issue, e. g., comments
and other interactions with the issue. The GitHub issue data contain the issue number, the
title, the author, their e-mail address as well as the current state of the or pull request. It
further incorporates the issue event type as well as the date of each event. An event can for
example be "commented" or "reviewed".

The mailing list data are extracted from gmane4 using codeface and codeface-extraction.
This data contains the header information of every e-mail sent to the mailing list. This
includes the author, the date, the e-mail address as well as the subject and to which thread
this e-mail belongs.

1 http://siemens.github.io/codeface/icse2017/#/home

2 https://github.com/se-passau/codeface-extraction

3 https://docs.github.com/en/free-pro-team@latest/rest

4 https://gmane.io/

23

http://siemens.github.io/codeface/icse2017/#/home
https://github.com/se-passau/codeface-extraction
https://docs.github.com/en/free-pro-team@latest/rest
https://gmane.io/

24 implementation

After the extraction of the data, disambiguation of all author names and their respective
e-mail addresses takes place. Since this is sometimes not enough, we also do a manual
disambiguation on the data to eliminate any problems.

4.1.2 Running Coronet

After the creation of commit data, GitHub issue data, and mailing list data, we use this data
with the R5 library Coronet

6 to build different networks based on this data.

4.1.3 Data Analysis

The networks created by Coronet are then analyzed and compared against our Ground
Truth (3.1) and the official committer lists using the measurements that were mentioned
before (3.2).

4.2 coronet

Coronet is a "R library for configurable and reproducible construction of developer net-
works"7. It is able to build developer networks in a "socio-technical" way, trying to give a
good overview over connections between various developers in a team and determining
which of these developers is in comparison more central or important for the project’s
structure. Coronet was developed by the Software Engineering Chair of Professor Apel and
is based on the papers of Joblin et al. [12] and Joblin, Apel, and Mauerer [13]. In these papers,
they describe the idea of how developers can be classified and suggest networks as a base.
For an analysis of the networks, the network metrics Node Degree (2.1.4.1), Eigenvector
Centrality (2.1.4.2), and Hierarchy (2.1.4.3) are specifically explained and used to show that
the network classification metrics achieve better results in classifying developers than the
count-based classification metrics. Coronet implements exactly these ideas for testing and
analysis purposes. It has thus many possibilities to create and analyze networks in different
ways. However for us, the most important metrics are only network classification metrics as
opposed to the network classification metric and the count-based metrics.

Hence, Coronet gives us the possibility to analyze the data and networks so that we can
classify all the people in the network into core developers and peripheral developers. To achieve
an understanding of the results of Coronet, we need to understand the difference between
core developers and peripheral developers.

Nakakoji et al. [19] argue that in an OSS project there are eight different roles a member can
be. These eight roles are:

• Passive User

• Reader

5 https://www.r-project.org/

6 https://github.com/se-passau/coronet

7 Documentation of Coronet: https://github.com/se-passau/coronet (2020-10-15)

https://www.r-project.org/
https://github.com/se-passau/coronet
https://github.com/se-passau/coronet

4.2 coronet 25

• Bug Reporter

• Bug Fixer

• Peripheral Developer

• Active Developer

• Core Member

• Project Leader

These roles are very differentiated, however we are looking at some of these roles or rather
at combinations of them. They can be condensed into two main groups, namely our core
developers and peripheral developers.

4.2.1 Core Developers

Core developers are the people that actively take part in the development of the project and
have contributed to it. By default, Coronet sets developers as core developers if they are
"in the upper 20th percentile" [13]. This threshold is further explained in Section 4.3.4. To
this group we count the Active Developers, Core Members, and Project Leaders. These three
groups have in common that they are the most involved people that also have the most
rights on GitHub and the most say in decisions concerning the direction the project should
take. They are the most important people as they are the ones that keep the community
active and develop most of the code. Additionally to the aforementioned three groups, we
also count Maintainers as core developers. There is a slight difference between Core Members
and Maintainers. Maintainers in general are the developers that are tasked with maintaining
the project. This means that they are responsible for "maintaining the infrastructure of the
project and support and coordinate all development activities" [8]. As this also coincides
with the idea of a core developer, we count the Maintainers to them as well. In general, we can
say that the core developers are the most important developers in an OSS project, as without
them, there is a 59% chance that the project fails and development possibly stops [1].

4.2.2 Peripheral Developers

Peripheral developers are the developers that sporadically work on the project and may help
out with simple code fixes or occasionally adding new functionality and features to the
project. The most important word here is "occasionally". If peripheral developers were people
that constantly worked on the project they would have to be described as core developers. We
will also count Bug Reporters and Bug Fixers as part of the peripheral developers, since they
take part in the project, even if it is only a small amount.

4.2.3 Other Developers

As for the last remaining groups Passive User and Reader, they will be discarded since they
are not in the scope of any of our Research Questions. This is due to the fact, that they do not

26 implementation

interact with the project in a way that is measurable (using our data), and that they do not
have any influence on the direction of the project.

4.3 building the networks

All our networks are built based upon the data collected by codeface. Coronet uses the
igraph library for building the networks. To build the networks, both nodes and edges
are needed. The node set is set up by getting all authors depending on whether cochange,
issue, mail or a combination of the three is taken as the network relation. The edges are
similarly set up as they take into account the network relation. Any connection between
two authors is taken and created as an edge. These connections are explained in more detail
in the corresponding network section (Cochange (4.3.5.1), Issue (4.3.5.2), and Mail (4.3.5.3)).
Duplicate edges remain as we are interested in all connections between authors. Following
the creation of all nodes and edges, the network is built based on the nodes and edges. In
the following section, we explain additional constraints that can be put in place to build
networks and analyze them.

4.3.1 Directed vs. Undirected

As explained in Section 2.1, any network can be built with two different edge types, directed
or undirected. In our case, the connection between two authors is made if they have worked
on the same issue, commit, or e-mail. An undirected edge is created between all authors
that worked on the same issue, discussed on the same e-mail thread or worked on the same
code artifact. For directed this is slightly different: When author B worked on the instance
after author A then there is a connection from author B to author A but not from author A
to author B. Should author A for example answer to the comment written by author B at a
later stage, then there will be an additional edge from author A to author B.

For our networks, we choose undirected as our default setting, as there is not a big difference
between either, when looking at the evaluation of the network classification metrics.

4.3.2 Simplified vs. Unsimplified

After having built a network, it can be simplified. Having a simplified network depends on
two criteria:

1. No loops are contained in the network. A loop is defined as an edge that connects a
node to itself. Using the designation from Section 2.1, a loop is defined as

(v1, v1) ∈ E

In a developer network, a loop means that a developer has answered again to an
instance of an e-mail thread, issues or code artifact that this developer has already
worked on or commented on.

2. There exists only one edge between two different nodes.

4.3 building the networks 27

When creating networks in Coronet with parameter simplify set to TRUE, both loops and
multiple edges are removed by deleting the edges which are duplicate except for one and
removing any edges that loop.

For our networks, we choose unsimplified networks as simplifying the networks removes
edges without adding weights to the remaining one, meaning we lose connections between
people and therefore information on the number of times they worked together. An example
of why simplifying the network is bad would be the case that everybody on the mailing list
answers to the same welcome mail. This would mean that the person writing the answer
now has a connection to all people on the mailing list. With this fact, a developer that was
very active on the mailing list would have the same number of edges as the newly joined
person, which would defeat the purpose of creating the networks.

4.3.3 Time Window

The time window is applied to the data beforehand, as we have multiple years of data
for every project. For some it is even multiple decades. Using this data and building the
networks and then computing the count-based (2.1.3) and network (2.1.4) metrics would
result in clear examples of people that continuously worked on the project and most likely
did a lot for its success. One goal of our study is to showcase a dynamic in the evolution
of core developers. This cannot be done for one data block and one single time window as
all information of evolution is lost in such a case. Most literature suggests a time window
of three months for the analysis of a socio-technical network [16], as this enables a clear
evolution while still having a puffer to make accurate statements. For us, this time window
is too short. Using a nine-month time window is more promising, as all projects are OSS
and not every core developer needs to have a high amount of interaction on GitHub. This lack
of interaction would lead to us classifying them as peripheral developers while it is possible
that at the same time they took some time off from the project or simply concentrated on a
special feature that did not include such interaction. However, having a time window with
more months leads again to the problem of losing visible evolution in the networks.

4.3.4 Core Threshold

In 1909, Vilfredo Pareto stated in an article that an estimated 80% of consequences come
from 20% of the causes [22]. This was later pronounced as a principle that not only applies
in economics, but also in many other sciences. One of them being computer science. In
multiple papers, researchers discovered that this Pareto principle is found in many ways.
Some of them are, that 20% of the developers in a project are responsible for 80% of the
code or that the writing of 20% code takes up 80% percent of the overall development time
and that 80% of all bugs in a project come from 20% of the code [5, 18]. These are only some
of the occurrences of the Pareto principle, however for us the first case of having 20% of all
developers developing 80% of the code is very interesting.

We therefore use this exact principle to identify our core developers. This is done by creating
a list of all developers and sorting them by the value they were assigned by the network
classification metric. After this, we iterate over the list and add up the value that was

28 implementation

computed for them using the network metrics. When the sum of these values surpasses 80%
of all work done, the list of all the remaining developers is classified as peripheral developers,
while all others are classified as core developers.

4.3.5 Cochange vs. Issues vs. Mail

The three different relations represent connections and interactions of and inbetween people
on the project. However they are created on vastly different data. There is, for example, no
inherent connection between commits and mails. There might be one such as a mailing
thread concerning itself with a bug fix which is therefore connected to the commit containing
this bug fix. But this is not guaranteed, as the mailing list can also be used for discussing
something that does not result in code changes. It is important to look at all the data
sources and not only one of these, since a lot of information can be lost when a large
chunk of connections is not taken into consideration. An example is, that a large number of
developers was crucial in developing and discussing changes to the project, however only
one of these developers was tasked with implementing it. The information of who helped
develop the changes would therefore be lost. To counteract the possible loss of information,
we create all the networks and analyze their computed network classification metric on
how similar they are to the Ground Truth. For this, we will not only look at the three main
networks, but also at any combination of the three. This is done to prevent the already
mentioned loss of data and connections between developers. An advantage of this approach
is that all information is in one network and that this network can then be analyzed and the
developers classified. A disadvantage however could be the fact that due to one of the data
sets being extremely large and the following disparity in numbers of edges generated, one
data set could dominate the other. Since the networks are not weighted, this could mean
that we have data sets whose data is basically irrelevant compared to other data sets.

4.3.5.1 Cochange

Author networks, which are built using only commit data, are created by taking any code
artifact (i. e., file) and associating it with all the developers that work on it.

The authors are the nodes of the network and any connection between authors based on the
analyzed code artifacts is created as an edge between these two authors. Such a connection
is present, when both authors "change[d] the same source-code artifact"8. This means that
they, for example, worked on the same file within a certain time frame (i. e., Section 4.3.3).

4.3.5.2 Issues

For networks, built using GitHub issue data, Coronet will use a similar technique as in
Cochange. Coronet collects all developers that ever triggered an event on an issue or a pull
request. The set of these developers then becomes the set of nodes.

Building the network is done by taking the set of all nodes and creating the edges every
time two authors have a connection. Such a connection exists, when two authors contribute

8 See footnote 7.

4.3 building the networks 29

to the same issue or pull request9. This can mean that they commit some changes or even
just comment on the idea. Basically, every developer that contributed to an issue or pull
request has at least one connection to every other developer within this issue or pull request.

4.3.5.3 Mail

The networks built on the mailing list data are called Mail Networks. As with the other
relations, Coronet groups the e-mails by the discussion. This means that two developers
that "contribute to the same mail thread are connected with an edge"10.

Building the author network results in nodes describing the authors and edges that describe
the connections between the different mails within the discussions.

4.3.6 Combined Networks

All combinations of the three aforementioned networks are similarly built as the base
networks. They are first created individually and then merged. This merging is happening
on the sets of nodes and the list of edges by taking the union of all nodes and the union
of all edges. After merging all the data, a new network is built using the combined set of
nodes and the combined list of edges. In this network, we thus have all the edges that were,
for example, created based on source-code artifacts as well all the edges that were due to a
contribution to the same issue or pull request.

9 See footnote 7.
10 See footnote 7.

5
P R O J E C T S

In this chapter, we provide an overview of all projects that are chosen for our study. After
giving some general information, we introduce each project and mention if mailing lists or
official committer lists exist.

5.1 general information

For our study, we choose seven projects that are based on GitHub. These projects are chosen
for different reasons, one of them being, that most of them are very prominent so that there
is also a lot of data that can be analyzed and used to build the networks. Additionally, these
prominent projects are mostly still under development and have therefore a high amount of
social interaction through issues and pull requests. Although these are some of the most
prominent OSS projects on GitHub, they have vastly differing sizes, with two having a line
count of below 100.000 lines, while the rest surpass 1 million lines of code. By studying
projects with different sizes, we can find out, whether the network classification metrics
classify the developers correctly on big projects as well as small and intermediate ones.
Furthermore, we only choose projects that actually use the GitHub issues extensively and
do not outsource this kind of communication to other issue and project tracking software
like Jira

1. Last but not least, we choose these projects because they differ in their scope of
application so that we can analyze a broader range of applications of OSS projects.

Nextcloud and ownCloud are a little different from the other projects, as Nextcloud is a
fork of ownCloud. We expect that we are able to see this developer dynamic when many
developers change in ownCloud.

In Table 5.1, we describe the general information for all projects that are analyzed. The
columns "#Authors (Commits)" and "#Authors (Issues)" denote the number of all unique
developers that triggered an event on commits or issues and pull requests respectively. The
column "First Project Activity" contains the first time any event was triggered on GitHub or
other version control systems. Since we use different data sources within our analysis, it is
sensible to constrict the data to times when all data sources were available so that an actual
comparison between all of them takes place. The last column "Latest Data" denotes the last
date that all sources within a project had data. When a data source is completely void of
any data, this data is not taken into account for the computation of the last date. For all
of our projects, we use the commit data and GitHub issue data found on the corresponding
project page on GitHub. For OpenSSL and ownCloud, we additionally use the mailing list
data since these are the only two projects for which such a mailing list exists.

1 https://www.atlassian.com/software/jira

2 This statistic was generated using the GitStats tool: http://gitstats.sourceforge.net/

31

https://www.atlassian.com/software/jira
http://gitstats.sourceforge.net/

32 projects

Table 5.1: General statistics for every project.2

#Authors
(Com-
mits)

#Authors
(Issues)

#Commits #Files #Lines
of Code

First
Project
Activity

Latest
Data

Angular 1.405 22.903 19.270 9.427 1.254.957 2014-09-
18

2020-09-
25

Data
Transfer
Project

43 77 1.645 809 68.100 2017-03-
20

2020-04-
24

Keras 906 13.468 5.350 16 521 2015-03-
28

2019-11-
06

Nextcloud 890 9.542 55.946 9.525 1.101.667 2010-03-
10

2020-09-
22

NodeJS 3.183 13.556 32.097 32.046 9.512.093 2009-02-
16

2020-02-
22

OpenSSL 673 3.497 27.382 23.852 1.254.807 1998-12-
21

2019-12-
21

ownCloud 614 10.242 44.479 19.355 1.850.217 2010-03-
10

2019-10-
29

This does not mean that all these projects only communicate via GitHub. However, we are
not able to use these communication channels, as this is not implemented within codeface.

5.2 angular

Angular "is a platform and framework for building single-page client applications using
HTML and TypeScript"3. Formerly known as AngularJS, Angular was redeveloped com-
pletely in 2016 when it started in version 2.0.0. It is currently mainly developed by a team
at Google while still working under an OSS license which leads to a strong "opinionated"
community working on the project [15]. Angular has a very simple system behind it which
helps out in different ways. It is a framework that is mainly based on the idea of compo-
nents that can be reused at other places. To achieve this the framework is built such that all
components must be in a parent-child relation, i. e., building a tree with one root component.
Additionally, every one of these components must be self-sustaining so that it can be used
in other components therefore reducing the amount of code that needs to be written.

3 https://angular.io/guide/architecture (2020-11-12)

https://angular.io/guide/architecture

5.3 data transfer project (dtp) 33

An official committer list that consists of 30 people was found on their website4. They do
not provide a definition for their official committer list or the exact position they hold at
Angular. Further information and the code can be found on their website5 and GitHub

6.

5.3 data transfer project (dtp)

The Data Transfer Project (DTP) is "an open-source, service-to-service data portability plat-
form so that all individuals across the web could easily move their data between online
service providers whenever they want"7. The development goal of the DTP is to enable an
easier way for users to transfer data between different online services. The problems with
not having a simple way for distributing and exchanging data when wanted are many. Some
of the most prominent is that for any such scenario of sending and receiving data between
different online services, both services need to have a "separate analysis of the systems, data
and human aspects (involving syntactic, semantic and policy facets)"8. But not only do these
aspects have to be taken care of, but security and privacy concerns need also be tackled to
create a safe environment for anybody to use.

To create such an environment and help users with their simple data transport, the DTP

creates and builds "adapters" that take in the data from different online services, extract
all that is needed, format it into common and widely used data formats and forward this
information to another adapter so that this other service can use the data. Using these
adapters and a bridge in between to handle the data, the project allows providers to use
their current authentication systems as well as not making their own security system open
to attacks from the outside [29].

For the DTP no official committer list was found and we can therefore only work with our
GT. All the data for the project can be found on their website9 and on GitHub

10.

5.4 keras

Keras is a deep learning API used by many around the world11. It is written in Python and
uses the machine learning platform TensorFlow

12 as its base. Due to an additional focus
on high scalability and the ability to use it across platforms, Keras is able to find a liking
in research groups and companies that want to use machine learning on large data sets.
After its release in 2015 by Francois Challet a Google engineer, it is still completely OSS and
usable by anyone with regular updates to the code base. Initially, it was built to be able
to use different machine learning platforms but moved to mainly support TensorFlow

later. The idea behind Keras is to give its users the ability to quickly comprehend and use

4 https://angular.io/about?group=Angular (2020-10-10)
5 https://angular.io

6 https://github.com/angular

7 https://datatransferproject.dev/

8 See footnote 7.
9 See footnote 7.

10 https://github.com/google/data-transfer-project

11 https://keras.io/why_keras/ (2020-11-04)
12 https://www.tensorflow.org/

https://angular.io/about?group=Angular
https://angular.io
https://github.com/angular
https://datatransferproject.dev/
https://github.com/google/data-transfer-project
https://keras.io/why_keras/
https://www.tensorflow.org/

34 projects

Figure 5.1: The lines of code in project Keras plotted over time. 15

it. To achieve this, it uses simple APIs for very common use cases and gives relevant and
understandable feedback should the user make an error in his handling of data.13 As a
way to make the usage even easier, it is part of a big collection of tools, many of which
are related to either Keras or TensorFlow, that help with every possible aspect of using
machine learning, may it be data collection or other training models. As of version 2.3.0
which was released on 17th September 2019, Keras no longer provides a multi-backend.
This leads to a sharp decrease in files and lines of code as Keras is from that moment on in
sync with the tf.keras API provided by TensorFlow

14. This progress can be clearly seen in
Figure 5.1.

An official committer list that consists of 5 people was found on their website16. These
5 people are part of the Keras Special Interest Group (SIG). This Keras Special Interest Group
is divided into three parts: (1) the BDFL, (2) the Key stakeholders, and (3) Core Keras
community contributors. These parties are shortly explained with the result, that the BDFL
always has the final call in decisions related to Keras, the Key stakeholders are responsible
for the representation of the project’s interest, but not the coding of the project itself and
the Core Keras community contributors are responsible for running the project.17 We therefore
discard the Key stakeholders from the official committer list, as they are not represented
within the project, may it be commits or issues and pull requests. Further information and
the code can be found on their website18 and GitHub

19.

5.5 nextcloud

Nextcloud is an online file syncing and sharing solution directed at enterprises and users
able to set up their own servers. It was established in 2016 when the lead designers of
ownCloud forked the project because they wanted it to go in another direction. The idea
behind Nextcloud is to return control of all the data to the user. This is done by providing

13 See footnote 11.
14 https://github.com/keras-team/keras/releases/tag/2.3.0 (2020-11-04)
15 See footnote 2.
16 https://keras.io/governance/ (2020-11-04)
17 See footnote 16.
18 https://keras.io

19 https://github.com/keras-team/keras

https://github.com/keras-team/keras/releases/tag/2.3.0
https://keras.io/governance/
https://keras.io
https://github.com/keras-team/keras

5.6 node .js 35

tools so that users can have all their data in their own data centers and on their own servers
without having to trust outside sources20. Furthermore, Nextcloud helps users by giving
them the possibility to integrate already existing cloud services like Google Drive, Dropbox,
etc. so that no data needs to be moved around unnecessarily while still having a high degree
of security. This is done by having a file access layer that provides the user with the ability
to use the storage of all existing cloud services as well as their own personal storage, in
one place as well as accessing it from different places and clients [90]. Additionally, to the
ability to use most existing infrastructures, Nextcloud has the goal of making its program
and storage access as secure as possible. To create such a high-security product, they use
the idea of Two heads are better than one, which means they made their code complete OSS so
that anybody in the world can see and analyze it and report bugs with high Bug Bounty
Rewards21, showing that they are invested in the security of their product. This has so far
lead to many developers taking part in the project and creating a project that is secure and
free to use.

For the Nextcloud project no official committer list was found, we can therefore only work
with our GT. All the data for the project can be found on their website22 and on GitHub

23.

5.6 node .js

"Node.js is an open-source, cross-platform, JavaScript runtime environment. It executes
JavaScript code outside of a browser"24. This is the goal of the NodeJS platform and to
be able to accomplish such a goal, the developers implemented the ability to run some
JavaScript code in the back-end. Most platforms use a model in which the website that is
run needs to perform computations but at the same time needs to accommodate a high
number of simultaneous users. Even if the computations are rather small, they lead to a
problem for the server CPUs and therefore a higher latency for the user. NodeJS goes a
different way and instead of using threads for every user, it uses a single thread which is
non-blocking and event-driven. In general, this is best used when the website needs to have
a lot of throughput without having heavy computations that need to be done [28].

An official committer list that consists of 103 people was found on GitHub
25. This list consists

of (1) the Technical Steering Committee (TSC), and (2) the collaborators. The collaborators are
defined as the developers that "maintain the [...] repository"26. They are also responsible
for reviewing and commiting pull requests to the main branch. The TSC is a subset of the
collaborators and is mainly responsible for the project governance and the technical direction
of the project.27 We count both of these groups to the group of core developers. Further
information and the code can be found on their website28 and GitHub

29.

20 https://nextcloud.com/about/ (2020-11-04)
21 See footnote 20.
22 https://nextcloud.com/

23 https://github.com/nextcloud

24 https://github.com/nodejs/node

25 See footnote 24.
26 https://github.com/nodejs/node/blob/master/GOVERNANCE.md (2020-11-04)
27 See footnote 26.
28 https://nodejs.org/

29 See footnote 24.

https://nextcloud.com/about/
https://nextcloud.com/
https://github.com/nextcloud
https://github.com/nodejs/node
https://github.com/nodejs/node/blob/master/GOVERNANCE.md
https://nodejs.org/

36 projects

5.7 openssl

OpenSSL is a library to enable websites to have secure communications with one another
using the Transport Layer Security (TLS) protocol. TLS was formerly called Secure Sockets
Layer (SSL) from which the name OpenSSL is derived. As TLS is a widely used protocol for
secure network communication, it was established in 1998 as an OSS project. Additionally
to creating a secure protocol, OpenSSL also functions as a general-purpose cryptographic
library30.

An OpenSSL that consists of 18 people was found on their website31. The OpenSSL project
has different groups of management committees, namely (1) the team of committers, (2) the
OpenSSL Management Committee (OMC), and (3) the OpenSSL Technical Committee (OTC).
The OMC is defined as "the official voice of the project"32. The OTC represents "the official
technical voice of the project"33. Last but not least the team of committers consists of "the
people who can commit changes to the OpenSSL source tree" as long as this is done "with
appropriate code reviews".34 As all members of the OTC and the OMC are also part of
the team of committers, we simply take the team of committers as the official committer list.
Additionally, we were able to find a mailing list for OpenSSL. Further information and the
code can be found on their website35 and GitHub

36.

5.8 owncloud

OwnCloud is the predecessor of Nextcloud found in Section 5.5. It was founded in 2012 by
a similar group of developers that founded Nextcloud in 2016. As Nextcloud is a hard fork
of ownCloud the code base and idea behind it are the same with minor differences. The
founder of Nextcloud mentioned the reason for doing such a fork was that "[...] there are
some moral questions popping up for me."37. There is therefore no real difference on the
technical side between both applications that is interesting to our study.

No official committer list was found for the ownCloud project. Additionally, we were able
to find a mailing list for ownCloud. Further information and the code can be found on their
website38 and GitHub

39.

30 https://www.openssl.org/

31 https://www.openssl.org/community/committers.html (2020-08-20)
32 https://www.openssl.org/community/omc.html (2020-08-20)
33 https://www.openssl.org/community/otc.html (2020-08-20)
34 See footnote 31.
35 See footnote 30.
36 https://github.com/openssl/openssl

37 https://karlitschek.de/2016/04/big-changes-i-am-leaving-owncloud-inc-today/ (2020-11-04)
38 https://owncloud.com/

39 https://github.com/owncloud/core

https://www.openssl.org/
https://www.openssl.org/community/committers.html
https://www.openssl.org/community/omc.html
https://www.openssl.org/community/otc.html
https://github.com/openssl/openssl
https://karlitschek.de/2016/04/big-changes-i-am-leaving-owncloud-inc-today/
https://owncloud.com/
https://github.com/owncloud/core

6
E VA L UAT I O N

In this chapter, we provide a look at the obtained data about how well each network classifi-
cation metric fairs against our Ground Truth. This is then discussed in detail differentiated
by project and once again as a whole, answering the research questions from Chapter 1.
Afterward, we discuss and explain the threats to validity.

6.1 results

We analyze the commit data and GitHub issue data from seven OSS projects found on GitHub

using codeface and codeface-extraction. Additionally, we analyze the mailing list data
from OpenSSL and ownCloud. Building the networks and classifying all developers into
core developers and peripheral developers is done by Coronet through different network
classification metrics. Our Ground Truth is created by analyzing the GitHub issue data and
filtering it for events that can only be triggered by people that have at least write permission
on the GitHub project as explained in Section 2.2. To ensure the comparability of our data,
we only analyze time windows that include the full nine months (Section 4.3.3). Our scripts
then compare the outputs of the network classification metrics using different measurements
described in Chapter 4. In this section, we present the general results of this analysis.

6.1.1 General Results

6.1.1.1 General Results concerning Directed or Undirected Networks

Before reviewing the exact results, some general statements about the projects can be made.
As can be seen for example in Figure 6.3a and Figure A.4a, undirected networks and directed
networks have similar values in regards to Precision, Recall and F1. For all seven projects
this holds, as the plots are similar when concerning oneself with the question of directed
or undirected networks. An intuition on this is the fact that in directed networks only the
users that respond to a topic get connections to the others therefore leading to an increase
in connections every time they answer to a big topic. This is a big disadvantage when users
that should be considered as core developers give a general idea and direction to be worked
on and do not get any connections to all the people they influenced or pushed in the right
direction with their statement. This of course also happens to peripheral developers as they
also get all these connections however any core developer makes up for this by being active on
many more topics other than this one. Since we found that there is not much of a difference
between the results of directed and undirected networks, we restrict ourselves to a detailed
analysis of undirected networks.

37

38 evaluation

6.1.1.2 General Results concerning Author Relations

In the author relations, out of all seven combinations of ways to build the networks, it
emerges that only a few of them are really valuable to take a look at. Cochange Networks
are worth to take a look at as they describe some of the most important connections authors
can have. Issue Networks are also valuable and need to be looked at as they are better on
nearly all values since they are build on the same data as the Ground Truth. Out of all the
combinations of all three author relations only the network built on Issues and Cochange
contains interesting values. As for why no Mail Networks are taken into consideration, they
either do not contain enough data to elicit a response or they are overshadowed by either
Issue or Cochange or both as both of the latter contain more data and have therefore many
more edges that come into play, basically taking over the majority and displaying it.

6.1.1.3 General Results concerning Mail

At first we took Mail Networks into account but over time we found that on the one hand
very few projects continue to use mailing lists especially when GitHub is available and that
even if a mailing list continues to exist there is not much discussion on it. This leads to
result plots as in Figure 6.11j or Figure 6.9j. As we only found two projects that continue
using mailing lists we will explain them shortly.

6.1.1.4 General Results concerning Inclusion of Collaborators in the Ground Truth

Another general result concerns the question, if our GT should be built with the events (see
Table 3.1) contained in elite privileges or if we should combine both the elite privileges as well
as the collaborative privileges. An analysis of all possible networks and their combinations has
shown that the GT consisting only of the elite privileges performs slightly to clearly better in
five out of seven projects. In the other two cases, the combined GT performs clearly better. It
is however noteworthy, that in five out of these seven projects the combined GT has higher
precision values while at the same time lower recall values. The precision values often reach
100%, meaning that all developers that are classified as such by the network classification
metrics are contained within the GT. The low recall values on the other hand show that,
even though this high overlap is the case, the GT got bigger as well and that now the ratio
of core developers that are contained within the GT, and are classified as core developers by the
network classification metrics, is a lot smaller. This means that even though the network
classification metrics only find core developers, they miss out on even more. As we weight
both recall and precision the same in our study, we get the aforementioned results of five
out of seven projects that perform better using the elite privileges GT. Hence we conclude that
we further investigate the comparison to the GT created using the events in elite privileges.

6.1.2 Project Results

In the following sections, we describe and discuss all results obtained from our study. We
only work with plots that have the following attributes/variable combinations:

1. Undirected

6.1 results 39

2. Unsimplified

3. Networks are built using Cochange or Issue or Cochange and Issue relations

4. Lines of Code and Commit Count will not be discussed extensively (as already stated
above)

5. Any networks that do not conform to the first four points are available in the Appendix

6.1.2.1 Angular

Angular is one of the largest projects we take a look at. It is a highly dynamic project with a
high turnover, since there are on average 13 commits per author. This points to a project
which has many different authors that want to participate but only implement or help with
one feature. We are starting with comparing all network outputs with the Ground Truth
created by us on the GitHub issue data.

When looking at the Cochange Networks (Figure 6.1a, Figure 6.1b, Figure 6.1c), we find that
both the node degree and eigenvector centrality classification look similar to each other. For
both of them the precision values are high with the lowest being 65% going up to 100%.
This also counts for the specificity values, although they are always slightly bigger than
the precision values. The recall values are also high with most of them having numbers of
over 40%. However the last two time windows contain only very small values. This also
means that the F1 score is overall above 40% except for these last two time windows. The
hierarchy classification has on three of its time windows precision values of 100% while at
the remaining time windows they exceed 50% three times. The recall values however are
very low with a maximum of 25%.

A different picture can be seen on the Issue Networks (Figure 6.1d, Figure 6.1e, Figure 6.1f)
where the precision values for the hierarchy classification are the highest while they are the
lowest in the node degree classification. In the node degree classification all precision values
never cross 40% and there are even three time windows in the middle where the values do
not exceed 10%. On the other hand the recall values are all very high with the minimum
being at 80% while most of them are at 100%. The eigenvector centrality classification has
similar recall values and even though their minimum is also 80% this minimum is hit for
times as often as in the node degree classification. The precision values are a lot higher as
they are mostly in the range between 40% and 70% with one time window having a value
below 5%. This leads to an F1 score that is in all but one time window close to or above 50%.
The hierarchy classification on the other hand generally has good precision values that are
consistently over 60%. The recall values on the other hand are never bigger than 30% and
have a relatively stable number. As we can see, even though there are not many issues that
can be analyzed in the later stages of the project, they still coincide with our issue-based
Ground Truth.

As for a combination of both the Issue Networks and the Cochange Networks it is clear
that the Issue Networks are making up the main data as the plots of Issue Networks
(Figure 6.1d, Figure 6.1e, Figure 6.1f) and the Cochange Issue Networks (Figure 6.1g,
Figure 6.1h, Figure 6.1i) look very much alike. On the other hand the Cochange Issue
Networks achieve even higher values than the Issue Networks in some time windows, for

40 evaluation

0.00

0.25

0.50

0.75

1.00

20
14

−
09

−
18

20
15

−
06

−
19

20
16

−
03

−
19

20
16

−
12

−
18

20
17

−
09

−
18

20
18

−
06

−
19

20
19

−
03

−
20

20
19

−
12

−
19

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(a) Node Degree on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
14

−
09

−
18

20
15

−
06

−
19

20
16

−
03

−
19

20
16

−
12

−
18

20
17

−
09

−
18

20
18

−
06

−
19

20
19

−
03

−
20

20
19

−
12

−
19

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h
(b) Eigenvector Centrality on Cochange

Network

0.00

0.25

0.50

0.75

1.00

20
14

−
09

−
18

20
15

−
06

−
19

20
16

−
03

−
19

20
16

−
12

−
18

20
17

−
09

−
18

20
18

−
06

−
19

20
19

−
03

−
20

20
19

−
12

−
19

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(c) Hierarchy on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
14

−
09

−
18

20
15

−
06

−
19

20
16

−
03

−
19

20
16

−
12

−
18

20
17

−
09

−
18

20
18

−
06

−
19

20
19

−
03

−
20

20
19

−
12

−
19

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(d) Node Degree on Issue Network

0.00

0.25

0.50

0.75

1.00
20

14
−

09
−

18

20
15

−
06

−
19

20
16

−
03

−
19

20
16

−
12

−
18

20
17

−
09

−
18

20
18

−
06

−
19

20
19

−
03

−
20

20
19

−
12

−
19

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(e) Eigenvector Centrality on Issue
Network

0.00

0.25

0.50

0.75

1.00

20
14

−
09

−
18

20
15

−
06

−
19

20
16

−
03

−
19

20
16

−
12

−
18

20
17

−
09

−
18

20
18

−
06

−
19

20
19

−
03

−
20

20
19

−
12

−
19

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(f) Hierarchy on Issue Network

0.00

0.25

0.50

0.75

1.00

20
14

−
09

−
18

20
15

−
06

−
19

20
16

−
03

−
19

20
16

−
12

−
18

20
17

−
09

−
18

20
18

−
06

−
19

20
19

−
03

−
20

20
19

−
12

−
19

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(g) Node Degree on Cochange Issue
Network

0.00

0.25

0.50

0.75

1.00

20
14

−
09

−
18

20
15

−
06

−
19

20
16

−
03

−
19

20
16

−
12

−
18

20
17

−
09

−
18

20
18

−
06

−
19

20
19

−
03

−
20

20
19

−
12

−
19

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(h) Eigenvector Centrality on Cochange
Issue Network

0.00

0.25

0.50

0.75

1.00

20
14

−
09

−
18

20
15

−
06

−
19

20
16

−
03

−
19

20
16

−
12

−
18

20
17

−
09

−
18

20
18

−
06

−
19

20
19

−
03

−
20

20
19

−
12

−
19

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(i) Hierarchy on Cochange Issue
Network

F1

Precision

Recall

Specificity

(j) Legend

Figure 6.1: Angular - All undirected networks that are compared to the issue-based Ground Truth.

6.1 results 41

example the first one, suggesting that not all of the core developers can be found through
Issue Networks only, as they might only have worked on the code in this time window
rather interacting with other developers on GitHub.

As a general result for Angular, it can be seen that the eigenvector centrality classification
metric performs best on Cochange Issue Networks.

RQ1-Angular: Eigenvector Centrality on Cochange Issue Networks performs best

Similar results to the one above are also seen when comparing the networks with the official
list.

A clear disadvantage of the committer Ground Truth taken from the official committer list
is the timing of whom this committer list includes. Looking at all the different networks
and metric combinations in Figure A.2, we can see that the values are generally increasing
to the end and that mostly the highest values are in the last time window. Furthermore the
clearest increase can be seen when looking at the eigenvector centrality classification on
the Cochange Issue Network (Figure A.2h), where the increase can be seen to be basically
linear.

But it is also apparent that again the Cochange Issue Networks return the best results with
eigenvector centrality being the classification metric.

RQ2-Angular: Eigenvector Centrality on Cochange Issue Networks performs best

Comparing both the Ground Truths leads us to an expected plot. Starting with only some
amount of the Jaccard similarity between the two, this value increases up to 40% in the most
recent time windows. Looking at the Overlap value for this suggests that with close to 70%
our Ground Truth is contained within the official committer list.

RQ3-Angular: Both of the Ground Truths overlap and have similar elements, although
the official committer list finds more people than our Ground Truth.

6.1.2.2 Data Transfer Project

In contrast to Angular the Data Transfer Project is a more stable project without as much of
a turnover since every commit author is on average responsible for 38 commits in the time
working for the project. We again start analyzing the networks compared to our Ground
Truth. A committer list was not found and RQ2 and RQ3 can therefore not be answered or
considered for this project.

When taking a look at the classification plots for the Cochange Networks (Figure 6.3a,
Figure 6.3b, Figure 6.3c), the precision values for all time windows are between 75% and
100%. In the hierarchy classification they are even always 100%. The recall values in both
the node degree and eigenvector centrality classifications are in the range of 40% and
55% while in the hierarchy classification they never pass 40%. This leads to a higher F1

score in the node degree and eigenvector centrality classifications with values up to 70%.
Noteworthy is, that in the node degree and eigenvector centrality classifications the time
window 2018-10-05 does not include a bar for the specificity value. The reason for this is
that all people that were identified to be peripheral developers by the network classification

42 evaluation

0.00

0.25

0.50

0.75

1.00

20
14

−
09

−
18

20
15

−
06

−
19

20
16

−
03

−
19

20
16

−
12

−
18

20
17

−
09

−
18

20
18

−
06

−
19

20
19

−
03

−
20

20
19

−
12

−
19

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(a) Jaccard Values

−1.0

−0.5

0.0

0.5

1.0

20
14

−
09

−
18

20
15

−
06

−
19

20
16

−
03

−
19

20
16

−
12

−
18

20
17

−
09

−
18

20
18

−
06

−
19

20
19

−
03

−
20

20
19

−
12

−
19

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h
(b) Overlap Values

Figure 6.2: Comparison of both Ground Truths using Jaccard and Overlap. Negative Overlap
values indicate that the official committer list was bigger.

metrics were identified by us to be part of the issue-based Ground Truth. This means that
there are no true negatives and this leads to a value of 0% for specificity.

In the Issue Networks (Figure 6.3d, Figure 6.3e, Figure 6.3f) a slightly different picture is
seen as the precision values are at 100% at all time windows for all centrality metrics. This
is also true for the specificity values. The only difference is the recall values and for the
hierarchy classification these values are all below 40%. For the other network classification
metrics, they are basically the same values being in the range of 40% to 70%.

The combination of both the Cochange and Issue Networks is again an indicator that
the Issue Network has way more data than the Cochange Network as the Issue Network
dominates. The Cochange Issue Network (Figure 6.3g, Figure 6.3h, Figure 6.3i) has therefore
basically the same values as the Issue Network. Only at some points like in the first time
window of Figure 6.3g does the Cochange Network add users to the core developer list that
were not there before, helping to increase the scores.

In a general result for the Data Transfer Project, it can be seen that the node degree and
eigenvector centrality classifications on the cochange and issue combination are the strongest
while the corresponding metrics in the Issue Network are only as good as the former.

RQ1-DTP: Node Degree and Eigenvector Centrality on Cochange Issue Networks perform
best

As mentioned before RQ2 and RQ3 can not be answered as no committer list was found for
the project.

6.1 results 43

0.00

0.25

0.50

0.75

1.00
20

18
−

01
−

04

20
18

−
10

−
05

20
19

−
07

−
06

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(a) Node Degree on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
18

−
01

−
04

20
18

−
10

−
05

20
19

−
07

−
06

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(b) Eigenvector Centrality on Cochange
Network

0.00

0.25

0.50

0.75

1.00

20
18

−
01

−
04

20
18

−
10

−
05

20
19

−
07

−
06

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(c) Hierarchy on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
18

−
01

−
04

20
18

−
10

−
05

20
19

−
07

−
06

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(d) Node Degree on Issue Network

0.00

0.25

0.50

0.75

1.00

20
18

−
01

−
04

20
18

−
10

−
05

20
19

−
07

−
06

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(e) Eigenvector Centrality on Issue
Network

0.00

0.25

0.50

0.75

1.00

20
18

−
01

−
04

20
18

−
10

−
05

20
19

−
07

−
06

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(f) Hierarchy on Issue Network

0.00

0.25

0.50

0.75

1.00

20
18

−
01

−
04

20
18

−
10

−
05

20
19

−
07

−
06

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(g) Node Degree on Cochange Issue
Network

0.00

0.25

0.50

0.75

1.00

20
18

−
01

−
04

20
18

−
10

−
05

20
19

−
07

−
06

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(h) Eigenvector Centrality on Cochange
Issue Network

0.00

0.25

0.50

0.75

1.00

20
18

−
01

−
04

20
18

−
10

−
05

20
19

−
07

−
06

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(i) Hierarchy on Cochange Issue
Network

F1

Precision

Recall

Specificity

(j) Legend

Figure 6.3: Data Transfer Project - All undirected networks that are compared to the issue-based Ground Truth.

44 evaluation

6.1.2.3 Keras

Keras has become a unique case for our study, as can be seen in Figure 5.1 where the
number of lines over time can be seen. The reason for the drop from more than 80.000 lines
of code to a mere 521 at the current time window is the fact that the Keras library was
integrated into TensorFlow and now resides there while the current Keras project is only an
API for a call to the Keras within TensorFlow. Additionally, Keras is a project with a high
turnover as only six commits are on average done by a commit author.

Starting with the Cochange Networks (Figure 6.4a, Figure 6.4b, Figure 6.4c), only the
hierarchy classification has a precision at 100% at multiple time windows. In the other plots
displaying node degree and eigenvector centrality, the precision values are always lower
than their respective recall values. What is noteworthy is the hierarchy classification as it
produces very high precision values while having small recall values as opposed to both
being at around 25% to 50% as can be seen with the other network classification metrics.

This repeats itself when looking at the Issue Networks (Figure 6.4d, Figure 6.4e, Figure 6.4f),
as precision is very low if existent while the recall values are uncharacteristically high, some
even meeting 100%. The F1 score is in general low while there are some outliers especially at
the end of node degree and in the eigenvector centrality. The hierarchy classification again
has high precision and sometimes even recall values which lead to an F1 score of about 30%
to 40% in the last time windows. This change from precision having the highest values to it
being overshadowed by recall comes from the fact that there was a very high activity in the
Issue Networks with approximately 3.000 users taking part in the discussion and or asking
questions. This is definitely an outlier, since in other projects there is an activity of maybe
around 500 people overall on the Issue Network in one time window, however here about
600 people are classified as core developers for their activity.

This picture paints itself again in the combination of the networks (Figure 6.4g, Figure 6.4h,
Figure 6.4i) where again the Issue Networks make up the biggest part leading to very much
the same plots as before. Only in the hierarchy network (Figure 6.4i) can we see a definite
influence of the Cochange Network on the data, as the first three time windows have all
values at 100% again.

RQ1-Keras can not be as easily answered as before as some network classification metrics
lead to a high precision while others lead to a very high recall. We will therefore be taking
the F1 score as the most important measure. Additionally, as before, the combination of
both Cochange Networks and Issue Networks performs best.

RQ1-Keras: Hierarchy on Cochange Issue Networks performs best

Taking a look at the results in Figure A.8 generated with the official committer list, three
things are apparent. First, the Ground Truth does not work for the earlier stages of the
project, as we can see no precision or recall values earlier than September 2016 which are
still very low. This is the case for all generated plots. Second, the values of precision, recall
and therefore the F1 score are all very low. The recall values can be seen to be around 40%
on the node degree and eigenvector centrality classification in the later time windows. The
precision values on the other hand are basically negligible. Three, the only metric which
actually does result in some values for the F1 score is the hierarchy classification. It shows

6.1 results 45

0.00

0.25

0.50

0.75

1.00
20

15
−

03
−

28

20
15

−
12

−
27

20
16

−
09

−
26

20
17

−
06

−
27

20
18

−
03

−
28

20
18

−
12

−
27

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(a) Node Degree on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
15

−
03

−
28

20
15

−
12

−
27

20
16

−
09

−
26

20
17

−
06

−
27

20
18

−
03

−
28

20
18

−
12

−
27

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(b) Eigenvector Centrality on Cochange
Network

0.00

0.25

0.50

0.75

1.00

20
15

−
03

−
28

20
15

−
12

−
27

20
16

−
09

−
26

20
17

−
06

−
27

20
18

−
03

−
28

20
18

−
12

−
27

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(c) Hierarchy on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
15

−
03

−
28

20
15

−
12

−
27

20
16

−
09

−
26

20
17

−
06

−
27

20
18

−
03

−
28

20
18

−
12

−
27

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(d) Node Degree on Issue Network

0.00

0.25

0.50

0.75

1.00

20
15

−
03

−
28

20
15

−
12

−
27

20
16

−
09

−
26

20
17

−
06

−
27

20
18

−
03

−
28

20
18

−
12

−
27

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(e) Eigenvector Centrality on Issue
Network

0.00

0.25

0.50

0.75

1.00

20
15

−
03

−
28

20
15

−
12

−
27

20
16

−
09

−
26

20
17

−
06

−
27

20
18

−
03

−
28

20
18

−
12

−
27

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(f) Hierarchy on Issue Network

0.00

0.25

0.50

0.75

1.00

20
15

−
03

−
28

20
15

−
12

−
27

20
16

−
09

−
26

20
17

−
06

−
27

20
18

−
03

−
28

20
18

−
12

−
27

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(g) Node Degree on Cochange Issue
Network

0.00

0.25

0.50

0.75

1.00

20
15

−
03

−
28

20
15

−
12

−
27

20
16

−
09

−
26

20
17

−
06

−
27

20
18

−
03

−
28

20
18

−
12

−
27

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(h) Eigenvector Centrality on Cochange
Issue Network

0.00

0.25

0.50

0.75

1.00

20
15

−
03

−
28

20
15

−
12

−
27

20
16

−
09

−
26

20
17

−
06

−
27

20
18

−
03

−
28

20
18

−
12

−
27

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(i) Hierarchy on Cochange Issue
Network

F1

Precision

Recall

Specificity

(j) Legend

Figure 6.4: Keras - All undirected networks that are compared to the issue-based Ground Truth.

46 evaluation

0.00

0.25

0.50

0.75

1.00

20
15

−
03

−
28

20
15

−
12

−
27

20
16

−
09

−
26

20
17

−
06

−
27

20
18

−
03

−
28

20
18

−
12

−
27

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(a) Jaccard Values

−1.0

−0.5

0.0

0.5

1.0

20
15

−
03

−
28

20
15

−
12

−
27

20
16

−
09

−
26

20
17

−
06

−
27

20
18

−
03

−
28

20
18

−
12

−
27

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h
(b) Overlap Values

Figure 6.5: Comparison of both Ground Truths using Jaccard and Overlap. Negative Overlap
values indicate that the official committer list was bigger.

values of recall and precision being around 25% to 30% which means the F1 score is also in
that vicinity. This is especially so for the Issue and Cochange Issue Networks. Here again
the high amount of people that partook in the GitHub issues can be seen, however the
values for recall are not as high in comparison to networks that were analyzed using our
Ground Truth. All in all, the same answer from RQ1-Keras stands for RQ2-Keras.

RQ2-Keras: Hierarchy on Cochange Issue Networks performs best

Comparing both Ground Truths we can see that the Jaccard value between the two is not
good and does not exceed 25%. This in conjunction with a maximum overlap value of 50%
leads us to accept that the Keras committer list is as previously mentioned a group of people
that guide the project but do not actively take part in it. This is especially shown in the
fact that the Keras committer list only includes five developers. It is therefore not really a
committer list and a comparison can not be done.

RQ3-Keras: Can not be compared, due to the official committer list being a project leader
list.

6.1.2.4 Nextcloud

Nextcloud is one of the biggest projects analyzed. It also the project with the second-highest
number of commits per commit author, on average about 63. This points to a very low
turnover. As previously mentioned, Nextcloud is also a company that has made its code
Open-Source Software. This coincides with the many commits per commit author, as these
authors are employed and working at the project as a job. This count is therefore no surprise.
When looking at the plots it is important to note that while the first GitHub activity

6.1 results 47

mentioned in Table 5.1 is 2010-03-10 this company does only exist since 2016. All reported
GitHub activity is there because this project was a fork of ownCloud (5.8). All our plots are,
however, only analyzing the situation and dynamics since 2016-06-02. Analyzing the plots,
we will start again with the plots concerning the issue-based Ground Truth and later taking
a look at the committer list. An official committer list was not found and RQ2 and RQ3 can
therefore not be answered or considered for this project.

Starting with the Cochange Networks (Figure 6.6a, Figure 6.6b, Figure 6.6c) compared to our
issue-based Ground Truth, we can see a big difference between the values of hierarchy and
the other two network metrics. In the hierarchy network the precision and specificity values
are consistently at 100% while the recall values are rather low sitting at a maximum of 25%.
On the other hand, both the node degree and eigenvector centrality metrics have high values
in both specificity and precision as well as in recall. The specificity values are consistently at
100% and the precision values are always between 75% and 100%. Additionally, the recall
values can be seen to be around 35% to 60%.

This feat of high precision and high recall values can not be repeated by the Issue Networks
(Figure 6.6d, Figure 6.6e, Figure 6.6f). When analyzing the hierarchy classifications, all
specificity and precision values are very similar to the ones seen in the Cochange Networks.
Interesting is that the values of recall are very stable compared to before since the values
range between 15% and 20%. For eigenvector centrality and node degree classification the
precision values are not high as the maximum sits at 70% and 50% respectively, in the first
time window with the rest of the values declining. In contrast to this, the recall values in
the eigenvector centrality classification are really high ranging from 70% to approximately
90%. The recall values in the node degree classification are similarly high however not as
high as in eigenvector centrality with the lowest value being 50% and the highest 90%.

In the Cochange Issue Networks (Figure 6.6g, Figure 6.6h, Figure 6.6i) the pattern of
dominating GitHub issue data is repeated as there is no visible difference between them
both. This leads to the Cochange Network having clearly better F1 scores since these are
sometimes twice as high as the respective values in the issue and Cochange Issue Networks.

RQ1-Nextcloud: Node Degree and Eigenvector Centrality on Cochange Networks per-
form best

As mentioned before RQ2 and RQ3 can not be answered as no committer list was found for
the project.

6.1.2.5 NodeJS

NodeJS is the biggest project with its 9.5 Million lines of code; that we take a look at. It
is also the project with most people that authored commits. Due to having a relatively (to
its number of lines) low number of commits, any developer has on average ten commits.
This points again to a project with a relatively high turnover in developers. We will start by
looking at the networks compared against our issue-based GT and continue by taking a look
at the networks compared against the official committer list.

Looking at the Cochange Networks (Figure 6.7a, Figure 6.7b, Figure 6.7c) first, we can see
that in the node degree and eigenvector centrality classifications, the values for precision

48 evaluation

0.00

0.25

0.50

0.75

1.00

20
16

−
06

−
02

20
17

−
03

−
03

20
17

−
12

−
02

20
18

−
09

−
02

20
19

−
06

−
03

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(a) Node Degree on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
16

−
06

−
02

20
17

−
03

−
03

20
17

−
12

−
02

20
18

−
09

−
02

20
19

−
06

−
03

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h
(b) Eigenvector Centrality on Cochange

Network

0.00

0.25

0.50

0.75

1.00

20
16

−
06

−
02

20
17

−
03

−
03

20
17

−
12

−
02

20
18

−
09

−
02

20
19

−
06

−
03

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(c) Hierarchy on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
16

−
06

−
02

20
17

−
03

−
03

20
17

−
12

−
02

20
18

−
09

−
02

20
19

−
06

−
03

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(d) Node Degree on Issue Network

0.00

0.25

0.50

0.75

1.00
20

16
−

06
−

02

20
17

−
03

−
03

20
17

−
12

−
02

20
18

−
09

−
02

20
19

−
06

−
03

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(e) Eigenvector Centrality on Issue
Network

0.00

0.25

0.50

0.75

1.00

20
16

−
06

−
02

20
17

−
03

−
03

20
17

−
12

−
02

20
18

−
09

−
02

20
19

−
06

−
03

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(f) Hierarchy on Issue Network

0.00

0.25

0.50

0.75

1.00

20
16

−
06

−
02

20
17

−
03

−
03

20
17

−
12

−
02

20
18

−
09

−
02

20
19

−
06

−
03

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(g) Node Degree on Cochange Issue
Network

0.00

0.25

0.50

0.75

1.00

20
16

−
06

−
02

20
17

−
03

−
03

20
17

−
12

−
02

20
18

−
09

−
02

20
19

−
06

−
03

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(h) Eigenvector Centrality on Cochange
Issue Network

0.00

0.25

0.50

0.75

1.00

20
16

−
06

−
02

20
17

−
03

−
03

20
17

−
12

−
02

20
18

−
09

−
02

20
19

−
06

−
03

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(i) Hierarchy on Cochange Issue
Network

F1

Precision

Recall

Specificity

(j) Legend

Figure 6.6: Nextcloud - All undirected networks that are compared to the issue-based Ground Truth.

6.1 results 49

0.00

0.25

0.50

0.75

1.00
20

14
−

11
−

27

20
15

−
08

−
28

20
16

−
05

−
28

20
17

−
02

−
26

20
17

−
11

−
27

20
18

−
08

−
28

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(a) Node Degree on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
14

−
11

−
27

20
15

−
08

−
28

20
16

−
05

−
28

20
17

−
02

−
26

20
17

−
11

−
27

20
18

−
08

−
28

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(b) Eigenvector Centrality on Cochange
Network

0.00

0.25

0.50

0.75

1.00

20
14

−
11

−
27

20
15

−
08

−
28

20
16

−
05

−
28

20
17

−
02

−
26

20
17

−
11

−
27

20
18

−
08

−
28

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(c) Hierarchy on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
14

−
11

−
27

20
15

−
08

−
28

20
16

−
05

−
28

20
17

−
02

−
26

20
17

−
11

−
27

20
18

−
08

−
28

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(d) Node Degree on Issue Network

0.00

0.25

0.50

0.75

1.00

20
14

−
11

−
27

20
15

−
08

−
28

20
16

−
05

−
28

20
17

−
02

−
26

20
17

−
11

−
27

20
18

−
08

−
28

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(e) Eigenvector Centrality on Issue
Network

0.00

0.25

0.50

0.75

1.00

20
14

−
11

−
27

20
15

−
08

−
28

20
16

−
05

−
28

20
17

−
02

−
26

20
17

−
11

−
27

20
18

−
08

−
28

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(f) Hierarchy on Issue Network

0.00

0.25

0.50

0.75

1.00

20
14

−
11

−
27

20
15

−
08

−
28

20
16

−
05

−
28

20
17

−
02

−
26

20
17

−
11

−
27

20
18

−
08

−
28

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(g) Node Degree on Cochange Issue
Network

0.00

0.25

0.50

0.75

1.00

20
14

−
11

−
27

20
15

−
08

−
28

20
16

−
05

−
28

20
17

−
02

−
26

20
17

−
11

−
27

20
18

−
08

−
28

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(h) Eigenvector Centrality on Cochange
Issue Network

0.00

0.25

0.50

0.75

1.00

20
14

−
11

−
27

20
15

−
08

−
28

20
16

−
05

−
28

20
17

−
02

−
26

20
17

−
11

−
27

20
18

−
08

−
28

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(i) Hierarchy on Cochange Issue
Network

F1

Precision

Recall

Specificity

(j) Legend

Figure 6.7: NodeJS - All undirected networks that are compared to the issue-based Ground Truth.

50 evaluation

are in the range of 40% to 70%. The recall values in the node degree classification are
all very stable as they range from 40% to 60%. On the other hand, in the eigenvector
centrality classification the recall values are slighlty lower as they range from 20% to 50%.
The specificity values for all plots are high and reach the range of 85% to 100%. Analyzing
the hierarchy classification, precision is generally higher as these values are all between 70%
to 100%. Recall however is way smaller with values ranging from 5% to 25%. This also leads
to rather small values of the F1 score as this never exceeds 30%.

For the Issue Network (Figure 6.7d, Figure 6.7e, Figure 6.7f), the precision values are slightly
lower in all plots. In the node degree classification they do not pass 50%, having drops
in value in the beginning and the end. Contrary to this, the values are smooth in the
eigenvector centrality classification as the middle drop is missing and the values look like a
curve. For the hierarchy classification all precision values are bigger as they also build a
curve however this one reaches 100% as its maximum value. The recall values are especially
high for both the node degree as well as the eigenvector centrality classification. They are
situated in a range from 80% to over 90%. This also leads to a high F1 score at around the
50% mark. Only in the hierarchy classification can we see that the recall values are very low
as they are never above 25%. Concerning the values of specificity, they are always nearly at
100%.

In the combination of both network types (Figure 6.7g, Figure 6.7h, Figure 6.7i) as previously
mentioned, the Issue Networks are dominating and there is no obvious difference between
the Issue Network and the Cochange Issue Network analysis.

RQ1-NodeJS is easily answered as the eigenvector centrality metric has consistently, except
for one time window, higher values. Furthermore, the Issue Networks and the Cochange
Issue Networks have the same values.

RQ1-NodeJS: Eigenvector Centrality on Cochange Issue Networks performs best

Taking a look at the networks compared with the official committer list in Figure A.13, we
can see a similar picture, as the precision values are mostly above 50% and the specificity
values at 100%. The precision values are slightly higher than in the networks compared with
the issue-based Ground Truth, however the recall values are rather small, never passing 25%
in the Cochange Network. In the Issue Network, this trend of small recall values is not the
case as they are rising to the end to about 50%. We therefore also get high F1 scores on the
Issue Network. The only exception in both the Cochange Network and Issue Network is the
hierarchy classification. Its precision values are high, mostly being above 50% often even
being above 75%. Contrary to these high values, recall is always below 10%. Furthermore,
the Issue Networks generally have higher values than the Cochange Networks and are
showing the expected rise to the end. As the Cochange Issue Networks are again dominated
by the Issue Networks, the eigenvector centrality classification on Cochange Issue Networks
can be considered best.

RQ2-NodeJS: Eigenvector Centrality on Cochange Issue Networks performs best

Comparing the two Ground Truths using the Jaccard similarity, we can then see the expected
rise at the end to about 25%. However when looking at the Overlap similarity we can see
that nearly all of the developers in the Ground Truth are found in the official committer list

6.1 results 51

0.00

0.25

0.50

0.75

1.00
20

14
−

11
−

27

20
15

−
08

−
28

20
16

−
05

−
28

20
17

−
02

−
26

20
17

−
11

−
27

20
18

−
08

−
28

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(a) Jaccard Values

−1.0

−0.5

0.0

0.5

1.0

20
14

−
11

−
27

20
15

−
08

−
28

20
16

−
05

−
28

20
17

−
02

−
26

20
17

−
11

−
27

20
18

−
08

−
28

Start Date
S

im
ila

rit
y

to
 G

ro
un

d
Tr

ut
h

(b) Overlap Values

Figure 6.8: Comparison of both Ground Truths using Jaccard and Overlap. Negative Overlap
values indicate that the official committer list was bigger.

as approximately 75% of our Ground Truth are in both. This again suggests that not all core
developers take part within the project or are falsely on this list.

RQ3-NodeJS: Both of the Ground Truths overlap and have similar elements, although
the official committer list contains more people than our Ground Truth

6.1.2.6 OpenSSL

OpenSSL is another project that has over 1 million lines of code. It is by far the oldest project,
although we are not able to use this data since they were not on GitHub before but rather
used other version control systems. Concerning this our plots will start in 2013 as this was
the time when the first commits were done to GitHub, however the true data starts between
2015 and 2016 as this was the time of the official migration to GitHub. With around 41

commits per author OpenSSL is one of the projects with the highest amount of commits per
author. Starting with the networks compared against our issue-based GT, and then going
over to the official committer list, we will be able to answer all three research questions.

As can be seen in the Cochange Networks (Figure 6.9a, Figure 6.9b, Figure 6.9c), the first
four time windows contain only values of specificity as all other values in one way or the
other depend on a computation of the core developers through the network classification
metrics. As there is little to no data in the commit data during these time windows, the
results show 0% for these values. When taking a look at the precision values for both the
node degree and eigenvector centrality, we can see that they are rising and getting better
over time as they reach up to 75% in the last time window while starting at around 20%.
The recall values on the other hand do not consistently increase over time but are at 100%

52 evaluation

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(a) Node Degree on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h
(b) Eigenvector Centrality on Cochange

Network

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(c) Hierarchy on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(d) Node Degree on Issue Network

0.00

0.25

0.50

0.75

1.00
20

13
−

05
−

13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(e) Eigenvector Centrality on Issue
Network

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(f) Hierarchy on Issue Network

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(g) Node Degree on Cochange Issue
Network

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(h) Eigenvector Centrality on Cochange
Issue Network

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(i) Hierarchy on Cochange Issue
Network

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(j) Node Degree on Mail Network

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(k) Eigenvector Centrality on Mail
Network

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(l) Hierarchy on Mail Network

Figure 6.9: OpenSSL - All undirected networks that are compared to the issue-based Ground Truth. A legend can be
found in Figure 6.7.

6.1 results 53

at three out of four time windows. The other times the values are set at 75% in the node
degree classifications while they are set at slightly over 65% in the eigenvector centrality
classifications. In the hierarchy classification, this looks a lot different as the hierarchy could
not find any core developers in the time window of November 2017. Precision values are
generally at 100%, but once in the first time window the value is set at 50%. Recall values
are in the range of 25% to 65% while on average being around 50%.

On the Issue Networks (Figure 6.9d, Figure 6.9e, Figure 6.9f) a similar picture is seen.
Noteworthy is the fact that there were some issues in 2014, which means that data is found
in this one time window returning a value. But other than a high recall value of 100% all
other values are negligible. On the node degree and eigenvector centrality classifications
there is a rise of the precision values which ends in the last time window. In both plots
these values are not higher than 50%. The recall values are consistently at 100% with one
exception being at 90%. In the hierarchy, this is flipped as the precision values are mostly at
100%, while the recall values start at 100% and end with 25%.

Another important note is that for this project there was a mailing list, which leads us to
have mailing data. When analyzing them we can however see that the mailing list was
pretty much discontinued in 2018 as there is little to no data from that date on. Additionally,
we can see a steady decline in all values from recall to specificity except for precision. We
can therefore continue to analyze as if the mailing list data did not exist.

The analysis for the Cochange Issue Networks (Figure 6.9g, Figure 6.9h, Figure 6.9i) is the
same as with the Issue Networks as the data is again dominated by the issues.

RQ1-OpenSSL: Node Degree on Cochange Networks performs best

As there is an official committer list against which the networks (Figure A.16) can be
compared, we now have data for all time windows except for the first one. The node degree
and eigenvector centrality classifications are very similar as they both follow the same curve.
The precision values for both increase to over 50% in the last time window and the recall
values are all between 25% and 50%. This leads to the F1 score being 25% to 50%. This is
not reflected in the hierarchy classifications as precision has values rising to 100% while
recall is never rising above 15%.

When looking at the Issue Networks (Figure A.16d, Figure A.16e, Figure A.16f), we can see
similar precision values on both the node degree and eigenvector centrality classifications
while the recall values are considerably higher especially in the right half of the graph. Here
the values rise nearly linearly up to 65%. In the hierarchy classifications this trend of rising
recall values is similar to the one in the Cochange Networks as the values are never more
than 5% from each other. The precision values however are way higher with values of 65%
and two times even 100%.

When looking at the combination of Cochange Networks and Issue Networks there are
some little changes. This especially takes place in the earlier time windows, where values
get better compared to the Issue Network and start to look like the Cochange Network. This
happens because as mentioned before, there is not much GitHub issue data to be analyzed
while there is some commit data. This leads to the commit data dominating the GitHub issue
data in the earlier time windows while the GitHub issue data wins back its dominating

54 evaluation

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(a) Jaccard Values

−1.0

−0.5

0.0

0.5

1.0

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h
(b) Overlap Values

Figure 6.10: Comparison of both Ground Truths using Jaccard and Overlap. Negative
Overlap values indicate that the official committer list was bigger.

size in the later stages. The data therefore looks more like the Cochange Networks in the
beginning and the Issue Networks in the end.

RQ2-OpenSSL: Node Degree and Eigenvector Centrality on Cochange Issue Networks
perform best

When comparing the official committer list against our issue-based Ground Truth, the
Jaccard values are rising up to approximately 40%. Adding to this is that the Overlap values
are rising nearly up to 80%. This means that basically 80% of our GT is also contained within
the official committer list.

RQ3-OpenSSL: Both of the Ground Truths overlap and have similar elements, contains
more people than our Ground Truth

6.1.2.7 ownCloud

ownCloud is the second biggest Open-Source Software project we take a look at with its 1.9
Million lines of code. It is also the project with the most commits per author 72. This points
to a very low turnover within the project and coincides with the fact that there is a company
behind ownCloud which releases updates regularly. Even though Nextcloud and ownCloud
are both working on the same base code from 2016, ownCloud has nearly 70% more lines of
code in its repository than Nextcloud. This happened just recently as an update was pushed
to the master branch adding more than 800.000 lines of code. An official committer list was
not found and RQ2 and RQ3 can therefore not be answered or considered for this project.

6.1 results 55

0.00

0.25

0.50

0.75

1.00
20

12
−

08
−

25

20
13

−
05

−
26

20
14

−
02

−
24

20
14

−
11

−
25

20
15

−
08

−
26

20
16

−
05

−
26

20
17

−
02

−
24

20
17

−
11

−
25

20
18

−
08

−
26

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(a) Node Degree on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
12

−
08

−
25

20
13

−
05

−
26

20
14

−
02

−
24

20
14

−
11

−
25

20
15

−
08

−
26

20
16

−
05

−
26

20
17

−
02

−
24

20
17

−
11

−
25

20
18

−
08

−
26

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(b) Eigenvector Centrality on Cochange
Network

0.00

0.25

0.50

0.75

1.00

20
12

−
08

−
25

20
13

−
05

−
26

20
14

−
02

−
24

20
14

−
11

−
25

20
15

−
08

−
26

20
16

−
05

−
26

20
17

−
02

−
24

20
17

−
11

−
25

20
18

−
08

−
26

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(c) Hierarchy on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
12

−
08

−
25

20
13

−
05

−
26

20
14

−
02

−
24

20
14

−
11

−
25

20
15

−
08

−
26

20
16

−
05

−
26

20
17

−
02

−
24

20
17

−
11

−
25

20
18

−
08

−
26

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(d) Node Degree on Issue Network

0.00

0.25

0.50

0.75

1.00

20
12

−
08

−
25

20
13

−
05

−
26

20
14

−
02

−
24

20
14

−
11

−
25

20
15

−
08

−
26

20
16

−
05

−
26

20
17

−
02

−
24

20
17

−
11

−
25

20
18

−
08

−
26

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(e) Eigenvector Centrality on Issue
Network

0.00

0.25

0.50

0.75

1.00

20
12

−
08

−
25

20
13

−
05

−
26

20
14

−
02

−
24

20
14

−
11

−
25

20
15

−
08

−
26

20
16

−
05

−
26

20
17

−
02

−
24

20
17

−
11

−
25

20
18

−
08

−
26

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(f) Hierarchy on Issue Network

0.00

0.25

0.50

0.75

1.00

20
12

−
08

−
25

20
13

−
05

−
26

20
14

−
02

−
24

20
14

−
11

−
25

20
15

−
08

−
26

20
16

−
05

−
26

20
17

−
02

−
24

20
17

−
11

−
25

20
18

−
08

−
26

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(g) Node Degree on Cochange Issue
Network

0.00

0.25

0.50

0.75

1.00

20
12

−
08

−
25

20
13

−
05

−
26

20
14

−
02

−
24

20
14

−
11

−
25

20
15

−
08

−
26

20
16

−
05

−
26

20
17

−
02

−
24

20
17

−
11

−
25

20
18

−
08

−
26

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(h) Eigenvector Centrality on Cochange
Issue Network

0.00

0.25

0.50

0.75

1.00

20
12

−
08

−
25

20
13

−
05

−
26

20
14

−
02

−
24

20
14

−
11

−
25

20
15

−
08

−
26

20
16

−
05

−
26

20
17

−
02

−
24

20
17

−
11

−
25

20
18

−
08

−
26

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(i) Hierarchy on Cochange Issue
Network

0.00

0.25

0.50

0.75

1.00

20
12

−
08

−
25

20
13

−
05

−
26

20
14

−
02

−
24

20
14

−
11

−
25

20
15

−
08

−
26

20
16

−
05

−
26

20
17

−
02

−
24

20
17

−
11

−
25

20
18

−
08

−
26

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(j) Node Degree on Mail Network

0.00

0.25

0.50

0.75

1.00

20
12

−
08

−
25

20
13

−
05

−
26

20
14

−
02

−
24

20
14

−
11

−
25

20
15

−
08

−
26

20
16

−
05

−
26

20
17

−
02

−
24

20
17

−
11

−
25

20
18

−
08

−
26

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(k) Eigenvector Centrality on Mail
Network

0.00

0.25

0.50

0.75

1.00

20
12

−
08

−
25

20
13

−
05

−
26

20
14

−
02

−
24

20
14

−
11

−
25

20
15

−
08

−
26

20
16

−
05

−
26

20
17

−
02

−
24

20
17

−
11

−
25

20
18

−
08

−
26

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(l) Eigenvector Centrality on Mail
Network

Figure 6.11: ownCloud - All undirected networks that are compared to the issue-based Ground Truth. A legend can be
found in Figure 6.7.

56 evaluation

When we look at the Cochange Networks (Figure 6.11a, Figure 6.11b, Figure 6.11c), it is
immediately obvious that hierarchy once again does not perform as well as the other two
network classification metrics. The hierarchy classifications have a precision and specificity
of consistently 100%, however the recall values are in comparison rather low as they never
pass 25%. The F1 scores are low as well respectively. Both the node degree and eigenvector
centrality classifications look very similar. For both, the precision and specificity values are
nearly at or exactly at 100% while the recall values are on average 50% leading to an F1

score of 75%. No static increase or decrease can be seen as the values are all relatively stable.

In the Issue Networks (Figure 6.11d, Figure 6.11e, Figure 6.11f) this is slightly different.
The specificity values are standing at 100% while the precision values are only between
75% and 90%. The recall values however are higher as they are 100% in the beginning but
losing some value until the end where they are only at close to 50%. Important to note is
the very visible drop in precision values in 2016 as this was the time when the hard fork
of Nextcloud was done and in its wake many developers that worked long and hard on
ownCloud left the project to work on Nextcloud. This is however only visible in the Issue
Networks. This suggests that suddenly the False Positives went up. This means that the
network classification metrics identify this person as relevant. This probably comes from the
fact that at the beginning of this time window the core developers still worked at ownCloud
and triggered events which we use to identify them for our Ground Truth. However as they
left, other developers that were formerly overshadowed by the work the core developers did
on GitHub rose up and were now identified from the network classification metric therefore
leading to many FP. This drop is however not seen in the hierarchy classifications as these
are very static in all values and very similar to the same plots on Cochange Networks.

When looking at Cochange Issue Networks (Figure 6.11g, Figure 6.11h, Figure 6.11i), as seen
before the Issue Networks dominate the Cochange Networks. However the combination
of both still does slightly better on some values especially precision wise than the Issue
Networks as the Cochange Networks find some core developers that were not found otherwise.

Another important note is that for this project there was a mailing list, which leads us to
have mailing list data. When analyzing them we can however see that the mailing list was
pretty much discontinued in 2017 as there is little to no data from that date on. Additionally,
we can see a steady decline in all values from precision and recall to specificity.

We can therefore answer RQ1-ownCloud as if the mailing list data did not exist.

RQ1-ownCloud: Node Degree and Eigenvector Centrality on Cochange Issue Networks
perform best

As mentioned before RQ2 and RQ3 can not be answered as no committer list was found for
the project.

6.2 discussion

After presenting and analyzing the results of our study in the previous section, we now
discuss the three research questions in the scope of all projects and their conjunction.

6.2 discussion 57

6.2.1 RQ 1

First in Table 6.1, we remind ourselves of the analysis and the answers to our first research
question:

RQ 1: Which of the network metrics classify core developers correctly when compared
with our Ground Truth?

Table 6.1: The answers to Research Question 1 for each individual project.

Projects Answer to Research Question 1

Angular Eigenvector Centrality on Cochange Issue Networks performs
best.

Data Transfer Project Node Degree and Eigenvector Centrality on Cochange Issue
Networks perform best.

Keras Hierarchy on Cochange Issue Networks performs best.

Nextcloud Node Degree and Eigenvector Centrality on Cochange Net-
works perform best.

NodeJS Eigenvector Centrality on Cochange Issue Networks performs
best.

OpenSSL Node Degree on Cochange Networks performs best.

ownCloud Node Degree and Eigenvector Centrality on Cochange Issue
Networks perform best.

What strikes most for all the different networks is that node degree and eigenvector centrality
are the network classification metrics that most often perform best. Node degree performed
best four times while the eigenvector centrality performed best five times. Hierarchy was
only ever mentioned once. We can also see that in six out of seven cases the Cochange Issue
Network had the highest values, while in the last case the Cochange Network performed
best.

The node degree classification metric, the second-best method and only being slightly
worse than the eigenvector centrality classification metric shows us that it catches a lot of
actual core developers as it not only has high precision but also high recall values. It is also
interesting to note that node degree does perform slightly better when having a directed
network. This suggests that the fact that the network is undirected plays an important role.
The reason for this is that when we have an undirected network, any author that created for
example an issue will have at least one connection to any user that works on this issue and
additionally so does every other person that worked on it. This means that the difference
between a core developer and someone just leaving a comment may only be one or two edges.
However this seems to be mitigated often as the core developers are working on many issues
at the same time which means they are still in the top 20% of activity. When looking at
the directed network this means that temporal order is respected and that any person that
comments gets an edge to the developers that already worked on it. The reverse is not true.
Our node degree values are so good on this network because the core developers are the ones

58 evaluation

that write the most comments on most issues because they discuss ideas and views on the
project with anyone. This leads to a clearer picture of who is a core developer and who is not.

The eigenvector centrality metric is our best network classification metric even if only
by a small margin. This shows that it can find some more core developers as its network
analysis is working on the context and the immediate neighbors and the influence these
nodes have in the network. These better values are likely to be due to the fact that only
when one node is in contact with many other nodes that are also active, i. e., through
discussion with other developers, does this node also get a higher value. This also means
that many ambiguities, on which developers are actually important, can be smoothed out
by computing the eigenvector centrality. For the directed networks it is not easily decided
which of the two networks is better for eigenvector centrality, however we can see that
there is a difference between both, as we, on the one hand, compute the centrality for the
undirected network taking more edges and nodes into account while, on the other hand,
only using the out-going edges of a node. This last metric variation of the eigenvector
centrality classification metric, i. e., taking only the out-going edges for the computation,
can also be called an importance measure (indicating how many connections there are to
others).

The hierarchy measure however does not fair too well in most scenarios. It is only better
than the other two on Keras. For us, Keras is a special case as it is the most active out
of all projects we analyzed. This means that while normally there are about 50 to 200

people working and commenting on one project in the timeline of 9 months, in Keras this is
regularly multiplied by 10 or more, as we have more than 2000 users that used the issues or
pull requests on GitHub. This is highly unusual considering the other projects, probably
even any other OSS project. This also explains the bad values of both node degree and
eigenvector centrality. On all projects, our Ground Truth finds between 0 and 50 people for
each time window. This is a value that is sensible for the number of core developers on an OSS

project. As the network classification metrics then identify a similar number of developers
as core developers, we get high values for both precision and recall. For Keras this is different
as our network classification metrics identify up to 600 developers as core developers when
using node degree and eigenvector centrality. But it only finds four core developers using the
hierarchy classification. As the issue-based Ground Truth also only includes four people, it
is obvious that precision can not have good values, the disparity between the two is simply
too big.

Concerning which networks actually produce meaningful results, we find that the combina-
tion of both the Cochange Network and the Issue Network works best, as we can analyze
both the data from GitHub issue data as well as all commits and code artifacts. As mentioned
previously, the Issue Network most of the time dominates the creation of the Cochange
Issue Network as it provides the most information and resources. The Cochange Network
adds very different information and hence adds some name to the list of the core developers
which were not on it earlier.

Additionally to finding the best network metric, both the node degree and eigenvector
centrality classification metrics provide further information on big changes in the developer
team.

6.2 discussion 59

An example of this is the clear bump in ownCloud when many core developers left the team
to work on Nextcloud. From this, we can see that those people were very important, but
that the remaining developers in ownCloud could mitigate the sudden changes and keep
the project and the developers working.

In conclusion, we can see that both the node degree and the eigenvector centrality
classification metric are performing well, while the latter is slightly better. A drawback
is that the classification for unusually highly active projects finds way too many core
developers in comparison to the real ones.

6.2.2 RQ 2

In Table 6.2, we remind ourselves of the research questions and its answers.

RQ 2: Which of the network metrics classify core developers correctly when compared to
an official core developer list?

Table 6.2: The answers to Research Question 2 for each individual project.

Projects Answer to Research Question 2

Angular Eigenvector Centrality on Cochange Issue Networks performs
best.

Data Transfer Project No official committer list was found.

Keras Hierarchy on Cochange Issue Networks performs best.

Nextcloud No official committer list was found.

NodeJS Eigenvector Centrality on Cochange Issue Networks performs
best.

OpenSSL Node Degree and Eigenvector Centrality on Cochange Issue
Networks perform best.

ownCloud No official committer list was found.

As we were unable to find official committer lists for each project, we discuss only the
projects that actually had official committer lists.

Out of the networks compared with the official committer lists three of them suggest
the eigenvector centrality metric, while one suggests the node degree metric and one the
hierarchy.

The node degree metric can only perform best once in four projects, suggesting that it is not
really strong with the official committer lists. Additionally, the node degree classification
metric is at the same time only as good as eigenvector centrality classification metric.

The eigenvector centrality classification metric displays relatively high values for three out
of the four projects suggesting that the found core developers are actually mostly correct,
which coincides with our findings in RQ 1. We are also able to see the typical rise to the
end with the official committer list as the Ground Truth, since the official committer list

60 evaluation

is always a snapshot of the most recent developer activity. The official committer list is
therefore more precise on the more current time windows. But since these values never start
at 0% but at some value higher, we can infer that the developers that are now in the official
committer list are actually some of the developers that were involved with the project from
the beginning. This suggests that the turnover in these OSS projects is not that high at least
not within the group of core developers.

Keras is once again a special case as the best metric is hierarchy. The same argumentation
as before counts here as well since the core developer list stays the same and only the Ground
Truth against which we compare the values changes.

For the official committer list it also once again counts that the Cochange Issue Networks
are the best as they provide more data and therefore more differentiation than when using
only Cochange Networks or Issue Networks.

Furthermore, as we have seen earlier, we can find major disruptions within the developer
community using our issue-based Ground Truth. This is not possible with the official
committer list, as this mostly concerns the current core developers and we are not able to see
these leaving core developers anymore.

Last but not least, we can conclude that our GT outperforms the GT based on the official
committer list. This can be seen throughout nearly all plots, as the values with our GT were
comparably higher. Additionally, our issue-based GT is built dynamically meaning that we
do not have a disparity between the earlier and the later time windows as can be seen in
many official committer list plots.

In conclusion, we can see that the eigenvector centrality metric is performing best and that
the precision and recall values behave as expected. A drawback is that the classification
for unusually highly active projects finds way too many core developers in comparison to
the real ones. We further conclude that our GT outperforms the official committer list on
many occasions.

6.2.3 RQ 3

The last research question concerned itself with whether the official committer list and our
Ground Truth were comparable. All the answers can be found in Table 6.3.

RQ 3: Is our Ground Truth comparable to the official core developer lists?

Overall, we can say that both of them were comparable. However they were never the same
nor had they similar sizes. Our issue-based Ground Truth was in most cases smaller and we
could therefore not get a good comparison other than the Overlap between the two. This
Overlap was in most cases rather high, meaning that the official committer list included our
Ground Truth.

The disparity between our Ground Truth and the official committer list can be explained
through the difference between maintainers and core developers as well as the time win-
dows. To be eligible for our Ground Truth a developer needs to have triggered at least
one event from the list of elite privileges 3.1. These events are however rare in compari-

6.3 threats to validity 61

Table 6.3: The answers to Research Question 3 for each individual project.

Projects Answer to Research Question 2

Angular Both of the Ground Truths overlap and have similar elements,
although the official committer list contains more people than
our Ground Truth.

Data Transfer Project No official committer list was found.

Keras Can not be compared, due to the official committer list being a
project leader list.

Nextcloud No official committer list was found.

NodeJS Both of the Ground Truths overlap and have similar elements,
although the official committer list contains more people than
our Ground Truth.

OpenSSL Both of the Ground Truths overlap and have similar elements,
although the official committer list contains more people than
our Ground Truth.

ownCloud No official committer list was found.

son to many other events and only triggered rarely. This means that certain issue events
are maybe triggered once a year. Additionally to this rarity, there are also maintainers
that are responsible for not only answering questions but also for reviewing and subse-
quently merging the pull requests. On the other hand, some core developers may never
trigger such an event as they are not responsible for merging branches. Further dis-
parity between our Ground Truth and the official committer list is due to the fact that
our Ground Truth is dynamic and changes with time while the official committer list
is a list of developers that is slowly created and not changed every other month. This
results in a better performance of our GT in nearly all network classification metrics.
In conclusion, we can see that our Ground Truth finds less people than there are in
the official committer lists. However, as our Ground Truth still outperforms the official
committer lists, we conclude that the official committer lists consists of many developers
that should not be considered as a core developer.

6.3 threats to validity

After discussing all the results and the implications, we now present the threats to the
validity of our study differentiated into internal and external threats.

Internal Validity

The first threat to validity is the validity of the data that we used to build our Ground Truth
and the networks. For this data, there are many pitfalls as the same user can use different
accounts or similar problems. codeface mitigates this by using a heuristic from Oliva et al.

62 evaluation

[21]. This heuristic is used to disambiguate e-mail addresses by grouping e-mails that are, for
example, sent from users with the same names. This however also implies that if two users
have the same name that they are handled as the same person in our data. Furthermore,
there is also no possibility to group the same user for writing their name differently. Two
examples for this are "Thomas Mueller" and "Thomas Müller" or "Dr. Matthias St. Pierre"
and "Matthias St. Pierre". Both of these are the same person however they are not found
to be the same person. To mitigate all this, we not only used the automatic approach to
disambiguate users, but also went through the data manually to catch as many of these
cases as possible.

Additionally, many GitHub projects, especially if they have risen to a certain size, use bots
to do miscellaneous tasks for them, this includes automatic replies to issues as well as
committing and pushing commits when they are thoroughly tested and approved. Thus,
these bots would be considered to be core developers when running our Ground Truth and
the network metrics. But since we are only interested in human core developers, we should
not have them in our data. We therefore delete all issue events that were triggered by bots
before we take any further looks at the data. The bots in the commits however are not
removed as they normally only make up a small part of all commits but would delete a lot
of data and respective edges to real core developers when removed. To catch these robots we
analyzed the GitHub repositories by hand and removed all of the ones we could find. Any
bot that slipped through should have no big impact as it would be rarely used.

Last but not least, there is also the case that any GitHub user that deleted their account is
no longer in their database and can therefore not be found on issues and commits alike. To
circumvent a breakdown of the system, GitHub declares these users with the name "Deleted
User" and an automatically generated e-mail address. This means that all users who are
denoted as a deleted user would then be condensed into one user. Depending on the work
done by the individual users, this deleted user could very well become a core developer. We
therefore also delete this user wherever possible to circumvent them skewing the data.

Another threat to validity is the question of which issue events are considered to be in
which of the three lists (Figure 3.1) and therefore relevant to our data. As there are nearly
50 events with an uninformative description of what they are doing and no information
on which event can be triggered by whom, we tried to incorporate only the ones that were
clear to be only usable by users with write permission or higher. But we can not guarantee
that we did not misplace some.

Additionally, only using issue events to compute the Ground Truth is also a threat as this is
only part of the way that the developers within a project work with each other. There could
be core developers that simply worked in the background and only ever committed but did
not discuss with anybody. However, on the other hand, we could find people whose only
job it was to maintain the project while not working on it themselves. These people would
therefore show up in our Ground Truth, but for example never in the Cochange Network.
Another threat to validity is the core threshold and the 80/20 principle. This principle is
widely known and researched, however there is also the question of whether it applies
in our case as well. Our data suggests it does. It might be the case that there might be a
number that is better but it is highly likely looking at the good values that we have that this

6.3 threats to validity 63

better number is in the vicinity of the 80/20 principle.
Furthermore, the number of months we use for each time window is 9 months instead of
the suggested 3 or 6 months [16]. This value is used because to smooth out some dynamics
in the data and to collect relevant information, we need more time than 3 months and
sometimes even 6 months. This value is currently researched at the Chair of Software
Engineering and was therefore picked as the time window’s length.
Moreover, as our network classification metrics suggest that mailing list data does not
yield observable results when in combination with the other data sources, we lose out on
potential information that could be relevant. On the other hand, most mailing lists are either
discontinued or sparingly used once the project migrates to GitHub as can be seen with
OpenSSL. The data lost is thus negligible.

External Validity

Besides the aformentioned points, it is likely that some communication and coordination is
conducted via private means, meaning via a messenger or e-mail, for example. This data
can of course not be analyzed and is hence not part of our study.
Aside from these, these findings can not be generalized without further work as only seven
OSS projects were taken into account for this study.
Due to time limitations, we were not able to go into detail on the directed networks or pick
more projects to make the results generally valid.

7
R E L AT E D W O R K

In this chapter, we will explain which work was already done on this or similar topics.

Some work has been done on the topic of analyzing socio-technical networks of OSS projects.
Meneely et al. [17] used socio-technical networks based on file artifacts and commit data
of a commercial product to predict failures in source code. For this they involve the churn
information of revision control repositories to create the networks as well as the reported
failures in the files. They found that using these networks they could accurately predict
failures in files.
This was succeeded by Bird et al. [4] who evolved this concept of using socio-technical
networks for failure prediction. They combined both contribution and dependency networks
to get more information and make the prediction of the network more accurate. The
contribution network is a network which denotes which developer has worked on which
code artifact. The dependency network on the other hand concerns itself with dependencies
between files and functions. Taking them together, the authors are able to show that their
network identifies files that are likely to be error-prone and that the combination of the
contribution and dependency network works better than either does alone.
Both of these papers concern themselves mainly with predicting failures of files and code
artifacts, however the way in which they did so is very interesting as they use socio-technical
networks to find them.

Furthermore Bird [3] is concerned with the way that "software affects and is affected"
by relationships between developers in OSS projects. Using mailing lists and source code
repositories, he analyzed multiple OSS projects. He observed that core developers have high
importance in the networks and that there is "a strong relationship between development
behavior and the level of importance that participants have in the social network." Our
goal is similar in nature, however we want to run the data not only on mailing lists and
commit data but rather a combination of them as well as issues from GitHub. Additionally,
we explore this project the other way round as instead of having the identification of core
developers as our main goal, we want to find out which metrics can actually be used in
applications to find core developers and in retrospect peripheral developers.

Other researchers such as Xu et al. [26] use a more diverse classification identifying four
groups of developers. As they are concerned with analyzing a group of projects in one big
network using connections between developers when they work on the same project, this
approach is not sensible for us. In our opinion this loses too much information especially on
the social network as developers working on one project may never work together or talk
to each other and should thus not get a connection. Hence we opted for a combination of
commits, issues, and when possible mails to get a more fine-grained analysis for individual
projects.

65

66 related work

In their paper on developer coordination using networks, [13] examine how developer
coordination changes over time in OSS projects using a network-analytical approach. Based
on their empirical study using 18 OSS projects, they found that larger projects become
scale-free and that developers are hierarchically structured at the beginning of a project,
while transitioning to a hybrid in later stages. According to their study, core developers
are structured in a hierarchical way. Peripheral developers on the other hand exist outside
this hierarchy and are not organized as such. In our study, we use the network approach
and the data collection of this paper, to obtain insights into the hierarchy between the core
developers and to evaluate their usefulness.

In another paper, Joblin et al. [12] use similar principles as already mentioned, however, they
are now focused on the classification of developer roles and how these rules are important
for the "project’s collaborative dynamics". They argue that the current standard of developer
classification by using count-based metrics expedient and that network-based developer
classification metrics should be used. In their study they find, that network-based developer
classification metrics are indeed more successful in correctly classifying core developers.
Our approach uses these findings and extends them by introducing further socio-technical
connections via issues and pull requests. Additionally, we analyze only these network
classification metric and evaluate which network classification metric classifies the code
developers most accurately.

8
C O N C L U D I N G R E M A R K S

In this final chapter, we conclude the findings of our study. Afterward, we mention the
possible usage of it as well as the applicability for other studies.

8.1 conclusion

This study aims to discern a network-based classification metric that correctly identifies
developer roles in Open-Source Software projects. We build a Ground Truth based on issues
and pull requests from GitHub by separating all issue events into categories that align with
the official GitHub permissions. The networks for seven projects are built and analyzed
using the R library Coronet. The results of the classification metrics of every network are
compared against the issue-based Ground Truth. Based on this empirical comparison, we
discussed different findings and facets of the classification and network relation.

First, we inspect which of the classification metrics used by Coronet has the highest
precision and recall values and therefore the highest F1 score. The answer to this is for
five out of seven projects the eigenvector centrality classification. It is followed by the
node degree classification with a count of four. Hierarchy classification performs only once
the best. For some projects we can make no definite statement which of node degree or
eigenvector centrality is the better classification metric. The project in which hierarchy
is the best classification metric is an outlier as the number of people that took part in
the issues on GitHub are orders of magnitude bigger than in the other projects (~3000

compared to 200). Additionally, we identify that using the Cochange Issue Network for the
network classification metrics leads to the best results as the most information is present.
We conclude that there is no one clear answer to this research question, but that node degree
and eigenvector centrality are generally better than hierarchy.

Second, we investigate if we get similar results when official committer lists that are provided
by the project leads are compared against the results of the network classification metrics.
For four of the projects an official committer list is found. The results are very distinct as
three out of four times the eigenvector centrality classification scores the best. Both the
node degree and hierarchy classifications perform the best once. Furthermore, we see that
again the Cochange Issue Network is the best network to use the classification metrics on
as it performs the best four out of four times. We conclude that the eigenvector centrality
classification performs best.

Last but not least, we compare our Ground Truth to the official committer list to discover
if we are finding the correct people with our computation. The results suggest that our
Ground Truth finds the right people while not finding as many as are contained within

67

68 concluding remarks

the official committer list. We therefore conclude that the official committer list not only
contains the core developers but also the developer group maintainer.

8.2 future work

Our work can be used as a baseline for further research as it proposes an automatic compu-
tation of a Ground Truth for the evaluation of socio-technical networks. One improvement to
our technique can be the expansion of this Ground Truth creation to other data like mail and
commits. For the commit data this could for example be the importance of a code artifact
which is called very often under runtime and therefore crucial for the correct procedure of
the software. This would catch more core developers that are not as active on GitHub and
do not use the elite privileges that they have.

Additionally, to generalize the statements from this study, many more projects with differing
sizes and different ages need to be analyzed to find a classification metric that we are
confident of. Furthermore, as directed networks have similar results to the undirected ones,
they should also be taken into account for the general statement.

Moreover, other centrality metrics like Katz Centrality [20, pp. 173–175], Closeness Central-
ity [20, pp. 183–186] and Betweenness Centrality [20, pp. 187–193] can also be implemented, as
they might have slightly different results than the currently implemented ones. In addition,
the results of the classification metrics could also be taken in conjunction and looked at
together using the union of the sets. This will lead to a higher number of core developers,
giving them the advantage that these developers are computed using different centrality
metrics and have therefore slightly different requirements for a core developer. We plan to
further refine the classification of developers so that we can accurately predict the actual
core developers.

A
A P P E N D I X

a.1 issue event types

All issue event types of GitHub are explained in detail in this section.
All issue events that are considered to be in the collaborative privileges group are succeeded
by the sentence "This event is considered slightly useful." in the appendix.
All issue events that are considered to be in the elite privileges group are succeeded by the
sentence "This event is considered useful." in the appendix.
All issue events that are considered to be in the common privileges group are succeeded by
the sentence "This event is discarded." in the appendix.

added_to_project

The event added_to_project is triggered when an issue or a pull request is added to a project
board and the project board was enabled by the administrators for this project [36]. To
interact with a project board the user needs to have write permission which can only be
granted by an administrator. This implies that the author of the event is trusted by the
administrators and they play a somewhat crucial role in the project [85].
This event is considered useful.

assigned

The event assigned is used when somebody assigns an issue to someone [37]. To assign
someone to an issue the author of this event needs to have the permission of at least
triage [86]. This highly suggests that the author is a maintainer or core developer with the
task of working on the issues.
This event is considered slightly useful.

automatic_base_change_failed

The event automatic_base_change_failed is triggered by GitHub itself and does not come into
play for us [38].
This event is discarded.

69

70 appendix

automatic_base_change_succeeded

The event automatic_base_change_succeeded is triggered by GitHub itself and does not come
into play for us [39].
This event is discarded.

base_ref_changed

The event base_ref_changed is triggered when the base reference branch of a pull request is
changed [40]. Anybody can open a pull request and hence anybody can change the base
branch [34]. Even though on public repositories it is not possible for someone below write
permission to create a pull request, the developer can still fork the project, create a pull
request and then send it to the main repository.
This event is discarded.

closed

The event closed is triggered when an issue or a pull request is closed [41]. Anybody can
open issues on the project and anybody can close issues that they opened themselves [86].
This event is discarded.

comment_deleted

The event comment_deleted is triggered when a comment is deleted by a user. Anybody can
write a comment and delete their own comments [86].
This event is discarded.

commented

The issue event commented is triggered when a comment is created on an issue or a pull
request [42]. Anybody can write a comment on an issue or a pull request.
This event is discarded.

committed

The issue event committed is triggered when a commit is added to a pull requests HEAD
branch [43]. Anybody can create a pull request and commit to it.
This event is discarded.

connected

The event connected is triggered when an issue or a pull request was connected to an
issue [44]. Anybody can create an issue and connect this issue to another issue by linking it
with a keyword that can be written into the description [44]. Since anybody can edit their

A.1 issue event types 71

own issues description, anybody can link an issue to another issue [86].
This event is discarded.

convert_to_draft

The pull request event convert_to_draft is triggered when a user changes the pull request
into a draft to make it not committable [45]. The sources disagree on who is eligible to
doing this. The "Repository Permissions" source [86] states that this is only available for
people with write permission or higher while the link that is included as the source for this
statement states that anybody who authored a pull request can do this to their own pull
requests [33]. We will assume that [33] is correct.
This event is discarded.

converted_note_to_issue

The issue event converted_note_to_issue is triggered when a user converts a note that was
added to a project board to an issue [31, 46]. Only people that are either a member of the
organization or are invited to work on the project board can create and convert notes [84].
We assume that anybody who is invited is considered to be a core developer or more.
This event is considered useful.

created

The event created is triggered when a branch, issue or pull request is created or opened.
Anybody can create new issues for a project [86].
This event is discarded.

cross_referenced

The event cross_referenced is triggered when an issue or a pull request is referenced from
another issue or pull request. Anybody can create issues and refer to other issues [47].
This event is discarded.

demilestoned

The event demilestoned is triggered when an issue or a pull request are removed from a
milestone [48]. Only people that have at least triage permissions on the project can apply
milestones [86].
This event is considered slightly useful.

72 appendix

deployed

The event deployed is triggered when a branch was sent out for deployment [49]. Only
Administrators are able to deploy branches [86].
This event is considered useful.

deployment_environment_changed

The event deployment_environment_changed is triggered when the deployment environment
of a pull request is changed [50]. Only administrators are able to change the deployment
environment [86].
This event is considered useful.

disconnected

The event disconnected is triggered when the linking of two issues or pull requests is
removed [51]. Anybody can create issues and connect this issue to another issue by linking it
with a keyword that can be written into the description. Since the editing of the description
of an issue is open to the author of the issue, the author can also remove the linking and
disconnect the two issues [86].
This event is discarded.

head_ref_deleted

The event head_ref_deleted is triggered when the HEAD branch of the pull request is
deleted [52]. Anybody can open a pull request and hence anybody can change the head
branch [34].
This event is discarded.

head_ref_restored

The event head_ref_restored is triggered when the HEAD branch of the pull request is restored
to the last known commit [53]. Anybody can open a pull request and hence anybody can
change the head branch [34].
This event is discarded.

labeled

The event labeled is triggered when a label is added to an issue or a pull request [54]. Only
people with triage permissions or higher are able to apply labels [86].
This event is considered slightly useful.

A.1 issue event types 73

locked

The event locked is triggered when an issue or a pull request is locked [55]. Conversations
can only be locked by users with write permissions or higher [81, 86].
This event is considered useful.

mentioned

The event mentioned is triggered when a user is mentioned via @mentioned in an issue or
pull request body [57]. Anybody can create issues and mention people in the comments of
said issue [86].
This event is discarded.

marked_as_duplicate

The event marked_as_duplicate is triggered when a user with triage permission or higher
marks an issue as a duplicate of another issue or a pull request as a duplicate of another
pull request [56, 86].
This event is considered slightly useful.

merged

The event merged is triggered when a pull request is successfully merged [58]. Anybody
with push permissions (write permissions) can complete the merge [82].
This event is useful.

milestoned

The event milestoned is triggered when an issue or a pull request is added to a milestone [59].
Only people that have at least triage permissions on the project can apply milestones [86].
This event is considered slightly useful.

moved_columns_in_project

The event moved_columns_in_project is triggered when an issue or a pull request was moved
from one column to another [60]. This is only possible if project boards are enabled are by
the administrators. To interact with a project board the user needs to have write permission
which can only be granted by an administrator. This implies that the author of the event is
trusted by the administrators and there plays a somewhat crucial role in the project [85].
This event is considered useful.

74 appendix

pinned

The event pinned is triggered when an issue is pinned [61]. Only people that have at least
write permissions on the project can apply milestones and pin issues [83].
This event is considered useful.

ready_for_review

The event ready_for_review is triggered when a pull request is created and is not in draft
mode [62]. Anybody can create pull requests and put them not in draft mode [86].
This event is discarded.

referenced

The event referenced is triggered when an issue is referenced from a commit message [63].
Anybody can create pull requests and commit to them with a reference to an issue [86].
This event is discarded.

referenced_by

The event referenced_by is triggered when somebody references another issue in an issue
comment. Anybody can comment on an issue [86].
This event is discarded.

removed_from_project

The event removed_from_project is triggered when an issue or a pull request is removed from
a project board and the project board was enabled by the administrators for this project [64].
To interact with a project board the user needs to have write permission which can only
be granted by an administrator. This implies that the author of the event is trusted by the
administrators and they play a somewhat crucial role in the project [85].
This event is considered useful.

renamed

The event renamed is triggered when the title of an issue or a pull request is changed [65].
Anybody can create issues and pull requests on a project and change the title when they
are the issue or pull request author [86].
This event is discarded.

A.1 issue event types 75

reopened

The event reopened is triggered when an issue or a pull request is reopened [66]. Anybody
can create an issue, close it and reopen it themselves [86].
This event is discarded.

review_dismissed

The event review_dismissed is triggered when a pull request review is dismissed [67]. To
dismiss a pull request review you need to have at least write permission on the repository [35].
This dismission is not done automatically when a change in the pull request occurs.
This event is considered useful.

review_requested

The event review_requested is triggered when a pull request review is requested [69]. Anybody
can create pull requests but only users with triage permissions or higher are able to request
pull request reviews [86, 87].
This event is considered slightly useful.

review_request_removed

The event review_request_removed is triggered when a pull request review request is re-
moved [68]. Anybody can submit reviews on pull requests but only developers with write
permission or higher can request reviews and remove them again [86].
This event is considered useful.

reviewed

The event reviewed is triggered by GitHub on the pull request when a pull request is
reviewed, discarding whether this was a review that approved, commented or requested
changes [70]. Anybody can submit reviews on pull requests [86].
This event is discarded.

subscribed

The event subscribed is triggered when someone subscribes to receive notifications for an
issue or pull request [71]. Anybody can subscribe to any issue or pull request.
This event is discarded.

transferred

The event transferred is triggered when an issue is transferred to another repository [72].
Only users with write permissions or higher are able to transfer issues to another repository

76 appendix

within the same organization [86, 89].
This event is considered useful.

unassigned

The event unassigned is used when somebody unassigns an issue from someone [73]. To
unassign someone from an issue the author of this event needs to have the permission of at
least triage [86]. This highly suggests that the author is a maintainer or core developer with
the task of working on the issues (as mentioned in Section A.1).
This event is considered slightly useful.

unlabeled

The event labeled is triggered when a label is removed from an issue or a pull request.
Only people with triage permissions or higher are able to apply labels (as mentioned in
Section A.1) [74, 86].
This event is considered slightly useful.

unlocked

The event locked is triggered when an issue or a pull request is unlocked. Conversations can
only be unlocked by users with write permissions or higher (as mentioned in Section A.1) [75,
81, 86].
This event is considered useful.

unmarked_as_duplicate

The event unmarked_as_duplicate is triggered when a user with triage permission or higher
unmarks an issue or a pull request after is was marked as a duplicate beforehand (as
mentioned in Section A.1) [76, 86].
This event is considered slightly useful.

unpinned

The event pinned is triggered when an issue is unpinned [77]. Only people that have at least
write permissions on the project can apply milestones and unpin issues (as mentioned in
Section A.1) [86].
This event is considered useful.

unsubscribed

The event subscribed is triggered when someone unsubscribes from receiving notifications
for an issue or pull request [78]. Anybody can unsubscribe from any issue or pull request

A.1 issue event types 77

they were previously subscribed to (as mentioned in Section A.1).
This event is discarded.

user_blocked

The event user_blocked is triggered when an organization owner blocks a user from the
organization through one of the blocked user’s comments on an issue [32, 79].
This event is considered useful.

78 appendix

0.00

0.25

0.50

0.75

1.00

20
14

−
09

−
18

20
15

−
06

−
19

20
16

−
03

−
19

20
16

−
12

−
18

20
17

−
09

−
18

20
18

−
06

−
19

20
19

−
03

−
20

20
19

−
12

−
19

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(a) Node Degree on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
14

−
09

−
18

20
15

−
06

−
19

20
16

−
03

−
19

20
16

−
12

−
18

20
17

−
09

−
18

20
18

−
06

−
19

20
19

−
03

−
20

20
19

−
12

−
19

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h
(b) Eigenvector Centrality on Cochange

Network

0.00

0.25

0.50

0.75

1.00

20
14

−
09

−
18

20
15

−
06

−
19

20
16

−
03

−
19

20
16

−
12

−
18

20
17

−
09

−
18

20
18

−
06

−
19

20
19

−
03

−
20

20
19

−
12

−
19

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(c) Hierarchy on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
14

−
09

−
18

20
15

−
06

−
19

20
16

−
03

−
19

20
16

−
12

−
18

20
17

−
09

−
18

20
18

−
06

−
19

20
19

−
03

−
20

20
19

−
12

−
19

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(d) Node Degree on Issue Network

0.00

0.25

0.50

0.75

1.00
20

14
−

09
−

18

20
15

−
06

−
19

20
16

−
03

−
19

20
16

−
12

−
18

20
17

−
09

−
18

20
18

−
06

−
19

20
19

−
03

−
20

20
19

−
12

−
19

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(e) Eigenvector Centrality on Issue
Network

0.00

0.25

0.50

0.75

1.00

20
14

−
09

−
18

20
15

−
06

−
19

20
16

−
03

−
19

20
16

−
12

−
18

20
17

−
09

−
18

20
18

−
06

−
19

20
19

−
03

−
20

20
19

−
12

−
19

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(f) Hierarchy on Issue Network

0.00

0.25

0.50

0.75

1.00

20
14

−
09

−
18

20
15

−
06

−
19

20
16

−
03

−
19

20
16

−
12

−
18

20
17

−
09

−
18

20
18

−
06

−
19

20
19

−
03

−
20

20
19

−
12

−
19

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(g) Node Degree on Cochange Issue
Network

0.00

0.25

0.50

0.75

1.00

20
14

−
09

−
18

20
15

−
06

−
19

20
16

−
03

−
19

20
16

−
12

−
18

20
17

−
09

−
18

20
18

−
06

−
19

20
19

−
03

−
20

20
19

−
12

−
19

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(h) Eigenvector Centrality on Cochange
Issue Network

0.00

0.25

0.50

0.75

1.00

20
14

−
09

−
18

20
15

−
06

−
19

20
16

−
03

−
19

20
16

−
12

−
18

20
17

−
09

−
18

20
18

−
06

−
19

20
19

−
03

−
20

20
19

−
12

−
19

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(i) Hierarchy on Cochange Issue
Network

F1

Precision

Recall

Specificity

(j) Legend

Figure A.1: Angular - All directed networks that are compared to the issue-based Ground Truth.

A.1 issue event types 79

0.00

0.25

0.50

0.75

1.00
20

14
−

09
−

18

20
15

−
06

−
19

20
16

−
03

−
19

20
16

−
12

−
18

20
17

−
09

−
18

20
18

−
06

−
19

20
19

−
03

−
20

20
19

−
12

−
19

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(a) Node Degree on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
14

−
09

−
18

20
15

−
06

−
19

20
16

−
03

−
19

20
16

−
12

−
18

20
17

−
09

−
18

20
18

−
06

−
19

20
19

−
03

−
20

20
19

−
12

−
19

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(b) Eigenvector Centrality on Cochange
Network

0.00

0.25

0.50

0.75

1.00

20
14

−
09

−
18

20
15

−
06

−
19

20
16

−
03

−
19

20
16

−
12

−
18

20
17

−
09

−
18

20
18

−
06

−
19

20
19

−
03

−
20

20
19

−
12

−
19

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(c) Hierarchy on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
14

−
09

−
18

20
15

−
06

−
19

20
16

−
03

−
19

20
16

−
12

−
18

20
17

−
09

−
18

20
18

−
06

−
19

20
19

−
03

−
20

20
19

−
12

−
19

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(d) Node Degree on Issue Network

0.00

0.25

0.50

0.75

1.00

20
14

−
09

−
18

20
15

−
06

−
19

20
16

−
03

−
19

20
16

−
12

−
18

20
17

−
09

−
18

20
18

−
06

−
19

20
19

−
03

−
20

20
19

−
12

−
19

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(e) Eigenvector Centrality on Issue
Network

0.00

0.25

0.50

0.75

1.00

20
14

−
09

−
18

20
15

−
06

−
19

20
16

−
03

−
19

20
16

−
12

−
18

20
17

−
09

−
18

20
18

−
06

−
19

20
19

−
03

−
20

20
19

−
12

−
19

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(f) Hierarchy on Issue Network

0.00

0.25

0.50

0.75

1.00

20
14

−
09

−
18

20
15

−
06

−
19

20
16

−
03

−
19

20
16

−
12

−
18

20
17

−
09

−
18

20
18

−
06

−
19

20
19

−
03

−
20

20
19

−
12

−
19

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(g) Node Degree on Cochange Issue
Network

0.00

0.25

0.50

0.75

1.00

20
14

−
09

−
18

20
15

−
06

−
19

20
16

−
03

−
19

20
16

−
12

−
18

20
17

−
09

−
18

20
18

−
06

−
19

20
19

−
03

−
20

20
19

−
12

−
19

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(h) Eigenvector Centrality on Cochange
Issue Network

0.00

0.25

0.50

0.75

1.00

20
14

−
09

−
18

20
15

−
06

−
19

20
16

−
03

−
19

20
16

−
12

−
18

20
17

−
09

−
18

20
18

−
06

−
19

20
19

−
03

−
20

20
19

−
12

−
19

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(i) Hierarchy on Cochange Issue
Network

F1

Precision

Recall

Specificity

(j) Legend

Figure A.2: Angular - All directed networks that are compared to the issue-based Ground Truth.

80 appendix

0.00

0.25

0.50

0.75

1.00

20
14

−
09

−
18

20
15

−
06

−
19

20
16

−
03

−
19

20
16

−
12

−
18

20
17

−
09

−
18

20
18

−
06

−
19

20
19

−
03

−
20

20
19

−
12

−
19

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(a) Node Degree on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
14

−
09

−
18

20
15

−
06

−
19

20
16

−
03

−
19

20
16

−
12

−
18

20
17

−
09

−
18

20
18

−
06

−
19

20
19

−
03

−
20

20
19

−
12

−
19

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h
(b) Eigenvector Centrality on Cochange

Network

0.00

0.25

0.50

0.75

1.00

20
14

−
09

−
18

20
15

−
06

−
19

20
16

−
03

−
19

20
16

−
12

−
18

20
17

−
09

−
18

20
18

−
06

−
19

20
19

−
03

−
20

20
19

−
12

−
19

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(c) Hierarchy on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
14

−
09

−
18

20
15

−
06

−
19

20
16

−
03

−
19

20
16

−
12

−
18

20
17

−
09

−
18

20
18

−
06

−
19

20
19

−
03

−
20

20
19

−
12

−
19

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(d) Node Degree on Issue Network

0.00

0.25

0.50

0.75

1.00
20

14
−

09
−

18

20
15

−
06

−
19

20
16

−
03

−
19

20
16

−
12

−
18

20
17

−
09

−
18

20
18

−
06

−
19

20
19

−
03

−
20

20
19

−
12

−
19

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(e) Eigenvector Centrality on Issue
Network

0.00

0.25

0.50

0.75

1.00

20
14

−
09

−
18

20
15

−
06

−
19

20
16

−
03

−
19

20
16

−
12

−
18

20
17

−
09

−
18

20
18

−
06

−
19

20
19

−
03

−
20

20
19

−
12

−
19

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(f) Hierarchy on Issue Network

0.00

0.25

0.50

0.75

1.00

20
14

−
09

−
18

20
15

−
06

−
19

20
16

−
03

−
19

20
16

−
12

−
18

20
17

−
09

−
18

20
18

−
06

−
19

20
19

−
03

−
20

20
19

−
12

−
19

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(g) Node Degree on Cochange Issue
Network

0.00

0.25

0.50

0.75

1.00

20
14

−
09

−
18

20
15

−
06

−
19

20
16

−
03

−
19

20
16

−
12

−
18

20
17

−
09

−
18

20
18

−
06

−
19

20
19

−
03

−
20

20
19

−
12

−
19

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(h) Eigenvector Centrality on Cochange
Issue Network

0.00

0.25

0.50

0.75

1.00

20
14

−
09

−
18

20
15

−
06

−
19

20
16

−
03

−
19

20
16

−
12

−
18

20
17

−
09

−
18

20
18

−
06

−
19

20
19

−
03

−
20

20
19

−
12

−
19

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(i) Hierarchy on Cochange Issue
Network

F1

Precision

Recall

Specificity

(j) Legend

Figure A.3: Angular - All undirected networks that are compared to the issue-based Ground Truth which includes all
issue events from the collaborative privileges list (Figure 3.1).

A.1 issue event types 81

0.00

0.25

0.50

0.75

1.00
20

18
−

01
−

04

20
18

−
10

−
05

20
19

−
07

−
06

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(a) Node Degree on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
18

−
01

−
04

20
18

−
10

−
05

20
19

−
07

−
06

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(b) Eigenvector Centrality on Cochange
Network

0.00

0.25

0.50

0.75

1.00

20
18

−
01

−
04

20
18

−
10

−
05

20
19

−
07

−
06

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(c) Hierarchy on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
18

−
01

−
04

20
18

−
10

−
05

20
19

−
07

−
06

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(d) Node Degree on Issue Network

0.00

0.25

0.50

0.75

1.00

20
18

−
01

−
04

20
18

−
10

−
05

20
19

−
07

−
06

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(e) Eigenvector Centrality on Issue
Network

0.00

0.25

0.50

0.75

1.00

20
18

−
01

−
04

20
18

−
10

−
05

20
19

−
07

−
06

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(f) Hierarchy on Issue Network

0.00

0.25

0.50

0.75

1.00

20
18

−
01

−
04

20
18

−
10

−
05

20
19

−
07

−
06

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(g) Node Degree on Cochange Issue
Network

0.00

0.25

0.50

0.75

1.00

20
18

−
01

−
04

20
18

−
10

−
05

20
19

−
07

−
06

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(h) Eigenvector Centrality on Cochange
Issue Network

0.00

0.25

0.50

0.75

1.00

20
18

−
01

−
04

20
18

−
10

−
05

20
19

−
07

−
06

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(i) Hierarchy on Cochange Issue
Network

F1

Precision

Recall

Specificity

(j) Legend

Figure A.4: Data Transfer Project - All directed networks that are compared to the issue-based Ground Truth.

82 appendix

0.00

0.25

0.50

0.75

1.00

20
18

−
01

−
04

20
18

−
10

−
05

20
19

−
07

−
06

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(a) Node Degree on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
18

−
01

−
04

20
18

−
10

−
05

20
19

−
07

−
06

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h
(b) Eigenvector Centrality on Cochange

Network

0.00

0.25

0.50

0.75

1.00

20
18

−
01

−
04

20
18

−
10

−
05

20
19

−
07

−
06

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(c) Hierarchy on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
18

−
01

−
04

20
18

−
10

−
05

20
19

−
07

−
06

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(d) Node Degree on Issue Network

0.00

0.25

0.50

0.75

1.00
20

18
−

01
−

04

20
18

−
10

−
05

20
19

−
07

−
06

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(e) Eigenvector Centrality on Issue
Network

0.00

0.25

0.50

0.75

1.00

20
18

−
01

−
04

20
18

−
10

−
05

20
19

−
07

−
06

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(f) Hierarchy on Issue Network

0.00

0.25

0.50

0.75

1.00

20
18

−
01

−
04

20
18

−
10

−
05

20
19

−
07

−
06

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(g) Node Degree on Cochange Issue
Network

0.00

0.25

0.50

0.75

1.00

20
18

−
01

−
04

20
18

−
10

−
05

20
19

−
07

−
06

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(h) Eigenvector Centrality on Cochange
Issue Network

0.00

0.25

0.50

0.75

1.00

20
18

−
01

−
04

20
18

−
10

−
05

20
19

−
07

−
06

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(i) Hierarchy on Cochange Issue
Network

F1

Precision

Recall

Specificity

(j) Legend

Figure A.5: Data Transfer Project - All undirected networks that are compared to the issue-based Ground Truth which
includes all issue events from the collaborative privileges list (Figure 3.1).

A.1 issue event types 83

0.00

0.25

0.50

0.75

1.00
20

15
−

03
−

28

20
15

−
12

−
27

20
16

−
09

−
26

20
17

−
06

−
27

20
18

−
03

−
28

20
18

−
12

−
27

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(a) Node Degree on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
15

−
03

−
28

20
15

−
12

−
27

20
16

−
09

−
26

20
17

−
06

−
27

20
18

−
03

−
28

20
18

−
12

−
27

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(b) Eigenvector Centrality on Cochange
Network

0.00

0.25

0.50

0.75

1.00

20
15

−
03

−
28

20
15

−
12

−
27

20
16

−
09

−
26

20
17

−
06

−
27

20
18

−
03

−
28

20
18

−
12

−
27

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(c) Hierarchy on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
15

−
03

−
28

20
15

−
12

−
27

20
16

−
09

−
26

20
17

−
06

−
27

20
18

−
03

−
28

20
18

−
12

−
27

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(d) Node Degree on Issue Network

0.00

0.25

0.50

0.75

1.00

20
15

−
03

−
28

20
15

−
12

−
27

20
16

−
09

−
26

20
17

−
06

−
27

20
18

−
03

−
28

20
18

−
12

−
27

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(e) Eigenvector Centrality on Issue
Network

0.00

0.25

0.50

0.75

1.00

20
15

−
03

−
28

20
15

−
12

−
27

20
16

−
09

−
26

20
17

−
06

−
27

20
18

−
03

−
28

20
18

−
12

−
27

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(f) Hierarchy on Issue Network

0.00

0.25

0.50

0.75

1.00

20
15

−
03

−
28

20
15

−
12

−
27

20
16

−
09

−
26

20
17

−
06

−
27

20
18

−
03

−
28

20
18

−
12

−
27

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(g) Node Degree on Cochange Issue
Network

0.00

0.25

0.50

0.75

1.00

20
15

−
03

−
28

20
15

−
12

−
27

20
16

−
09

−
26

20
17

−
06

−
27

20
18

−
03

−
28

20
18

−
12

−
27

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(h) Eigenvector Centrality on Cochange
Issue Network

0.00

0.25

0.50

0.75

1.00

20
15

−
03

−
28

20
15

−
12

−
27

20
16

−
09

−
26

20
17

−
06

−
27

20
18

−
03

−
28

20
18

−
12

−
27

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(i) Hierarchy on Cochange Issue
Network

F1

Precision

Recall

Specificity

(j) Legend

Figure A.6: Keras - All directed networks that are compared to the issue-based Ground Truth.

84 appendix

0.00

0.25

0.50

0.75

1.00

20
15

−
03

−
28

20
15

−
12

−
27

20
16

−
09

−
26

20
17

−
06

−
27

20
18

−
03

−
28

20
18

−
12

−
27

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(a) Node Degree on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
15

−
03

−
28

20
15

−
12

−
27

20
16

−
09

−
26

20
17

−
06

−
27

20
18

−
03

−
28

20
18

−
12

−
27

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h
(b) Eigenvector Centrality on Cochange

Network

0.00

0.25

0.50

0.75

1.00

20
15

−
03

−
28

20
15

−
12

−
27

20
16

−
09

−
26

20
17

−
06

−
27

20
18

−
03

−
28

20
18

−
12

−
27

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(c) Hierarchy on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
15

−
03

−
28

20
15

−
12

−
27

20
16

−
09

−
26

20
17

−
06

−
27

20
18

−
03

−
28

20
18

−
12

−
27

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(d) Node Degree on Issue Network

0.00

0.25

0.50

0.75

1.00
20

15
−

03
−

28

20
15

−
12

−
27

20
16

−
09

−
26

20
17

−
06

−
27

20
18

−
03

−
28

20
18

−
12

−
27

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(e) Eigenvector Centrality on Issue
Network

0.00

0.25

0.50

0.75

1.00

20
15

−
03

−
28

20
15

−
12

−
27

20
16

−
09

−
26

20
17

−
06

−
27

20
18

−
03

−
28

20
18

−
12

−
27

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(f) Hierarchy on Issue Network

0.00

0.25

0.50

0.75

1.00

20
15

−
03

−
28

20
15

−
12

−
27

20
16

−
09

−
26

20
17

−
06

−
27

20
18

−
03

−
28

20
18

−
12

−
27

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(g) Node Degree on Cochange Issue
Network

0.00

0.25

0.50

0.75

1.00

20
15

−
03

−
28

20
15

−
12

−
27

20
16

−
09

−
26

20
17

−
06

−
27

20
18

−
03

−
28

20
18

−
12

−
27

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(h) Eigenvector Centrality on Cochange
Issue Network

0.00

0.25

0.50

0.75

1.00

20
15

−
03

−
28

20
15

−
12

−
27

20
16

−
09

−
26

20
17

−
06

−
27

20
18

−
03

−
28

20
18

−
12

−
27

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(i) Hierarchy on Cochange Issue
Network

F1

Precision

Recall

Specificity

(j) Legend

Figure A.7: Keras - All undirected networks that are compared to the issue-based Ground Truth which includes all issue
events from the collaborative privileges list (Figure 3.1).

A.1 issue event types 85

0.00

0.25

0.50

0.75

1.00
20

15
−

03
−

28

20
15

−
12

−
27

20
16

−
09

−
26

20
17

−
06

−
27

20
18

−
03

−
28

20
18

−
12

−
27

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(a) Node Degree on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
15

−
03

−
28

20
15

−
12

−
27

20
16

−
09

−
26

20
17

−
06

−
27

20
18

−
03

−
28

20
18

−
12

−
27

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(b) Eigenvector Centrality on Cochange
Network

0.00

0.25

0.50

0.75

1.00

20
15

−
03

−
28

20
15

−
12

−
27

20
16

−
09

−
26

20
17

−
06

−
27

20
18

−
03

−
28

20
18

−
12

−
27

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(c) Hierarchy on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
15

−
03

−
28

20
15

−
12

−
27

20
16

−
09

−
26

20
17

−
06

−
27

20
18

−
03

−
28

20
18

−
12

−
27

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(d) Node Degree on Issue Network

0.00

0.25

0.50

0.75

1.00

20
15

−
03

−
28

20
15

−
12

−
27

20
16

−
09

−
26

20
17

−
06

−
27

20
18

−
03

−
28

20
18

−
12

−
27

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(e) Eigenvector Centrality on Issue
Network

0.00

0.25

0.50

0.75

1.00

20
15

−
03

−
28

20
15

−
12

−
27

20
16

−
09

−
26

20
17

−
06

−
27

20
18

−
03

−
28

20
18

−
12

−
27

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(f) Hierarchy on Issue Network

0.00

0.25

0.50

0.75

1.00

20
15

−
03

−
28

20
15

−
12

−
27

20
16

−
09

−
26

20
17

−
06

−
27

20
18

−
03

−
28

20
18

−
12

−
27

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(g) Node Degree on Cochange Issue
Network

0.00

0.25

0.50

0.75

1.00

20
15

−
03

−
28

20
15

−
12

−
27

20
16

−
09

−
26

20
17

−
06

−
27

20
18

−
03

−
28

20
18

−
12

−
27

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(h) Eigenvector Centrality on Cochange
Issue Network

0.00

0.25

0.50

0.75

1.00

20
15

−
03

−
28

20
15

−
12

−
27

20
16

−
09

−
26

20
17

−
06

−
27

20
18

−
03

−
28

20
18

−
12

−
27

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(i) Hierarchy on Cochange Issue
Network

F1

Precision

Recall

Specificity

(j) Legend

Figure A.8: Keras - All directed networks that are compared to the issue-based Ground Truth.

86 appendix

0.00

0.25

0.50

0.75

1.00

20
16

−
06

−
02

20
17

−
03

−
03

20
17

−
12

−
02

20
18

−
09

−
02

20
19

−
06

−
03

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(a) Node Degree on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
16

−
06

−
02

20
17

−
03

−
03

20
17

−
12

−
02

20
18

−
09

−
02

20
19

−
06

−
03

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h
(b) Eigenvector Centrality on Cochange

Network

0.00

0.25

0.50

0.75

1.00

20
16

−
06

−
02

20
17

−
03

−
03

20
17

−
12

−
02

20
18

−
09

−
02

20
19

−
06

−
03

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(c) Hierarchy on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
16

−
06

−
02

20
17

−
03

−
03

20
17

−
12

−
02

20
18

−
09

−
02

20
19

−
06

−
03

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(d) Node Degree on Issue Network

0.00

0.25

0.50

0.75

1.00
20

16
−

06
−

02

20
17

−
03

−
03

20
17

−
12

−
02

20
18

−
09

−
02

20
19

−
06

−
03

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(e) Eigenvector Centrality on Issue
Network

0.00

0.25

0.50

0.75

1.00

20
16

−
06

−
02

20
17

−
03

−
03

20
17

−
12

−
02

20
18

−
09

−
02

20
19

−
06

−
03

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(f) Hierarchy on Issue Network

0.00

0.25

0.50

0.75

1.00

20
16

−
06

−
02

20
17

−
03

−
03

20
17

−
12

−
02

20
18

−
09

−
02

20
19

−
06

−
03

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(g) Node Degree on Cochange Issue
Network

0.00

0.25

0.50

0.75

1.00

20
16

−
06

−
02

20
17

−
03

−
03

20
17

−
12

−
02

20
18

−
09

−
02

20
19

−
06

−
03

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(h) Eigenvector Centrality on Cochange
Issue Network

0.00

0.25

0.50

0.75

1.00

20
16

−
06

−
02

20
17

−
03

−
03

20
17

−
12

−
02

20
18

−
09

−
02

20
19

−
06

−
03

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(i) Hierarchy on Cochange Issue
Network

F1

Precision

Recall

Specificity

(j) Legend

Figure A.9: Nextcloud - All directed networks that are compared to the issue-based Ground Truth.

A.1 issue event types 87

0.00

0.25

0.50

0.75

1.00
20

16
−

06
−

02

20
17

−
03

−
03

20
17

−
12

−
02

20
18

−
09

−
02

20
19

−
06

−
03

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(a) Node Degree on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
16

−
06

−
02

20
17

−
03

−
03

20
17

−
12

−
02

20
18

−
09

−
02

20
19

−
06

−
03

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(b) Eigenvector Centrality on Cochange
Network

0.00

0.25

0.50

0.75

1.00

20
16

−
06

−
02

20
17

−
03

−
03

20
17

−
12

−
02

20
18

−
09

−
02

20
19

−
06

−
03

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(c) Hierarchy on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
16

−
06

−
02

20
17

−
03

−
03

20
17

−
12

−
02

20
18

−
09

−
02

20
19

−
06

−
03

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(d) Node Degree on Issue Network

0.00

0.25

0.50

0.75

1.00

20
16

−
06

−
02

20
17

−
03

−
03

20
17

−
12

−
02

20
18

−
09

−
02

20
19

−
06

−
03

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(e) Eigenvector Centrality on Issue
Network

0.00

0.25

0.50

0.75

1.00

20
16

−
06

−
02

20
17

−
03

−
03

20
17

−
12

−
02

20
18

−
09

−
02

20
19

−
06

−
03

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(f) Hierarchy on Issue Network

0.00

0.25

0.50

0.75

1.00

20
16

−
06

−
02

20
17

−
03

−
03

20
17

−
12

−
02

20
18

−
09

−
02

20
19

−
06

−
03

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(g) Node Degree on Cochange Issue
Network

0.00

0.25

0.50

0.75

1.00

20
16

−
06

−
02

20
17

−
03

−
03

20
17

−
12

−
02

20
18

−
09

−
02

20
19

−
06

−
03

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(h) Eigenvector Centrality on Cochange
Issue Network

0.00

0.25

0.50

0.75

1.00

20
16

−
06

−
02

20
17

−
03

−
03

20
17

−
12

−
02

20
18

−
09

−
02

20
19

−
06

−
03

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(i) Hierarchy on Cochange Issue
Network

F1

Precision

Recall

Specificity

(j) Legend

Figure A.10: Nextcloud - All undirected networks that are compared to the issue-based Ground Truth which includes
all issue events from the collaborative privileges list (Figure 3.1).

88 appendix

0.00

0.25

0.50

0.75

1.00

20
14

−
11

−
27

20
15

−
08

−
28

20
16

−
05

−
28

20
17

−
02

−
26

20
17

−
11

−
27

20
18

−
08

−
28

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(a) Node Degree on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
14

−
11

−
27

20
15

−
08

−
28

20
16

−
05

−
28

20
17

−
02

−
26

20
17

−
11

−
27

20
18

−
08

−
28

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h
(b) Eigenvector Centrality on Cochange

Network

0.00

0.25

0.50

0.75

1.00

20
14

−
11

−
27

20
15

−
08

−
28

20
16

−
05

−
28

20
17

−
02

−
26

20
17

−
11

−
27

20
18

−
08

−
28

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(c) Hierarchy on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
14

−
11

−
27

20
15

−
08

−
28

20
16

−
05

−
28

20
17

−
02

−
26

20
17

−
11

−
27

20
18

−
08

−
28

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(d) Node Degree on Issue Network

0.00

0.25

0.50

0.75

1.00
20

14
−

11
−

27

20
15

−
08

−
28

20
16

−
05

−
28

20
17

−
02

−
26

20
17

−
11

−
27

20
18

−
08

−
28

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(e) Eigenvector Centrality on Issue
Network

0.00

0.25

0.50

0.75

1.00

20
14

−
11

−
27

20
15

−
08

−
28

20
16

−
05

−
28

20
17

−
02

−
26

20
17

−
11

−
27

20
18

−
08

−
28

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(f) Hierarchy on Issue Network

0.00

0.25

0.50

0.75

1.00

20
14

−
11

−
27

20
15

−
08

−
28

20
16

−
05

−
28

20
17

−
02

−
26

20
17

−
11

−
27

20
18

−
08

−
28

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(g) Node Degree on Cochange Issue
Network

0.00

0.25

0.50

0.75

1.00

20
14

−
11

−
27

20
15

−
08

−
28

20
16

−
05

−
28

20
17

−
02

−
26

20
17

−
11

−
27

20
18

−
08

−
28

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(h) Eigenvector Centrality on Cochange
Issue Network

0.00

0.25

0.50

0.75

1.00

20
14

−
11

−
27

20
15

−
08

−
28

20
16

−
05

−
28

20
17

−
02

−
26

20
17

−
11

−
27

20
18

−
08

−
28

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(i) Hierarchy on Cochange Issue
Network

F1

Precision

Recall

Specificity

(j) Legend

Figure A.11: NodeJS - All directed networks that are compared to the issue-based Ground Truth.

A.1 issue event types 89

0.00

0.25

0.50

0.75

1.00
20

14
−

11
−

27

20
15

−
08

−
28

20
16

−
05

−
28

20
17

−
02

−
26

20
17

−
11

−
27

20
18

−
08

−
28

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(a) Node Degree on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
14

−
11

−
27

20
15

−
08

−
28

20
16

−
05

−
28

20
17

−
02

−
26

20
17

−
11

−
27

20
18

−
08

−
28

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(b) Eigenvector Centrality on Cochange
Network

0.00

0.25

0.50

0.75

1.00

20
14

−
11

−
27

20
15

−
08

−
28

20
16

−
05

−
28

20
17

−
02

−
26

20
17

−
11

−
27

20
18

−
08

−
28

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(c) Hierarchy on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
14

−
11

−
27

20
15

−
08

−
28

20
16

−
05

−
28

20
17

−
02

−
26

20
17

−
11

−
27

20
18

−
08

−
28

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(d) Node Degree on Issue Network

0.00

0.25

0.50

0.75

1.00

20
14

−
11

−
27

20
15

−
08

−
28

20
16

−
05

−
28

20
17

−
02

−
26

20
17

−
11

−
27

20
18

−
08

−
28

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(e) Eigenvector Centrality on Issue
Network

0.00

0.25

0.50

0.75

1.00

20
14

−
11

−
27

20
15

−
08

−
28

20
16

−
05

−
28

20
17

−
02

−
26

20
17

−
11

−
27

20
18

−
08

−
28

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(f) Hierarchy on Issue Network

0.00

0.25

0.50

0.75

1.00

20
14

−
11

−
27

20
15

−
08

−
28

20
16

−
05

−
28

20
17

−
02

−
26

20
17

−
11

−
27

20
18

−
08

−
28

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(g) Node Degree on Cochange Issue
Network

0.00

0.25

0.50

0.75

1.00

20
14

−
11

−
27

20
15

−
08

−
28

20
16

−
05

−
28

20
17

−
02

−
26

20
17

−
11

−
27

20
18

−
08

−
28

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(h) Eigenvector Centrality on Cochange
Issue Network

0.00

0.25

0.50

0.75

1.00

20
14

−
11

−
27

20
15

−
08

−
28

20
16

−
05

−
28

20
17

−
02

−
26

20
17

−
11

−
27

20
18

−
08

−
28

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(i) Hierarchy on Cochange Issue
Network

F1

Precision

Recall

Specificity

(j) Legend

Figure A.12: NodeJS - All undirected networks that are compared to the issue-based Ground Truth which includes all
issue events from the collaborative privileges list (Figure 3.1).

90 appendix

0.00

0.25

0.50

0.75

1.00

20
14

−
11

−
27

20
15

−
08

−
28

20
16

−
05

−
28

20
17

−
02

−
26

20
17

−
11

−
27

20
18

−
08

−
28

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(a) Node Degree on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
14

−
11

−
27

20
15

−
08

−
28

20
16

−
05

−
28

20
17

−
02

−
26

20
17

−
11

−
27

20
18

−
08

−
28

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h
(b) Eigenvector Centrality on Cochange

Network

0.00

0.25

0.50

0.75

1.00

20
14

−
11

−
27

20
15

−
08

−
28

20
16

−
05

−
28

20
17

−
02

−
26

20
17

−
11

−
27

20
18

−
08

−
28

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(c) Hierarchy on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
14

−
11

−
27

20
15

−
08

−
28

20
16

−
05

−
28

20
17

−
02

−
26

20
17

−
11

−
27

20
18

−
08

−
28

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(d) Node Degree on Issue Network

0.00

0.25

0.50

0.75

1.00
20

14
−

11
−

27

20
15

−
08

−
28

20
16

−
05

−
28

20
17

−
02

−
26

20
17

−
11

−
27

20
18

−
08

−
28

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(e) Eigenvector Centrality on Issue
Network

0.00

0.25

0.50

0.75

1.00

20
14

−
11

−
27

20
15

−
08

−
28

20
16

−
05

−
28

20
17

−
02

−
26

20
17

−
11

−
27

20
18

−
08

−
28

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(f) Hierarchy on Issue Network

0.00

0.25

0.50

0.75

1.00

20
14

−
11

−
27

20
15

−
08

−
28

20
16

−
05

−
28

20
17

−
02

−
26

20
17

−
11

−
27

20
18

−
08

−
28

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(g) Node Degree on Cochange Issue
Network

0.00

0.25

0.50

0.75

1.00

20
14

−
11

−
27

20
15

−
08

−
28

20
16

−
05

−
28

20
17

−
02

−
26

20
17

−
11

−
27

20
18

−
08

−
28

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(h) Eigenvector Centrality on Cochange
Issue Network

0.00

0.25

0.50

0.75

1.00

20
14

−
11

−
27

20
15

−
08

−
28

20
16

−
05

−
28

20
17

−
02

−
26

20
17

−
11

−
27

20
18

−
08

−
28

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(i) Hierarchy on Cochange Issue
Network

F1

Precision

Recall

Specificity

(j) Legend

Figure A.13: NodeJS - All directed networks that are compared to the issue-based Ground Truth.

A.1 issue event types 91

0.00

0.25

0.50

0.75

1.00
20

13
−

05
−

13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(a) Node Degree on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(b) Eigenvector Centrality on Cochange
Network

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(c) Hierarchy on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(d) Node Degree on Issue Network

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(e) Eigenvector Centrality on Issue
Network

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(f) Hierarchy on Issue Network

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(g) Node Degree on Cochange Issue
Network

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(h) Eigenvector Centrality on Cochange
Issue Network

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(i) Hierarchy on Cochange Issue
Network

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(j) Node Degree on Mail Network

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(k) Eigenvector Centrality on Mail
Network

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(l) Hierarchy on Mail Network

Figure A.14: OpenSSL - All directed networks that are compared to the issue-based Ground Truth. A legend can be
found in Figure A.11.

92 appendix

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(a) Node Degree on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h
(b) Eigenvector Centrality on Cochange

Network

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(c) Hierarchy on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(d) Node Degree on Issue Network

0.00

0.25

0.50

0.75

1.00
20

13
−

05
−

13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(e) Eigenvector Centrality on Issue
Network

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(f) Hierarchy on Issue Network

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(g) Node Degree on Cochange Issue
Network

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(h) Eigenvector Centrality on Cochange
Issue Network

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(i) Hierarchy on Cochange Issue
Network

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(j) Node Degree on Mail Network

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(k) Eigenvector Centrality on Mail
Network

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(l) Hierarchy on Mail Network

Figure A.15: OpenSSL - All undirected networks that are compared to the issue-based Ground Truth which includes all
issue events from the collaborative privileges list (Figure 3.1). A legend can be found in Figure A.12.

A.1 issue event types 93

0.00

0.25

0.50

0.75

1.00
20

13
−

05
−

13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(a) Node Degree on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(b) Eigenvector Centrality on Cochange
Network

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(c) Hierarchy on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(d) Node Degree on Issue Network

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(e) Eigenvector Centrality on Issue
Network

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(f) Hierarchy on Issue Network

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(g) Node Degree on Cochange Issue
Network

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(h) Eigenvector Centrality on Cochange
Issue Network

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(i) Hierarchy on Cochange Issue
Network

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(j) Node Degree on Mail Network

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(k) Eigenvector Centrality on Mail
Network

0.00

0.25

0.50

0.75

1.00

20
13

−
05

−
13

20
14

−
02

−
11

20
14

−
11

−
12

20
15

−
08

−
13

20
16

−
05

−
13

20
17

−
02

−
11

20
17

−
11

−
12

20
18

−
08

−
13

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(l) Hierarchy on Mail Network

Figure A.16: OpenSSL - All directed networks that are compared to the issue-based Ground Truth. A legend can be
found in Figure A.13.

94 appendix

0.00

0.25

0.50

0.75

1.00

20
12

−
08

−
25

20
13

−
05

−
26

20
14

−
02

−
24

20
14

−
11

−
25

20
15

−
08

−
26

20
16

−
05

−
26

20
17

−
02

−
24

20
17

−
11

−
25

20
18

−
08

−
26

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(a) Node Degree on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
12

−
08

−
25

20
13

−
05

−
26

20
14

−
02

−
24

20
14

−
11

−
25

20
15

−
08

−
26

20
16

−
05

−
26

20
17

−
02

−
24

20
17

−
11

−
25

20
18

−
08

−
26

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h
(b) Eigenvector Centrality on Cochange

Network

0.00

0.25

0.50

0.75

1.00

20
12

−
08

−
25

20
13

−
05

−
26

20
14

−
02

−
24

20
14

−
11

−
25

20
15

−
08

−
26

20
16

−
05

−
26

20
17

−
02

−
24

20
17

−
11

−
25

20
18

−
08

−
26

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(c) Hierarchy on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
12

−
08

−
25

20
13

−
05

−
26

20
14

−
02

−
24

20
14

−
11

−
25

20
15

−
08

−
26

20
16

−
05

−
26

20
17

−
02

−
24

20
17

−
11

−
25

20
18

−
08

−
26

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(d) Node Degree on Issue Network

0.00

0.25

0.50

0.75

1.00
20

12
−

08
−

25

20
13

−
05

−
26

20
14

−
02

−
24

20
14

−
11

−
25

20
15

−
08

−
26

20
16

−
05

−
26

20
17

−
02

−
24

20
17

−
11

−
25

20
18

−
08

−
26

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(e) Eigenvector Centrality on Issue
Network

0.00

0.25

0.50

0.75

1.00

20
12

−
08

−
25

20
13

−
05

−
26

20
14

−
02

−
24

20
14

−
11

−
25

20
15

−
08

−
26

20
16

−
05

−
26

20
17

−
02

−
24

20
17

−
11

−
25

20
18

−
08

−
26

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(f) Hierarchy on Issue Network

0.00

0.25

0.50

0.75

1.00

20
12

−
08

−
25

20
13

−
05

−
26

20
14

−
02

−
24

20
14

−
11

−
25

20
15

−
08

−
26

20
16

−
05

−
26

20
17

−
02

−
24

20
17

−
11

−
25

20
18

−
08

−
26

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(g) Node Degree on Cochange Issue
Network

0.00

0.25

0.50

0.75

1.00

20
12

−
08

−
25

20
13

−
05

−
26

20
14

−
02

−
24

20
14

−
11

−
25

20
15

−
08

−
26

20
16

−
05

−
26

20
17

−
02

−
24

20
17

−
11

−
25

20
18

−
08

−
26

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(h) Eigenvector Centrality on Cochange
Issue Network

0.00

0.25

0.50

0.75

1.00

20
12

−
08

−
25

20
13

−
05

−
26

20
14

−
02

−
24

20
14

−
11

−
25

20
15

−
08

−
26

20
16

−
05

−
26

20
17

−
02

−
24

20
17

−
11

−
25

20
18

−
08

−
26

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(i) Hierarchy on Cochange Issue
Network

0.00

0.25

0.50

0.75

1.00

20
12

−
08

−
25

20
13

−
05

−
26

20
14

−
02

−
24

20
14

−
11

−
25

20
15

−
08

−
26

20
16

−
05

−
26

20
17

−
02

−
24

20
17

−
11

−
25

20
18

−
08

−
26

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(j) Node Degree on Mail Network

0.00

0.25

0.50

0.75

1.00

20
12

−
08

−
25

20
13

−
05

−
26

20
14

−
02

−
24

20
14

−
11

−
25

20
15

−
08

−
26

20
16

−
05

−
26

20
17

−
02

−
24

20
17

−
11

−
25

20
18

−
08

−
26

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(k) Eigenvector Centrality on Mail
Network

0.00

0.25

0.50

0.75

1.00

20
12

−
08

−
25

20
13

−
05

−
26

20
14

−
02

−
24

20
14

−
11

−
25

20
15

−
08

−
26

20
16

−
05

−
26

20
17

−
02

−
24

20
17

−
11

−
25

20
18

−
08

−
26

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(l) Eigenvector Centrality on Mail
Network

Figure A.17: ownCloud - All directed networks that are compared to the issue-based Ground Truth. A legend can be
found in Figure A.11.

A.1 issue event types 95

0.00

0.25

0.50

0.75

1.00
20

12
−

08
−

25

20
13

−
05

−
26

20
14

−
02

−
24

20
14

−
11

−
25

20
15

−
08

−
26

20
16

−
05

−
26

20
17

−
02

−
24

20
17

−
11

−
25

20
18

−
08

−
26

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(a) Node Degree on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
12

−
08

−
25

20
13

−
05

−
26

20
14

−
02

−
24

20
14

−
11

−
25

20
15

−
08

−
26

20
16

−
05

−
26

20
17

−
02

−
24

20
17

−
11

−
25

20
18

−
08

−
26

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(b) Eigenvector Centrality on Cochange
Network

0.00

0.25

0.50

0.75

1.00

20
12

−
08

−
25

20
13

−
05

−
26

20
14

−
02

−
24

20
14

−
11

−
25

20
15

−
08

−
26

20
16

−
05

−
26

20
17

−
02

−
24

20
17

−
11

−
25

20
18

−
08

−
26

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(c) Hierarchy on Cochange Network

0.00

0.25

0.50

0.75

1.00

20
12

−
08

−
25

20
13

−
05

−
26

20
14

−
02

−
24

20
14

−
11

−
25

20
15

−
08

−
26

20
16

−
05

−
26

20
17

−
02

−
24

20
17

−
11

−
25

20
18

−
08

−
26

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(d) Node Degree on Issue Network

0.00

0.25

0.50

0.75

1.00

20
12

−
08

−
25

20
13

−
05

−
26

20
14

−
02

−
24

20
14

−
11

−
25

20
15

−
08

−
26

20
16

−
05

−
26

20
17

−
02

−
24

20
17

−
11

−
25

20
18

−
08

−
26

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(e) Eigenvector Centrality on Issue
Network

0.00

0.25

0.50

0.75

1.00

20
12

−
08

−
25

20
13

−
05

−
26

20
14

−
02

−
24

20
14

−
11

−
25

20
15

−
08

−
26

20
16

−
05

−
26

20
17

−
02

−
24

20
17

−
11

−
25

20
18

−
08

−
26

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(f) Hierarchy on Issue Network

0.00

0.25

0.50

0.75

1.00

20
12

−
08

−
25

20
13

−
05

−
26

20
14

−
02

−
24

20
14

−
11

−
25

20
15

−
08

−
26

20
16

−
05

−
26

20
17

−
02

−
24

20
17

−
11

−
25

20
18

−
08

−
26

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(g) Node Degree on Cochange Issue
Network

0.00

0.25

0.50

0.75

1.00

20
12

−
08

−
25

20
13

−
05

−
26

20
14

−
02

−
24

20
14

−
11

−
25

20
15

−
08

−
26

20
16

−
05

−
26

20
17

−
02

−
24

20
17

−
11

−
25

20
18

−
08

−
26

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(h) Eigenvector Centrality on Cochange
Issue Network

0.00

0.25

0.50

0.75

1.00

20
12

−
08

−
25

20
13

−
05

−
26

20
14

−
02

−
24

20
14

−
11

−
25

20
15

−
08

−
26

20
16

−
05

−
26

20
17

−
02

−
24

20
17

−
11

−
25

20
18

−
08

−
26

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(i) Hierarchy on Cochange Issue
Network

0.00

0.25

0.50

0.75

1.00

20
12

−
08

−
25

20
13

−
05

−
26

20
14

−
02

−
24

20
14

−
11

−
25

20
15

−
08

−
26

20
16

−
05

−
26

20
17

−
02

−
24

20
17

−
11

−
25

20
18

−
08

−
26

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(j) Node Degree on Mail Network

0.00

0.25

0.50

0.75

1.00

20
12

−
08

−
25

20
13

−
05

−
26

20
14

−
02

−
24

20
14

−
11

−
25

20
15

−
08

−
26

20
16

−
05

−
26

20
17

−
02

−
24

20
17

−
11

−
25

20
18

−
08

−
26

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(k) Eigenvector Centrality on Mail
Network

0.00

0.25

0.50

0.75

1.00

20
12

−
08

−
25

20
13

−
05

−
26

20
14

−
02

−
24

20
14

−
11

−
25

20
15

−
08

−
26

20
16

−
05

−
26

20
17

−
02

−
24

20
17

−
11

−
25

20
18

−
08

−
26

Start Date

S
im

ila
rit

y
to

 G
ro

un
d

Tr
ut

h

(l) Eigenvector Centrality on Mail
Network

Figure A.18: ownCloud - All undirected networks that are compared to the issue-based Ground Truth which includes
all issue events from the collaborative privileges list (Figure 3.1). A legend can be found in Figure A.12.

B I B L I O G R A P H Y

[1] Guilherme Avelino, Eleni Constantinou, Marco Tulio Valente, and Alexander Sere-
brenik. On the abandonment and survival of open source projects: An empirical investigation.
2019. arXiv: 1906.08058 [cs.SE] (cit. on p. 25).

[2] Bruce Avolio, Fred Walumbwa, and Todd Weber. “Leadership: Current Theories,
Research, and Future Directions.” In: Annual review of psychology 60 (Jan. 2009), pp. 421–
449. doi: 10.1146/annurev.psych.60.110707.163621 (cit. on p. 2).

[3] Christian Bird. “Sociotechnical Collaboration and Coordination in Open Source Soft-
ware.” In: Sept. 2011, pp. 568–573. doi: 10.1109/ICSM.2011.6080832 (cit. on p. 65).

[4] Christian Bird, Nachiappan Nagappan, Harald Gall, Brendan Murphy, and Premku-
mar Devanbu. “Putting It All Together: Using Socio-technical Networks to Predict
Failures.” In: Nov. 2009, pp. 109–119. doi: 10.1109/ISSRE.2009.17 (cit. on p. 65).

[5] K. Crowston, Kangning Wei, Qing Li, and J. Howison. “Core and Periphery in
Free/Libre and Open Source Software Team Communications.” In: Proceedings of the
39th Annual Hawaii International Conference on System Sciences (HICSS’06). Vol. 6. 2006,
118a–118a. doi: 10.1109/HICSS.2006.101 (cit. on p. 27).

[6] B. Dhanalaxmi, D. A. Naidu, and Dr. K. Anuradha. “A Review on Software Fault
Detection and Prevention Mechanism in Software Development Activities.” In: 2015

(cit. on p. 1).

[7] Reinhard Diestel. Graph Theory (Graduate Texts in Mathematics). Second. Springer, 2000

(cit. on pp. 5, 8).

[8] Stefan Dietze. “Agile requirements definition for software improvement and mainte-
nance in open source software development.” In: (Jan. 2005) (cit. on p. 25).

[9] Fabio Ferreira, Luciana Silva, and Marco Valente. “Turnover in Open-Source Projects:
The Case of Core Developers.” In: Oct. 2020. doi: 10.1145/3422392.3422433 (cit. on
p. 2).

[10] Matthieu Foucault, Marc Palyart, Xavier Blanc, Gail C. Murphy, and Jean-Rémy Falleri.
“Impact of Developer Turnover on Quality in Open-Source Software.” In: ESEC/FSE
2015. Bergamo, Italy: Association for Computing Machinery, 2015, pp. 829–841. isbn:
9781450336758. doi: 10.1145/2786805.2786870. url: https://doi.org/10.1145/
2786805.2786870 (cit. on p. 2).

[11] Paul Jaccard. “Distribution comparée de la flore alpine dans quelques régions des
Alpes occidentales et orientales.” In: Bulletin de la Murithienne 31 (1902), pp. 81–92

(cit. on p. 18).

[12] Mitchell Joblin, Sven Apel, Claus Hunsen, and Wolfgang Mauerer. “Classifying
Developers into Core and Peripheral: An Empirical Study on Count and Network
Metrics.” In: CoRR abs/1604.00830 (2016). arXiv: 1604.00830. url: http://arxiv.
org/abs/1604.00830 (cit. on pp. 2, 24, 66).

97

https://arxiv.org/abs/1906.08058
https://doi.org/10.1146/annurev.psych.60.110707.163621
https://doi.org/10.1109/ICSM.2011.6080832
https://doi.org/10.1109/ISSRE.2009.17
https://doi.org/10.1109/HICSS.2006.101
https://doi.org/10.1145/3422392.3422433
https://doi.org/10.1145/2786805.2786870
https://doi.org/10.1145/2786805.2786870
https://doi.org/10.1145/2786805.2786870
https://arxiv.org/abs/1604.00830
http://arxiv.org/abs/1604.00830
http://arxiv.org/abs/1604.00830

98 online ressources

[13] Mitchell Joblin, Sven Apel, and Wolfgang Mauerer. “Evolutionary Trends of Developer
Coordination: A Network Approach.” In: CoRR abs/1510.06988 (2015). arXiv: 1510.
06988. url: http://arxiv.org/abs/1510.06988 (cit. on pp. 2, 24, 25, 66).

[14] Ljubomir Lazic. “Software Errors Analysis and Prevention.” In: (Mar. 2006) (cit. on
p. 1).

[15] Ferdinand Malcher, Johannes Hoppe, and Danny Koppenhagen. Angular - Grundlagen,
fortgeschrittene Themen und Best Practices. Third. Available online at https://angular-
buch.com/assets/angular-buch.com_leseprobe_3.auflage.pdf; visited on October
28th, 2020. dpunkt.verlag, 2020. isbn: 978-3-86490-779-1 (cit. on p. 32).

[16] A. Meneely and L. Williams. “Socio-technical developer networks: should we trust our
measurements?” In: 2011 33rd International Conference on Software Engineering (ICSE).
2011, pp. 281–290. doi: 10.1145/1985793.1985832 (cit. on pp. 27, 63).

[17] Andrew Meneely, Laurie Williams, Will Snipes, and Jason Osborne. “Predicting
failures with developer networks and social network analysis.” In: Jan. 2008, pp. 13–23.
doi: 10.1145/1453101.1453106 (cit. on p. 65).

[18] Audris Mockus, Roy T. Fielding, and James D. Herbsleb. “Two Case Studies of Open
Source Software Development: Apache and Mozilla.” In: ACM Trans. Softw. Eng.
Methodol. 3 (July 2002), pp. 309–346. issn: 1049-331X. doi: 10.1145/567793.567795.
url: https://doi.org/10.1145/567793.567795 (cit. on p. 27).

[19] Kumiyo Nakakoji, Yasuhiro Yamamoto, Yoshiyuki NISHINAKA, Kouichi Kishida, and
Yunwen Ye. “Evolution Patterns of Open-Source Software Systems and Communities.”
In: International Workshop on Principles of Software Evolution (IWPSE) (Jan. 2003). doi:
10.1145/512035.512055 (cit. on p. 24).

[20] Mark Newman. Networks: An Introduction. USA: Oxford University Press, Inc., 2010.
isbn: 0199206651 (cit. on pp. 9, 68).

[21] Gustavo Oliva, Francisco Santana, Kleverton Oliveira, Cleidson Souza, and Marco
Aurelio Gerosa. “Characterizing Key Developers: A Case Study with Apache Ant.” In:
vol. 7493. Sept. 2012, pp. 97–112. doi: 10.1007/978-3-642-33284-5_8 (cit. on p. 61).

[22] Vilfredo Pareto. Manuale di Economia Politica. (English translation, A. M. Kelly, (1971)).
1909 (cit. on p. 27).

[23] David Powers. “Evaluation: From Precision, Recall and F-Factor to ROC, Informedness,
Markedness & Correlation.” In: Mach. Learn. Technol. 2 (Jan. 2008) (cit. on p. 19).

[24] Erzsébet Ravasz and Albert-László Barabási. “Hierarchical organization in complex
networks.” In: Physical Review E 67.2 (2003). issn: 1095-3787. doi: 10.1103/physreve.
67.026112. url: http://dx.doi.org/10.1103/PhysRevE.67.026112 (cit. on p. 10).

[25] MK Vijaymeena and K Kavitha. “A survey on similarity measures in text mining.” In:
Machine Learning and Applications: An International Journal 3.2 (2016), pp. 19–28 (cit. on
p. 19).

[26] J. Xu, Yongqin Gao, S. Christley, and G. Madey. “A Topological Analysis of the Open
Souce Software Development Community.” In: Proceedings of the 38th Annual Hawaii
International Conference on System Sciences (2005), 198a–198a (cit. on p. 65).

https://arxiv.org/abs/1510.06988
https://arxiv.org/abs/1510.06988
http://arxiv.org/abs/1510.06988
https://angular-buch.com/assets/angular-buch.com_leseprobe_3.auflage.pdf
https://angular-buch.com/assets/angular-buch.com_leseprobe_3.auflage.pdf
https://doi.org/10.1145/1985793.1985832
https://doi.org/10.1145/1453101.1453106
https://doi.org/10.1145/567793.567795
https://doi.org/10.1145/567793.567795
https://doi.org/10.1145/512035.512055
https://doi.org/10.1007/978-3-642-33284-5_8
https://doi.org/10.1103/physreve.67.026112
https://doi.org/10.1103/physreve.67.026112
http://dx.doi.org/10.1103/PhysRevE.67.026112

O N L I N E R E S S O U R C E S

[27] S.P. Borgatti, M. G. Everett, and L. C. Freeman. UCINET 6 for Windows: Software for
Social Network Analysis. Harvard, MA, Analytic Technologies. 2002 (cit. on p. 9).

[28] Jaime Niswonger. Why node.js? - Introduction and Analysis. Website. Available online at
https://keyholesoftware.com/company/creations/white-papers/why-node-js/;
visited on October 30th 2020. 2016 (cit. on p. 35).

[29] DTP Team. Data Transfer Project Overview and Fundamentals. Website. Available online
at https://datatransferproject.dev/dtp-overview.pdf; visited on October 28th,
2020. July 2018 (cit. on p. 33).

[30] GitHub Docs Team. About organizations. Website. Available online at https://docs.
github.com/en/free-pro-team\spacefactor\@m{}latest/github/setting-up-and-

managing-organizations-and-teams/about-organizations; visited on November
15th, 2020. 2020 (cit. on p. 11).

[31] GitHub Docs Team. Adding notes to a project board. Website. Available online at https:
//docs.github.com/en/github/managing-your-work-on-github/adding-notes-

to-a-project-board#converting-a-note-to-an-issue; visited on September 10th,
2020. 2020 (cit. on p. 71).

[32] GitHub Docs Team. Blocking a user from your organization. Website. Available online
at https://docs.github.com/en/github/building-a-strong-community/blocking-
a- user- from- your- organization#blocking- a- user- in- a- comment; visited on
September 12th, 2020. 2020 (cit. on p. 77).

[33] GitHub Docs Team. Changing the state of a pull request. Website. Available online at
https://docs.github.com/en/github/collaborating-with-issues-and-pull-

requests/changing-the-stage-of-a-pull-request#converting-a-pull-request-

to-a-draft; visited on September 10th, 2020. 2020 (cit. on p. 71).

[34] GitHub Docs Team. Creating a pull request. Website. Available online at https://

docs.github.com/en/github/collaborating-with-issues-and-pull-requests/

creating-a-pull-request; visited on September 9th, 2020. 2020 (cit. on pp. 70, 72).

[35] GitHub Docs Team. Dismissing a pull request review. Website. Available online at
https://docs.github.com/en/github/collaborating-with-issues-and-pull-

requests/dismissing-a-pull-request-review; visited on September 12th, 2020.
2020 (cit. on p. 75).

[36] GitHub Docs Team. Issue event types: Added To Project. Website. Available online at
https://docs.github.com/en/developers/webhooks-and-events/issue-event-

types#added_to_project; visited on September 10th, 2020. 2020 (cit. on p. 69).

[37] GitHub Docs Team. Issue event types: Assigned. Website. Available online at https:
//docs.github.com/en/developers/webhooks-and-events/issue-event-types#

assigned; visited on September 10th, 2020. 2020 (cit. on p. 69).

99

https://keyholesoftware.com/company/creations/white-papers/why-node-js/
https://datatransferproject.dev/dtp-overview.pdf
https://docs.github.com/en/free-pro-team\spacefactor \@m {}latest/github/setting-up-and-managing-organizations-and-teams/about-organizations
https://docs.github.com/en/free-pro-team\spacefactor \@m {}latest/github/setting-up-and-managing-organizations-and-teams/about-organizations
https://docs.github.com/en/free-pro-team\spacefactor \@m {}latest/github/setting-up-and-managing-organizations-and-teams/about-organizations
https://docs.github.com/en/github/managing-your-work-on-github/adding-notes-to-a-project-board#converting-a-note-to-an-issue
https://docs.github.com/en/github/managing-your-work-on-github/adding-notes-to-a-project-board#converting-a-note-to-an-issue
https://docs.github.com/en/github/managing-your-work-on-github/adding-notes-to-a-project-board#converting-a-note-to-an-issue
https://docs.github.com/en/github/building-a-strong-community/blocking-a-user-from-your-organization#blocking-a-user-in-a-comment
https://docs.github.com/en/github/building-a-strong-community/blocking-a-user-from-your-organization#blocking-a-user-in-a-comment
https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/changing-the-stage-of-a-pull-request#converting-a-pull-request-to-a-draft
https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/changing-the-stage-of-a-pull-request#converting-a-pull-request-to-a-draft
https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/changing-the-stage-of-a-pull-request#converting-a-pull-request-to-a-draft
https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/creating-a-pull-request
https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/creating-a-pull-request
https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/creating-a-pull-request
https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/dismissing-a-pull-request-review
https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/dismissing-a-pull-request-review
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#added_to_project
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#added_to_project
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#assigned
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#assigned
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#assigned

100 online ressources

[38] GitHub Docs Team. Issue event types: Automatic Base Change Failed. Website. Available
online at https://docs.github.com/en/developers/webhooks-and-events/issue-
event-types#automatic_base_change_failed; visited on September 9th, 2020. 2020

(cit. on p. 69).

[39] GitHub Docs Team. Issue event types: Automatic Base Change Succeeded. Website. Avail-
able online at https://docs.github.com/en/developers/webhooks-and-events/
issue-event-types#automatic_base_change_succeeded; visited on September 9th,
2020. 2020 (cit. on p. 70).

[40] GitHub Docs Team. Issue event types: Base Ref Changed. Website. Available online at
https://docs.github.com/en/developers/webhooks-and-events/issue-event-

types#base_ref_changed; visited on September 10th, 2020. 2020 (cit. on p. 70).

[41] GitHub Docs Team. Issue event types: Closed. Website. Available online at https://docs.
github.com/en/developers/webhooks-and-events/issue-event-types#closed;
visited on September 10th, 2020. 2020 (cit. on p. 70).

[42] GitHub Docs Team. Issue event types: Commented. Website. Available online at https:
//docs.github.com/en/developers/webhooks-and-events/issue-event-types#

commented; visited on September 10th, 2020. 2020 (cit. on p. 70).

[43] GitHub Docs Team. Issue event types: Committed. Website. Available online at https:
//docs.github.com/en/developers/webhooks-and-events/issue-event-types#

committed; visited on September 10th, 2020. 2020 (cit. on p. 70).

[44] GitHub Docs Team. Issue event types: Connected. Website. Available online at https:
//docs.github.com/en/developers/webhooks-and-events/issue-event-types#

connected; visited on September 10th, 2020. 2020 (cit. on p. 70).

[45] GitHub Docs Team. Issue event types: Convert To Draft. Website. Available online at
https://docs.github.com/en/developers/webhooks-and-events/issue-event-

types#convert_to_draft; visited on September 10th, 2020. 2020 (cit. on p. 71).

[46] GitHub Docs Team. Issue event types: Converted Note To Issue. Website. Available online
at https://docs.github.com/en/developers/webhooks-and-events/issue-event-
types#converted_note_to_issue; visited on September 10th, 2020. 2020 (cit. on
p. 71).

[47] GitHub Docs Team. Issue event types: Cross Referenced. Website. Available online at
https://docs.github.com/en/developers/webhooks-and-events/issue-event-

types#cross-referenced; visited on September 10th, 2020. 2020 (cit. on p. 71).

[48] GitHub Docs Team. Issue event types: Demilestoned. Website. Available online at https:
//docs.github.com/en/developers/webhooks-and-events/issue-event-types#

demilestoned; visited on September 10th, 2020. 2020 (cit. on p. 71).

[49] GitHub Docs Team. Issue event types: Deployed. Website. Available online at https:
//docs.github.com/en/developers/webhooks-and-events/issue-event-types#

deployed; visited on September 14th, 2020. 2020 (cit. on p. 72).

https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#automatic_base_change_failed
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#automatic_base_change_failed
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#automatic_base_change_succeeded
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#automatic_base_change_succeeded
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#base_ref_changed
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#base_ref_changed
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#closed
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#closed
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#commented
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#commented
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#commented
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#committed
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#committed
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#committed
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#connected
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#connected
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#connected
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#convert_to_draft
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#convert_to_draft
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#converted_note_to_issue
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#converted_note_to_issue
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#cross-referenced
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#cross-referenced
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#demilestoned
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#demilestoned
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#demilestoned
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#deployed
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#deployed
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#deployed

online ressources 101

[50] GitHub Docs Team. Issue event types: Deployment Environment Changed. Website. Avail-
able online at https://docs.github.com/en/developers/webhooks-and-events/
issue-event-types#deployement_environment_changed; visited on September 14th,
2020. 2020 (cit. on p. 72).

[51] GitHub Docs Team. Issue event types: Disconnected. Website. Available online at https:
//docs.github.com/en/developers/webhooks-and-events/issue-event-types#

disconnected; visited on September 10th, 2020. 2020 (cit. on p. 72).

[52] GitHub Docs Team. Issue event types: Head Ref Deleted. Website. Available online at
https://docs.github.com/en/developers/webhooks-and-events/issue-event-

types#head_ref_deleted; visited on September 14th, 2020. 2020 (cit. on p. 72).

[53] GitHub Docs Team. Issue event types: Head Ref Restored. Website. Available online at
https://docs.github.com/en/developers/webhooks-and-events/issue-event-

types#head_ref_restored; visited on September 14th, 2020. 2020 (cit. on p. 72).

[54] GitHub Docs Team. Issue event types: Labeled. Website. Available online at https:

//docs.github.com/en/developers/webhooks-and-events/issue-event-types#

labeled; visited on September 14th, 2020. 2020 (cit. on p. 72).

[55] GitHub Docs Team. Issue event types: Locked. Website. Available online at https://docs.
github.com/en/developers/webhooks-and-events/issue-event-types#locked;
visited on September 14th, 2020. 2020 (cit. on p. 73).

[56] GitHub Docs Team. Issue event types: Marked As Duplicate. Website. Available online
at https://docs.github.com/en/developers/webhooks-and-events/issue-event-
types#marked-as-duplicate; visited on September 10th, 2020. 2020 (cit. on p. 73).

[57] GitHub Docs Team. Issue event types: Mentioned. Website. Available online at https:
//docs.github.com/en/developers/webhooks-and-events/issue-event-types#

mentioned; visited on September 14th, 2020. 2020 (cit. on p. 73).

[58] GitHub Docs Team. Issue event types: Merged. Website. Available online at https:

//docs.github.com/en/developers/webhooks-and-events/issue-event-types#

merged; visited on September 10th, 2020. 2020 (cit. on p. 73).

[59] GitHub Docs Team. Issue event types: Milestoned. Website. Available online at https:
//docs.github.com/en/developers/webhooks-and-events/issue-event-types#

milestoned; visited on September 14th, 2020. 2020 (cit. on p. 73).

[60] GitHub Docs Team. Issue event types: Moved Columns In Project. Website. Available
online at https://docs.github.com/en/developers/webhooks-and-events/issue-
event-types#moved_columns_in_project; visited on September 14th, 2020. 2020

(cit. on p. 73).

[61] GitHub Docs Team. Issue event types: Pinned. Website. Available online at https:

//docs.github.com/en/developers/webhooks-and-events/issue-event-types#

pinned; visited on September 10th, 2020. 2020 (cit. on p. 74).

[62] GitHub Docs Team. Issue event types: Ready For Review. Website. Available online at
https://docs.github.com/en/developers/webhooks-and-events/issue-event-

types#ready_for_review; visited on September 14th, 2020. 2020 (cit. on p. 74).

https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#deployement_environment_changed
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#deployement_environment_changed
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#disconnected
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#disconnected
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#disconnected
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#head_ref_deleted
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#head_ref_deleted
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#head_ref_restored
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#head_ref_restored
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#labeled
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#labeled
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#labeled
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#locked
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#locked
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#marked-as-duplicate
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#marked-as-duplicate
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#mentioned
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#mentioned
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#mentioned
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#merged
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#merged
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#merged
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#milestoned
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#milestoned
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#milestoned
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#moved_columns_in_project
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#moved_columns_in_project
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#pinned
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#pinned
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#pinned
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#ready_for_review
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#ready_for_review

102 online ressources

[63] GitHub Docs Team. Issue event types: Referenced. Website. Available online at https:
//docs.github.com/en/developers/webhooks-and-events/issue-event-types#

referenced; visited on September 14th, 2020. 2020 (cit. on p. 74).

[64] GitHub Docs Team. Issue event types: Removed From Project. Website. Available online
at https://docs.github.com/en/developers/webhooks-and-events/issue-event-
types#removed_from_project; visited on September 14th, 2020. 2020 (cit. on p. 74).

[65] GitHub Docs Team. Issue event types: Renamed. Website. Available online at https:
//docs.github.com/en/developers/webhooks-and-events/issue-event-types#

renamed; visited on September 14th, 2020. 2020 (cit. on p. 74).

[66] GitHub Docs Team. Issue event types: Reopened. Website. Available online at https:
//docs.github.com/en/developers/webhooks-and-events/issue-event-types#

reopened; visited on September 14th, 2020. 2020 (cit. on p. 75).

[67] GitHub Docs Team. Issue event types: Review Dismissed. Website. Available online at
https://docs.github.com/en/developers/webhooks-and-events/issue-event-

types#review_dismissed; visited on September 14th, 2020. 2020 (cit. on p. 75).

[68] GitHub Docs Team. Issue event types: Review Request Removed. Website. Available online
at https://docs.github.com/en/developers/webhooks-and-events/issue-event-
types#review_request_removed; visited on September 14th, 2020. 2020 (cit. on p. 75).

[69] GitHub Docs Team. Issue event types: Review Requested. Website. Available online at
https://docs.github.com/en/developers/webhooks-and-events/issue-event-

types#review_requested; visited on September 14th, 2020. 2020 (cit. on p. 75).

[70] GitHub Docs Team. Issue event types: Reviewed. Website. Available online at https:
//docs.github.com/en/developers/webhooks-and-events/issue-event-types#

reviewed; visited on September 14th, 2020. 2020 (cit. on p. 75).

[71] GitHub Docs Team. Issue event types: Subscribed. Website. Available online at https:
//docs.github.com/en/developers/webhooks-and-events/issue-event-types#

subscribed; visited on September 14th, 2020. 2020 (cit. on p. 75).

[72] GitHub Docs Team. Issue event types: Transferred. Website. Available online at https:
//docs.github.com/en/developers/webhooks-and-events/issue-event-types#

transferred; visited on September 14th, 2020. 2020 (cit. on p. 75).

[73] GitHub Docs Team. Issue event types: Unassigned. Website. Available online at https:
//docs.github.com/en/developers/webhooks-and-events/issue-event-types#

unassigned; visited on September 14th, 2020. 2020 (cit. on p. 76).

[74] GitHub Docs Team. Issue event types: Unlabeled. Website. Available online at https:
//docs.github.com/en/developers/webhooks-and-events/issue-event-types#

unlabeled; visited on September 14th, 2020. 2020 (cit. on p. 76).

[75] GitHub Docs Team. Issue event types: Unlocked. Website. Available online at https:
//docs.github.com/en/developers/webhooks-and-events/issue-event-types#

unlocked; visited on September 14th, 2020. 2020 (cit. on p. 76).

[76] GitHub Docs Team. Issue event types: Unmarked as duplicate. Website. Available online
at https://docs.github.com/en/developers/webhooks-and-events/issue-event-
types#unmarked_as_duplicate; visited on September 12th, 2020. 2020 (cit. on p. 76).

https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#referenced
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#referenced
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#referenced
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#removed_from_project
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#removed_from_project
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#renamed
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#renamed
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#renamed
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#reopened
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#reopened
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#reopened
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#review_dismissed
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#review_dismissed
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#review_request_removed
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#review_request_removed
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#review_requested
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#review_requested
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#reviewed
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#reviewed
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#reviewed
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#subscribed
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#subscribed
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#subscribed
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#transferred
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#transferred
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#transferred
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#unassigned
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#unassigned
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#unassigned
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#unlabeled
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#unlabeled
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#unlabeled
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#unlocked
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#unlocked
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#unlocked
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#unmarked_as_duplicate
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#unmarked_as_duplicate

online ressources 103

[77] GitHub Docs Team. Issue event types: Unpinned. Website. Available online at https:
//docs.github.com/en/developers/webhooks-and-events/issue-event-types#

unpinned; visited on September 12th, 2020. 2020 (cit. on p. 76).

[78] GitHub Docs Team. Issue event types: Unsubscribed. Website. Available online at https:
//docs.github.com/en/developers/webhooks-and-events/issue-event-types#

unsubscribed; visited on September 14th, 2020. 2020 (cit. on p. 76).

[79] GitHub Docs Team. Issue event types: User Blocked. Website. Available online at https:
//docs.github.com/en/developers/webhooks-and-events/issue-event-types#

user_blocked; visited on September 14th, 2020. 2020 (cit. on p. 77).

[80] GitHub Docs Team. Limiting interactions in your repository. Website. Available online
at https://docs.github.com/en/github/building-a-strong-community/limiting-
interactions-in-your-repository; visited on September 25th, 2020. 2020 (cit. on
p. 12).

[81] GitHub Docs Team. Locking conversations. Website. Available online at https://docs.
github.com/en/github/building-a-strong-community/locking-conversations;
visited on September 10th, 2020. 2020 (cit. on pp. 73, 76).

[82] GitHub Docs Team. Merging a pull request. Website. Available online at https://docs.
github.com/en/github/collaborating-with-issues-and-pull-requests/merging-

a-pull-request; visited on September 10th, 2020. 2020 (cit. on pp. 13, 73).

[83] GitHub Docs Team. Pinning an issue to your repository. Website. Available online at
https://docs.github.com/en/free-pro-team\spacefactor\@m{}latest/github/

managing-your-work-on-github/pinning-an-issue-to-your-repository; visited
on November 12th, 2020. 2020 (cit. on p. 74).

[84] GitHub Docs Team. Project board permissions for an organization: Permissions overview.
Website. Available online at https://docs.github.com/en/github/setting-up-

and-managing-organizations-and-teams/project-board-permissions-for-an-

organization#permissions-overview; visited on September 10th, 2020. 2020 (cit. on
p. 71).

[85] GitHub Docs Team. Project board permissions for an organization. Website. Available
online at https : / / docs . github . com / en / github / setting - up - and - managing -

organizations- and- teams/project- board- permissions- for- an- organization;
visited on September 9th, 2020. 2020 (cit. on pp. 69, 73, 74).

[86] GitHub Docs Team. Repository permission levels for an organization. Website. Avail-
able online at https://docs.github.com/en/github/setting-up-and-managing-
organizations-and-teams/repository-permission-levels-for-an-organization#

repository-access-for-each-permission-level; visited on September 9th, 2020.
2020 (cit. on pp. 12, 13, 69–76).

[87] GitHub Docs Team. Requesting a pull request review. Website. Available online at
https://docs.github.com/en/github/collaborating-with-issues-and-pull-

requests/requesting-a-pull-request-review; visited on September 12th, 2020.
2020 (cit. on p. 75).

https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#unpinned
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#unpinned
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#unpinned
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#unsubscribed
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#unsubscribed
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#unsubscribed
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#user_blocked
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#user_blocked
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types#user_blocked
https://docs.github.com/en/github/building-a-strong-community/limiting-interactions-in-your-repository
https://docs.github.com/en/github/building-a-strong-community/limiting-interactions-in-your-repository
https://docs.github.com/en/github/building-a-strong-community/locking-conversations
https://docs.github.com/en/github/building-a-strong-community/locking-conversations
https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/merging-a-pull-request
https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/merging-a-pull-request
https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/merging-a-pull-request
https://docs.github.com/en/free-pro-team\spacefactor \@m {}latest/github/managing-your-work-on-github/pinning-an-issue-to-your-repository
https://docs.github.com/en/free-pro-team\spacefactor \@m {}latest/github/managing-your-work-on-github/pinning-an-issue-to-your-repository
https://docs.github.com/en/github/setting-up-and-managing-organizations-and-teams/project-board-permissions-for-an-organization#permissions-overview
https://docs.github.com/en/github/setting-up-and-managing-organizations-and-teams/project-board-permissions-for-an-organization#permissions-overview
https://docs.github.com/en/github/setting-up-and-managing-organizations-and-teams/project-board-permissions-for-an-organization#permissions-overview
https://docs.github.com/en/github/setting-up-and-managing-organizations-and-teams/project-board-permissions-for-an-organization
https://docs.github.com/en/github/setting-up-and-managing-organizations-and-teams/project-board-permissions-for-an-organization
https://docs.github.com/en/github/setting-up-and-managing-organizations-and-teams/repository-permission-levels-for-an-organization#repository-access-for-each-permission-level
https://docs.github.com/en/github/setting-up-and-managing-organizations-and-teams/repository-permission-levels-for-an-organization#repository-access-for-each-permission-level
https://docs.github.com/en/github/setting-up-and-managing-organizations-and-teams/repository-permission-levels-for-an-organization#repository-access-for-each-permission-level
https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/requesting-a-pull-request-review
https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/requesting-a-pull-request-review

104 online ressources

[88] GitHub Docs Team. Setting base permissions for an organization. Website. Available
online at https : / / docs . github . com / en / github / setting - up - and - managing -

organizations- and- teams/setting- base- permissions- for- an- organization;
visited on September 25th, 2020. 2020 (cit. on p. 13).

[89] GitHub Docs Team. Transferring an issue to another repository. Website. Available on-
line at https://docs.github.com/en/github/managing-your-work-on-github/

transferring-an-issue-to-another-repository; visited on September 12th, 2020.
2020 (cit. on p. 76).

[90] Nextcloud Team. Nextcloud Solution Architecture. Website. Available online at https:
//nextcloud.com/whitepapers/; visited on October 29th, 2020. 2018 (cit. on p. 35).

https://docs.github.com/en/github/setting-up-and-managing-organizations-and-teams/setting-base-permissions-for-an-organization
https://docs.github.com/en/github/setting-up-and-managing-organizations-and-teams/setting-base-permissions-for-an-organization
https://docs.github.com/en/github/managing-your-work-on-github/transferring-an-issue-to-another-repository
https://docs.github.com/en/github/managing-your-work-on-github/transferring-an-issue-to-another-repository
https://nextcloud.com/whitepapers/
https://nextcloud.com/whitepapers/

	Abstract
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Goal of this Thesis
	1.2 Overview

	2 Background
	2.1 Networks
	2.2 GitHub Permissions

	3 Approach
	3.1 Ground Truth
	3.2 Measurement

	4 Implementation
	4.1 Complete Setup
	4.2 Coronet
	4.3 Building the networks

	5 Projects
	5.1 General Information
	5.2 Angular
	5.3 Data Transfer Project (DTP)
	5.4 Keras
	5.5 Nextcloud
	5.6 Node.js
	5.7 OpenSSL
	5.8 Owncloud

	6 Evaluation
	6.1 Results
	6.2 Discussion
	6.3 Threats to Validity

	7 Related Work
	8 Concluding Remarks
	8.1 Conclusion
	8.2 Future Work

	A Appendix
	A.1 Issue Event Types

	 Bibliography
	 Online Ressources

