
University of Passau

Department of Informatics and Mathematics

Master’s Thesis

Energy and Performance Evolution
of Configurable Systems:

Case Studies and Experiments

Author:

Niklas Werner

September 26, 2019

Examiners:

Prof. Dr. Sven Apel

Chair of Software Engineering I

Prof. Dr. Gordon Fraser

Chair of Software Engineering II

Advisor:

Christian Kaltenecker

Chair of Software Engineering I

Werner, Niklas:
Energy and Performance Evolution of Configurable Systems: Case Studies and Ex-
periments
Master’s Thesis, University of Passau, 2019.

Abstract

Contemporary software systems are often highly configurable and additionally they
change over time (evolve). These changes do not only affect the functionality but
also non-functional properties such as performance and energy consumption. While
performance has always been important and in the focus of optimizations, recently
energy consumption is becoming increasingly more relevant. However, reducing
energy consumption while maintaining or even improving performance at the same
time is not trivial and requires an understanding of the relation between performance
and energy consumption and their behaviour with respect to software evolution. Ex-
isting studies in this field have either considered only the performance but not the
energy consumption or have compared performance and energy consumption with-
out considering the aspect of evolution. In this thesis, we combine these aspects
in an exploratory manner by measuring and evaluating the performance and energy
consumption of different releases and configurations of four case studies – HSQLDB ,
Apache httpd , PostgreSQL and libvpx VP8 . For the evaluation, we directly compare
performance and energy consumption and also investigate influences of specific con-
figuration options on the performance and energy consumption. Additionally, we
consider the correlation between performance and energy consumption. We find
that there are changes in performance and energy consumption over the course of
time and that changes equally affect performance and energy consumption. We are
also able to attribute changes to specific configuration options in some cases. Addi-
tionally, we find that there are changes in the correlation, but we cannot determine a
clear relation between changes in the correlation and specific configuration options.

v

vi

Contents

List of Figures x

List of Tables xi

1 Introduction 1

2 Related Work 3

3 Background 7
3.1 Types of Software . 7
3.2 Configurable Software Systems . 7
3.3 Software Evolution . 9
3.4 Performance . 10
3.5 Energy Consumption . 11
3.6 Performance-Influence and Energy-Influence Models 13
3.7 Pearson Correlation . 15

4 Methodology 17
4.1 Research Questions . 17

4.1.1 RQ1: Performance and Energy Consumption 17
4.1.2 RQ2: Correlation between Performance and Energy 18

4.2 Case Studies . 19
4.2.1 HSQLDB . 19
4.2.2 Apache httpd . 22
4.2.3 PostgreSQL . 25
4.2.4 libvxp VP8 . 27

4.3 Experimental Setup . 30
4.3.1 Hardware and Measurement Setup 30
4.3.2 Case Studies . 30

4.4 Operationalization . 32
4.4.1 RQ1.1: Changes in Mean Performance and Energy 32
4.4.2 RQ1.2: Changes in Performance and Energy of Configurations 34
4.4.3 RQ1.3: Changes in Performance and Energy of Features . . . 35
4.4.4 RQ2.1: Changes in the Correlation 36
4.4.5 RQ2.2: Changes in the Correlation of Features 37

5 Evaluation 39
5.1 RQ1.1: Changes in Mean Performance and Energy 39

viii Contents

5.2 RQ1.2: Changes in Performance and Energy of Configurations 44
5.3 RQ1.3: Changes in Performance and Energy of Features 54
5.4 RQ2.1: Changes in the Correlation 61
5.5 RQ2.2: Changes in the Correlation of Features 66

6 Validity 71
6.1 Internal Validity . 71
6.2 External Validity . 73

7 Conclusion and Future Work 75

A Appendix 77
A.1 Content of the Accompanying CD . 77
A.2 List of Releases . 78
A.3 Additional Plots . 78

Bibliography 83

List of Figures

3.1 Example feature diagram for a database 9

3.2 Fixed duration energy consumption 12

4.1 Feature diagram for the HSQLDB case study 20

4.2 Feature diagram for the Apache httpd case study 23

4.3 Feature diagram for the PostgreSQL case study 26

4.4 Feature diagram for the libvpx VP8 case study 28

5.1 Mean performance and energy consumption for HSQLDB 40

5.2 Mean performance and energy consumption for PostgreSQL 41

5.3 Mean performance and energy consumption for libvpx VP8 41

5.4 Performance and energy consumption for configurations and releases
of HSQLDB . 45

5.5 Performance and energy consumption for configurations and releases
of Apache httpd . 46

5.6 Performance and energy consumption for configurations and releases
of PostgreSQL . 47

5.7 Performance and energy consumption for configurations and releases
of libvpx VP8 . 51

5.8 Performance-influence and energy-influence models for HSQLDB . . 55

5.9 Performance-influence and energy-influence models for Apache httpd 56

5.10 Performance-influence and energy-influence models for PostgreSQL . 56

5.11 Performance-influence and energy-influence models for libvpx VP8 . 57

5.12 Correlation for subsets of the configurations space of HSQLDB . . . 66

5.13 Correlation for subsets of the configurations space of Apache httpd . 67

5.14 Correlation for subsets of the configurations space of PostgreSQL . . 68

5.15 Correlation for subsets of the configurations space of libvpx VP8 . . 69

x List of Figures

A.1 Mean performance and energy consumption for Apache httpd 79

A.2 Performance-influence and energy-influence models for libvpx VP8 . 80

A.3 Correlation for subsets of the configurations space of libvpx VP8 . . 81

List of Tables

4.1 Apache http process and thread counts 22

4.2 Interpretation of correlation coefficients 36

5.1 Prominent releases of each case study 42

5.2 Number of prominent configurations of the HSQLDB case study . . . 48

5.3 Number of prominent configurations of the Apache httpd case study 49

5.4 Number of prominent configurations of the PostgreSQL case study . 50

5.5 Number of prominent configurations of the libvpx VP8 case study . . 52

5.6 Overall correlation for HSQLDB . 61

5.7 Overall correlation for Apache httpd 62

5.8 Overall correlation for PostgreSQL 63

5.9 Prominent releases w.r.t. the correlation of each case study 63

xii List of Tables

1. Introduction

Nowadays, software systems are complex. Not only are they often highly config-
urable, offering a vast number of configuration options, allowing the software to be
adapted to many different scenarios. They are also not static but are updated over
time, they change. Software is said to evolve. These changes do not only affect
the codebase and functionality of software, but they can also have an impact on
non-functional properties, such as performance or energy consumption.

Performance in software systems has always been important, be it for high-perfor-
mance computing or simply for user experience. Who wants to wait for a program to
produce some result? With an ever increasing demand for computing power, there
is also more and more energy consumption from computers. In contrast to that, the
reduction of energy consumption as a whole is becoming more and more important.
Reducing energy consumption while maintaining a high performance is not trivial for
evolving configurable software systems. Every single configuration option and every
single change can not only extend or modify the functionality of the software system,
but can potentially also influence the non-functional properties. Such optimizations
require an understanding of the relation between these two non-functional properties
and their evolutionary behaviour.

There has been previous work in this field, investigating specific aspects of this
topic. Siegmund et al. [SGAK15] investigate the performance in configurable soft-
ware systems without considering the aspects of energy consumption or software
evolution. In another related study, Tsirogiannis et al. [THS10] are concerned with
the connection between performance and energy consumption without explicitly
considering configurable systems or evolution. In our own previous work [Wer17],
we investigated interactions of performance and energy consumption in configurable
systems, combining the previous two studies while still not considering evolution.
Finally, Hasreiter [Has19] combined the aspect of evolution with performance in
configurable systems, but without considering the energy consumption.

This thesis builds upon our own previous work and the work of Hasreiter to com-
bine all of these aspects: We investigate the evolution of performance and energy

2 1. Introduction

consumption in configurable systems. We measure the performance and energy con-
sumption of four case studies, the database servers HSQLDB and PostgreSQL, the
web server Apache httpd and the video encoder libvpx VP8 . We then evaluate our
measurement results to answer the question of whether and how performance and
energy consumption of software systems, as well as the relation between those two
non-function properties, change over time. For this evaluation, we investigate the
measured performance and energy consumption directly, employ with influence mod-
els a modelling approach introduced by Siegmund et al. [SGAK15] to investigate
the impact of specific configuration options on performance and energy consump-
tion, and additionally consider the correlation between these two non-functional
properties.

This thesis is structured as follows:

First, we present an overview on related work in Chapter 2. There we demonstrate
how this work relates to other studies related to this subject, in particular the
aforementioned ones.

Then, in Chapter 3, we provide relevant background information and introduce
terminology used throughout this thesis, starting with different types of software,
configurable software and software evolution. We define what we consider as per-
formance and energy consumption, and describe influence models and the Pearson
correlation, which we use as part of our operationalization.

Afterwards, we describe our methodology in Chapter 4. First, we introduce our
research questions. Then, we describe our case studies and experimental setup.
Finally, we explain the operationalization, detailing how we answer the research
questions.

In the evaluation in Chapter 5, we answer the research questions one by one, pre-
senting and discussing the results for each.

Having presented the results, we dedicate Chapter 6 to our consideration regarding
both the internal and external validity of our findings.

Finally, we conclude this thesis in Chapter 7 with a summary, and outline ideas for
possible future work.

2. Related Work

In this chapter, we provide an overview on work related to one or more of the aspects
of this thesis. We point out differences between this thesis and the related work and
at the same time motivate this thesis.

Performance and Energy Consumption

There have been several studies comparing performance and energy consumption.

Tsirogiannis et al. [THS10] analyse the energy efficiency of database systems. They
measure the performance and energy consumption of so called ‘micro-benchmarks’,
that they developed specifically for this purpose, and additionally specific algorithms
that are used by the popular database system PostgreSQL. Energy consumption is
measured for individual hardware components rather than the system as a whole,
with the evaluation being focused on the energy consumption of the CPU. The
comparison is performed between performance and energy efficiency, which are both
defined to include the amount of work done. The measurements are performed
with different combinations of software and hardware configurations. Their findings
indicate a correlation between performance and energy efficiency.

In this work, we take a less fine-grained approach by measuring energy consumption
of the whole system and using complete software systems, rather than only ‘micro-
benchmarks’.

Another study, by Costa et al. [CAKLR11], also compares performance and energy
efficiency. The authors define a notion of performance and energy efficiency. En-
ergy consumption is measured for the whole system, as opposed to measuring for
individual components like in the study by Tsirogiannis et al. The study indepen-
dently determines break-even points in data deduplication systems for performance
and energy efficiency. Similar to the previously described study, different hardware
configurations are used. They find that newer hardware systems are increasingly
more power-proportional, i.e. the power consumption is proportional to the re-
source utilization. They conclude that tradeoffs exist between performance and
energy optimizations for such newer hardware.

4 2. Related Work

We perform a more direct comparison between performance and energy consump-
tion. The hardware we use for our measurements falls into the category of newer
hardware as described by Costa et al.

Finally, Xu et al. [XTW10] evaluate the performance and power consumption of
database systems to find power–performance tradeoffs. They use PostgreSQL with
a benchmark based on TPC. Power consumption and energy consumption are mea-
sured for the whole system and are compared directly with run time. They do not
use a notion of performance or of efficiency. The comparisons are performed for
multiple workloads. They find that tradeoffs exist between power and performance
and describe how software could considerably decrease its power consumption while
only marginally affecting performance, by making software aware of its power con-
sumption.

We take a similar approach regarding the direct comparison of energy and run time
without a notion of efficiency and also measure complex software systems.

While Tsirogiannis et al. consider software configurations to some extent, none of
these studies explicitly consider configurable systems or the influences of specific
configuration options on the performance or energy consumption.

Performance Influences of Configurable Systems

Among others, Siegmund et al. and Jamshidi et al. investigate the performance
of configurable software systems. In particular, they model the influences of spe-
cific configuration options and interactions between options on the performance of a
system. Siegmund et al. [SGAK15] propose an approach for creating performance-
influence models, that describe the influence of individual configuration options
and interactions among them on performance or other non-functional properties.
Jamshidi et al. [JSV+17] apply transfer learning to these models to avoid or reduce
the cost of relearning models by adapting them to environmental changes.

Performance and Energy in Configurable Systems

In previous work [Wer17], we combined the previous two approaches, of on the one
hand, comparing performance and energy consumption, and on the other hand, in-
vestigating performance influences of configuration options in configurable software
systems. We investigated influences of configuration options on both the perfor-
mance and energy consumption and compared performance and energy consumption,
as well as their correlation, for different configurations. We found that performance
and energy consumption are generally linearly correlated, however, how strong the
correlation is, depends on the type of software system. We identified two different
types of software systems, application software and infrastructure software, with
different correlation behaviour, namely that there is generally a stronger correlation
between performance and energy consumption in application software. We found
that the correlation behaviour also depends on specific configuration options. In
particular, for infrastructure software, only specific configuration options result in
the weaker correlation compared to application software.

In this thesis, we take a similar approach of comparing performance and energy
consumption of configurable software systems, additionally considering the aspect

5

of software evolution. We also consider again the correlation between performance
and energy consumption and investigate whether the correlation changes over time.

Performance Evolution

The work of Sandoval Alcocer et al. [SBDD13] is concerned with the the evolution
of performance, i.e. changes in performance caused by the evolution of software.
Software evolves by being changed over time. They propose a visualization approach
to aid in investigating performance evolution.

Mühlbauer et al. [MAS19] model the evolution of performance in different software
systems, including configurable systems. They use machine learning to estimate the
evolution of performance with a minimal measurement effort.

In his master’s thesis, Hasreiter [Has19] combined two different aspects, one of them
being performance influences in configurable software systems and the other one
being performance evolution. In his exploratory study, he measured the performance
for multiple configurations and releases of different software systems. He found that
performance changes can be attributed to specific releases and in some cases also to
specific configuration options. Additionally, he investigated whether these changes
are also reflected in documentation.

We combine the approach of Hasreiter with that of our own previous work to investi-
gate performance changes but also energy changes and the relation between the two,
in configurable and evolving software systems, i.e. we consider both configurations
and releases of a software system.

6 2. Related Work

3. Background

In this chapter, we provide background information related to the topic of this thesis
and introduce terminology used throughout the following chapters.

3.1 Types of Software

The related work in Chapter 2 indicates, that the behaviour of performance and
energy consumption, and in particular their correlation is different depending on
the type of software system.

Therefore, we continue to use the terminology we used in our previous work [Wer17]
and distinguish between application software and infrastructure software.

Infrastructure software is typically used in a server–client scenario. It runs continu-
ously, whether it is currently in use (e.g. serving requests) or not. This means, that
resources are consumed whether the software is performing a task or not. Examples
for this type of software include web servers and database servers.

Application software, on the other hand, only runs when it is actually in use. Re-
sources are only used when the software performs a task; when there is no task
to perform, the software does not run. Examples for this type of software include
compression tools and video encoders.

3.2 Configurable Software Systems

Nowadays, most software is configurable. Being configurable means that there are
configuration options (also called features), that make it possible to enable or disable
specific functionality of the software or to change the behaviour of specific function-
ality. Configuration options can provide variability at compile-time or at runtime.
We focus on configuration options that can be specified at runtime, e.g. as com-
mand line parameters or in a configuration file (with one exception of a configuration
option that we need to specify at compile-time for compatibility reasons).

8 3. Background

We distinguish between two different types of configuration options . Binary options
can either be selected (enabled) or deselected (disabled). Numeric options have a
specific real number value from a set of valid values for the particular option.

A specific valid combination of configuration options is a configuration. Not all com-
binations of configuration options are valid. There may be constraints on the set of
valid combinations, e.g. a configuration option may be required or two configuration
options might be mutually exclusive.

Configuration options and configurations can mathematically be represented as sets.
We reuse the notation used by Siegmund et al. [SGAK15] and denote the set of all
configuration options as O and the set of all configurations as C. The set of all
configurations is also called the configuration space. A configuration c ∈ C is a
function c : O → R. For a binary option ob ∈ O, c(ob) = 1 if the option is selected in
the configuration c, c(ob) = 0 otherwise. For a numeric option on, c(on) = x, x ∈ R
where x is the value for option on in the configuration c and x is a valid value for
option on. Constraints on valid configurations are Boolean expressions.

In some situations we want to express a specific subset of the configuration space.
We can define such a subset Cs ⊂ C by a constraint s.

The size of the configuration space grows exponentially with the number of configu-
ration options and is huge for many contemporary software systems as discussed by
Xu et al. [XJF+15]. We use a feature model , consisting of the set of configuration
options , together with a set of constraints to represent the configuration space.

A feature model can be graphically represented as a feature diagram which consists
of a tree visualizing the configuration options with their constraints and additional
so called cross-tree constraints , which are constraints that cannot be represented in
the tree.

In Figure 3.1, we show an example for a feature diagram using our notation. The
feature diagram visualizes a feature model describing configurations of the software
‘ExampleDatabase’. The set of configuration options is:

O = {OS,Windows,Unix,Encryption,HardwareAcceleration,

Transactions,CacheSize}.

‘OS’ is a mandatory option, denoted by a filled circle, i.e. it has to be present in
every configuration. This is equivalent to the constraint simply consisting of the
variable OS.

‘Transaction’, ‘Encryption’ and ‘HardwareAcceleration’ are optional, denoted by an
empty circle. Since ‘HardwareAcceleration’ is a child of ‘Encryption’, it may only
be present in configurations with ‘Encryption’. This is equivalent to the following
constraint :

HardwareAcceleration =⇒ Encryption

‘Windows’ and ‘Unix’ form an alternative group. One of these options is required
(for configurations in which the parent option is present, which is always the case

3.3. Software Evolution 9

Abstract

Concrete

Numeric

Value

Optional

Mandatory

Alternative

Alternative

Legend:

Example
Database

OS
Windows

Unix

Encryption
Hardware

Acceleration

Transactions

CacheSize

10

100

1 000

Cross-tree constraints:
¬Encryption ∨ ¬Transactions

Figure 3.1: Example feature diagram for a database with binary configuration
options ‘OS’, ‘Windows’, ‘Unix’, ‘Encryption’, ‘HardwareAcceleration’ and ‘Trans-
actions’, and a numeric configuration option ‘CacheSize’.

in the example since ‘OS’ is mandatory), but they are mutually exclusive. This is
equivalent to the following constraints :

Windows ∨ Unix =⇒ OS

¬Windows ∨ ¬Unix

The option ‘CacheSize’ is numeric and has the set {10, 100, 1 000} of valid values.

In the example, ‘Encryption’ and ‘Transactions’ are mutually exclusive, which can-
not be represented as part of the tree of the feature diagram. The corresponding
constraint is simply included underneath the tree as a cross-tree constraint .

3.3 Software Evolution

According to Lehman [Leh80], a piece of software, once developed, is not static but
there is a constant need for improvement. Software evolves over time. Some of the
most common reasons for the need to modify existing software are the fixing of bugs,
the mitigation of security issues or the addition of new functionality.

Nowadays, the source code for most software is stored in a version control system
such as Git1 or Subversion2 (SVN) . In these systems, changes to the source code
can be committed and assigned a descriptive message. Changes are typically only
committed when a meaningful increment to the software has been implemented
(e.g. one specific bug fixed). We call each of these small, meaningful increments of
a software revisions .

1https://git-scm.com/ – last visited on 2019-08-18
2https://subversion.apache.org/ – last visited on 2019-08-18

https://git-scm.com/
https://subversion.apache.org/

10 3. Background

In many cases, a revision is not considered to be a finished version of the software
(e.g. new functionality is implemented in several small increments over the course
of several revisions). Only some revisions are thus considered to form a new version
of the software and are assigned a version number. These are then published, or
released, by the maintainer of the software. We call such a revision a release.

In this thesis, we focus only on releases .

3.4 Performance

Performance can be defined and measured in different ways. The term is commonly
used to refer to how well or how fast a system operates. How well a system performs,
can be seen as either the amount or quality of the work performed.

Tsirogiannis et al. [THS10] define performance generically as a ratio of the amount
or quality of work done to the time needed for it:

Performance =
Work done

Time
(3.1)

In this thesis, we do not consider any qualitative attributes of the performed work
and are instead only interested in the time it takes to perform a specific workload.
Since the amount of Work done is now constant, performance is only defined by the
time it takes to execute the workload. Thus, we can use a simplified definition of
performance:

Performance = Run time (3.2)

The different types of software we introduced in Section 3.1, application software
and infrastructure software, require different approaches to measuring performance.

Application software directly executes the workload and runs exactly for the amount
of time it needs to perform it. Performance can be measured directly by determining
the execution time of the measured software.

Infrastructure software runs in a client–server setup where the measured software
runs as server. The server may already be running before the workload is started
and will remain running after it is completed. The workload itself is executed with
the help of a benchmark client that communicates with the measured software over
a network. The benchmark client runs only for the duration of the workload. Conse-
quently, while performance is still determined by the execution time of the workload,
it is no longer measured directly at the measured software but rather at the bench-
mark client.

Note, however, that while the performance is determined by the execution time of a
benchmark, this does not necessarily mean that the time span from starting a process
to its end is measured. In many cases, both application software and benchmark
clients for infrastructure software write accurate timing information to a log file.
These times can more accurately represent the execution time of the workload and
we use them whenever they are available.

Throughout this thesis, we use the symbol p to denote a specific performance.

3.5. Energy Consumption 11

3.5 Energy Consumption

We measure the energy consumption of the whole system, rather than the energy
consumption of individual components like the CPU.

Due to restrictions in the experimental setup, we cannot directly measure the energy
consumption, but we can measure the power consumption periodically. Since energy
is defined as the product of power and time, we can calculate the energy consumption
as a sum of power consumption values over time:

E =

d tend
∆t e∑

t=b tstart
∆t c

P (t ∆t) ·∆t (3.3)

E is the energy consumption between the start of the measurement tstart and the
end of the measurement tend. P (t) is the power consumption measured at the time t
and ∆t is the interval between individual measurements of the power consumption.

Since we can only accurately measure energy consumption for time spans that are
multiples of the measurement interval ∆t, and the accuracy of the energy consump-
tion generally depends on the accuracy of the power consumption measurements,
we want to set the measurement interval as short as possible.

With our measurement setup, setting ∆t = 1s is reasonable. Since we want to
determine the energy consumption in units of power consumption per second, this
interval considerably simplifies the calculation for energy consumption. Energy con-
sumption can simply be calculated as the sum of power consumption values for each
second during the measurement:

E =

dtende∑
t=btstartc

P (t) · 1s (3.4)

tstart and tend are measured in seconds. E and P (t) are used as above.

Just as the distinction between application software and infrastructure software af-
fects the definition of performance, it also has an impact on the notion of energy
consumption.

For application software, measuring energy consumption is straightforward. Energy
consumption is simply measured and calculated according to Equation 3.4 from the
start time until the end time of the execution of the workload.

Infrastructure software, on the other hand, behaves different from application soft-
ware in that it runs even when it is not performing any tasks. While this is irrelevant
for performance, it is of interest for energy consumption, since the system running
the software consumes energy even when the software is idle. This raises the ques-
tion of whether and how the idle energy consumption should be included in the
measurement. While in a real world scenario, one could certainly argue to define

12 3. Background

the energy consumption of one period of active use to include the idle energy con-
sumption before or after that period up to the next period of active use. However,
this is not suitable in an experimental environment, where the duration of the idle
period is not determined by the utilization of the infrastructure software but rather
by the experimental setup which defines when a measurement begins and when it
ends. Moreover, for some comparisons of performance and energy consumption it is
desirable to include the idle energy consumption to emulate a real world scenario,
whereas for other comparisons, using the same definition of energy consumption as
for application software is preferable.

In this thesis, we answer the question by determining what we call the fixed time
energy consumption and using this notion of energy consumption whenever appro-
priate. Conceptually, fixed time energy consumption is the energy consumption of
infrastructure software during a fixed time span that is the same for all configura-
tions of a case study. The fixed time span has to be large enough to contain the
execution time of the slowest configuration. Fixed time energy consumption includes
the energy consumption during active use and the idle energy consumption until the
end of the fixed time.

tstart tend tfixed tstart tend tfixed

idle

idle

en
er

gy
 c

on
su

m
pt

io
n

time

en
er

gy
 c

on
su

m
pt

io
n

time

tadd tadd

Figure 3.2: Fixed time energy consumption for infrastructure software. The left
graph shows the energy consumption over the course of a measurement for a slow
configuration and the right graph for a fast configuration. The energy consumption
after the end of the benchmark tend until the conceptual end of the measurement
with a fixed duration tfixed is the idle energy consumption of the system. The actual
measurement starts at tstart and ends at tend + tadd.

Since in many cases there is a large discrepancy in the execution time between the
fastest and slowest configurations of a case study, it is not practical to measure all
configurations for the whole duration of the fixed time. Instead, we assume that
the idle energy consumption is sufficiently constant for each configuration to be
extrapolated from a short period of time tadd. We define the extrapolated fixed time
energy consumption Efixed with fixed time tfixed as follows:

Efixed =E +
tfixed − tend

tadd

· Eadd (3.5)

E is the energy consumption between tstart and tend as defined above. Eadd is anal-
ogously the energy consumption between tend and tend + tadd.

3.6. Performance-Influence and Energy-Influence Models 13

We illustrate the situation in Figure 3.2.

Throughout this thesis, we use the symbol e to denote a specific energy consumption.
Since the fixed time energy consumption is only defined for infrastructure software,
we use ef to denote the fixed time energy consumption for infrastructure software
but the (regular) energy consumption for application software.

3.6 Performance-Influence and Energy-Influence

Models

Siegmund et al. [SGAK15] introduce the concept of a performance-influence model
to describe the performance of configurable systems. More specifically, such a model
describes the influence of individual configuration options and interactions between
configuration options on the performance of all configurations .

Interactions of configuration options are influences that only appear with a certain
combination of configuration options , but not with the individual configuration op-
tions by themselves. Interactions can have obvious reasons such as the existence of
code that is only ever executed with a specific combination of configuration options.
Sources of interactions can however be more subtle. For example, in a database
system, a configuration option ‘Encryption’ might not change its behaviour whether
another configuration option ‘Compression’ is selected or not, and will always exe-
cute the same code. However, when compression is enabled, the performance impact
of the encryption might still change, simply because compression results in a reduc-
tion of the amount of data that needs to be encrypted.

While these models are introduced as performance-influence models, they can be
used to describe influences of configuration options on any measurable non-functional
property , in particular also the energy consumption. We use the term performance-
influence model for a model of the performance and the term energy-influence model
for a model of the energy consumption. When generically referring to a model of
any non-functional property , we simply use the term influence model .

In addition to introducing influence models, Siegmund et al. [SGAK15] also propose
an iterative machine-learning algorithm to derive such models from a sample of
measured configurations (or the whole population) and provide an implementation
of the algorithm with the tool SPL Conqueror 3. We use SPL Conqueror to generate
the performance-influence and energy-influence models for this thesis.

We generate performance-influence and energy-influence models for each release of
each case study and use them to compare between releases and between performance
and energy consumption. This requires us to have comparable models. While both
binary and numeric configuration options can be represented in influence models , we
choose to convert numeric options to binary options by discretizing them. Conse-
quently, we only need to represent binary configuration options in influence models .
To discretize a feature model , each numeric configuration option is replaced with an
alternative group with one alternative for each valid value of the numeric option.

3https://github.com/se-passau/SPLConqueror – last visited on 2019-08-18

https://github.com/se-passau/SPLConqueror

14 3. Background

The general form of a performance-influence model is as follows:

Π(c) = β0 +
∑
o∈O

φo(c(o)) +
∑

o1..on∈O

Φo1..on(c(o1)..c(on)) (3.6)

Π(c) is the performance of a configuration c ∈ C. The set of all configuration options
O and the set of all configurations C are used as defined in Section 3.2. β0 is a con-
stant base value for the performance of all configurations , which is independent of the
configuration. φo(c(o)) is the influence on the performance of a single configuration
option o ∈ O based on its presence in the configuration c and Φo1..on(c(o1)..c(on))
is the influence on the performance from multiple configuration options o1..on ∈ O
based on their presence in the configuration c.

Analogously to the definition of a performance-influence model Π(c), we denote an
energy-influence model as E(c).

The following example could be an excerpt from a performance-influence model for
the example database system described in Section 3.2 with the feature diagram in
Figure 3.1. Abbreviations are used for the configuration options : Transactions (T),
Encryption (E), HardwareAcceleration (H), CacheSize=10 (C10), CacheSize=1 000
(C1 000).

Π(c) = 100 + 20 · c(T) + 50 · c(E)− 30 · c(E) · c(H)

+ 15 · c(E) · c(C10)− 10 · c(T) · c(C1 000)
(3.7)

In the example, there are interactions between ‘Encryption’ and ‘HardwareAccelera-
tion‘, between ‘Encryption’ and a ‘CacheSize’ of 10, as well as between ‘Transactions’
and a ‘CacheSize’ of 1 000. From the model, the performance of a configuration could
be calculated by simply plugging in a configuration c into the formula. For example,
a configuration c1 with ‘Encryption’, ‘Transactions’ and a ‘CacheSize’ of 10 would
have the following performance according to the model:

Π(c1) = 100 + 20 · c1(T) + 50 · c1(E)− 30 · c1(E) · c1(H)

+ 15 · c1(E) · c1(C10)− 10 · c1(T) · c1(C1 000)

= 100 + 20 · 1 + 50 · 1− 30 · 1 · 0 + 15 · 1 · 1− 10 · 1 · 0
= 100 + 20 + 50− 0 + 15− 0 = 185

(3.8)

When comparing influence models , it is desirable to have the same terms, i.e. config-
uration options and interactions, in all models. This is impractical with the default
learning approach of SPL Conqueror , which is iterative: An optimal term is added
in every iteration until the algorithm terminates, either once a certain error rate has
been reached or when an iteration no longer yields an improvement that exceeds a
specified threshold. Consequently, models for different datasets that have a common
set of configuration options will usually not all contain the same terms.

3.7. Pearson Correlation 15

SPL Conqueror offers an alternative to the iterative approach: a fitting algorithm
that takes model terms as input and determines only the factors for each given term.

We combine these two approaches by using the iterative algorithm to determine
relevant terms and then manually combine and filter those terms from different
models. We then use the resulting set of terms to generate all models using the
fitting algorithm.

3.7 Pearson Correlation

Since we are examining the correlation between performance and energy consump-
tion, we need a metric for the correlation. We use the Pearson correlation coefficient ,
which was developed by Pearson towards the end of the 19th century [Pea96]. It is a
measure for the linear correlation between two variables. Benesty et al. [BCHC09]
define the Pearson correlation coefficient as follows:

ρ(a, b) =
cov(a, b)

σaσb

cov(a, b) =
1

n

n∑
i=1

(ai − ā)(bi − b̄)

σa =
1

n

n∑
i=1

(ai − ā)2

(3.9)

ρ(a, b) is the Pearson correlation coefficient of a and b, cov(a, b) is the cross-correla-
tion, or covariance, between a and b, and σa is the standard deviation of a. ā is the
mean of a.

The Pearson correlation coefficient can assume values ranging from −1 to 1. A
Pearson correlation coefficient of 0 indicates no linear correlation, while a Pearson
correlation coefficient with an absolute value approaching 1 indicates a strong linear
correlation. An absolute value of less than 0.5 is generally said to indicate only a
weak linear correlation. Absolute values greater than 0.8 typically indicate a strong
correlation.

16 3. Background

4. Methodology

In this chapter, we describe the methodology we use in this thesis. First, we intro-
duce our research questions. Next, we list the case studies we use for our experi-
ments. It follows our experimental setup and we conclude the chapter with a more
in-depth description of the operationalization of our case studies.

4.1 Research Questions

We have two research questions which are subdivided into respectively three and
two subordinate questions with different levels of abstraction. In the first research
question we investigate the evolutionary behaviour of performance and energy con-
sumption independently and compare between the two. In the second research ques-
tion, we investigate the correlation between performance and energy consumption
and how it changes between different releases .

4.1.1 RQ1: Performance and Energy Consumption

In our first research question, we consider the two non-functional properties per-
formance and energy consumption independently and compare between them. We
investigate if there are changes in the performance and energy consumption of soft-
ware systems across releases , i.e. over time, and whether these changes behave
similarly for performance and energy consumption.

RQ1: Are there changes in the performance and energy consumption across
releases?

RQ1.1: Are there changes in the mean performance and mean energy
consumption across releases?

In the first subordinate question, we do not consider individual configurations but
rather use the mean of the performance and energy consumption over all configu-
rations for each release. We investigate both the quantity and quality of changes

18 4. Methodology

in performance and energy consumption between consecutive releases . Addition-
ally, we compare whether these results are the same or different for performance
and energy consumption. Using the mean values allows us to get an overview on the
evolutionary behaviour of performance and energy consumption in a simple manner,
without having to consider a value for every single configuration.

RQ1.2: Are there changes in the performance and energy consumption
of individual configurations across releases?

Increasing the granularity, we now consider individual configurations in the second
subordinate question. Again, we consider the quantity and quality of changes in per-
formance and energy consumption between consecutive releases and whether there
are differences in our observations between performance and energy consumption.
The increased granularity (individual configurations rather than mean over all con-
figurations) allows us to detect changes that may not affect all configurations or
even opposing changes that may cancel each other out and may not appear in the
mean values of the previous research question at all.

RQ1.3: Are changes in performance and energy consumption caused by
specific individual features or feature interactions?

In a third step, we further increase the level of abstraction by investigating configu-
ration options instead of configurations . To achieve this, we apply the learning al-
gorithms of SPL Conqueror to generate performance-influence and energy-influence
models . Now we are no longer investigating individual configurations but rather the
influence of specific configuration options and combinations of configuration options .
This allows us to relate specific changes in the performance and energy consumption
to specific configuration options and interactions.

4.1.2 RQ2: Correlation between Performance and Energy

In the second research question, we consider the correlation between performance
and energy consumption. We investigate whether the correlation between perfor-
mance and energy consumption changes across releases .

RQ2: Are there changes in the correlation between performance and energy
consumption across releases?

RQ2.1: Are there changes in the correlation between performance and
energy consumption across releases?

In the first subordinate question concerned with the correlation, we compare the
correlation between performance and energy consumption of consecutive releases .
In this question, we consider the correlation of all configurations for each release.

4.2. Case Studies 19

RQ2.2: Are changes in the correlation between performance and energy
consumption caused by specific individual features?

For this subordinate question, we increase the granularity and consider the cor-
relation between performance and energy consumption for different subsets of the
configuration space. We take a subset of the configuration space for each configura-
tion option and for each valid value of the respective configuration option. We then
compare whether changes in the correlation across consecutive releases are different
depending on the configuration option. This allows us to abstract from the con-
figurations and investigate the correlation behaviour of the different configuration
options .

4.2 Case Studies

In the previous section we presented our research questions. To answer these ques-
tions, we measure the performance and energy consumption of four case studies and
evaluate the results. In this section, we describe the case studies. Three of the case
studies, HSQLDB , Apache httpd and PostgreSQL are infrastructure software. The
fourth case study, libvpx VP8 is application software. For each of the case studies,
we present a feature model to describe the configuration space, explain which releases
we selected and describe the workload or benchmark we use.

4.2.1 HSQLDB

Our first case study, HyperSQL DataBase1, or HSQLDB , is a SQL database written
in Java. It can be embedded into applications or run as stand-alone database server.
We are using it as database server, which makes it an example for infrastructure
software.

Configuration Space

We used the documentation2 of HSQLDB to identify configuration options and
selected suitable configuration options based on previous experience with measuring
HSQLDB .

In the following list, we describe the configuration options and in Figure 4.1 we show
the corresponding feature model .

memoryTables: By default, HSQLDB stores database tables completely in mem-
ory. This configuration option indicates the default behaviour.

cachedTables: This configuration option configures HSQLDB to store database
tables on disk and only keep some of the data in memory.

cacheSize: This numeric configuration option configures the amount of data to
keep in memory for cached tables. The unit is kilobytes. The default value is
10 000.

1http://hsqldb.org/ – last visited on 2019-08-23
2http://hsqldb.org/doc/2.0/guide/guide.pdf – last visited on 2019-08-23

http://hsqldb.org/
http://hsqldb.org/doc/2.0/guide/guide.pdf

20 4. Methodology

Abstract

Concrete

Numeric

Value

Optional

Mandatory

Alternative

Alternative

Legend:

HSQLDB

tableType
memoryTables

cachedTables cacheSize

625

2 500

10 000

log logSize

5

10

100

defrag defragLimit
10

50

encryption
aes

blowfish

incremental
Backup

transaction
Control

mvlocks

locks

mvcc

Figure 4.1: Feature diagram for the HSQLDB case study

log: This configuration option specifies whether HSQLDB should write data changes
to a file which could be used to recover from an abrupt shutdown. Logging is
enabled by default.

logSize: This numeric configuration option configures the maximum size of the log
file used with the log option. When the file reaches the limit (in megabytes),
HSQLDB performs a checkpoint which updates the persistent storage and
clears the log file. We did not include the default value of 50 to be able to use
a wider range of values, and previous experience with HSQLDB has shown
us that lower values are more likely to affect the performance and energy
consumption.

defrag: This configuration option specifies whether HSQLDB should defragment
the persistent storage, i.e. rewrite the persistent storage file to free unused
space. By default, defragmentation is not performed automatically.

defragLimit: This numeric configuration option specifies a percentage of wasted
space that needs to be present in the persistent storage file before defragmen-
tation is performed.

encyption: This configuration option specifies whether HSQLDB should encrypt
the database.

4.2. Case Studies 21

aes, blowfish: These configuration options specify whether to use AES or Blowfish
for database encryption. ECB mode is used in both cases, since specifying an
IV is only supported in HSQLDB since release 2.4.1. No encryption is used
by default.

incrementalBackup: This configuration option specifies whether to update the
persistent storage incrementally during operation, rather than all at once dur-
ing a checkpoint. Incremental backups are enabled by default.

locks, mvlocks, mvcc: These configuration options specify which transaction con-
trol mode to use. The default mode is LOCKS. The other modes are MV-
LOCKS and MVCC.

This feature model represents a total number of 864 configurations .

Releases

The source code of HSQLDB is available in an SVN repository3. Each release is
indicated with a tag labelled with a version number.

The first release we measured was 2.1.0, which was released in March of 2011. While
there have been releases before 2.1.0, we would have needed to use Java version 6
or earlier to compile and run them. All releases starting with 2.1.0 can be compiled
and run with Java 8. There are two reasons why we did not use older releases
of HSQLDB . Firstly, it is difficult to acquire and run Java JDK 6 on a current
operating system. Secondly, we did not want to use different version of the Java
runtime to run different releases since this could lead to unexpected influences on
the performance and energy consumption arising from differences in the Java version
rather than changes in HSQLDB .

The last release we measured was 2.4.1, which was released in May of 2018. At the
time of this writing, version 2.5 is available, but it had not yet been released when
we performed the measurements for this case study.

We did not leave out any releases between 2.1.0 and 2.4.1, resulting in a total count
of 19 releases of HSQLDB , spanning seven years.

A complete list of releases for this case study is included in Section A.2 of the
appendix.

Workload

We used the database benchmark PolePosition4 in version 0.6.0 to generate load on
the database server. PolePosition offers a number of different scenarios, including
both simple and complex queries. We did not consider concurrent scenarios, because
they require specifying a fixed duration which is incompatible with our notion of
performance as execution time. Out of the remaining scenarios, we used all those

3https://sourceforge.net/p/hsqldb/svn/ – last visited on 2019-08-23
4http://www.polepos.org/ – last visited on 2019-08-23

https://sourceforge.net/p/hsqldb/svn/
http://www.polepos.org/

22 4. Methodology

that are compatible with JDBC, which is used to communicate with the HSQLDB
server.

PolePosition offers parameters for each of the scenarios to adjust the number of
iterations and amount of data involved. We chose values for these parameters ex-
perimentally, such that for each of the configurations , none of the scenarios would
run too long and none of the scenarios would complete within only a few seconds.
This is to ensure that measurements complete within the available time and at the
same time that all scenarios are represented in the results for each configuration.

We used two instances of PolePosition with identical configuration to increase the
load on the server.

4.2.2 Apache httpd

Our second case study, Apache HTTP Server 5, or Apache httpd , is a popular open-
source web server written in C. Like the previous case study, it is another example
for infrastructure software.

Configuration Space

As with the previous case study, we used the documentation6 of Apache httpd to
identify configuration options and selected suitable configuration options based on
previous experience with measuring Apache httpd .

In the following list, we describe the configuration options and cross-tree constraints ,
and in Figure 4.1 we show the corresponding feature model .

maxClients
512 1024 2048 4096

ratio option P T P T P T P T

moreProcesses 128 4 128 8 256 8 256 16
evenThreadRatio 16 32 32 32 32 64 64 64
moreThreads 4 128 8 128 8 256 16 256

Table 4.1: Process (P) and thread (T) counts for the Apache httpd case study

prefork, worker: Apache httpd uses a multi-processing module (MPM) to accept
connections and to create child processes or threads to handle requests. The
configuration options prefork and worker select the MPM of the same name.
The fundamental difference between the prefork and worker MPMs is that the
prefork MPM uses only processes while the worker MPM uses both processes
and threads.

5http://httpd.apache.org/ – last visited on 2019-08-23
6http://httpd.apache.org/docs/current/en/ – last visited on 2019-08-23

http://httpd.apache.org/
http://httpd.apache.org/docs/current/en/

4.2. Case Studies 23

Abstract

Concrete

Numeric

Value

Optional

Mandatory

Alternative

Alternative

Legend:

Apache
httpd

mpm
prefork

worker

moreThreads

evenThreadRatio

moreProcesses

sendfile

compression
compression

Level

1

5

9

tls
tlsAes256

tlsAes128

keepalive

maxClients

512

1 024

2 048

4 096
basicAuth

Cross-tree constraints:
¬compression ∨ ¬keepalive

Figure 4.2: Feature diagram for the Apache httpd case study

moreThreads, evenThreadRatio, moreProcesses: With the worker multi-pro-
cessing module, Apache httpd uses multiple processes and multiple threads
within each process. These configuration options configure the ratio between
processes and threads per process. Table 4.1 lists the number of processes and
threads for each of these options.

sendfile: This configuration option enables Apache httpd to use the operating sys-
tem’s sendfile function to directly send static files over the network without
the need to read the file into a buffer first and then send the file from that
buffer.

compression: This configuration option specifies whether to compress responses
with GZip.

compressionLevel: This numeric configuration option specifies the compression
level to use for GZip compression.

24 4. Methodology

tls: This mandatory option represents the use of a TLS encrypted connection. We
only measured configurations with TLS encryption for the simple reason that
without TLS encryption, many configurations are so fast that the limiting
factor is the network between server and client, and we wanted to measure the
performance of the server and not of the network.

tlsAes265, tlsAes128: These configuration options indicate which cipher suite is
used for TLS, DHE-RSA-AES256-SHA or DHE-RSA-AES128-SHA, respec-
tively.

keepalive: This configuration option enables Apache httpd to use persistent HTTP
connections that can be used to serve multiple requests. Connections are
reused for up to five requests.

maxClients: This numeric configuration option specifies the maximum number of
requests that Apache httpd can handle at the same time. For the prefork MPM,
this is the number of processes. For the worker MPM, this is the product of
the numbers of processes and threads. Table 4.1 lists the number of processes
and threads for each value of this option.

basicAuth: This configuration option specifies the use of HTTP basic authentica-
tion.

¬compression ∨ ¬keepalive: This cross-tree constraint is necessary due to a
restriction of HTTP 1.0, which our benchmark client uses. HTTP 1.0 requires
responses to keepalive requests to include a response length in the header,
which is not known ahead of time with compression.

This feature model represents a total number of 640 configurations .

Releases

The source code of Apache httpd is available in an SVN repository. There is also a
Git mirror7 available, which we used.

While there are tags with version numbers in the source repository, not all of these
tagged revisions have actually been released. Since we focus only on releases , we
used the official list of releases which is included in the source repository.

Due to difficulties in compiling and running release prior to 2.2.0, we decided not to
consider older versions, leaving us with the ranges 2.2.*, 2.3.* and 2.4.* of releases .
However, while some 2.3.* versions are listed as having been released, these are
preview versions for 2.4 and thus do not fit our definition of releases .

We chose not to measure releases from the 2.2.* range that are newer than the
oldest 2.4.* to achieve a more even distribution of releases over time. From the then
available ranges 2.2.0 to 2.2.22 and 2.4.1 to 2.4.38, we chose 21 releases spread out
as evenly across the covered time span of approximately 13 years as possible, leaving

7https://github.com/apache/httpd – last visited on 2019-08-23

https://github.com/apache/httpd

4.2. Case Studies 25

us with 2.2.0 from December 2005 as first release and 2.4.38 from January 2019 as
last releases .

A complete list of releases for this case study is included in Section A.2 of the
appendix.

Workload

We used ApacheBench, or ab, which is a part of Apache httpd , to generate load on
and measure the performance of the server.

We configured ab to send a total of 100 000 requests with 1 000 concurrent requests.
Since under this kind of load, the server is not always able to answer requests, we
accepted up to 2.5% failing requests.

Requests were sent for a single static HTML file of size 2 kilobytes, which we ex-
perimentally determined to be a good compromise between high network utilization
and having to send more requests than the server can handle.

4.2.3 PostgreSQL

Our third case study, PostgreSQL8, is an SQL database written in C. It is our third
instance of infrastructure software.

Configuration Space

As with the previous case studies, we used the documentation9 of PostgreSQL to
identify configuration options . Since we wanted to use a wide range of releases
and use only configuration options that can reasonably be assumed to impact per-
formance and that are relevant with our workload at all, only few configuration
options were available for us. We experimentally determined which of those configu-
ration options do not have any impact on performance in our scenario by measuring
some configurations . We excluded those configuration options from consideration
and used all remaining configuration options for this case study.

In the following list, we describe the configuration options and in Figure 4.3 we show
the corresponding feature model .

fullPageWrites: This configuration option specifies that PostgreSQL should under
certain conditions write full memory pages to disk instead of only modified
portions. This ensures that the database can recover from a crash. This
option is enabled by default.

sharedBuffers: This numeric configuration option specifies the amount of memory
(in megabytes) available for shared buffers. The default value is 128.

synchronousCommit: This configuration option specifies whether a transaction
has to wait until all data is physically written to disk before it is reported as
successful. Synchronous commits are enabled by default.

8https://www.postgresql.org/ – last visited on 2019-08-23
9https://www.postgresql.org/docs/manuals/ – last visited on 2019-08-23

https://www.postgresql.org/
https://www.postgresql.org/docs/manuals/

26 4. Methodology

Abstract

Concrete

Numeric

Value

Optional

Mandatory

Alternative

Alternative

Legend:

PostgreSQL

fullPageWrites

sharedBuffers

64

128

256
synchronous

Commit

fsync

tempBuffers

2

8

32

trackActivities

trackCounts

workMem

265

1 024

4 096

Figure 4.3: Feature diagram for the PostgreSQL case study

fsync: This configuration option specifies whether PostgreSQL should ensure that
updates are physically written to disk, allowing the database server to recover
from crashes. This option is enabled by default.

tempBuffers: This numeric configuration option specifies the amount of memory
(in megabytes) available for temporary tables within each database session.
The default value is 8.

trackActivities: This configuration option allows PostgreSQL to gather informa-
tion on commands and timing information. This option is enabled by default.

trackCounts: This configuration option allows PostgreSQL to gather statistics on
database activity and table sizes, which is required for certain optimization.
This option is enabled by default.

workMem: This numeric configuration option specifies the amount of memory (in
kilobytes) available for sorting and hashing operations. If these operations
require more space, data is written to the disk. The default value is 4 096.

This feature model represents a total number of 864 configurations .

Releases

The source code of PostgreSQL is available in a Git repository10. We used the tags
to identify releases .

10https://github.com/postgres/postgres – last visited on 2019-08-23

https://github.com/postgres/postgres

4.2. Case Studies 27

A new major version of PostgreSQL is released approximately once a year. Major
versions receive updates in the form of minor releases for five years. This means,
that at any time, approximately five different major versions of PostgreSQL are
officially supported and receive updates11.

Similar to the Apache httpd case study, we decided not do use releases from a major
version that are newer than the next major version. In this way, the ranges of
releases we measured for different major version do not overlap.

The first release we measured was 8.3.0, the initial release of the 8.3.* major version,
which was released in February of 2008. We did not use any releases before that,
since three of the configuration options we used, synchronousCommits, trackActivi-
ties and trackCounts, were only introduced in 8.3.0.

The last release we measured was 11.2 from the 11.* major version, which was
released in February of 2019. At the time of the measurements, this was the most
recent release of PostgreSQL.

From each of the major versions out of the range 8.3.* to 11.*, we used two releases ,
including the first one, for an even distribution of all releases over the covered time
spam. This results in a total number of 22 releases of PostgreSQL, spanning eleven
years.

A complete list of releases for this case study is included in Section A.2 of the
appendix.

Workload

For the PostgreSQL case study, we used the same benchmark as in the Apache httpd
case study, PolePosition 0.6.0. Since JDBC is used to communicate to PostgreSQL
as well, we also used the same scenarios of PolePosition. We also used the same
parameters for the different scenarios that we used for the HSQLDB case study.

We used two instances of PolePosition with identical configuration to increase the
load on the server.

4.2.4 libvxp VP8

Our fourth and final case study is the VP8 encoder of libvpx 12, a video encoder for
the WebM format, written in C. It is our only application software case study.

Configuration Space

We used the documentation of libvpx VP8 13 to identify configuration options and
selected suitable configuration options based on the documentation and the results
of Hasreiter [Has19].

In the following list, we describe the configuration options and in Figure 4.4 we show
the corresponding feature model .

11https://www.postgresql.org/support/versioning/ – last visited on 2019-08-23
12https://www.webmproject.org/code/ – last visited on 2019-08-23
13https://www.webmproject.org/docs/encoder-parameters/ – last visited on 2019-08-23

https://www.postgresql.org/support/versioning/
https://www.webmproject.org/code/
https://www.webmproject.org/docs/encoder-parameters/

28 4. Methodology

Abstract

Concrete

Numeric

Value

Optional

Mandatory

Alternative

Alternative

Legend:

libvpx
VP8

quality

best

good

rt

twoPass autoAltRef

arnr
MaxFrames

0

5

15

arnr
Strength

0

3

6constantBitrate

threads

1

2

3

4

allowResize

tokenParts

0

1

2

Figure 4.4: Feature diagram for the libvpx VP8 case study

best, good, rt: These three configuration options specify if the encoder should
focus on high output quality or speed. With best, libvpx VP8 produces the
best quality output at the expense of time. With rt (real-time), the encoder
focuses only on speed and the quality depends on the available resources. The
option good is the compromise between quality and speed.

twoPass: This configuration option controls whether libvpx VP8 should encode in
two passes. The first pass of two-pass encoding only gathers statistics for use
in the second pass. This allows the second pass to use information about future
frames. When two-pass encoding is not used, only a single encoding pass is
performed which does not have access to statistics about subsequent frames.

autoAltRef: This configuration option allows the encoder to use a constructed
(or alternate) reference frame14 which is included in the output but is not a
displayable frame. This reference frame may be derived from one or more
future frames and is consequently only available with two-pass encoding.

14https://groups.google.com/a/webmproject.org/forum/#!topic/codec-devel/LUYpX2MUXgc
– last visited on 2019-08-23

https://groups.google.com/a/webmproject.org/forum/#!topic/codec-devel/LUYpX2MUXgc

4.2. Case Studies 29

arnrMaxFrames: This numeric configuration option controls the behaviour of lib-
vpx VP8 when constructed reference frames are used. The value specifies the
maximum number of future frames that may be used to derive a reference
frame.

arnrStrength: This numeric configuration option controls the behaviour of libvpx
VP8 when constructed reference frames are used. The value specifies the level
of noise filtering that is applied during the construction of reference frames.

constantBitrate: This configuration option specifies that the encoder should at-
tempt to encode frames with a constant bitrate.

threads: This numeric configuration option specifies the number of threads used to
encode portions of a frame in parallel. Not all steps of the encoding process
can be parallelized.

allowResize: This configuration option controls whether the encoder is allowed to
downscale frames during encoding.

tokenParts: This numeric configuration option specifies the logarithm (base two)
of the number of partitions to use during encoding. Using more than one
partition (value 0) allows more steps of the encoding process to be parallelized
when using multiple threads.

We did not specify the default values for the listed configuration options since they
are not specified in the documentation and may be different depending on the release.

This feature model represents a total number of 2 736 configurations .

Releases

The source code for libvpx is available in a Git repository15. All releases are marked
with tags. When we performed the measurements, there were only 17 releases . We
did not use the first release, v0.9.0, since it did not produce correct output files.
We were also unable to use v1.6.0 due to an incompatibilty with the experimental
setup. We used all the remaining 15 releases for this case study.

The first of our releases was v0.9.1 from June 2010. The last of our releases was
v1.8.0 from February 2019, for a range of nine years.

Workload

Since libvpx VP8 is application software, we do not need an additional client ap-
plication to measure the performance. We can simply execute a specific workload
with libvpx VP8 and measure the execution time. Our workload was encoding an
uncompressed video file to VP8 WebM (*.webm file format). As input video file,
we used the ’Sintel‘ trailer16 in YUV4MPEG2 (*.y4m file format) format with 480p
resolution.

15https://chromium.googlesource.com/webm/libvpx – last visited on 2019-08-23
16https://media.xiph.org/ – last visited on 2019-08-23

https://chromium.googlesource.com/webm/libvpx
https://media.xiph.org/

30 4. Methodology

4.3 Experimental Setup

In this chapter, we describe the experimental setup that we used to measure the
case studies. We first describe the general hardware and measurement setup and
then specify details that are relevant for the individual case studies.

4.3.1 Hardware and Measurement Setup

We measured all of our case studies on a cluster of workstation PCs. The cluster
consists of 14 nodes with Intel Core i5-4590 processors. The processors have four
cores with a single thread per core and a base frequency of 3.3GHz. The nodes have
16GB of RAM and use SSDs for storage.

All nodes have a 1Gb/s Intel Ethernet Connection I217-LM and are connected to a
single Superstack 4 5500G switch with 48 ports.

A minimal installation of Debian 9.9 is used as operating system.

All nodes are connected to power distribution units (PDUs), which measure the
power consumption, independently for all the connected nodes. Twelve of the nodes
are connected to an IPT iPower P1 with 18 sockets and the remaining two nodes
are connected to another IPT iPower P1 with three sockets.

The PDUs measure the power consumption with a frequency of 1Hz. To log these
power consumption values for later evaluation, we need to query these values over
the network. Since querying and processing the data can introduce a small delay,
we may end up with seconds without a value when querying exactly once every
second. Since our definition of energy consumption (Section 3.5), where we sum up
the power consumption values to directly obtain the energy consumption, relies on
us having exactly one power consumption value for every second, we need to make
sure that we do not miss a value for any second. For this purpose, we query power
consumption values at a slightly higher rate of one value every 900 milliseconds, and
simply discard a value when we have multiple values for the same second.

Since this client, that queries the power consumption values, has some power con-
sumption of its own, we run it on a different host than the measured software so it
cannot influence the results. Likewise, for case studies that consist of a server and
client, we run the two on different nodes of the cluster, so that the client cannot
impact the performance and energy consumption of the server.

4.3.2 Case Studies

In this section, we outline specific properties of our case studies that are relevant
with our particular experimental setup.

HSQLDB

Since HSQLDB is written in Java and runs in the Java Virtual Machine (JVM),
just-in-time (JIT) compilation can substantially impact the performance as stated
by Georges et al. [GBE07]. Since we are not interested in measuring the start-up
performance, we include a warm-up phase before the measurements for the HSQLDB

4.3. Experimental Setup 31

case study. The warm-up phase uses the same server instance that is used for the
benchmark but uses a separate database. While we are using two clients for the
actual benchmark, we are only using a single client for the warm-up phase. To make
sure that, during the warm-up phase, all code is executed on the server that is later
used during the benchmark, so that it is already JIT compiled during the benchmark,
we use a similar configuration for the client, PolePosition, for the warm-up phase
as we use for the benchmark, just with a reduced number of iteration to save time.

We compiled all of our selected releases of HSQLDB as documented.

For this case study, we did not directly measure the performance as the execution
time of the client, PolePosition, but instead used the run time reported by PolePo-
sition in its log output.

Apache httpd

In the Apache httpd case study, the benchmark client ab sends a large number of
requests to the server and needs to open a large number of sockets. Since, on Linux,
sockets count towards the limit of open file handles, we had to raise this limit on
both client and server.

To build older releases of Apache httpd on our modern systems, we had to deviate
from the documented build steps. The tool libtool is used during the build process.
We could use the current version 2 of libtool for versions 2.4.* of Apache httpd but
had to use libtool 1 for versions 2.2.*. Apache httpd has a dependency on OpenSSL.
Older versions of Apache httpd are incompatible with new versions of OpenSSL.
However, we found that the rather old version 0.9.8zh of OpenSSL was compatible
with all of our Apache httpd releases , so we used this version for all releases to prevent
different OpenSSL versions from impacting the performance. Apache httpd depends
on the two libraries APR and APR-Util, which are also developed by Apache. Since
we were not able to use the same versions of these libraries for all versions of Apache
httpd , and we could not find documentation stating which version of APR and APR-
Util should be used for which version of Apache httpd , we decided to use for every
Apache httpd version, the versions of these libraries that had been the latest ones at
the time the Apache httpd version was released.

Older versions of Apache httpd need to be compiled for a single specific multi-process-
ing module (MPM). Since we consider two different MPMs as configuration options ,
we need to compile Apache httpd twice for every release, once for the ‘worker’ MPM
and once for the ‘prefork’ MPM. In addition to the respective MPM, we enabled
the following modules during the compilation of Apache httpd : ssl, deflate, socache-
shmcb.

Similar to the HSQLDB case study, we did not directly measure the performance
as the execution time of ab. Instead we used the reported run time of ab.

PosgreSQL

To compile old releases of PostgreSQL with a new compiler, we had to disable ag-
gressive loop optimizations with the compiler parameter -fno-aggressive-loop-

32 4. Methodology

optimizations17, to prevent segmentation faults at runtime. To prevent this miss-
ing optimization from having an unwanted influence on the performance of different
releases , we disabled the optimization for all versions of PostgreSQL.

Since we used the same benchmark client as in the HSQLDB case study, we also
used the same approach of extracting a value for the performance from the output
of PolePosition.

libvpx VP8

To compile older releases of libvpx VP8 with a modern compiler, we had to explicitly
specify an older language standard of C89 with GNU extensions.

We measured the performance directly as the execution time of the encoder.

4.4 Operationalization

In this section, we formally describe the strategies we employ to evaluate our mea-
surement results, which we will use in the following chapter to answer the research
questions.

4.4.1 RQ1.1: Changes in Mean Performance and Energy

For our first research question, we investigate changes in the mean performance and
mean energy consumption over all configurations for consecutive releases . We define
the mean value of a non-functional property as follows:

x̄r =
1

|C|
∑
c∈C

xr,c (4.1)

x is an non-functional property , either performance (p) or energy consumption (e).
x̄r is the mean value for a specific release r ∈ R. C is the set of configurations and
xr,c is the non-functional property value for a specific release r and configuration c.

We determine what we call prominent releases . We consider a release to be a
prominent release for an non-functional property if there is a substantial change in
that non-functional property from the preceding release.

A substantial change is a change in the value of a non-functional property that
exceeds some threshold that is based on the relevant deviation. We define the
absolute change ∆x̄

ri
in the mean value of a non-functional property x as the difference

of mean values for two consecutive releases ri−1, ri ∈ R, where ri−1 is the release
directly preceding ri:

∆x̄
ri

= x̄ri − x̄ri−1
(4.2)

For this research question, we consider one mean value for each release and non-
functional property . Consequently, we also need one mean deviation value for each

17https://stackoverflow.com/a/34204352 – last visited on 2019-09-06

https://stackoverflow.com/a/34204352

4.4. Operationalization 33

release and non-functional property . We use the root mean square (RMS) average
over the deviation values of all relevant configurations to determine these mean
deviation values.

σ̄xr =

√
1

|C|
∑
c∈C

(σxr,c)
2 (4.3)

σ̄xr is the mean deviation of the non-functional property x for a specific release r
and σxr,c is the deviation of the non-functional property x for a specific release r and
configuration c. The other symbols have the same meaning as in the formula above.

For a single release, we set the threshold to the mean standard deviation of that
release. We then set the threshold θx̄ri for substantial changes between two consecu-
tive releases ri−1, ri ∈ R, as the sum of the thresholds of these two releases , i.e. as
the sum of mean deviations for these releases :

θx̄ri = σ̄xri−1
+ σ̄xri (4.4)

With this approach, we can be certain that every substantial change we observe is in
fact a change in the non-functional property value and not only caused by inaccurate
measurements, as might be the case when the change does not exceed the deviations.

Formally, the set Rx
prom ⊂ R of prominent releases for a non-functional property x is

defined as follows, using the symbols defined above and the absolute value function
abs:

Rx
prom = { r ∈ R | abs(∆x̄

r) > θx̄r } (4.5)

Once we have determined the prominent releases for both performance and en-
ergy consumption, we determine how many prominent releases there are for each
non-functional property and if the releases are the same for both non-functional
properties .

For releases that are prominent releases for both performance and energy consump-
tion, we will compare the magnitude of the changes. Since we cannot directly
compare the absolute values of these two non-functional properties with different
units, we will determine relative change values:

δx̄ri =
x̄ri − x̄ri−1

x̄ri−1

=
∆x̄
ri

x̄ri−1

(4.6)

∆x̄
ri

is the absolute change in the mean value for non-functional property x from the
release ri−1 ∈ R preceding ri to the release ri ∈ R as defined above. Analogously,
δx̄ri is the relative change.

34 4. Methodology

4.4.2 RQ1.2: Changes in Performance and Energy of Con-
figurations

For the second research question, we increase the granularity and examine the per-
formance and energy consumption of individual configurations rather than the mean
over all configurations .

Similar to the previous research question, we find configurations that have a substan-
tial change in performance or energy consumption between two consecutive releases .
Again, the change in the value of a non-functional property x is defined simply as
the difference between the values of the non-functional property for two consecutive
releases ri−1, ri ∈ R.

∆x
ri,c

= xri,c − xri−1,c (4.7)

xr,c is the value of the non-functional property for a specific release r and configu-
ration c.

Since we are now investigating individual configurations , we have to define a different
threshold for which changes we consider to be substantial. We set the threshold for an
individual configuration and release to the standard deviation of the measurements
for that configuration and release. For the change between two consecutive releases
ri−1, ri ∈ R, we set the threshold θxri,c for a configuration c ∈ C to the sum of the
thresholds of the two releases for that configuration, i.e. the sum of the respective
standard deviations:

θxri,c = σxri−1,c
+ σxri,c (4.8)

Since there are too many configurations to examine every single one of them, we
only focus on the number of configurations with substantial changes for each release,
only distinguishing between positive and negative change values. First, we define
the sets Cx,+prom,r, Cx,−prom,r ⊂ C of prominent configurations for non-functional property
x and the releases r ∈ R with respectively positive and negative changes that exceed
the relevant threshold value:

Cx,+prom,r =
{
c ∈ C

∣∣∆x
r,c > θxr,c

}
Cx,−prom,r =

{
c ∈ C

∣∣∆x
r,c < −θxr,c

} (4.9)

Then we can count the configurations in each of these sets. We denote these numbers
as N :

Nx,+
r =

∣∣Cx,+prom,r

∣∣
Nx,−
r =

∣∣Cx,−prom,r

∣∣ (4.10)

4.4. Operationalization 35

Finally we can also determine the number of configurations that are prominent for
a specific release for both performance (p) and energy consumption (e). We denote
these numbers as N comm (for ‘common’):

N com,+
r =

∣∣Cp,+prom,r ∩ Ce,+prom,r

∣∣
N com,−
r =

∣∣Cp,−prom,r ∩ Ce,−prom,r

∣∣ (4.11)

4.4.3 RQ1.3: Changes in Performance and Energy of Fea-
tures

In the third research question, we increase the amount of usable information by
increasing the level of abstraction. Instead of considering individual configurations ,
we now investigate the influences of configuration options and combinations of con-
figuration options on the performance and energy consumption.

To obtain that information from our measurements, we use SPL Conqueror . We pro-
ceed in five steps to obtain comparable performance-influence and energy-influence
models .

In a first step, we use the iterative learning algorithm of SPL Conqueror to generate
performance-influence and energy-influence models for each release. This results
in models with different terms, in particular between performance and energy con-
sumption, but also between different releases . We take the union of the terms from
all models and proceed with the next step.

In the second step, we manually investigate the set of terms obtained in the first
step to remove and replace terms according to the following rules:

• Remove terms that only appear in one or two releases and have a very small
influence, because such terms are likely just noise and provide no useful infor-
mation during later analysis of the generated models.

• When configuration options from an alternative group in the feature model ap-
pear in terms, remove terms with one option if all options from that alternative
group appear, or add terms with options from the alternative group until all
but one of the options is used in a term. Since options in an alternative group
are all mutually exclusive, but one is always present, there are multiple equiv-
alent representations of the same model. For example, for an alternative group
with the options A and B, the two model formulas 10 + 5 · A and 15 − 5 · B
represent the same model. By fixing, for all generated models, which options
from an alternative group may appear, we ensure that all generated models
use comparable representations.

• When terms make it clear that a learned influence is not dependent on the
value of a numeric option but rather on the presence of a numeric option,
replace occurrences of the numeric option with the parent option from the
feature model . This ensures, similar to the previous rule, that out of multiple
possible representations for the same model, comparable representations are
used for all models.

36 4. Methodology

Additionally, we manually investigate the measurement results and try to find influ-
ences from options and option interactions that are not already included in the set
of terms from the first step, and add these to our set of model terms.

In the third step, we use the fitting algorithm of SPL Conqueror to generate influence
models using the set of terms from the second step. This ensures that all models
use the same terms regardless of non-functional property or release, but many terms
will have a negligible influence in many of the models.

In the fourth step, we remove terms from each model that have only a very small
influence. For this purpose, we calculate a threshold value for each model and remove
terms with an absolute value smaller than the threshold. SPL Conqueror determines
a learning error for the models it generates. We multiply this error rate with the
mean value for the respective non-functional property and release, x̄r (defined in
Section 4.4.1), to obtain our threshold value.

In a final fifth step, we remove terms that we manually added in the second step
but do not appear to be relevant in the fitted models from the fourth step. Then
we repeat the fourth step to re-generate the models.

4.4.4 RQ2.1: Changes in the Correlation

In RQ2, we no longer investigate performance and energy consumption individually,
but instead investigate the correlation between them. Since we are now directly
comparing performance and energy consumption in that we are performing calcula-
tions involving both non-functional properties at the same time, we need to ensure
that these properties are directly comparable. For this purpose, we will use the fixed
time energy consumption for infrastructure software case studies.

In research question 2.1, we investigate only whole releases , i.e. we do not consider
individual configurations , similar to our first research question.

We calculate the Pearson correlation coefficient ρr for each release r ∈ R from the
performance and (fixed) energy consumption values of all configurations c ∈ C:

ρr = ρ(pr,c, e
f
r,c) , c ∈ C (4.12)

abs(ρ) interpretation

≈ 1.0 perfect
> 0.8 very strong
> 0.6 strong
> 0.4 moderate
> 0.2 weak
≤ 0.2 none

Table 4.2: Interpretation of correlation coefficients

The numeric Pearson correlation coefficient is far more precise than the accuracy of
the measurements. Generally, a correlation coefficient is usually interpreted with a
rather low granularity. We use the interpretation shown in Table 4.2.

4.4. Operationalization 37

As seen in the results of related work, correlation between performance and energy
consumption is often dominated by specific configuration options . In cases where we
can identify such configuration options , we additionally investigate the correlation
of only configurations without those options, allowing us to see potential changes in
the correlation that are masked by the dominance of few configuration options. We
specify a constraint s to select such a subset Cs ⊂ C of the configuration space. We
denote as ρr,s the Pearson correlation coefficient between performance and energy
consumption for a specific release r ∈ R of all selected configurations c ∈ Cs.

ρr,s = ρ(pr,c, e
f
r,c) , c ∈ Cs (4.13)

We investigate changes in the correlation between consecutive releases . A change ∆ρ
ri

between two consecutive releases ri−1, ri ∈ R is the difference between the absolute
values of the respective Pearson correlation coefficients. We take the absolute value
of the Pearson correlation coefficients , since we are not interested in the direction
but only the strength of the correlation.

∆ρ
ri

= abs(ρri)− abs(ρri−1
) (4.14)

We are interested in prominent releases , i.e. releases with a substantial change. For
the correlation, we consider a change to be substantial when the correlation changes
by more than one level according to the interpretation (Table 4.2), i.e. a change by
more than 0.2. The set Rρ

prom with respect to the Pearson correlation coefficient is
thus defined as follows:

Rρ
prom = { r ∈ R | abs(∆ρ

r) > 0.2 } (4.15)

4.4.5 RQ2.2: Changes in the Correlation of Features

For the last research question, we increase the granularity from the previous research
question and no longer investigate the correlation between performance and energy
consumption only for all configurations of each release at once, but instead we inves-
tigate the correlation of different subsets of the configuration space, to investigate
the correlation behaviour of specific configuration options . We consider one subset
for each value of each configuration option, with the exception of alternative groups,
where we consider one subset for each alternative. Formally, we define constraints
to define these subsets and then use the same definition of the correlation ρr,s in
a subset Cs ⊂ C of the configuration space as in the previous research question
(Equation 4.13).

Due to the large number of correlation values we obtain with this approach, we will
not compare all values. Also since correlation values have a rather low accuracy,
we will again use the interpretation outlined in Table 4.2. As before, we consider a
change in the correlation between two releases to be substantial if it exceeds 0.2.

38 4. Methodology

5. Evaluation

In this chapter, we answer our research questions by evaluating the results of our case
studies. In each section of this chapter, we focus on one of the research questions.
First, we apply our operationalization as outlined in Section 4.4 and present the
results. Then, we discuss the implications of the results and consider relations to
the results of other research questions. Finally, we conclude each section with a
summarized answer to the respective research question.

5.1 RQ1.1: Changes in Mean Performance and

Energy

RQ1.1: Are there changes in the mean performance and mean energy consumption
across releases?

Results

For the first research question, we examine the mean values of performance and
energy consumption for each release.

In our first case study, HSQLDB , we discovered two prominent releases for perfor-
mance and a single prominent release for energy consumption. We visualize the
results for this case study in Figure 5.1. In the plot, every data point is the mean
value of a non-functional property for a release. Different colours (styles) denote
the two non-functional properties , performance in blue (dashed line) and energy
consumption in red (dotted line). Performance values are given in seconds, energy
consumption values in kilojoules. The lines between the data points indicate the
changes in these values. The filled rectangles around each data point indicate the
threshold values, i.e. the rectangles are vertically centred around the data points and
have a height of twice the respective threshold values θx̄r , once upwards for positive
changes and once downwards for negative changes. Graphically, substantial changes
are indicated by the lines between two data points leaving the respective boxes. On
the other hand, if a line does not leave either box, a change is not substantial since

40 5. Evaluation

2.1
.0

2.2
.0

2.2
.1

2.2
.2

2.2
.3

2.2
.4

2.2
.5

2.2
.6

2.2
.7

2.2
.8

2.2
.9

2.3
.0

2.3
.1

2.3
.2

2.3
.3

2.3
.4

2.3
.5

2.4
.0

2.4
.1

Releases

0

10

20

30

40

50

60

70

80
Pe

rfo
rm

an
ce

 [s
]

+2% 8%

0.0

0.5

1.0

1.5

2.0

2.5

3.0

En
er

gy
 C

on
su

m
pt

io
n

[k
J]

8%

Performance [s]
Energy Consumption [kJ]

Figure 5.1: Mean performance and energy of the HSQLDB case study. Boxes indi-
cate threshold values. Percentages indicate relative changes for substantial changes .

it does not exceed the sum of the two thresholds. Changes that are substantial are
additionally labelled with the relative change δx̄r as percentage.

In the second case study, Apache httpd , we did not find any prominent releases for
either performance or energy consumption. We do not show the corresponding result
plot here since it does not provide any information relevant to this research question.
Essentially, the plot shows two almost horizontal lines with changes never exceeding
the thresholds. We include the plot in Section A.3 of the appendix for reference.

We do, however, show the results of our third case study, PostgreSQL, in Figure 5.2.
For this case study, we found four and two prominent releases for performance and
energy consumption, respectively. The plot is structured in the same way as the one
for the HSQLDB case study.

We found the largest number of prominent releases in our final case study, libvpx
VP8 , with eleven substantial changes in the performance and four in the energy
consumption. We show the results in a plot following the same schema as the
previous ones in Figure 5.3.

To summarize the results for this research question, we list all prominent releases
for both performance p and energy consumption e of each case study in Table 5.1.

Discussion

In the HSQLDB case study, we can see a small positive substantial change with
release 2.2.0, which is only visible in the performance. In release 2.2.2, we can see

5.1. RQ1.1: Changes in Mean Performance and Energy 41

8.3
.0

8.3
.5

8.4
.0

8.4
.2

9.0
.0

9.0
.4

9.1
.0

9.1
.3

9.2
.0

9.2
.4

9.3
.0

9.3
.4

9.4
.0

9.4
.4

9.5
.0

9.5
.3

9.6
.0

9.6
.3

10
.0

10
.4

11
.0

11
.2

Releases

0

20

40

60

80

100
Pe

rfo
rm

an
ce

 [s
]

40%

10%
+4% 4%

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

En
er

gy
 C

on
su

m
pt

io
n

[k
J]

32%
11%

Performance [s]
Energy Consumption [kJ]

Figure 5.2: Mean performance and energy of the PostgreSQL case study. Boxes
indicate threshold values. Percentages indicate relative changes for substantial
changes .

v0
.9.

1
v0

.9.
2

v0
.9.

5
v0

.9.
6

v0
.9.

7

v0
.9.

7-p
1

v1
.0.

0
v1

.1.
0

v1
.2.

0
v1

.3.
0

v1
.4.

0
v1

.5.
0

v1
.6.

1
v1

.7.
0

v1
.8.

0

Releases

0

10

20

30

40

50

60

70

80

Pe
rfo

rm
an

ce
 [s

]

21%

4% 40%

10%
4% 5% 3% 2% +4% 15%

3%

0

1

2

3

4
En

er
gy

 C
on

su
m

pt
io

n
[k

J]

20%

39%
10%

15%

Performance [s]
Energy Consumption [kJ]

Figure 5.3: Mean performance and energy of the libvpx VP8 case study. Boxes indi-
cate threshold values. Percentages indicate relative changes for substantial changes .

42 5. Evaluation

Case study Rp
prom Re

prom

HSQLDB 2.2.0, 2.2.2 2.2.2
Apache httpd ∅ ∅
PostgreSQL 9.0.4, 9.1.0, 9.2.0, 9.3.0 9.0.4, 9.1.0
libvpx VP8 0.9.2, 0.9.5, 0.9.6, 0.9.7, 0.9.7-

p1, 1.0.0, 1.1.0, 1.2.0, 1.3.0, 1.4.0,
1.5.0

0.9.2, 0.9.6, 0.9.7, 1.4.0

Table 5.1: Prominent releases for both performance and energy consumption of
each case study

a much larger negative change that presents itself with an equal relative value in
both non-functional properties . All other releases do not show any substantial or
otherwise noticeable changes in the mean of all configurations .

The Apache httpd case study shows us, that there is software that evolves but for
which changes do not necessarily impact the performance or energy consumption at
all. Due to our relatively simple workload in this case study, it is likely that changes
in the different releases of Apache httpd generally had an impact on performance
and energy consumption, but our workload simply did not utilize the functionality
affected by these changes.

The third case study, PostgreSQL, paints a similar picture to the HSQLDB case
study, with several smaller changes that are only substantial in the performance
and one large negative change. In release 8.4.2, we can see a noticeable positive
change in both performance and energy consumption, that is however just below
the thresholds and thus not substantial according to our definition. There is a very
large negative change in release 9.0.4, with considerably differing values of −40%
for performance and only −32% for energy consumption. In the next release, 9.1.0,
follows a smaller but still relatively large negative change that is almost the same for
performance and energy consumption. After that, we see two smaller performance-
only substantial changes, one positive and one negative, in releases 9.2.0 an 9.2.3,
respectively.

The application software case study, libvpx VP8 , has by far the most prominent
releases . Nevertheless, we can see similarities to the previous case studies. Changes
that are very small, are only substantial in the performance, but may still be notice-
able in the energy consumption. Larger changes are represented with similar relative
change values in both non-functional properties . Out of the many changes we can
see for this case study, only a single one with a small value is positive and all others
are negative.

As shown in Table 5.1, every release that is prominent for energy consumption is
also a prominent release for performance. In almost all of these cases, the relative
changes (values shown in the plots) are equal or almost equal between performance
and energy consumption.

There is only one notable exception with the release 9.0.4 of PostgreSQL. The rel-
ative change in the performance is −40%, while the relative change in the energy

5.1. RQ1.1: Changes in Mean Performance and Energy 43

consumption is only −32%. We have identified the configuration option ‘fsync’ as
the primary reason for the change in this release. This feature essentially requests
PostgreSQL to wait for file changes to be physically written to disk before complet-
ing an operation. In other words, ‘fsync’ just tells PostgreSQL to wait for the disk.
While waiting for an amount of time has a direct influence on the performance,
which is just time, the system is effectively idling while waiting and consequently
the influence on the energy consumption is comparably low.

We can see, that whenever a release has a substantial change for performance but
not for energy consumption, the relative change in the performance is relatively
small (at most 5%). In most of these cases, the plots show a clear tendency in
the energy consumption that resembles the change in the performance, but is still
within the threshold range. We assume that in these situations, changes in the
energy consumption also resemble changes in the performance, but we cannot be
certain because of the higher deviations in the energy measurements.

Over all case studies, we investigated a combined total of 73 pairs of consecutive
releases . Out of those, we found 17 releases (23% of investigated releases) with
substantial changes in the performance and 7 releases (10%) with substantial changes
in the energy consumption. Since all releases with substantial changes in the energy
consumption also have substantial changes in the performance, this amounts to
100% of all prominent releases being prominent for the performance and 41% for
the energy consumption.

Another observation that applies equally to all of our case studies, is that positive
changes in performance and energy consumption tend to be small while all magni-
tudes of change values appear for negative changes. This makes sense from a software
developer’s point of view, since improvements in performance are appreciated and
specific improvements may even be implemented on purpose, whereas a performance
regression will only be tolerated if absolutely necessary, e.g. for security reasons.

The largest positive changes we observed, are two changes by 4% in the performance
in version 9.2.0 of PostgreSQL and v1.3.0 of libvpx VP8 . We did not observe any sub-
stantial positive changes in the energy consumption. The largest negative changes
we observed, are two changes by −40% in the performance in version 9.0.4 of Post-
greSQL and v0.9.6 of libvpx VP8 and a change by −39% in the energy consumption
of v0.9.6 of libvpx VP8 .

We found changes in the performance and energy consumption in specific re-
leases for three of the four software systems we investigated. 23% of measured
releases had a substantial change in the performance and 10% in the energy
consumption. We observed positive changes of up to 4% in the performance and
negative changes of up to −40% in the performance and −39% in the energy
consumption. Out of all measured releases with substantial changes , 100% had
substantial changes in the performance and 41% had substantial changes in the
energy consumption.

44 5. Evaluation

5.2 RQ1.2: Changes in Performance and Energy

of Configurations

RQ1.2: Are there changes in the performance and energy consumption of individual
configurations across releases?

Results

For the second research question, we investigate the performance and energy con-
sumption of individual configurations and in particular their differences between
consecutive releases .

We visualize the results for the HSQLDB case study in Figure 5.4. The figure
consists of two plots, one for performance and one for energy consumption. The plots
are grids with columns for the configurations and rows for the releases . The values
associated with each cell of the grid are shown with different colours. Absolute values
(xr,c) are shown for the first release, for all other releases , the difference (∆x

r,c) to
the previous release is shown. Only differences that exceed the respective threshold
(θxr,c) are coloured, all other cells are blank. The configurations in both plots are
ordered by the performance of the first release.

For this case study we observe substantial changes in every release. However, only
a small number of configurations and releases has large changes, with most other
changes barely exceeding the thresholds.

Due to the large number of configurations we do not examine every single change
value but instead count the prominent configurations for each release, only distin-
guishing between performance and energy consumption, as well as between positive
and negative changes.

We show these numbers for the HSQLDB case study in Table 5.2. There are many
more substantial changes in the performance than in the energy consumption. Al-
most all configurations that have substantial changes in the energy consumption, also
have substantial changes in the performance, as can be seen in the table from com-
paring the numbers for energy consumption (e) and the common numbers (comm).

In the same way, we show the results for the Apache httpd case study in Figure 5.5.
For this case study, we can see considerable differences in the plots for performance
and energy consumption. There are again substantial changes in all releases . None
of the changes are particularly large compared to the other case studies, with most
of them being just above the thresholds.

Table 5.3 shows the numbers of prominent configurations for each release. Again,
we can see that there are many more substantial changes in the performance than
in the energy consumption. In this case study, there are many configurations with
a substantial change in the energy consumption that do not at the same time have
a substantial change in the performance.

We present the results for the third case study, PostgreSQL, in Figure 5.6. We can
see that the plots for performance and energy consumption look almost the same,

5.2. RQ1.2: Changes in Performance and Energy of Configurations 45

Configurations

2.1.0
2.2.0
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7
2.2.8
2.2.9
2.3.0
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.4.0
2.4.1

Re
le

as
es

Performance [s]

60

40

20

0

20

40

60

Di
ffe

re
nc

es
 to

 p
re

vi
ou

s r
el

ea
se

60

80

100

120

140

160

Fi
rs

t r
el

ea
se

Configurations

2.1.0
2.2.0
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7
2.2.8
2.2.9
2.3.0
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.4.0
2.4.1

Re
le

as
es

Energy Consumption [kJ]

2

1

0

1

2

Di
ffe

re
nc

es
 to

 p
re

vi
ou

s r
el

ea
se

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5
Fi

rs
t r

el
ea

se

Figure 5.4: Performance and energy consumption for configurations and releases
of the HSQLDB case study. Absolute values are shown for the first release and
differences to the previous release for all other releases . Configurations are ordered
by the performance of the first release for all releases and for both the performance
and energy consumption plots. Only values exceeding the threshold are shown.

46 5. Evaluation

Configurations

2.2.0
2.2.3
2.2.6
2.2.9

2.2.11
2.2.13
2.2.15
2.2.17
2.2.20
2.2.22
2.4.2
2.4.4
2.4.7

2.4.10
2.4.16
2.4.18
2.4.23
2.4.27
2.4.33
2.4.35
2.4.38

Re
le

as
es

Performance [s]

6

4

2

0

2

4

6

Di
ffe

re
nc

es
 to

 p
re

vi
ou

s r
el

ea
se

40

60

80

100

120

140

160

Fi
rs

t r
el

ea
se

Configurations

2.2.0
2.2.3
2.2.6
2.2.9

2.2.11
2.2.13
2.2.15
2.2.17
2.2.20
2.2.22
2.4.2
2.4.4
2.4.7

2.4.10
2.4.16
2.4.18
2.4.23
2.4.27
2.4.33
2.4.35
2.4.38

Re
le

as
es

Energy Consumption [kJ]

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Di
ffe

re
nc

es
 to

 p
re

vi
ou

s r
el

ea
se

2

3

4

5

6

7
Fi

rs
t r

el
ea

se

Figure 5.5: Performance and energy consumption for configurations and releases
of the Apache httpd case study. Absolute values are shown for the first release and
differences to the previous release for all other releases . Configurations are ordered
by the performance of the first release for all releases and for both the performance
and energy consumption plots. Only values exceeding the threshold are shown.

5.2. RQ1.2: Changes in Performance and Energy of Configurations 47

Configurations

8.3.0
8.3.5
8.4.0
8.4.2
9.0.0
9.0.4
9.1.0
9.1.3
9.2.0
9.2.4
9.3.0
9.3.4
9.4.0
9.4.4
9.5.0
9.5.3
9.6.0
9.6.3
10.0
10.4
11.0
11.2

Re
le

as
es

Performance [s]

80

60

40

20

0

20

40

60

80

Di
ffe

re
nc

es
 to

 p
re

vi
ou

s r
el

ea
se

60

80

100

120

140

Fi
rs

t r
el

ea
se

Configurations

8.3.0
8.3.5
8.4.0
8.4.2
9.0.0
9.0.4
9.1.0
9.1.3
9.2.0
9.2.4
9.3.0
9.3.4
9.4.0
9.4.4
9.5.0
9.5.3
9.6.0
9.6.3
10.0
10.4
11.0
11.2

Re
le

as
es

Energy Consumption [kJ]

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Di
ffe

re
nc

es
 to

 p
re

vi
ou

s r
el

ea
se

1.5

2.0

2.5

3.0

3.5
Fi

rs
t r

el
ea

se

Figure 5.6: Performance and energy consumption for configurations and releases
of the PostgreSQL case study. Absolute values are shown for the first release and
differences to the previous release for all other releases . Configurations are ordered
by the performance of the first release for all releases and for both the performance
and energy consumption plots. Only values exceeding the threshold are shown.

48 5. Evaluation

Release r Np,+
r Np,−

r N e,+
r N e,−

r N comm,+
r N comm,+

r

2.1.0 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

2.2.0 447 (51%) 9 (1%) 5 (0%) 0 (0%) 5 (0%) 0 (0%)

2.2.1 18 (2%) 44 (5%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

2.2.2 14 (1%) 297 (34%) 0 (0%) 77 (8%) 0 (0%) 77 (8%)

2.2.3 27 (3%) 100 (11%) 0 (0%) 1 (0%) 0 (0%) 1 (0%)

2.2.4 28 (3%) 18 (2%) 1 (0%) 0 (0%) 0 (0%) 0 (0%)

2.2.5 10 (1%) 178 (20%) 0 (0%) 1 (0%) 0 (0%) 1 (0%)

2.2.6 175 (20%) 17 (1%) 4 (0%) 0 (0%) 4 (0%) 0 (0%)

2.2.7 65 (7%) 23 (2%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

2.2.8 12 (1%) 74 (8%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

2.2.9 78 (9%) 49 (5%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

2.3.0 143 (16%) 132 (15%) 38 (4%) 2 (0%) 35 (4%) 2 (0%)

2.3.1 39 (4%) 75 (8%) 0 (0%) 1 (0%) 0 (0%) 1 (0%)

2.3.2 48 (5%) 42 (4%) 2 (0%) 0 (0%) 2 (0%) 0 (0%)

2.3.3 161 (18%) 45 (5%) 7 (0%) 1 (0%) 7 (0%) 1 (0%)

2.3.4 16 (1%) 109 (12%) 0 (0%) 2 (0%) 0 (0%) 1 (0%)

2.3.5 176 (20%) 3 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

2.4.0 6 (0%) 155 (17%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

2.4.1 65 (7%) 17 (1%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Table 5.2: Number of prominent configurations for each release of the HSQLDB
case study, individually for positive (+) and negative (−) changes, as well as for
performance (p), energy consumption (e) and commonly (comm).

even though they describe two different non-functional properties . Only few releases
show noticeable changes in a large number of configurations .

We show the numbers of prominent configurations for PostgreSQL in Table 5.4. We
can see that overall there are many more changes in the performance than in the
energy consumption, although for some releases there are almost as many changes
in the energy consumption as in the performance. Again, similarly to the HSQLDB
case study, most configurations with substantial changes in the energy consumption
also have substantial changes in the performance.

For the final case study, libvpx VP8 , we show the plots in Figure 5.7. Just like in the
previous case study, the plots for performance and energy consumption look almost
the same. Almost all changes are negative. There are few releases with hardly any
changes but most releases show substantial changes in many configurations .

The corresponding numbers of prominent configurations are shown in Table 5.5. We
can see a much larger number of configurations with substantial changes than in the
other case studies, which is only partially caused by this case study having a larger
configuration space than the previous case studies. In some of the releases , more
than half of all 2 736 configurations have substantial changes . The overlap between
prominent configurations for performance and energy consumption is large for some
releases but small for others.

5.2. RQ1.2: Changes in Performance and Energy of Configurations 49

Release r Np,+
r Np,−

r N e,+
r N e,−

r N comm,+
r N comm,+

r

2.2.0 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

2.2.3 24 (3%) 34 (5%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

2.2.6 33 (5%) 23 (3%) 2 (0%) 0 (0%) 1 (0%) 0 (0%)

2.2.9 32 (5%) 22 (3%) 60 (9%) 1 (0%) 6 (0%) 0 (0%)

2.2.11 34 (5%) 24 (3%) 2 (0%) 58 (9%) 0 (0%) 2 (0%)

2.2.13 19 (2%) 38 (5%) 1 (0%) 3 (0%) 0 (0%) 0 (0%)

2.2.15 12 (1%) 91 (14%) 3 (0%) 0 (0%) 0 (0%) 0 (0%)

2.2.17 96 (15%) 9 (1%) 4 (0%) 0 (0%) 0 (0%) 0 (0%)

2.2.20 39 (6%) 12 (1%) 4 (0%) 1 (0%) 1 (0%) 0 (0%)

2.2.22 26 (4%) 73 (11%) 1 (0%) 80 (12%) 0 (0%) 30 (4%)

2.4.2 28 (4%) 54 (8%) 1 (0%) 166 (25%) 1 (0%) 16 (2%)

2.4.4 47 (7%) 33 (5%) 21 (3%) 0 (0%) 4 (0%) 0 (0%)

2.4.7 172 (26%) 2 (0%) 4 (0%) 5 (0%) 2 (0%) 0 (0%)

2.4.10 16 (2%) 29 (4%) 1 (0%) 0 (0%) 1 (0%) 0 (0%)

2.4.16 40 (6%) 9 (1%) 0 (0%) 2 (0%) 0 (0%) 1 (0%)

2.4.18 13 (2%) 65 (10%) 4 (0%) 3 (0%) 0 (0%) 2 (0%)

2.4.23 82 (12%) 5 (0%) 2 (0%) 0 (0%) 2 (0%) 0 (0%)

2.4.27 30 (4%) 18 (2%) 1 (0%) 0 (0%) 1 (0%) 0 (0%)

2.4.33 15 (2%) 46 (7%) 0 (0%) 1 (0%) 0 (0%) 0 (0%)

2.4.35 40 (6%) 17 (2%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

2.4.38 22 (3%) 29 (4%) 1 (0%) 1 (0%) 0 (0%) 1 (0%)

Table 5.3: Number of prominent configurations for each release of the Apache
httpd case study, individually for positive (+) and negative (−) changes, as well as
for performance (p), energy consumption (e) and commonly (comm).

Discussion

In the previous research question, we have seen for the HSQLDB case study a small
positive change in the performance for version 2.2.0 and a larger negative change
in both performance and energy consumption in version 2.2.2. These changes are
reflected in the results from this research question. We can see that the change in
the mean value of 2.2.0 results from relatively small changes in a large number of
configurations . These changes are not visible in the energy consumption. Since the
changes are small and barely above the threshold, it is possible that the changes
exist in the energy consumption, but since deviations are higher for the energy
consumption measurements, the changes are simply not exceeding the thresholds
for the energy consumption. The change in 2.2.2, on the other hand, is caused
by only a small number of configurations with large changes. We can see that this
change is limited to configurations that are much slower than all other configurations
in releases before 2.2.2. We can also see that the change value of approximately −60s
for the performance and −2kJ for the energy consumption is similar to the difference
in the absolute values between these and other configurations . This results in a much
smaller range of values for both non-functional properties for all configurations in
and after release 2.2.2.

50 5. Evaluation

Release r Np,+
r Np,−

r N e,+
r N e,−

r N comm,+
r N comm,+

r

8.3.0 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

8.3.5 30 (3%) 44 (5%) 1 (0%) 4 (0%) 1 (0%) 3 (0%)

8.4.0 490 (56%) 0 (0%) 434 (50%) 0 (0%) 431 (49%) 0 (0%)

8.4.2 26 (3%) 25 (2%) 2 (0%) 0 (0%) 1 (0%) 0 (0%)

9.0.0 12 (1%) 76 (8%) 0 (0%) 4 (0%) 0 (0%) 3 (0%)

9.0.4 112 (12%) 437 (50%) 10 (1%) 433 (50%) 10 (1%) 433 (50%)

9.1.0 0 (0%) 864 (100%) 0 (0%) 767 (88%) 0 (0%) 767 (88%)

9.1.3 58 (6%) 8 (0%) 5 (0%) 0 (0%) 2 (0%) 0 (0%)

9.2.0 677 (78%) 0 (0%) 185 (21%) 0 (0%) 177 (20%) 0 (0%)

9.2.4 16 (1%) 43 (4%) 0 (0%) 1 (0%) 0 (0%) 1 (0%)

9.3.0 0 (0%) 772 (89%) 0 (0%) 265 (30%) 0 (0%) 262 (30%)

9.3.4 36 (4%) 15 (1%) 2 (0%) 1 (0%) 1 (0%) 0 (0%)

9.4.0 16 (1%) 52 (6%) 2 (0%) 4 (0%) 0 (0%) 2 (0%)

9.4.4 129 (14%) 18 (2%) 4 (0%) 0 (0%) 3 (0%) 0 (0%)

9.5.0 1 (0%) 417 (48%) 0 (0%) 22 (2%) 0 (0%) 17 (1%)

9.5.3 24 (2%) 18 (2%) 1 (0%) 3 (0%) 0 (0%) 2 (0%)

9.6.0 65 (7%) 9 (1%) 3 (0%) 2 (0%) 0 (0%) 1 (0%)

9.6.3 133 (15%) 10 (1%) 8 (0%) 0 (0%) 6 (0%) 0 (0%)

10.0 38 (4%) 23 (2%) 2 (0%) 4 (0%) 2 (0%) 2 (0%)

10.4 25 (2%) 45 (5%) 2 (0%) 2 (0%) 1 (0%) 2 (0%)

11.0 5 (0%) 149 (17%) 0 (0%) 10 (1%) 0 (0%) 5 (0%)

11.2 11 (1%) 53 (6%) 3 (0%) 3 (0%) 0 (0%) 2 (0%)

Table 5.4: Number of prominent configurations for each release of the PostgreSQL
case study, individually for positive (+) and negative (−) changes, as well as for
performance (p), energy consumption (e) and commonly (comm).

In addition to the two releases we have found to be prominent in the previous
research question, i.e. in the mean values, we can see that the releases 2.3.0 and
2.3.3 have configurations with relatively large changes. However, these do not sum
up to large enough amounts to be visible in the mean values from the previous
research question.

For the second case study, Apache httpd , we did not see any substantial changes
in the mean values. Looking at individual configurations , we can see that many
configurations show changes in some of the releases . However, there are many
cases where there are both positive and negative changes in the same release, likely
cancelling each other out in the mean value, and even in releases where there is a
majority of changes that are only positive or negative, e.g. in 2.4.7 with mostly
positive changes for the performance or 2.4.2 with mostly negative changes for the
energy consumption, the absolute values of the changes are so small, that in the
mean over all configurations , the relevant thresholds are not reached.

For the PostgreSQL case study, we have seen in RQ1.1, a positive change in both
non-functional properties that is noticeable but not substantial in version 8.4.0. We
observe that this change is substantial in approximately half of the configurations in
this release. In 9.0.4, we identified a large negative change in the previous research

5.2. RQ1.2: Changes in Performance and Energy of Configurations 51

Configurations

v0.9.1
v0.9.2
v0.9.5
v0.9.6
v0.9.7

v0.9.7-p1
v1.0.0
v1.1.0
v1.2.0
v1.3.0
v1.4.0
v1.5.0
v1.6.1
v1.7.0
v1.8.0

Re
le

as
es

Performance [s]

100

50

0

50

100

Di
ffe

re
nc

es
 to

 p
re

vi
ou

s r
el

ea
se

50

100

150

200

250

Fi
rs

t r
el

ea
se

Configurations

v0.9.1
v0.9.2
v0.9.5
v0.9.6
v0.9.7

v0.9.7-p1
v1.0.0
v1.1.0
v1.2.0
v1.3.0
v1.4.0
v1.5.0
v1.6.1
v1.7.0
v1.8.0

Re
le

as
es

Energy Consumption [kJ]

4

3

2

1

0

1

2

3

4

Di
ffe

re
nc

es
 to

 p
re

vi
ou

s r
el

ea
se

1

2

3

4

5

6

7

8

9

Fi
rs

t r
el

ea
se

Figure 5.7: Performance and energy consumption for configurations and releases
of the libvpx VP8 case study. Absolute values are shown for the first release and
differences to the previous release for all other releases . Configurations are ordered
by the performance of the first release for all releases and for both the performance
and energy consumption plots. Only values exceeding the threshold are shown.

question, and this change is also very apparent in the individual configurations , with
exactly half of configurations showing a large negative change in this release. Those
are the configurations that are slower than other configurations in releases before
9.0.4. Similar to the situation in release 2.2.2 of HSQLDB , all configuration in and
after release 9.0.4 have performance and energy consumption values in a very small
range. As already mentioned in the previous research question, the configurations
with the large change in 9.0.4 are those with the option ‘fsync’, which explains why
exactly half of the configurations are affected. The next change that is visible in
the mean values, is a negative change in 9.1.0, which is substantial in almost all
of the configurations . The remaining prominent releases have substantial changes

52 5. Evaluation

Release r Np,+
r Np,−

r N e,+
r N e,−

r N comm,+
r N comm,+

r

v0.9.1 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

v0.9.2 32 (1%) 2 553 (93%) 19 (0%) 1 964 (71%) 9 (0%) 1 962 (71%)

v0.9.5 48 (1%) 1 877 (68%) 11 (0%) 541 (19%) 9 (0%) 528 (19%)

v0.9.6 1 (0%) 2 729 (99%) 1 (0%) 2 631 (96%) 1 (0%) 2 629 (96%)

v0.9.7 10 (0%) 2 610 (95%) 5 (0%) 1 820 (66%) 0 (0%) 1 817 (66%)

v0.9.7-p1 190 (6%) 1 234 (45%) 43 (1%) 812 (29%) 25 (0%) 779 (28%)

v1.0.0 0 (0%) 2 499 (91%) 9 (0%) 709 (25%) 0 (0%) 703 (25%)

v1.1.0 862 (31%) 1 534 (56%) 216 (7%) 1 83 (39%) 179 (6%) 1 54 (38%)

v1.2.0 100 (3%) 1 987 (72%) 30 (1%) 456 (16%) 2 (0%) 407 (14%)

v1.3.0 2 358 (86%) 30 (1%) 539 (19%) 29 (1%) 497 (18%) 5 (0%)

v1.4.0 218 (7%) 1 117 (40%) 52 (1%) 588 (21%) 23 (0%) 542 (19%)

v1.5.0 14 (0%) 2 198 (80%) 70 (2%) 415 (15%) 4 (0%) 366 (13%)

v1.6.1 660 (24%) 876 (32%) 164 (5%) 511 (18%) 92 (3%) 408 (14%)

v1.7.0 288 (10%) 383 (13%) 148 (5%) 143 (5%) 43 (1%) 67 (2%)

v1.8.0 460 (16%) 848 (30%) 143 (5%) 212 (7%) 50 (1%) 109 (3%)

Table 5.5: Number of prominent configurations for each release of the libvpx VP8
case study, individually for positive (+) and negative (−) changes, as well as for
performance (p), energy consumption (e) and commonly (comm).

only in the performance, with a small positive change in 9.2.0 and a small negative
change in 9.3.0. These changes are substantial in almost all configurations for the
performance, and in some configurations also for the energy consumption, supporting
our assumption that these changes are appearing in both performance and energy
consumption alike, with changes in the energy consumption simply not – or not
always – exceeding the threshold values due to the higher deviations of the energy
measurements.

In the final case study, libvpx VP8 , we can again see similarities between the changes
in the mean values from the previous research question, and the changes in individ-
ual configurations . We have observed large changes in the mean values of v0.9.2
and v0.9.6. These changes are also very visible in the results from the individ-
ual configurations , with almost all configurations showing negative changes in both
non-functional properties in these two releases . However, the changes have different
magnitudes in the different configurations . Generally, we can observe all the changes
that are visible in the mean values also in the individual configurations . Just like
in the previous case study, we can see that these changes equally affect both per-
formance and energy consumption, even in cases where the mean values did not
clearly show these changes in the energy consumption. Additionally, we can observe
there are almost no visible changes in both performance and energy consumption
for approximately the first sixth of configurations . This is likely caused by the fact
that these configurations have very small absolute values in both performance and
energy consumption, resulting in a comparably high threshold, since the threshold
is based on the deviation which tends to be relatively large for short measurements.

In addition to the plots, we can also examine the numbers of prominent configura-
tions as shown in the tables. For HSQLDB (Table 5.2), comparing the configurations

5.2. RQ1.2: Changes in Performance and Energy of Configurations 53

for energy consumption and common configurations for both performance and en-
ergy consumption, we can see that the numbers are equal or almost equal for all of
the releases . This shows us, that almost all configurations that are prominent for
the energy consumption are also prominent for the performance, but there are many
configurations that are prominent for the performance but not for the energy con-
sumption. This is in line with our previous observation of changes being generally
the same for performance and energy consumption, but that changes in the energy
consumption often do not exceed the thresholds due to higher deviations. For the
few cases where configurations have substantial changes in the energy consumption
but not in the performance, changes in the energy consumption are close to the
thresholds, indicating that the respective performance changes may also exist but
fall below the thresholds.

For Apache httpd , the numbers of prominent configurations shown in Table 5.3 paint
a similar picture to the one from the previous case study, with the exception that
a much larger number of configurations shows substantial changes in the energy
consumption but not in the performance. This is not surprising since we already
observed that all changes are small in this case study, so it is expected that many
changes are not exceeding the thresholds for both non-functional properties .

For the third case study, PostgreSQL, the numbers shown in Table 5.4 closely re-
semble the results from the HSQLDB case study. Almost all of the prominent
configurations for energy consumption are also prominent for the performance, with
the few exceptions having very low change values.

In the final case study, libvpx VP8 , the numbers of prominent configurations (Ta-
ble 5.5) are not as straightforward to interpret as those of the other case studies,
because there is a large number of configurations with substantial changes in every
release. We can still see that for many releases , almost all of the configurations
with energy consumption changes also have performance changes. While we have a
much larger number of exceptions for this case study, i.e. configurations that have
a substantial change in the energy consumption but not in the performance, almost
all of these energy changes are very low, just like in the previous case studies.

Overall we can see – with the exception of the Apache httpd case study, where we have
very small change values and consequently a comparably large influence from noise
– similar observations in all case studies. Changes in the mean values are reflected
in the changes of individual configurations but the inverse is not always true. There
are releases where we can clearly see changes in individual configurations but not
in the mean values. We have confirmed our assumption from the previous research
question, that even when we can only see substantial changes in the performance
but not in the energy consumption, changes are still present in both non-functional
properties , but are not substantial for energy consumption in the mean values. For
individual configurations , however, changes are often still substantial in both non-
functional properties .

Combined over all case studies, out of the 73 investigated releases , we have identified
17 prominent releases in the previous research question (7 for both non-functional
properties and another 10 only for the performance). In this research question, we
found the in all 17 cases, changes are also reflected in individual configurations . In

54 5. Evaluation

the results of the individual configurations , we found that out of the 10 releases
which, in the mean values, only have substantial changes in the performance, 9
releases clearly show substantial changes in the energy consumption of individual
configurations . We found three additional releases (two for HSQLDB and one for
PostgreSQL, not considering Apache httpd here because of inconclusive results), with
substantial changes in both performance and energy consumption of some configu-
rations, that were not visible in the mean values. This results in a total number of
20 prominent releases , with all of them being prominent for the performance and
all but one (95%) being prominent for the energy consumption.

Overall, we have identified substantial changes in 20 releases for the performance and
19 releases for the energy consumption. We were able to identify 85% of those for the
performance and 37% for the energy consumption in the previous research question
using the mean values. For the performance, none of the prominent releases have
few (< 10%) configurations with substantial changes and 80% have many (> 50%)
configurations with substantial changes . For the energy consumption, 16% of the
prominent releases have few (< 10%) configurations with substantial changes and
37% have many (> 50%) configurations with substantial changes .

In the individual configurations , we observed a larger range of change values than
in the mean values, with changes in the performance ranging from +28% to −83%
and changes in the energy consumption ranging from +62% to −81%. (We observed
all four extreme values in the libvpx VP8 case study.)

We found substantial changes in the performance of individual configurations for
27% of measured releases and in the energy consumption for 26% of measured
releases . For performance, a majority (80%) of releases with substantial changes
have changes in more than 50% of all configurations , whereas for energy con-
sumption, only 37% of releases have substantial changes in more than 50% of
all configurations and 16% have substantial changes in less than 10% of config-
urations . In almost all cases, changes impact both the performance and energy
consumption, with 100% of releases with substantial changes in the energy con-
sumption also having substantial changes in the performance and 95% of releases
with substantial changes in the performance also having substantial changes in
the energy consumption. Using individual configuration values, we confirmed
all observations from the mean values and found three additional releases with
substantial changes .

5.3 RQ1.3: Changes in Performance and Energy

of Features

RQ1.3: Are changes in performance and energy consumption caused by individual
features or feature interactions?

Results

For our third research question we increase the level of abstraction and investigate
performance-influence and energy-influence models instead of the raw measurement

5.3. RQ1.3: Changes in Performance and Energy of Features 55

2.1
.0

2.2
.0

2.2
.1

2.2
.2

2.2
.3

2.2
.4

2.2
.5

2.2
.6

2.2
.7

2.2
.8

2.2
.9

2.3
.0

2.3
.1

2.3
.2

2.3
.3

2.3
.4

2.3
.5

2.4
.0

2.4
.1

Releases

(base)

blowfish

cachedTables

log

mvlocks
cacheSize625

logSize5

blowfish cachedTables

blowfish log
blowfish cacheSize625

blowfish cacheSize2500

blowfish logSize5

+55

+0.87

+3.8

+0.97

+2.7

+14

+15

+67

+2.4

+0.75

+53

+2.6

+5.8

+2.7

+14

+16

+67

+2.4

+54

+2.6

+5.7

+2.5

+14

+16

+67

+2.5

+53

+2.0

+5.7

+2.4

+14

+15

+9.8

+2.1

+53

+2.1

+5.4

+2.4

+14

+16

+10

+2.3

+53

+2.1

+5.5

+2.5

+14

+16

+10

+2.3

+53

0.94

+1.7

+5.2

+2.6

+14

+16

+10

+2.4

+53

+2.4

+5.3

+1.7

+2.6

+14

+15

+10

+2.5

+53

+2.6

+5.2

+2.1

+2.4

+14

+16

+10

+2.5

+53

+2.5

+5.3

+1.9

+2.6

+14

+16

+10

+2.4

+52

+2.8

+5.6

+1.5

+2.8

+14

+15

+11

+2.8

+53

2.5

+2.2

+5.4

+3.5

+15

+15

+13

+4.4

+7.8

+53

2.5

+2.2

+5.4

+3.5

+15

+16

+13

+4.5

+7.7

+53

2.5

+2.2

+5.5

+3.5

+16

+16

+13

+4.3

+7.5

+53

2.9

+2.8

+5.3

+2.9

+18

+16

+11

+3.6

+8.9

+53

2.9

+2.3

+5.1

+2.9

+17

+15

+11

+3.5

+8.8

+53

2.8

+2.5

+5.3

+2.7

+17

+16

+11

+3.6

+8.9

+53

2.6

+2.3

+5.1

+3.0

+17

+15

+11

+3.6

+8.9

+53

2.7

+2.4

+5.2

+2.9

+17

+15

+11

+3.6

+8.9

Performance [s]

60

40

20

0

20

40

60

2.1
.0

2.2
.0

2.2
.1

2.2
.2

2.2
.3

2.2
.4

2.2
.5

2.2
.6

2.2
.7

2.2
.8

2.2
.9

2.3
.0

2.3
.1

2.3
.2

2.3
.3

2.3
.4

2.3
.5

2.4
.0

2.4
.1

Releases

(base)

blowfish

cachedTables

log

mvlocks
cacheSize625

logSize5

blowfish cachedTables

blowfish log
blowfish cacheSize625

blowfish cacheSize2500

blowfish logSize5

+1.7

+0.06

+0.11

+0.04

+0.08

+0.51

+0.59

+2.6

+0.11

+0.04

+1.7

+0.12

+0.18

+0.04

+0.09

+0.54

+0.61

+2.6

+0.09

+1.7

+0.11

+0.17

+0.05

+0.09

+0.55

+0.64

+2.6

+0.10

+0.05

+1.7

+0.10

+0.17

+0.08

+0.55

+0.60

+0.37

+0.08

+0.06

+1.7

+0.09

+0.16

+0.08

+0.55

+0.61

+0.37

+0.08

+0.06

+1.7

+0.10

+0.16

+0.09

+0.54

+0.63

+0.38

+0.08

+0.06

+1.7

+0.08

+0.16

+0.08

+0.54

+0.62

+0.38

+0.09

+0.05

+1.6

+0.10

+0.16

+0.05

+0.09

+0.53

+0.61

+0.38

+0.10

+0.06

+1.6

+0.11

+0.16

+0.07

+0.08

+0.54

+0.61

+0.38

+0.10

+0.06

+1.6

+0.11

+0.16

+0.07

+0.08

+0.53

+0.61

+0.38

+0.09

+0.06

+1.6

+0.11

+0.18

+0.06

+0.09

+0.54

+0.60

+0.43

+0.11

+0.06

+1.7

0.10

+0.09

+0.16

+0.11

+0.62

+0.61

+0.47

+0.16

+0.31

+1.7

0.10

+0.09

+0.16

+0.11

+0.60

+0.62

+0.49

+0.17

+0.30

+1.7

0.07

+0.10

+0.17

+0.12

+0.61

+0.62

+0.47

+0.17

+0.30

+1.7

0.11

+0.12

+0.16

+0.10

+0.68

+0.62

+0.42

+0.14

+0.33

+1.7

0.10

+0.10

+0.15

+0.10

+0.67

+0.61

+0.43

+0.13

+0.33

+1.7

0.09

+0.11

+0.16

+0.10

+0.66

+0.61

+0.41

+0.14

+0.33

+1.7

0.09

+0.10

+0.15

+0.10

+0.65

+0.61

+0.43

+0.14

+0.33

+1.7

0.10

+0.11

+0.15

+0.10

+0.66

+0.62

+0.44

+0.16

+0.34

Energy Consumption [kJ]

2

1

0

1

2

Figure 5.8: Performance-influence and energy-influence models for the HSQLDB
case study. Only values exceeding the threshold are shown.

results. As outlined in the section on methodology (Section 4.4.3), we generate in-
fluence models through a combination of the iterative and fitting approaches of SPL
Conqueror and obtain one influence model for each combination of non-functional
property and release. Instead of writing the models as formulas, we visualize them
in a grid-like plot to allow for an easier comparison between different models.

In Figure 5.8, we visualize the models for the HSQLDB case study. The figure
consists of two plots, one for the performance-influence models and one for the
energy-influence models . The columns indicate the different releases and the rows
denote the different terms that appear in the influence models , i.e. the configuration
options and interactions between configuration options . The values in each of the
cells are the respective factors from the influence models , so that each column of the
plot corresponds to one influence model . The first row, ‘(base)’, indicates the con-
stant base value β0 that is common for all configurations . To be able to more easily

56 5. Evaluation

2.2
.0

2.2
.3

2.2
.6

2.2
.9

2.2
.11

2.2
.13

2.2
.15

2.2
.17

2.2
.20

2.2
.222.4

.2
2.4

.4
2.4

.7
2.4

.10
2.4

.16
2.4

.18
2.4

.23
2.4

.27
2.4

.33
2.4

.35
2.4

.38

Releases

(base)
keepalive

worker
keepalive worker

+167

135

1.7

+1.1

+167

135

1.5

+0.98

+167

135

1.6

+1.2

+166

134

0.77

+166

134

+167

134

0.99

+165

133

+166

134

+166

134

+166

134

0.77

+166

134

1.5

+1.1

+167

135

1.7

+1.5

+169

136

1.3

+168

136

+169

136

0.91

+168

136

+168

136

+168

136

+168

136

+168

136

+168

136

Performance [s]

100

0

100

2.2
.0

2.2
.3

2.2
.6

2.2
.9

2.2
.11

2.2
.13

2.2
.15

2.2
.17

2.2
.20

2.2
.222.4

.2
2.4

.4
2.4

.7
2.4

.10
2.4

.16
2.4

.18
2.4

.23
2.4

.27
2.4

.33
2.4

.35
2.4

.38

Releases

(base)
keepalive

worker
keepalive worker

basicAuth

+7.1

5.8

+0.20

+7.1

5.8

+0.19

+7.2

5.8

+0.19

+7.2

5.9

+0.19

+7.3

5.9

0.15

+0.12

+0.20

+7.2

5.8

+0.19

+7.2

5.9

+0.19

+7.3

5.9

+0.19

+7.4

6.0

+0.18

+7.5

6.1

0.43

+0.39

+0.17

+6.9

5.6

+0.20

+7.1

5.8

0.10

+0.10

+0.19

+7.2

5.8

+0.19

+7.2

5.8

0.06

+0.18

+7.2

5.8

+0.19

+7.2

5.9

0.10

+0.08

+0.19

+7.2

5.9

+0.18

+7.2

5.9

+0.19

+7.3

5.9

+0.19

+7.2

5.9

+0.18

+7.2

5.9

+0.18

Energy Consumption [kJ]

5

0

5

Figure 5.9: Performance-influence and energy-influence models for the Apache
httpd case study. Only values exceeding the threshold are shown.

8.3
.0

8.3
.5

8.4
.0

8.4
.2

9.0
.0

9.0
.4

9.1
.0

9.1
.3

9.2
.0

9.2
.4

9.3
.0

9.3
.4

9.4
.0

9.4
.4

9.5
.0

9.5
.3

9.6
.0

9.6
.3

10
.0

10
.4

11
.0

11
.2

Releases

(base)
fsync

fsync synchronousCommit

+46

+89

3.7

+46

+87

1.7

+51

+90

2.0

+51

+87

1.6

+51

+89

+51

+9.7

+3.5

+47

+6.8

+3.2

+47

+6.5

+3.2

+50

+5.1

+5.1

+50

+5.2

+4.7

+47

+5.9

+4.2

+47

+5.8

+4.3

+47

+5.5

+4.6

+48

+5.3

+4.1

+47

+4.2

+4.0

+47

+4.3

+4.0

+47

+4.2

+4.2

+48

+4.2

+4.1

+48

+4.1

+4.3

+48

+4.4

+3.7

+47

+4.3

+3.9

+47

+4.2

+4.0

Performance [s]

50
0
50

8.3
.0

8.3
.5

8.4
.0

8.4
.2

9.0
.0

9.0
.4

9.1
.0

9.1
.3

9.2
.0

9.2
.4

9.3
.0

9.3
.4

9.4
.0

9.4
.4

9.5
.0

9.5
.3

9.6
.0

9.6
.3

10
.0

10
.4

11
.0

11
.2

Releases

(base)
fsync

fsync synchronousCommit

+1.5

+2.0

0.07

+1.5

+2.0

0.04

+1.7

+2.1

+1.7

+2.0

0.07

+1.7

+2.1

+1.7

+0.24

+0.06

+1.5

+0.19

+0.08

+1.6

+0.16

+0.08

+1.7

+0.14

+0.12

+1.6

+0.18

+0.06

+1.5

+0.19

+0.07

+1.5

+0.17

+0.08

+1.5

+0.18

+0.09

+1.6

+0.16

+0.07

+1.5

+0.14

+0.07

+1.6

+0.12

+0.10

+1.6

+0.13

+0.09

+1.6

+0.13

+0.08

+1.6

+0.13

+0.11

+1.5

+0.16

+0.07

+1.5

+0.14

+0.09

+1.5

+0.14

+0.07

Energy Consumption [kJ]

2

0

2

Figure 5.10: Performance-influence and energy-influence models for the Post-
greSQL case study. Only values exceeding the threshold are shown.

visually compare the models, we additionally use colours for the different values.
Blank cells indicate values that do not exceed each model’s respective threshold,
which is based on the model’s learning error rate.

In the same way, we show the performance-influence and energy-influence models
for the Apache httpd and PostgreSQL case studies in Figure 5.9 and Figure 5.10,
respectively. Iterative learning only found a small number of terms for these two
case studies, with four and five for the performance-influence and energy-influence
models , respectively, of the Apache httpd case study, and three for both types of
influence models of the PostgreSQL case study. We did not find any other influences
upon manually examining the results, resulting in small influence models for these
case studies.

5.3. RQ1.3: Changes in Performance and Energy of Features 57

v0
.9.

1
v0

.9.
2

v0
.9.

5
v0

.9.
6

v0
.9.

7

v0
.9.

7-p
1
v1

.0.
0

v1
.1.

0
v1

.2.
0

v1
.3.

0
v1

.4.
0

v1
.5.

0
v1

.6.
1

v1
.7.

0
v1

.8.
0

Releases

(base)
rt

best
twoPass

CBR
rt CBR

best CBR
best twoPass

rt twoPass
twoPass CBR

best autoAltRef
best CBR autoAltRef

best twoPass CBR tokenParts0

+87

80

+41

+27

17

+28

+89

+47

+34

+80

73

+39

+25

16

+20

+80

+9.8

+7.4

15

6.2

+79

72

+37

+23

14

+21

9.4

+79

+5.3

+8.1

16

+54

45

+17

+8.4

+3.5

2.4

+1.1

2.8

+46

3.2

1.9

+46

38

+17

+5.3

+6.7

4.1

+5.8

5.7

+40

+1.4

+4.1

8.2

+45

36

+18

+6.5

+1.7

1.3

3.5

+37

+0.94

1.7

+43

35

+17

+6.5

+0.50

0.52

4.1

+35

+1.2

+0.43

+45

36

+18

+1.0

+0.66

0.64

0.90

4.3

+37

+0.85

0.44

+1.0

0.35

+45

36

+18

+1.1

+0.93

0.75

1.1

4.8

+37

+1.4

+0.26

0.46

+47

38

+19

+0.73

+1.00

0.79

1.1

5.0

+39

+1.5

0.40

+46

37

+18

+1.9

+1.9

2.2

1.4

4.1

2.0

+0.23

0.20

+0.45

0.33

+45

37

+17

+1.7

+1.9

2.2

1.3

4.0

1.8

+0.28

+0.53

0.34

+45

35

+17

+2.4

2.9

2.9

3.0

4.1

+3.4

1.9

+3.9

+2.1

+45

36

+17

+2.5

2.9

2.9

3.2

4.2

+3.5

1.8

+3.9

+2.1

+44

35

+16

+3.1

3.0

2.7

2.7

4.9

+3.7

1.7

+3.4

+1.4

Performance [s]

80

60

40

20

0

20

40

60

80

v0
.9.

1
v0

.9.
2

v0
.9.

5
v0

.9.
6

v0
.9.

7

v0
.9.

7-p
1
v1

.0.
0

v1
.1.

0
v1

.2.
0

v1
.3.

0
v1

.4.
0

v1
.5.

0
v1

.6.
1

v1
.7.

0
v1

.8.
0

Releases

(base)
rt

best
twoPass

CBR
rt CBR

best CBR
best twoPass

rt twoPass
twoPass CBR

best autoAltRef
best CBR autoAltRef

best twoPass CBR tokenParts0

+3.1

2.8

+1.4

+0.92

0.60

+0.92

+3.1

+1.5

+1.1

+2.8

2.5

+1.3

+0.85

0.53

+0.68

+2.7

+0.32

+0.27

0.46

0.22

+2.8

2.5

+1.2

+0.77

0.49

+0.69

0.33

+2.7

+0.28

0.54

+1.9

1.6

+0.61

+0.24

+0.13

0.09

0.11

+1.6

0.12

0.07

+1.7

1.3

+0.59

+0.13

+0.23

0.15

+0.20

0.21

+1.4

+0.14

0.27

+1.6

1.3

+0.61

+0.18

+0.07

0.06

0.13

+1.3

+0.04

0.06

+1.6

1.2

+0.58

+0.18

+0.02

0.02

0.15

+1.2

+0.04

+1.6

1.3

+0.61

+0.02

0.02

0.02

0.15

+1.3

+0.03

0.02

+0.03

0.02

+1.6

1.3

+0.62

+0.03

0.02

0.04

0.17

+1.3

+0.06

+1.7

1.3

+0.64

0.02

+0.04

0.03

0.04

0.18

+1.4

+0.05

+1.7

1.3

+0.61

+0.02

+0.07

0.08

0.05

0.15

0.02

+1.6

1.3

+0.58

+0.07

0.08

0.04

0.13

0.02

+1.6

1.2

+0.59

0.09

0.10

0.12

0.09

+0.12

0.05

+0.13

+0.07

+1.6

1.3

+0.59

0.10

0.09

0.13

0.10

+0.12

0.05

+0.13

+0.07

+1.6

1.2

+0.54

+0.05

0.10

0.09

0.10

0.11

+0.13

0.06

+0.12

+0.05

Energy Consumption [kJ]

3

2

1

0

1

2

3

Figure 5.11: Performance-influence and energy-influence models for the libvpx
VP8 case study. Only values exceeding the threshold are shown. The models
only represent configurations with threads = 1. The option ‘constantBitrate’ is
abbreviated as ‘CBR’ for brevity. The last two influences were not found by iterative
learning.

For the final case study, libvpx VP8 , we have a numeric configuration option which
defines the number of threads the encoder may use. This option has four values,
1, 2, 3 and 4, and in iteratively learned influence models , there is a large number
of terms due to interactions of many configuration options with each of the values
for the ‘threads’ option. Based on previous experience with a similar case study, we
assumed that the behaviour of performance and energy consumption influences does
not depend on the number of threads and thus generated four different influence
models for each non-functional property and release of this case study, one for each

58 5. Evaluation

value of the ‘threads’ option. We compared the resulting models and found no
noticeable differences between the models for two, three and four threads. We found
small differences between the models for one thread and the other models, with
the main difference being that we found more terms in the models for one thread.
Since the models for two, three and four threads are almost exactly the same, we do
not show the models for three and four threads. Since the models for one and two
threads are very similar, with the models for one thread containing slightly more
information, we only show the models for one thread here, and include the models
for two threads in Section A.3 of the appendix for reference. We show the model
for a single thread, i.e. influence models learned on only those configurations where
the configuration option ‘threads’ has a value of 1, in Figure 5.11.

For this case study, the iterative learning algorithm of SPL Conqueror only found
influences of single configuration option or interactions between two configuration
options . However, upon further investigation of the measurement results, we discov-
ered influences of interactions between more than two configuration options , namely
an interaction between the three options ‘best’, ‘constantBitrate’ and ‘autoAltRef’,
as well as an interaction between the four terms1 ‘best’, ‘constantBitrate’, ‘twoPass’
and ‘tokenParts’ with a value of 0. Since these interactions appear to have a notice-
able influence as seen in the models generated with the fitting algorithm, we decided
to keep these interactions in the models even though they were not found by the
initial iterative model generation.

Discussion

In this research question, we use influence models to investigate whether changes
in the performance and energy consumption are caused by specific configuration
options or interactions of configuration options .

In the previous research questions, we identified a small increase in the performance
in release 2.2.0 of HSQLDB . We have seen that this change is only visible in the
performance but not the energy consumption and is caused by a large number of
configurations . In the influence models , we can see small differences between the
models for the previous release, 2.1.0, and the models of 2.2.0, but we cannot directly
attribute this change to any specific model term.

The second change we identified for the HSQLDB case study was a larger negative
change in both performance and energy consumption of version 2.2.2, which we found
to be caused by only a small number of configurations . In the influence models , we
can clearly see, that this change can be attributed to the feature interaction between
blowfish encryption and a small cache size of 625 kilobytes.

Additionally, we have identified changes in the releases 2.3.0 and 2.3.3 that were
not visible in the mean values but only in the values of individual configurations . In
2.3.0, we can see a change in the influence models , which appears to be related to
blowfish encryption and several interactions therewith, in particular an interaction
with a small log size of 5 megabytes. The change in 2.3.3 is not visible in the
influence models .

1Actually between five terms, since this interaction only appears with threads = 1, but we are
only focusing on those configurations.

5.3. RQ1.3: Changes in Performance and Energy of Features 59

There are no additional changes that are visible in the influence models that we had
not previously identified in the mean values or the values of individual configurations .

A visual comparison between the plots of the performance-influence models and
energy-influence models clearly shows that influences are very similar and also
change in the same way for performance and energy consumption.

For the second case study, Apache httpd , we have not been able to identify any
changes in the mean values and neither have seen any clear indications for changes
in the individual configurations . In the same way, we cannot observe any notice-
able changes in the influence models. We can see that the influence models for
performance and energy consumption are very similar with only one exception: The
configuration option ‘basicAuth’ does not appear to have a relevant influence on the
performance but it has a small influence on the energy consumption.

For the PostgreSQL case study, we have even smaller influence models than for the
previous case study. We have identified a large negative change in both perfor-
mance and energy consumption with release 9.0.4, which is also clearly visible in
the performance-influence and energy-influence models and can directly be linked
to the ‘fsync’ configuration option. We observed a number of smaller changes in
both the mean values, however, we have already seen in the values of the individual
configurations , that these changes appear in almost all of the configurations and
we can consequently assume that these changes cannot be attributed to a specific
configuration option. We can confirm this assumption with the influence models ,
which show all of these changes in the base term β0 (‘(base)’ in the figures).

As in the previous two case studies, we can see that the influence models for perfor-
mance and energy consumption are virtually the same.

For the final case study, libvpx VP8 , we identified a large number of changes in
the mean values and have also seen a large number of changes in the individual
configurations . Similarly, we can see several changes in the performance-influence
and energy-influence models . The largest changes in the mean values were in releases
v0.9.2 and v0.9.6. We can clearly see these changes in the influence models , with
the change in v0.9.2 being caused by an interaction between ‘twoPass’ and ‘CBR’,
as well as an interaction between those two configuration options and additionally
‘best’ and ‘tokenParts’ with a value of 0. The change in v0.9.6 is also clearly visible
in the influence models , but cannot be attributed to any specific influences with
almost all model terms showing changes in this release.

Additionally, we have identified changes in v0.9.7 and v1.4.0 in the mean values. The
change in v0.9.7 is visible in the influence models , but not as clearly as the previous
changes. It cannot be attributed to specific configuration options , which changes
affecting most of the model terms. The change in v1.4.0 can clearly be attributed to
an interaction between ‘rt’ and ‘twoPass’. Upon further investigation of the results
and consultation of the documentation, we discovered that this change is caused by
an incorrect assumption we made when modelling the configuration space for this
case study. In releases starting from v1.4.0, the two configuration options ‘rt’ and
‘twoPass’ can no longer be used in combination. When both options are specified,
libvpx VP8 simply ignores the ‘twoPass’ option.

60 5. Evaluation

Of the remaining smaller changes, those in v0.9.5 and 0.9.7p1 are also visible in the
influence models but affect multiple unrelated terms. Other changes in previously
identified prominent releases are not visible in the influence models .

In addition to the changes we have observed in the previous research question, we
can observe an additional change in the influence models in v1.6.1, which appears to
be of a small magnitude and affects almost all model terms, i.e. most configuration
options . This change appears to have a positive influence on some configurations
an a negative influence on other configurations . This explains why we did not see
this change in the mean values, since positive and negative changes likely cancel
each other out. These changes also appear to be of a relatively small magnitude,
explaining why we could not identify them in the previous research question.

As for all previous case studies, we can see that the performance-influence mod-
els and energy-influence models are very similar and changes between releases are
reflected in the same way in influence models for both non-functional properties .

For this case study, we manually added two feature interactions to the influence mod-
els , that SPL Conqueror did not discover during iterative learning. As we can see in
the visualizations of the influence models, these interactions (best · constantBitrate ·
autoAltRef and best · twoPass · constantBitrate · tokenParts0) have a noticeable in-
fluence in some releases , even larger than some of the iteratively learned influences,
such as ‘twoPass’ and the interaction of ‘best’ and ‘twoPass’. This shows, that it
can be worthwhile to complement the iterative learning of SPL Conqueror with ad-
ditional strategies such as a manual investigation of measurement results to identify
additional influences on a non-functional property .

Common for all four case studies we can see that influences and changes in influ-
ences behave very similarly for performance and energy consumption. Out of the 20
releases we found to have changes in performance or energy consumption in the pre-
vious research questions, 14 (70%) of changes are reflected in the influence models .
In the models, we found one additional change that we did not identify previously.
Out of the 15 changes we observed in the influence models , we could clearly at-
tribute 5 (33%) changes to a specific configuration option or interaction between
configuration options .

We found that 70% of the changes in performance and energy consumption we
identified in previous research questions are reflected in influence models . We
identified one additional change using the influence models that was not visible
in the mean values or values of individual configurations . We could directly
attribute 33% of the changes we observed in the influence models to a specific
configuration option or interaction. Influences and changes of influences are
consistent between performance and energy consumption.

5.4. RQ2.1: Changes in the Correlation 61

5.4 RQ2.1: Changes in the Correlation

RQ2.1: Are there changes in the correlation between performance and energy con-
sumption across releases?

Results

In RQ2, we are investigating the correlation between performance and energy con-
sumption and changes in the correlation across releases . We do this by calculating
the Pearson correlation coefficient between performance and energy consumption
for all configurations of each release.

Release r (all configurations) s = ¬blowfish
ρr interpretation subs. ch. ρr,s interpretation subs. ch.

2.1.0 0.99 very strong 0.39 weak
2.2.0 0.99 very strong 0.67 strong +
2.2.1 0.99 very strong 0.65 strong
2.2.2 0.97 very strong 0.52 moderate
2.2.3 0.98 very strong 0.60 moderate
2.2.4 0.96 very strong 0.56 moderate
2.2.5 0.97 very strong 0.57 moderate
2.2.6 0.97 very strong 0.50 moderate
2.2.7 0.97 very strong 0.62 strong
2.2.8 0.97 very strong 0.58 moderate
2.2.9 0.98 very strong 0.66 strong
2.3.0 0.98 very strong 0.56 moderate
2.3.1 0.98 very strong 0.58 moderate
2.3.2 0.97 very strong 0.56 moderate
2.3.3 0.98 very strong 0.55 moderate
2.3.4 0.98 very strong 0.60 moderate
2.3.5 0.98 very strong 0.61 strong
2.4.0 0.98 very strong 0.59 moderate
2.4.1 0.97 very strong 0.54 moderate

Table 5.6: Overall correaltion for the HSQLDB case study. The ‘subs. ch.’ column
indicates a positive (+) or negative (−) substantial change from the previous release.
Correlation values are given for all configurations and for configurations without
blowfish encryption.

For the first case study, HSQLDB , we considered in addition to the overall correlation
of all configurations also the correlation of only configurations without blowfish
encryption, since we have seen that this feature dominates performance and energy
consumption and we also expect it to dominate the correlation. We show the Pearson
correlation coefficients for this case study in Table 5.6. In the table, we show both
the calculated Pearson correlation coefficients and our interpretation of these values.
Additionally, we indicate whether there is a substantial change in the correlation
from the previous release.

62 5. Evaluation

Release r (all configurations) s = ¬keepalive
ρr interpretation subs. ch. ρr,s interpretation subs. ch.

2.2.0 0.99 very strong 0.06 none
2.2.3 0.99 very strong 0.18 none
2.2.6 0.99 very strong 0.03 none
2.2.9 0.99 very strong 0.00 none
2.2.11 0.99 very strong 0.10 none
2.2.13 0.99 very strong -0.08 none
2.2.15 0.99 very strong 0.17 none
2.2.17 0.99 very strong 0.24 weak
2.2.20 0.99 very strong 0.20 weak
2.2.22 0.98 very strong 0.35 weak
2.4.2 0.99 very strong 0.01 none −
2.4.4 1.00 perfect 0.26 weak +
2.4.7 1.00 perfect 0.19 none
2.4.10 1.00 perfect 0.26 weak
2.4.16 1.00 perfect 0.16 none
2.4.18 1.00 perfect 0.12 none
2.4.23 1.00 perfect 0.33 weak +
2.4.27 1.00 perfect 0.30 weak
2.4.33 1.00 perfect 0.34 weak
2.4.35 1.00 perfect 0.28 weak
2.4.38 1.00 perfect 0.29 weak

Table 5.7: Overall correaltion for the Apache httpd case study. The ‘subs. ch.’
column indicates a positive (+) or negative (−) substantial change from the previous
release. Correlation values are given for all configurations and for configurations
without keepalive connections.

For the Apache httpd case study, we show the Pearson correlation coefficients for all
configurations and for configurations without the dominating configuration option
‘keepalive’ in Table 5.7.

For the third case study, PostgreSQL, we did not find an configuration option that
dominates performance and energy consumption throughout all releases , so we only
show the Pearson correlation coefficients for all configurations in Table 5.8.

For the libvpx VP8 case study, we consider all configurations and additionally the
configurations with a specific value for the ‘threads’ option, since we have already
seen very similar behaviour across different values for that option in RQ1.3 and can
see a similar behaviour here. For all configurations , we only observe very strong Pear-
son correlation coefficients ranging from 0.95 to 0.97, with no substantial changes .
Considering only configurations with a single thread, all releases have a perfect cor-
relation of 1.00. Similarly, configurations with a value of 2 for the ‘threads’ option
have Pearson correlation coefficients ranging from 0.99 to 1.00. Just like in RQ1.3,
there are no noticeable differences between the sets of configurations with the values
2, 3 and 4 for the ‘threads’ option.

5.4. RQ2.1: Changes in the Correlation 63

Release r ρr interpretation subs. ch.

8.3.0 0.91 very strong
8.3.5 0.91 very strong
8.4.0 0.95 very strong
8.4.2 0.91 very strong
9.0.0 0.95 very strong
9.0.4 0.24 weak −
9.1.0 0.53 moderate +
9.1.3 0.10 none −
9.2.0 0.45 moderate +
9.2.4 0.28 weak
9.3.0 0.48 moderate +
9.3.4 0.41 moderate
9.4.0 0.43 moderate
9.4.4 0.22 weak −
9.5.0 0.54 moderate +
9.5.3 0.46 moderate
9.6.0 0.37 weak
9.6.3 0.52 moderate
10.0 0.37 weak
10.4 0.41 moderate
11.0 0.34 weak
11.2 0.03 none −

Table 5.8: Overall correaltion for the PostgreSQL case study. The ‘subs. ch.’
column indicates a positive (+) or negative (−) substantial change from the previous
release. Correlation values are given for all configurations .

Case study Configurations Rρ
prom

HSQLDB (all) ∅
¬blowfish 2.2.0

Apache httpd (all) ∅
¬keepalive 2.4.2, 2.4.4, 2.4.23

PostgreSQL (all) 9.0.4, 9.1.0, 9.1.3, 9.2.0, 9.3.0, 9.4.4, 9.5.0, 11.2

libvpx VP8 (all) ∅
threads = 1 ∅
threads = 2 ∅

Table 5.9: Prominent releases with respect to the Pearson correlation coefficient
of each case study.

64 5. Evaluation

In Table 5.9, we list all prominent releases with respect to the Pearson correlation
coefficient for each case study.

Discussion

For our first case study, HSQLDB , when investigating the correlation for all con-
figurations , we can see that the correlation is generally very strong, ranging from
0.96 to 0.99, and there are no substantial changes . We found that this very strong
correlation is primarily caused by the feature ‘blowfish’, which has a dominating
influence on both the performance and the energy consumption. When considering
only configurations without this option, we can see a lower correlation ranging from
a weak correlation of 0.39 to a strong correlation of 0.67. There is one substantial
change, with a jump from a weak to a strong correlation in release 2.2.0. This
change in the correlation coincides with the only change that we observed across all
case studies, that only affected the performance but not the energy consumption, not
only in the mean values but also in the values of individual configurations , where for
all other changes we observed, performance and energy consumption where affected
alike. This connection makes sense, since a change in only one of the non-functional
properties necessarily affects the correlation. However, we found no indication for a
reason for this behaviour in version 2.2.0 of HSQLDB . There are no further changes
in the correlation of HSQLDB .

For the second case study, Apache httpd , when investigating all configurations , we
can observe a very strong or even perfect correlation ranging from 0.98 to 1.00.
Similar to blowfish encryption in HSQLDB , there is also a dominating configuration
option in this case study, namely the ‘keepalive’ option. When calculating the
correlation values only for configurations without the ‘keepalive’ option, we can see
a much lower correlation, ranging from no correlation at all with a value of 0.00 to
a weak correlation with a maximum value of 0.35. According to our definition of
substantial changes , there are three substantial changes in the correlation of Apache
httpd without ‘keepalive’, with one change from a weak correlation to no correlation
in version 2.4.2, a change back to a weak correlation in the next release, 2.4.4, and
a change from no correlation to a weak correlation in 2.4.23. However, all of these
changes are only between no correlation and weak correlation, which, considering
the high level of noise we have observed in previous research question for this case
study, are, albeit substantial according to our definition, not in any way relevant for
our evaluation.

In the third case study, PostgreSQL, we can see a wide range of correlation values,
ranging from no correlation with a value of 0.03 to a very strong correlation of
0.95. We can also see a number of substantial changes , most notably a drop from
a very strong to a weak correlation in version 9.0.4 and a change from a moderate
to no correlation in 9.1.3 followed by a change back to a moderate correlation in
the subsequent release, 9.2.0. Additionally, there are a number of smaller changes
between weak and moderate or between weak and no correlation, which, similar
to the situation in the Apache httpd case study, are substantial according to the
definition, but are not particularly relevant for this evaluation.

The drop in the correlation in version 9.0.4 coincides with the large change in perfor-
mance and energy consumption we have observed in this release in previous research

5.4. RQ2.1: Changes in the Correlation 65

questions. This was the only release in which we observed considerably different
magnitudes of changes for performance and energy consumption, with the perfor-
mance dropping by 40% and the energy consumption dropping only by 32%. The
different changes in performance and energy consumption explain the change in the
correlation and we have already found an explanation for the different changes in a
previous research question, with this change being caused by the ‘fsync’ configura-
tion option, which is a feature that introduces a delay with a direct impact on the
performance but only a comparably small influence on the energy consumption.

The drop in the correlation in release 9.1.3 does not coincide with any changes in
the performance or energy consumption and the change in the correlation of the
following release, 9.2.0, corresponds to only a small change in the performance and
energy consumption. The reason for this might be, that even large and substantial
changes in the correlation like these can be caused by noise and the inaccuracy of
the correlation.

In the libvpx VP8 case study, we observed a very strong correlation throughout all
releases and could not identify a dominating configuration option, the exclusion of
which might lower the correlation. Since the correlation is very strong in all releases ,
there are no substantial changes .

To compare the combined results of all case studies with our findings from the pre-
vious research questions, we consider for the HSQLDB case study the correlation
of configurations without ‘blowfish’, for the Apache httpd case study the correlation
of configurations without ‘keepalive’, for PostgreSQL the correlation of all configu-
rations and for libvpx VP8 the correlation of configurations with a single thread.
Out of the 20 releases we have identified to have substantial changes in the perfor-
mance or energy consumption, we have 5 releases (25%) with a substantial change
in the correlation between performance and energy consumption. In the inverse
direction, out of the 12 releases we found to have a substantial change in the cor-
relation, 5 releases (42%) have shown substantial changes in the performance or
energy consumption. Overall, we have observed substantial changes in 12 (16%) of
all 73 measured releases .

Overall, we can see that there is no clear connection between changes in the cor-
relation and changes in the performance and energy consumption. However, the
most apparent changes in the correlation are reflected by unusual changes in perfor-
mance and energy consumption and vice versa. We have found substantial changes
in the correlation for both the one release with a change in only one of the non-
functional properties and the one release with considerably differing changes in the
two non-functional properties .

We found substantial changes in the correlation between performance and energy
consumption in 16% of measured releases . 25% of releases with changes in per-
formance and energy consumption also show changes in the correlation and 42%
of releases with changes in the correlation also have changes in the performance
and energy consumption.

66 5. Evaluation

5.5 RQ2.2: Changes in the Correlation of Fea-

tures

RQ2.2: Are changes in the correlation between performance and energy consump-
tion caused by specific individual features?

Results

In our final research question, we again investigate the correlation between perfor-
mance and energy consumption, increasing the granularity from the previous re-
search question to consider the correlation for different subsets of the configuration
space.

2.1
.0

2.2
.0

2.2
.1

2.2
.2

2.2
.3

2.2
.4

2.2
.5

2.2
.6

2.2
.7

2.2
.8

2.2
.9

2.3
.0

2.3
.1

2.3
.2

2.3
.3

2.3
.4

2.3
.5

2.4
.0

2.4
.1

Releases

(all)

cacheSize625

cacheSize2500

cacheSize10000

¬defrag

defrag

defragLimit10

defragLimit50

¬encryption

encryption

aes

blowfish

¬incrementalBackup

incrementalBackup

¬log

log

logSize5

logSize50

logSize100

memory

cached

locks

mvlocks

mvcc

0.99

1.00

0.96

0.93

0.99

0.99

0.99

0.99

0.29

0.99

0.46

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.87

0.99

0.99

0.99

0.98

0.99

1.00

0.98

0.97

0.99

0.99

0.99

0.99

0.60

0.99

0.71

1.00

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.93

0.99

0.99

0.99

0.99

0.99

1.00

0.98

0.97

0.99

0.99

0.99

0.99

0.65

0.99

0.66

1.00

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.94

0.99

0.99

0.99

0.99

0.97

0.98

0.97

0.95

0.96

0.97

0.97

0.97

0.49

0.97

0.55

0.96

0.97

0.97

0.93

0.97

0.97

0.98

0.97

0.91

0.97

0.96

0.97

0.97

0.98

0.98

0.98

0.96

0.98

0.98

0.98

0.98

0.48

0.98

0.68

0.98

0.98

0.98

0.93

0.98

0.99

0.98

0.98

0.91

0.98

0.98

0.97

0.98

0.96

0.98

0.96

0.95

0.97

0.96

0.96

0.96

0.46

0.97

0.65

0.95

0.96

0.97

0.89

0.97

0.98

0.97

0.97

0.90

0.97

0.96

0.97

0.97

0.97

0.98

0.97

0.96

0.97

0.98

0.98

0.98

0.45

0.98

0.63

0.97

0.97

0.97

0.93

0.98

0.98

0.98

0.98

0.92

0.98

0.97

0.97

0.97

0.97

0.98

0.97

0.96

0.97

0.97

0.97

0.97

0.45

0.98

0.59

0.98

0.97

0.97

0.92

0.98

0.98

0.98

0.98

0.91

0.98

0.98

0.98

0.97

0.97

0.99

0.98

0.96

0.97

0.97

0.97

0.97

0.57

0.98

0.64

0.97

0.97

0.97

0.94

0.98

0.98

0.98

0.98

0.90

0.98

0.97

0.98

0.97

0.97

0.98

0.97

0.95

0.97

0.97

0.97

0.97

0.58

0.98

0.58

0.97

0.97

0.97

0.91

0.98

0.98

0.98

0.97

0.90

0.97

0.97

0.97

0.97

0.98

0.99

0.98

0.96

0.98

0.98

0.98

0.98

0.63

0.98

0.68

0.97

0.97

0.98

0.94

0.98

0.98

0.98

0.98

0.91

0.98

0.98

0.98

0.98

0.98

0.98

0.98

0.97

0.98

0.98

0.97

0.98

0.51

0.98

0.61

0.98

0.97

0.98

0.91

0.98

0.99

0.98

0.97

0.92

0.98

0.97

0.98

0.98

0.98

0.98

0.98

0.96

0.97

0.98

0.98

0.98

0.54

0.98

0.61

0.98

0.98

0.98

0.92

0.98

0.98

0.98

0.98

0.91

0.98

0.97

0.98

0.98

0.97

0.98

0.98

0.96

0.97

0.98

0.98

0.98

0.51

0.98

0.60

0.98

0.98

0.97

0.94

0.98

0.99

0.97

0.98

0.90

0.98

0.97

0.98

0.98

0.98

0.98

0.98

0.97

0.97

0.98

0.98

0.98

0.50

0.98

0.58

0.98

0.98

0.97

0.94

0.98

0.99

0.98

0.98

0.91

0.98

0.98

0.98

0.98

0.98

0.98

0.98

0.97

0.98

0.98

0.98

0.98

0.56

0.98

0.63

0.98

0.98

0.98

0.94

0.98

0.99

0.98

0.98

0.91

0.98

0.98

0.98

0.98

0.98

0.99

0.98

0.97

0.98

0.98

0.98

0.98

0.58

0.98

0.66

0.98

0.98

0.98

0.94

0.98

0.99

0.98

0.98

0.92

0.98

0.98

0.98

0.98

0.98

0.99

0.98

0.97

0.97

0.98

0.98

0.98

0.58

0.98

0.59

0.98

0.98

0.98

0.93

0.98

0.99

0.98

0.98

0.92

0.98

0.98

0.98

0.98

0.97

0.98

0.97

0.95

0.96

0.97

0.97

0.97

0.63

0.98

0.57

0.98

0.97

0.97

0.91

0.97

0.98

0.96

0.97

0.87

0.97

0.97

0.97

0.97

 none

 weak

 moderate

 strong

 very strong

 perfect

0

0.2

0.4

0.6

0.8

1

Figure 5.12: Pearson correlation coefficient for subsets of the configuration space
for each release of the HSQLDB case study. A bar over a correlation value indicates
a positive substantial change from the previous release, a bar under a value indicates
a negative substantial change.

In Figure 5.12, we show the Pearson correlation coefficients between performance
and energy consumption for different subsets of the configuration space of the first

5.5. RQ2.2: Changes in the Correlation of Features 67

2.2
.0

2.2
.3

2.2
.6

2.2
.9

2.2
.11

2.2
.13

2.2
.15

2.2
.17

2.2
.20

2.2
.222.4

.2
2.4

.4
2.4

.7
2.4

.10
2.4

.16
2.4

.18
2.4

.23
2.4

.27
2.4

.33
2.4

.35
2.4

.38

Releases

(all)

¬basicAuth

basicAuth

¬compression

compression

compressionLevel1
compressionLevel5
compressionLevel9

¬keepalive

keepalive

maxClients512

maxClients1024

maxClients2048

maxClients4096

prefork

worker

even

moreProcesses

moreThreads

¬sendfile

sendfile

aes128

aes256

0.99

1.00

1.00

1.00

0.01

-0.03

0.06

0.02

0.06

0.31

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

1.00

1.00

1.00

0.08

0.00

0.03

0.22

0.18

0.32

0.99

0.99

0.99

0.99

1.00

0.99

0.99

0.99

1.00

0.99

0.99

0.99

1.00

0.99

1.00

1.00

1.00

-0.04

-0.12

-0.05

0.05

0.03

0.43

0.99

0.99

0.99

0.99

1.00

0.99

0.99

0.99

1.00

0.99

0.99

0.99

1.00

0.99

0.99

0.99

1.00

-0.17

-0.20

-0.15

-0.15

0.00

0.33

0.99

0.99

0.99

0.99

1.00

0.99

0.99

0.98

0.99

0.99

0.99

0.99

0.99

0.99

1.00

1.00

1.00

0.08

0.15

-0.00

0.10

0.10

0.37

0.99

0.99

0.99

0.99

1.00

0.99

0.99

0.99

1.00

0.99

0.99

0.99

0.99

0.99

1.00

1.00

1.00

-0.02

-0.07

-0.03

0.04

-0.08

0.25

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

1.00

1.00

1.00

0.03

-0.03

0.03

0.13

0.17

0.45

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

1.00

1.00

1.00

0.21

0.23

0.26

0.11

0.24

0.49

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

1.00

0.21

0.17

0.28

0.17

0.20

0.42

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.98

0.99

0.99

1.00

0.33

0.36

0.33

0.30

0.35

0.28

0.98

0.98

0.98

0.98

0.99

0.99

0.98

0.99

0.99

0.98

0.98

0.99

0.98

0.99

1.00

1.00

1.00

-0.14

-0.15

-0.12

-0.16

0.01

0.47

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

1.00

1.00

1.00

1.00

0.27

0.27

0.20

0.33

0.26

0.52

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.19

0.16

0.27

0.12

0.19

0.44

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.27

0.25

0.30

0.27

0.26

0.35

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.16

0.27

0.05

0.17

0.16

0.46

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.19

0.10

0.25

0.22

0.12

0.33

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.33

0.32

0.38

0.30

0.33

0.30

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.33

0.34

0.40

0.26

0.30

0.45

0.99

1.00

1.00

1.00

1.00

1.00

1.00

0.99

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.35

0.35

0.31

0.39

0.34

0.30

1.00

0.99

0.99

1.00

1.00

1.00

1.00

1.00

0.99

1.00

1.00

0.99

1.00

1.00

1.00

1.00

1.00

0.31

0.27

0.33

0.35

0.28

0.33

1.00

0.99

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.28

0.28

0.30

0.27

0.29

0.40

0.99

1.00

0.99

1.00

1.00

1.00

1.00

1.00

0.99

1.00

1.00

1.00

0.99

 none

 weak

 moderate

 strong

 very strong

 perfect

0

0.2

0.4

0.6

0.8

1

Figure 5.13: Pearson correlation coefficient for subsets of the configuration space for
each release of the Apache httpd case study. A bar over a correlation value indicates
a positive substantial change from the previous release, a bar under a value indicates
a negative substantial change.

case study, HSQLDB . Columns indicate the different releases and rows indicate the
constraints used to define subsets of the configuration space, one for each binary
option, for each alternative from alternative groups and for each value of numeric
options. The first row, ‘(all)’ indicates the full configuration space with no con-
straints . Values in the cells are the Pearson correlation coefficients with colours
indicating the different levels of correlation according to our interpretation. Sub-
stantial changes are highlighted with a bar over or under the value for positive and
negative changes, respectively.

Following the same schema, we show the Pearson correlation coefficients for the
Apache httpd and PostgreSQL case studies in Figure 5.13 and Figure 5.14, respec-
tively.

For the final case study, libvpx VP8 , when considering the whole configuration space,
the Pearson correlation coefficients range from a very strong correlation of 0.92 to a
perfect correlation for all subsets of configurations and for all releases . Instead, we
consider, just like in the previous research questions, only the configurations with

68 5. Evaluation

8.3
.0

8.3
.5

8.4
.0

8.4
.2

9.0
.0

9.0
.4

9.1
.0

9.1
.3

9.2
.0

9.2
.4

9.3
.0

9.3
.4

9.4
.0

9.4
.4

9.5
.0

9.5
.3

9.6
.0

9.6
.3

10
.0

10
.4

11
.0

11
.2

Releases

(all)

¬fsync

fsync

¬fullPageWrites

fullPageWrites

sharedBuffers64

sharedBuffers128

sharedBuffers256

¬synchronousCommit

synchronousCommit

tempBuffers2

tempBuffers8

tempBuffers32

¬trackActivities

trackActivities

¬trackCounts

trackCounts

workMem256

workMem1024

workMem4096

0.91

0.46

0.51

0.91

0.91

0.91

0.91

0.91

0.92

0.90

0.92

0.90

0.91

0.93

0.90

0.90

0.91

0.92

0.90

0.91

0.91

0.39

0.38

0.90

0.93

0.91

0.92

0.91

0.93

0.90

0.91

0.91

0.92

0.92

0.91

0.92

0.90

0.91

0.92

0.91

0.95

0.33

0.22

0.95

0.95

0.95

0.95

0.95

0.94

0.96

0.95

0.95

0.96

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.91

0.31

0.37

0.92

0.90

0.91

0.91

0.90

0.93

0.89

0.91

0.91

0.89

0.92

0.89

0.91

0.90

0.91

0.91

0.91

0.95

0.54

0.39

0.95

0.96

0.95

0.95

0.95

0.96

0.95

0.95

0.95

0.95

0.95

0.96

0.95

0.95

0.95

0.95

0.95

0.24

0.32

0.02

0.20

0.28

0.21

0.21

0.30

0.32

0.19

0.22

0.25

0.25

0.25

0.23

0.18

0.30

0.20

0.25

0.27

0.53

0.41

0.52

0.49

0.57

0.56

0.50

0.51

0.28

0.63

0.56

0.45

0.56

0.54

0.51

0.51

0.54

0.51

0.56

0.50

0.10

0.35

0.30

0.24

-0.07

0.16

0.08

0.05

-0.07

0.18

0.09

0.11

0.09

0.16

0.03

0.04

0.15

0.11

0.09

0.09

0.45

0.37

0.46

0.30

0.58

0.47

0.50

0.39

0.08

0.59

0.50

0.45

0.41

0.38

0.53

0.37

0.54

0.42

0.49

0.45

0.28

0.42

-0.18

0.17

0.39

0.35

0.24

0.24

0.53

0.15

0.25

0.29

0.30

0.23

0.33

0.23

0.33

0.26

0.29

0.29

0.48

0.24

0.15

0.33

0.61

0.51

0.48

0.49

0.48

0.50

0.47

0.51

0.47

0.47

0.49

0.46

0.51

0.48

0.53

0.44

0.41

-0.04

0.22

0.31

0.50

0.42

0.41

0.40

0.40

0.40

0.44

0.39

0.39

0.37

0.45

0.40

0.42

0.43

0.41

0.38

0.43

0.33

0.22

0.55

0.28

0.39

0.46

0.44

0.38

0.45

0.41

0.42

0.46

0.45

0.41

0.43

0.42

0.43

0.37

0.48

0.22

0.34

0.03

0.09

0.34

0.28

0.23

0.15

0.33

0.14

0.24

0.21

0.19

0.29

0.14

0.17

0.27

0.16

0.26

0.22

0.54

0.25

0.08

0.54

0.55

0.59

0.54

0.48

0.64

0.52

0.56

0.55

0.51

0.41

0.65

0.53

0.54

0.54

0.54

0.53

0.46

0.22

0.36

0.35

0.55

0.46

0.48

0.41

0.23

0.57

0.46

0.45

0.46

0.46

0.45

0.47

0.44

0.48

0.48

0.41

0.37

0.25

0.05

0.43

0.30

0.56

0.30

0.22

0.40

0.44

0.38

0.37

0.35

0.41

0.33

0.39

0.35

0.34

0.37

0.40

0.52

0.35

0.04

0.56

0.49

0.64

0.52

0.41

0.61

0.57

0.54

0.51

0.53

0.54

0.51

0.55

0.50

0.52

0.53

0.53

0.37

0.38

0.27

0.38

0.37

0.52

0.25

0.33

0.16

0.57

0.40

0.32

0.41

0.42

0.32

0.35

0.39

0.36

0.32

0.44

0.41

0.18

-0.07

0.37

0.45

0.57

0.37

0.25

0.63

0.38

0.46

0.39

0.38

0.35

0.46

0.35

0.47

0.49

0.38

0.36

0.34

0.19

0.03

0.64

0.03

0.56

0.30

0.11

0.44

0.37

0.40

0.32

0.31

0.26

0.42

0.31

0.37

0.38

0.31

0.34

0.03

0.36

-0.25

-0.02

0.08

0.25

-0.03

-0.17

0.31

0.02

0.04

0.05

0.01

0.03

0.03

0.07

-0.01

0.11

-0.01

-0.01

 none

 weak

 moderate

 strong

 very strong

 perfect

0

0.2

0.4

0.6

0.8

1

Figure 5.14: Pearson correlation coefficient for subsets of the configuration space for
each release of the PostgreSQL case study. A bar over a correlation value indicates a
positive substantial change from the previous release, a bar under a value indicates
a negative substantial change.

a specific value for the ‘threads’ option and take subsets from this set. We show
the Pearson correlation coefficients for subsets of the set of configurations with a
value of 1 for the ‘threads’ option in Figure 5.15 and include the plot for value 2 in
Section A.3 of the appendix for reference.

Discussion

For the final research question, we increase the granularity from the previous research
question and investigate the correlation between performance and energy consump-
tion for different subsets of the configuration space to identify different correlation
behaviour of the different configuration options .

For the HSQLDB case study, we observe a very strong correlation for all configura-
tions as well as for most subsets of the configuration space, with only two exceptions:
configurations without ‘encryption’ and configurations with ‘aes’. Those two sets
have in common the absence of the feature ‘blowfish’, since ‘blowfish’ and ‘aes’ form
an alternative group with ‘encryption’ as its root. There are only two substantial
changes in the correlation, both in the subsets without ‘blowfish’ and both in re-
lease 2.2.0. This is the same change that we found in the previous research question,
where we considered the correlation for all configurations without the dominating

5.5. RQ2.2: Changes in the Correlation of Features 69

v0
.9.

1
v0

.9.
2

v0
.9.

5
v0

.9.
6

v0
.9.

7

v0
.9.

7-p
1

v1
.0.

0
v1

.1.
0

v1
.2.

0
v1

.3.
0

v1
.4.

0
v1

.5.
0

v1
.6.

1
v1

.7.
0

v1
.8.

0

Releases

(all)
¬allowResize

allowResize

arnrMaxFrames0

arnrMaxFrames5

arnrMaxFrames15

arnrStrength0

arnrStrength3

arnrStrength6

¬autoAltRef

autoAltRef
¬constantBitrate

constantBitrate

best

good

rt

tokenParts0

tokenParts1

tokenParts2

¬twoPass

twoPass

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.99

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.99

1.00

1.00

0.88

0.97

1.00

1.00

1.00

1.00

1.00

0.99

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.97

0.98

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.77

0.97

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.99

1.00

1.00

0.74

0.98

1.00

1.00

1.00

1.00

1.00

0.99

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.95

0.55

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.95

0.71

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.99

1.00

1.00

0.96

0.60

1.00

1.00

1.00

1.00

1.00

0.99

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.91

0.78

0.19

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.92

0.72

0.56

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.92

0.94

0.39

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.89

0.94

0.40

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.90

0.95

0.31

1.00

1.00

1.00

1.00

1.00

 none

 weak

 moderate

 strong

 very strong

 perfect

0

0.2

0.4

0.6

0.8

1

Figure 5.15: Pearson correlation coefficient for subsets of the configuration space for
each release of the libvpx VP8 case study. A bar over a correlation value indicates a
positive substantial change from the previous release, a bar under a value indicates a
negative substantial change. Only configurations with threads = 1 are considered.

feature ‘blowfish’. This is, however, not a change that is caused by ‘blowfish’ but
rather a change that is hidden by the dominance of the configuration option.

Similar results to the previous research question, we can also see for the Apache httpd
case study. There is a very strong correlation in all subsets of the configuration space
expect for those with ‘compression’, a ‘compressionLevel’ (which implies ‘compres-
sion’) and a specific value for ‘keepalive‘. Since ‘compression’ and ‘keepalive’ are mu-
tually exclusive, all configurations with ‘compression’ are without ‘keepalive’. While
neither configurations without ‘keepalive’ nor those with ‘keepalive’ show a strong
correlation, the dominating influence of this configuration option causes a strong
correlation for sets containing configurations both with and without ‘keepalive’.
Within the sets with weaker correlation, substantial changes are frequent and noise
is the most likely cause.

The first five releases of the PostgreSQL case study behave like the previous two case
studies, showing a very strong correlation except in the sets of configurations with
or without ‘fsync’, because the ‘fsync’ option dominates performance and energy
consumption in those releases . Starting with release 9.0.4, there is a much weaker
correlation, consistently across all subsets of the configuration space. There are

70 5. Evaluation

many substantial changes , some of which will be caused by noise. However, it is
clear that in some releases all or almost all subsets of the configuration space show
the same substantial change in the correlation. These are the same releases in which
we observed substantial changes in the correlation of all configurations . The fact
that the correlation shows a similar behaviour regarding the substantial changes for
all subsets of the configuration space shows us, that these changes are not caused by
any specific configuration option, but rather affect all configuration options and all
configurations alike. The change in 9.0.4 is the only exception from this behaviour,
with this change being much larger for sets of configurations with mixed values for
‘fysnc’, since, as we previously discovered, this change is caused by that particular
configuration option.

In the last case study, libvpx VP8 , we focused on those configurations with threads =
1. We can see a perfect correlation in most subsets of the configuration space
throughout all releases . Only the sets of configurations with a specific configu-
ration option from the alternative group with ‘best’, ‘good’ and ‘rt’ have a weaker
correlation for some releases . Configurations with the option ‘best’ have a correla-
tion in v0.9.7-p1 and v1.0.0 that is substantially lower than that of other releases .
Configurations with the option ‘good’ have substantially lower correlation in releases
v1.1.0 to v1.5.0. Finally, the correlation for configurations with ‘rt’ is substantially
lower starting with release v1.4.0. This change is related to the missing constraint
in our feature model for this case study which we described in a previous research
question.

Out of the twelve prominent releases with respect to the correlation, we only found
one instance of a change in the overall correlation being caused by a specific config-
uration option, namely ‘fsync‘ in release 9.0.4 of PostgreSQL. This coincides with
the only instance of a prominent release with respect to the correlation having a
change in the performance and energy consumption, that we could clearly attribute
to a specific configuration option using the influence models . There are four more re-
leases which have substantial changes both in performance and energy consumption,
and also in the correlation. For all of those, we have seen changes in the influence
models but could not attribute the changes to any specific configuration option.

We only found a single instance of a change in the overall correlation between per-
formance and energy consumption that we could directly attribute to a specific
configuration option. A single observation is not enough to answer the question
of whether there are changes in the correlation that are caused by individual
configuration options , with confidence.

6. Validity

In this chapter, we discuss the validity of our results. First we consider the internal
validity, i.e. limitations and potential sources of errors in our measurements. Then
we discuss the external validity, i.e. the generalizability of our findings.

6.1 Internal Validity

In this section, we list potential sources of errors in our measurements and restric-
tions in our experimental setup, which may lead to inaccurate or invalid results. For
each of these, we describe the measures we have taken to mitigate these threats to
the internal validity of our findings.

Repetitions and Deviation

In the following paragraphs we list specific threats and measures, but those measures
cannot cover all potential sources of errors. For this reason, we measure five repeti-
tions of each configuration and take the mean value of all repetitions. Additionally,
we determine the relative standard deviation of the repetitions. The relative stan-
dard deviation is calculated as the absolute standard deviation divided by the mean
value. If it exceeds 10% for a configuration, we discard the results and repeat the
measurements for this configuration.

CPU

Modern CPUs have several complex features that aim at improving performance or
reducing power consumption under specific conditions. These conditions are vir-
tually impossible to predict and consequently have unpredictable influences on the
measurements. However, these CPU features are used in practice and disabling them
for the measurements would represent an unrealistic scenario. For this reason we de-
cided to perform our measurements without disabling these features, assuming that
any unpredictable influences would either be consistent across different measure-
ments, or otherwise influences would be diminished by the averaging over multiple
repeated measurements.

72 6. Validity

For software that is executed on multiple CPU cores, the CPU may dynamically and
frequently change which cores the software is executed on. This can lead to CPU
cores frequently switching between idle and active states which in turn can impact
the energy consumption and performance in an unpredictable way. For the libvpx
VP8 case study, which – depending on the value of the ‘threads’ option – runs only
on some of the cores of the CPU, we assigned specific cores to the process using the
taskset command to reduce this impact. For other case studies, we did not restrict
which cores should be used for a more realistic situation.

Background Software

Software running in the background during the measurements, can influence the
measured performance and energy consumption. Since we use a minimal operating
system installation, we can expect there to be little to no influence from background
applications most of the time. In the rare case that there is an impact from software
running in the background (e.g. automatic updates), it will only appear in one of
the repetitions and we will detect it through a high deviation.

As stated in the section describing our experimental setup (Section 4.3), we use
different nodes for servers and clients to avoid clients influencing servers and we use
a separate host to query and process power consumption values.

PDUs

The PDUs are another potential source of measurement errors for the energy con-
sumption. Measurements could yield different results when different sockets of the
PDU are used or could be affected by external influences that are not stable over
time. Additionally, simultaneous measurements for different cluster nodes connected
to the same PDU may influence one another.

In our previous work [Wer17], we had used the same PDUs as in the current exper-
imental setup. In that work, we conducted thorough tests to investigate whether
the PDUs are suitable for our measurements. In the following, we list the properties
we considered as relevant for accurate measurements with the PDUs and summarize
our respective findings:

Offsets: We found that there are constant offsets in the measured values between
different sockets of the PDUs. We can simply subtract these offsets to obtain
comparable results.

Consistency: We found that measuring a constant load yields constant measure-
ment results.

Comparability: We compared measurements with a different meter and with a
fixed load, and found that measurements yield the correct results.

Repeatability: We found that repeated measurements yield equal results.

Isolation: There was no indication for multiple simultaneous measurements influ-
encing the results of on another.

6.2. External Validity 73

Network

For case studies with a client–server setup, the network connection between the
cluster nodes may be a limiting factor for the performance. In our experimental
setup, we have to assume that there is an influence on the performance from the
network, but we are confident that it is small, since the CPU load on the server is
on average higher than 10%1 for all configurations . This indicates, that the server is
not only waiting for the network and we measure at least partially the performance
of the server.

On the cluster nodes, all user files are not stored on a local disk but in a network file
system. Reading the measured software binaries and benchmark input files from the
network file systems could introduce unwanted delays and impact the performance.
To avoid this, we copy all files that are used during the measurements to the local
disk (SSD) of the respective cluster node before starting a measurement.

Warm-Up

Software running – or not running – on a cluster node directly before the measure-
ments can influence the results. In particular the temperature of the CPU can have
an influence on the performance as stated by Mytkowicz et al. [MDHS09]. To ensure
equal initial conditions for all measurements, we include a warm-up phase for the
CPU before all measurements. We use the tool stress-ng2 to maintain a CPU load
of 95% for 5 seconds. In previous measurements with the same setup, we have seen
that a longer warm-up phase does not provide any additional benefit.

6.2 External Validity

In this section, we discuss the generalizability of our results.

Within the constrained time frame available for a master’s thesis, we were able to
measure four case studies, each with around 20 releases and around 1 000 configu-
rations .

With infrastructure software and application software, we considered two different
types of software systems for our case studies. We measured application software
from two different domains, the database servers HSQLDB and PostgreSQL, and
the web server Apache httpd . With the video encoder libvpx VP8 we only have
a single application software case study from a single domain. To generalize our
results for all types of software, we would have needed to measure more case studies
from different domains. Nevertheless, since we have observed similarities between
all of our case studies, we assume that many other software systems show a similar
behaviour with regard to performance and energy consumption.

Across all case studies, we considered a wide range of different configuration options ,
making us confident that these are generally representative for configuration options
used in practice – at least in software systems from the domains we covered with
our case studies.

1For most configurations it is much higher than that, for many even more than 50%.
2http://kernel.ubuntu.com/˜cking/stress-ng/ – last visited on 2019-09-14

http://kernel.ubuntu.com/~cking/stress-ng/

74 6. Validity

7. Conclusion and Future Work

Contemporary software systems are complex and evolving. This evolution affects
functionality and non-functional properties alike. As a basis for performance and
energy optimizations in such complex software systems, we aimed at understanding
the relation between these two non-functional properties, by investigating the evolu-
tion of performance and energy consumption in configurable software systems. More
specifically, we explored changes between consecutive release in the performance and
energy consumption, as well as changes in the correlation between performance and
energy consumption. For this purpose, we measured four case studies – HSQLDB ,
Apache httpd , PostgreSQL and libvpx VP8 – and evaluated the results to answer
our research questions.

In the first research question, we compared performance and energy consumption
between releases to find out if and how the performance and energy consumption
evolves. Additionally, we used performance-influence and energy-influence models to
attribute changes to specific configuration options and interactions. We found that
performance and energy consumption change over time, with substantial changes in
27% of measured releases for the performance and in 26% of releases for the energy
consumption. We also found that changes usually affect these two non-functional
properties in the same way, with all of our observed substantial changes affecting the
performance and 95% affecting the energy consumption. Changes are predominantly
negative. In many cases we were able to attribute changes to specific configuration
options or confirm that changes are independent from configuration options and
affect all configurations alike. For our case studies, we could directly attribute 33%
of observed changes to a specific configuration option or interaction.

In the second research question, we considered the correlation between performance
and energy consumption and investigated whether this correlation changes over time.
We found instances of changes in the correlation in 16% of measured releases . How-
ever, we were not able to draw clear conclusions from these observations, because the
correlation values are heavily influenced by noise. In cases where we could clearly
identify changes, these were often directly related to changes in the performance

76 7. Conclusion and Future Work

and energy consumption. A clear connection between changes in the correlation
and specific configuration options was only visible in a single release.

Future Work

In our evaluation we discovered a limitation in the iterative learning approach of
SPL Conqueror , which did not find influences for interactions between more than
two configuration options . Future work could replace or complement this learning
approach with other methods to determine the performance-influences and energy-
influences of specific configuration options . By improving the quality and level of
detail of the influence models , combined with a larger number of measured releases ,
one could more clearly and easily find relations between specific non-functional prop-
erty value changes and specific configuration options .

In this work, we primarily used our measurement results to explore the evolution
of performance and energy consumption. In future work, documentation – such as
change logs or commit messages – or the source code could additionally be used
to further pinpoint causes of changes and find reasons for specific behaviour of
performance, energy consumption and their correlation.

A. Appendix

A.1 Content of the Accompanying CD

In this section, we list the files and directories that are included on the accompanying
CD.

The file thesis.pdf is this thesis as PDF file.

The directory casestudies contains a subdirectory for each of the case studies,
each containing the files used to prepare and run the case studies and a directory
results which contains the measurement results. Some subdirectories containing
a large number of small files have been archived as ZIP files. Large files, such as
the source code repositories of the case studies and the ‘Sintel trailer’, which is used
as workload for libvpx VP8 , are not included due to the space constraints of a CD.
These files can easily be obtained on the Internet from the websites linked in the
footnotes of the section on case studies (Section 4.2).

The directory plots contains all plots from this thesis and additional plots that
we used to analyse the results but did not include in the thesis. To view these
plots, open the file index.html in a web browser. Additionally, the scripts used to
generate these plots are included in a subdirectory scripts.

Lastly, the file energymetering.zip contains the ‘EnergyMetering’ measurement
framework which we used to measure and analyse the case studies.

78 A. Appendix

A.2 List of Releases

The following table lists all releases that we measured for the case studies.

HSQLDB Apache httpd PostgreSQL libvpx VP8

2.1.0 2.2.0 8.3.0 v0.9.1
2.2.0 2.2.3 8.3.5 v0.9.2
2.2.1 2.2.6 8.4.0 v0.9.5
2.2.2 2.2.9 8.4.2 v0.9.6
2.2.3 2.2.11 9.0.0 v0.9.7
2.2.4 2.2.13 9.0.4 v0.9.7-p1
2.2.5 2.2.15 9.1.0 v1.0.0
2.2.6 2.2.17 9.1.3 v1.1.0
2.2.7 2.2.20 9.2.0 v1.2.0
2.2.8 2.2.22 9.2.4 v1.3.0
2.2.9 2.4.2 9.3.0 v1.4.0
2.3.0 2.4.4 9.3.4 v1.5.0
2.3.1 2.4.7 9.4.0 v1.6.1
2.3.2 2.4.10 9.4.4 v1.7.0
2.3.3 2.4.16 9.5.0 v1.8.0
2.3.4 2.4.18 9.5.3
2.3.5 2.4.23 9.6.0
2.4.0 2.4.27 9.6.3
2.4.1 2.4.33 10.0

2.4.35 10.4
2.4.38 11.0

11.2

A.3 Additional Plots

This section contains additional plots that we omitted from the previous chapters
for brevity.

Figure A.1 was omitted from Section 5.1 (Evaluation of RQ1.1).

Figure A.2 was omitted from Section 5.3 (Evaluation of RQ1.3).

Figure A.3 was omitted from Section 5.5 (Evaluation of RQ2.2).

A.3. Additional Plots 79

2.2
.0

2.2
.3

2.2
.6

2.2
.9

2.2
.11

2.2
.13

2.2
.15

2.2
.17

2.2
.20

2.2
.22 2.4

.2
2.4

.4
2.4

.7
2.4

.10
2.4

.16
2.4

.18
2.4

.23
2.4

.27
2.4

.33
2.4

.35
2.4

.38

Releases

0

20

40

60

80

100

120

140

Pe
rfo

rm
an

ce
 [s

]

0

1

2

3

4

5

6

7

8

En
er

gy
 C

on
su

m
pt

io
n

[k
J]

Performance [s]
Energy Consumption [kJ]

Figure A.1: Mean performance and energy of the Apache httpd case study. Boxes
indicate threshold values. Percentages indicate relative changes for substantial
changes .

80 A. Appendix

v0
.9.

1
v0

.9.
2

v0
.9.

5
v0

.9.
6

v0
.9.

7

v0
.9.

7-p
1
v1

.0.
0

v1
.1.

0
v1

.2.
0

v1
.3.

0
v1

.4.
0

v1
.5.

0
v1

.6.
1

v1
.7.

0
v1

.8.
0

Releases

(base)
rt

best
twoPass

CBR
rt CBR

best CBR
best twoPass

rt twoPass
twoPass CBR

best autoAltRef
best CBR autoAltRef

+58

51

+23

+16

11

+18

+6.7

+57

+36

+53

46

+23

+15

9.4

+14

+51

+5.7

+4.7

9.6

+52

46

+22

+15

9.3

+12

+51

+4.5

8.6

+31

23

+10

+8.0

+1.5

1.0

1.7

+24

1.4

1.1

+26

19

+9.6

+7.8

+3.0

1.9

+2.6

3.2

+20

+1.7

3.2

+26

18

+9.8

+8.2

+0.72

0.53

1.8

+19

0.87

0.55

+24

18

+9.2

+8.2

+0.37

0.34

2.1

+18

0.32

+26

19

+9.7

+4.0

+0.27

0.29

0.34

2.2

+19

+0.22

0.20

+0.21

+25

18

+9.1

+4.2

+0.76

0.56

+0.28

2.2

+19

0.34

+0.28

0.60

+26

19

+9.4

+4.2

+0.79

0.55

+0.33

2.3

+20

0.35

0.65

+25

19

+8.9

+4.7

+1.1

0.93

+0.54

2.0

4.3

0.67

+0.39

0.84

+25

19

+8.3

+4.4

+1.1

0.93

+0.48

1.9

4.0

0.62

+0.35

0.78

+25

18

+9.1

+4.6

1.9

+0.93

1.6

1.6

5.4

+1.6

0.94

+1.9

+25

18

+9.1

+4.6

1.9

+0.89

1.7

1.6

5.4

+1.6

0.94

+1.9

+25

18

+8.5

+4.7

2.5

+1.4

2.0

1.1

5.6

+1.9

1.2

+2.3

Performance [s]

40

20

0

20

40

v0
.9.

1
v0

.9.
2

v0
.9.

5
v0

.9.
6

v0
.9.

7

v0
.9.

7-p
1
v1

.0.
0

v1
.1.

0
v1

.2.
0

v1
.3.

0
v1

.4.
0

v1
.5.

0
v1

.6.
1

v1
.7.

0
v1

.8.
0

Releases

(base)
rt

best
twoPass

CBR
rt CBR

best CBR
best twoPass

rt twoPass
twoPass CBR

best autoAltRef
best CBR autoAltRef

+2.5

2.1

+0.98

+0.68

0.43

+0.68

+0.24

+2.4

+1.5

+2.3

2.0

+0.97

+0.63

0.40

+0.57

+2.2

+0.24

+0.20

0.41

+2.3

2.0

+0.93

+0.63

0.40

+0.50

+2.2

+0.19

0.37

+1.4

1.0

+0.47

+0.24

+0.06

0.05

0.08

+1.1

0.06

0.06

+1.2

0.86

+0.43

+0.24

+0.13

0.09

+0.12

0.15

+0.90

+0.08

0.15

+1.2

0.83

+0.43

+0.27

+0.03

0.03

0.11

+0.84

0.03

+0.04

0.05

+1.1

0.79

+0.41

+0.26

0.11

+0.80

+1.2

0.85

+0.43

+0.07

0.10

+0.86

+0.02

+1.1

0.83

+0.41

+0.09

+0.04

0.03

0.11

+0.85

+1.2

0.89

+0.42

+0.09

+0.04

0.03

0.10

+0.90

0.03

+1.1

0.85

+0.40

+0.11

+0.05

0.05

0.09

0.10

+1.1

0.84

+0.38

+0.10

+0.05

0.04

0.10

0.09

0.03

0.03

+1.1

0.81

+0.41

+0.11

0.08

+0.04

0.08

0.09

0.15

+0.07

0.05

+0.09

+1.1

0.81

+0.42

+0.12

0.08

+0.04

0.08

0.08

0.16

+0.06

0.06

+0.09

+1.1

0.82

+0.38

+0.12

0.11

+0.06

0.09

0.08

0.16

+0.08

0.04

+0.11

Energy Consumption [kJ]

2

1

0

1

2

Figure A.2: Performance-influence and energy-influence models for the libvpx VP8
case study. Only values exceeding the threshold are shown. The models only rep-
resent configurations with threads = 2. The option ‘constantBitrate’ is abbreviated
as ‘CBR’ for brevity. The last influence was not found by iterative learning.

A.3. Additional Plots 81

v0
.9.

1
v0

.9.
2

v0
.9.

5
v0

.9.
6

v0
.9.

7

v0
.9.

7-p
1

v1
.0.

0
v1

.1.
0

v1
.2.

0
v1

.3.
0

v1
.4.

0
v1

.5.
0

v1
.6.

1
v1

.7.
0

v1
.8.

0

Releases

(all)
¬allowResize

allowResize

arnrMaxFrames0

arnrMaxFrames5

arnrMaxFrames15

arnrStrength0

arnrStrength3

arnrStrength6

¬autoAltRef

autoAltRef
¬constantBitrate

constantBitrate

best

good

rt

tokenParts0

tokenParts1

tokenParts2

¬twoPass

twoPass

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.99

0.99

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.99

0.98

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.99

1.00

1.00

0.93

0.98

1.00

1.00

1.00

1.00

1.00

0.99

1.00

0.99

1.00

0.99

1.00

1.00

1.00

1.00

1.00

1.00

0.99

0.99

1.00

0.92

0.98

1.00

0.99

1.00

1.00

1.00

0.99

1.00

1.00

0.99

1.00

1.00

0.99

0.99

1.00

1.00

1.00

0.99

1.00

1.00

0.95

0.99

1.00

0.99

1.00

1.00

1.00

0.99

0.99

0.99

0.99

0.99

0.99

1.00

0.99

0.99

0.99

1.00

0.99

0.99

0.99

0.96

0.99

1.00

0.99

0.99

0.99

1.00

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

1.00

0.99

0.99

0.99

-0.27

0.91

1.00

0.99

0.99

0.99

1.00

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

1.00

0.99

0.99

0.99

-0.05

0.88

1.00

0.99

0.99

0.99

1.00

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

1.00

0.99

0.99

0.99

-0.12

0.90

1.00

0.99

0.99

0.99

1.00

0.99

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.46

0.93

0.56

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.20

0.92

0.24

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.86

0.96

0.39

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.87

0.98

0.24

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.90

0.97

0.26

1.00

1.00

1.00

1.00

1.00

 none

 weak

 moderate

 strong

 very strong

 perfect

0

0.2

0.4

0.6

0.8

1

Figure A.3: Pearson correlation coefficient for subsets of the configuration space for
each release of the libvpx VP8 case study. A bar over a correlation value indicates a
positive substantial change from the previous release, a bar under a value indicates a
negative substantial change. Only configurations with threads = 2 are considered.

82 A. Appendix

Bibliography

[BCHC09] Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen. Pear-
son Correlation Coefficient, pages 1–4. Springer Berlin Heidelberg,
2009. (cited on Page 15)

[CAKLR11] Lauro Beltrao Costa, Samer Al-Kiswany, Raquel Vigolvino Lopes, and
Matei Ripeanu. Assessing Data Deduplication Trade-offs from an En-
ergy and Performance Perspective. In International Green Computing
Conference and Workshops (IGSC). IEEE, 2011. (cited on Page 3)

[GBE07] Andy Georges, Dries Buytaert, and Lieven Eeckhout. Statistically
Rigorous Java Performance Evaluation. ACM SIGPLAN Notices,
42(10):57–76, 2007. (cited on Page 30)

[Has19] Johannes Hasreiter. Evolution of Performance Influences in Config-
urable Systems. University of Passau, 2019. Master’s thesis. (cited on

Page 1, 5, and 27)

[JSV+17] Pooyan Jamshidi, Norbert Siegmund, Miguel Velez, Christian Kästner,
Akshay Patel, and Yuvraj Agarwal. Transfer Learning for Performance
Modeling of Configurable Systems: An Exploratory Analysis. In Pro-
ceedings of the IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 497–508. IEEE, 2017. (cited on

Page 4)

[Leh80] Meir M. Lehman. Programs, Life Cycles, and Laws of Software Evolu-
tion. Proceedings of the IEEE, 68(9):1060–1076, 1980. (cited on Page 9)

[MAS19] Stefan Mühlbauer, Sven Apel, and Norbert Siegmund. Accurate Mod-
eling of Performance Histories for Evolving Software Systems. In Pro-
ceedings of the IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2019. (cited on Page 5)

[MDHS09] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F.
Sweeney. Producing Wrong Data Without Doing Anything Obviously
Wrong! ACM SIGPLAN Notices, 44(3):265–276, 2009. (cited on

Page 73)

[Pea96] Karl Pearson. Mathematical Contributions to the Theory of Evolution.
iii. Regression, Heredity, and Panmixia. Philosophical Transactions of

84 Bibliography

the Royal Society of London. Series A, Containing Papers of a Math-
ematical or Physical Character, 187:253–318, 1896. (cited on Page 15)

[SBDD13] Juan Pablo Sandoval Alcocer, Alexandre Bergel, Stéphane Ducasse,
and Marcus Denker. Performance Evolution Blueprint: Understanding
the Impact of Software Evolution on Performance. In IEEE Working
Conference on Software Visualization (VISSOFT), pages 1–9. IEEE,
2013. (cited on Page 5)

[SGAK15] Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian
Kästner. Performance-influence Models for Highly Configurable Sys-
tems. In Proceedings of the Joint Meeting on Foundations of Software
Engineering (ESEC/FSE), pages 284–294. ACM, 2015. (cited on Page 1,

2, 4, 8, and 13)

[THS10] Dimitris Tsirogiannis, Stavros Harizopoulos, and Mehul A. Shah. Ana-
lyzing the Energy Efficiency of a Database Server. In Proceedings of the
International Conference on Management of Data (SIGMOD/PODS),
pages 231–242. ACM, 2010. (cited on Page 1, 3, and 10)

[Wer17] Niklas Werner. Performance and Energy Interactions of Configurable
Systems. University of Passau, 2017. Bachelor thesis. (cited on Page 1,

4, 7, and 72)

[XJF+15] Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasu-
pathy, and Rukma Talwadker. Hey, You Have Given Me Too Many
Knobs!: Understanding and Dealing with Over-designed Configuration
in System Software. In Proceedings of the Joint Meeting on Foun-
dations of Software Engineering (ESEC/FSE), pages 307–319. ACM,
2015. (cited on Page 8)

[XTW10] Zichen Xu, Yi-Cheng Tu, and Xiaorui Wang. Exploring Power-
performance Tradeoffs in Database Systems. In IEEE International
Conference on Data Engineering (ICDE), pages 485–496. IEEE, 2010.
(cited on Page 4)

Eidesstattliche Erklärung:

Hiermit versichere ich an Eides statt, dass ich diese Masterarbeit selbständig und
ohne Benutzung anderer als der angegebenen Quellen und Hilfsmittel angefertigt
habe und dass alle Ausführungen, die wörtlich oder sinngemäß übernommen wur-
den, als solche gekennzeichnet sind, sowie dass ich die Masterarbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegt habe.

Niklas Werner

Passau, den 26. September 2019

	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Related Work
	3 Background
	3.1 Types of Software
	3.2 Configurable Software Systems
	3.3 Software Evolution
	3.4 Performance
	3.5 Energy Consumption
	3.6 Performance-Influence and Energy-Influence Models
	3.7 Pearson Correlation

	4 Methodology
	4.1 Research Questions
	4.1.1 RQ1: Performance and Energy Consumption
	4.1.2 RQ2: Correlation between Performance and Energy

	4.2 Case Studies
	4.2.1 HSQLDB
	4.2.2 Apache httpd
	4.2.3 PostgreSQL
	4.2.4 libvxp VP8

	4.3 Experimental Setup
	4.3.1 Hardware and Measurement Setup
	4.3.2 Case Studies

	4.4 Operationalization
	4.4.1 RQ1.1: Changes in Mean Performance and Energy
	4.4.2 RQ1.2: Changes in Performance and Energy of Configurations
	4.4.3 RQ1.3: Changes in Performance and Energy of Features
	4.4.4 RQ2.1: Changes in the Correlation
	4.4.5 RQ2.2: Changes in the Correlation of Features

	5 Evaluation
	5.1 RQ1.1: Changes in Mean Performance and Energy
	5.2 RQ1.2: Changes in Performance and Energy of Configurations
	5.3 RQ1.3: Changes in Performance and Energy of Features
	5.4 RQ2.1: Changes in the Correlation
	5.5 RQ2.2: Changes in the Correlation of Features

	6 Validity
	6.1 Internal Validity
	6.2 External Validity

	7 Conclusion and Future Work
	A Appendix
	A.1 Content of the Accompanying CD
	A.2 List of Releases
	A.3 Additional Plots

	Bibliography

