
Master’s Thesis

T H E B E S T O F B O T H W O R L D S :
I N T E G R AT I N G W H I T E - B O X W I T H

B L A C K - B O X P E R F O R M A N C E A N A LY S I S

nico buchholz

March 1, 2023

Advisors:
Christian Kaltenecker Chair of Software Engineering

Florian Sattler Chair of Software Engineering

Examiners:
Prof. Dr. Sven Apel Chair of Software Engineering

Prof. Dr. Jan Reineke Real-Time and Embedded Systems Lab

Chair of Software Engineering
Saarland Informatics Campus

Saarland University

Nico Buchholz: The Best of Both Worlds: Integrating White-Box with Black-Box Performance
Analysis, © March 2023

Erklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement

I hereby confirm that I have written this thesis on my own and that I have not used

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in
die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken,______________________ _____________________________
 (Datum/Date) (Unterschrift/Signature)

any other media or materials than the ones referred to in this thesis.

A B S T R A C T

For configurable software systems, the configuration of the software system can have an
impact on its performance. However, the impact may change when the software evolves.
During the evolution of a software system, the performance of some configurations might
improve, while the performance of others could degrade. Additionally, the workload to be
used with the system also has an impact on the performance.

While prior work exists that investigates each dimension, i. e., configurations, releases,
and workloads, individually, there is a lack of research that examines multiple dimensions at
the same time. Furthermore, existing publications mostly use either black-box or white-box
performance analysis. However, it remains unclear if both approaches deliver comparable
results and how well both approaches can be integrated.

In the thesis, we implement an approach that integrates white-box with black-box per-
formance analysis. Using our approach, we conduct an empirical study to investigate the
influence of configuration options and interactions on the performance in different releases
with multiple workloads. We examine an artificial case study to demonstrate the general
feasibility of our approach and, additionally, four real-world case studies to investigate how
well an integrated approach can be applied to actual software systems. In our approach, we
first use a black-box performance analysis to identify changes in the influence of configura-
tion options or interactions. Then, we conduct a white-box performance analysis to perform
a deeper investigation of the detected performance changes.

Our results indicate that, under optimal conditions, an integration approach works and
provides valuable insights into the software system under investigation. For real-world
case studies, we observe and investigate different sources of errors and problems when
applying an integrated approach. Nevertheless, the integration approach provides insightful
pointers for further manual investigation in many cases. We pinpoint areas that could profit
from enhancement and provide pointers for subsequent research to improve black-box and
white-box performance analysis.

v

C O N T E N T S

1 introduction 1

2 background 3

2.1 Configurable Systems . 3

2.2 Software Evolution . 5

2.3 Workloads . 6

2.4 Performance Analysis . 7

2.4.1 Black-Box Performance Analysis . 7

2.4.2 White-Box Performance Analysis . 10

3 related work 13

3.1 Black-Box Performance Analysis . 13

3.1.1 Configurations . 13

3.1.2 Software Evolution . 14

3.1.3 Workloads . 16

3.2 White-Box Performance Analysis . 16

4 methodology 19

4.1 Research Questions . 19

4.2 Experiment Design . 21

4.3 Case Studies . 22

4.3.1 CompEnc . 22

4.3.2 PicoSAT . 23

4.3.3 Clasp . 25

4.3.4 XZ . 25

4.3.5 Fast Downward . 26

4.4 Operationalization . 28

5 evaluation 37

5.1 Results . 37

5.1.1 Performance Changes Between Consecutive Releases for Different
Workloads . 37

5.1.2 Fraction of Performance Changes Confirmable by White-Box Approach 59

5.1.3 Identification of Configuration-Dependent Code Responsible for Per-
formance Changes . 64

5.2 Discussion . 66

5.2.1 Performance Changes Between Consecutive Releases for Different
Workloads . 67

5.2.2 Fraction of Performance Changes Confirmable by White-Box Approach 69

5.2.3 Identification of Configuration-Dependent Code Responsible for Per-
formance Changes . 72

5.3 Threats to Validity . 73

5.3.1 Internal Validity . 74

5.3.2 External Validity . 75

6 concluding remarks 77

vii

viii contents

6.1 Conclusion . 77

6.2 Future Work . 78

a appendix 81

a.1 Content of Accompanying ZIP file . 81

bibliography 83

L I S T O F F I G U R E S

Figure 2.1 Exemplary feature model representing a compression tool 5

Figure 2.2 Abstract source code and feature model for a compression tool . . . 11

Figure 2.3 Exemplary result of a white-box analysis of a compression tool . . . 11

Figure 2.4 Example for nested executions of regions 12

Figure 4.1 Feature model of CompEnc . 22

Figure 5.1 Performance-influence models of CompEnc 38

Figure 5.2 Performance-influence models of PicoSAT 40

Figure 5.3 Performance-influence models of Clasp 42

Figure 5.4 Performance-influence models of XZ (decompression) 46

Figure 5.5 Performance-influence models of Fast Downward 48

Figure 5.6 Strength of performance changes of CompEnc 51

Figure 5.7 Strength of performance changes of PicoSAT 52

Figure 5.8 Strength of performance changes of Clasp 53

Figure 5.9 Strength of performance changes of XZ (decompression) 56

Figure 5.10 Strength of performance changes of Fast Downward 57

Figure 5.11 Distribution of difference in strength of performance changes be-
tween black-box and white-box analysis for CompEnc 60

Figure 5.12 Distribution of difference in strength of performance changes be-
tween black-box and white-box analysis for PicoSAT 61

Figure 5.13 Distribution of difference in strength of performance changes be-
tween black-box and white-box analysis for XZ (decompression) . . 63

Figure A.1 Directory structure of the supplementary ZIP file 82

L I S T O F TA B L E S

Table 5.1 Metrics related to CompEnc for RQ1.1 39

Table 5.2 Workload IDs for PicoSAT . 39

Table 5.3 Metrics related to PicoSAT for RQ1.1 41

Table 5.4 Workload IDs for Clasp . 41

Table 5.5 Metrics related to Clasp for RQ1.1 . 44

Table 5.6 Metrics related to the compression process of XZ for RQ1.1 44

Table 5.7 Metrics related to the decompression process of XZ for RQ1.1 47

Table 5.8 Workload IDs for Fast Downward . 47

Table 5.9 Metrics related to Fast Downward for RQ1.1 50

Table 5.10 Metrics related to CompEnc for RQ1.2 51

Table 5.11 Metrics related to PicoSAT for RQ1.2 53

Table 5.12 Metrics related to Clasp for RQ1.2 . 54

ix

Table 5.13 Metrics related to the compression process of XZ for RQ1.2 54

Table 5.14 Metrics related to the decompression process of XZ for RQ1.2 55

Table 5.15 Metrics related to Fast Downward for RQ1.2 58

Table 5.16 Metrics related to CompEnc for RQ2 59

Table 5.17 Metrics related to PicoSAT for RQ2 61

Table 5.18 Metrics related to Clasp for RQ2 . 62

Table 5.19 Metrics related to the compression process of XZ for RQ2 62

Table 5.20 Metrics related to the decompression process of XZ for RQ2 63

Table 5.21 Metrics related to CompEnc for RQ3 65

Table 5.22 Metrics related to PicoSAT for RQ3 65

Table 5.23 Metrics related to the decompression process of XZ for RQ3 66

L I S T I N G S

Listing 4.1 Abstract source code of CompEnc (v1) 23

A C R O N Y M S

VIF Variance Inflation Factor

HTN Hierarchical Task Network

GED Genome Edit Distances

NUMA Non-Uniform Memory Access

x

1
I N T R O D U C T I O N

In modern software development, many software systems are highly configurable. Due
to the configurability, users can tailor the behavior and functionality of such software
systems to their needs and to the environment in which the software system runs. However,
determining the best configuration for the own use case is highly non-trivial. One reason
for that is the fact that the configuration of a software system can have a huge impact
on its performance [5, 15, 24]. Yet, it is often not clear how each configuration option
influences the performance of the system. Additionally, multiple configuration options
might interact with each other. Thus, the performance of a software system does not only
depend on individual configuration options, but also on configuration option interactions.
Furthermore, prior work [5, 18] has shown that the workload of a software system has a
significant impact on the performance of the system as a whole, but also on the influence of
individual configuration options and interactions. Hence, this is another factor that needs
consideration when analyzing the performance of a software system. Moreover, we also
need to acknowledge the evolution of software systems. Over time, developers publish new
releases that might also change the performance of a software system [15]. Overall, this leads
to three dimensions that are of particular relevance when investigating the performance of
software systems: configurations, workloads, and releases.

To determine the impact of configuration options or option interactions on the perfor-
mance, prior work introduces two contrary methods. First, black-box performance analysis
only considers the system’s behavior that is directly observable. In the context of perfor-
mance investigations, we can execute the software system with a sample of configurations
and measure the run-time for each configuration. From this measurement data, we can then
draw conclusions about the impact of individual configuration options and option inter-
actions, e. g., by applying machine-learning techniques. A different approach is white-box
performance analysis. When conducting such an analysis, we have access to the internals,
such as the source code, of the software system under investigation. By instrumenting the
code, we can then measure the run-time of each code region and associate code regions
to configuration options. This way, we can infer the impact of configuration options and
option interactions on the performance.

When comparing the performance of software systems across dimensions, both ap-
proaches have their own advantages, but also their own problems. While conducting a
black-box performance analysis is conceptually easy, it does not provide any informa-
tion about the internals of the software system. In particular, this means that black-box
performance analysis can determine whether there is a performance change and it can
associate performance changes with configuration options or interactions. It is, however, not
able to provide any insights about the internal changes in the subject system that caused
the performance changes. In contrast, white-box performance analysis can supply hints
about the cause of a performance change, e. g., by investigating changes in the code of
the software system. However, a white-box performance analysis requires a lot of manual

1

2 introduction

effort and is generally complex to implement. Additionally, executing a software system
while conducting a white-box performance analysis takes more time than usual due to the
overhead introduced by the instrumentation of the code.

In this thesis, we introduce and evaluate an approach that combines the advantages of both
approaches when comparing the performance across releases by integrating white-box with
black-box performance analysis. In particular, we first conduct a black-box performance
analysis on a sample of configurations with different workloads on multiple releases.
Based on the results of the black-box analysis, we identify the configuration options and
interactions, workloads, and release pairs that exhibit performance changes. Then, we
further investigate these configuration options and interactions, workloads, and releases
with a white-box performance analysis and analyze the resulting data to identify the cause
of the performance changes. This way, we gather the additional information that a white-box
performance analysis is able to deliver while we avoid investigating an infeasible amount of
configurations with a white-box performance analysis.

To evaluate our approach, we examine an artificial case study to demonstrate the general
feasibility of our approach and four real-world case studies to investigate the practical
applicability of an integrated approach to actual software systems. Our results demonstrate
the general usefulness of an integrated approach under optimal conditions. For the real-
world case studies, we observe a limited utility of the integrated approach for more complex
software systems, mainly due to missing capabilities of the used white-box performance
analysis framework. Nevertheless, the integrated approach provides insightful pointers for
further manual investigation in many cases. We highlight multiple limitations of both, black-
box and white-box performance analysis, and provide pointers for potential improvements.

The remainder of this thesis is structured as follows. In Chapter 2, we introduce the
concepts and terms that are essential to understand this thesis. Chapter 3 presents related
publications and their relevance to our work. In Chapter 4, we outline the methodology that
we use, i. e., our research questions and their operationalization. Afterwards, we present the
evaluation of the research questions and possible threats to the validity of our results in
Chapter 5. Finally, we conclude the thesis in Chapter 6 by summarizing the most important
aspects of our work and providing pointers for future work.

2
B A C K G R O U N D

In this chapter, we provide all relevant information that is required to understand this
thesis. We start by describing three different dimensions along which we analyze software
systems. First, we give an overview of configurable systems to introduce the dimension of
configurations. Then, we describe the most important aspects of software evolution related
to our topic. The last dimension we describe treats different workloads that systems can
be confronted with. Afterwards, we illustrate different methods of performance analysis
for software systems. We focus on black-box and white-box performance analysis and their
differences.

2.1 configurable systems

Many software systems offer multiple (configuration) options. A configuration option is
a setting in a software system that can be adjusted by the user of the system and which
changes the behavior of the system or adapts the system to the environment that it runs in.
For example, a file compression tool might offer two configuration options, Compression
and Encryption, that enable the compression or encryption of files, respectively.

Configuration options can also be put into a parent-child relationship. Semantically, we use
this relationship to express that child options can only be active if the parent option is active.
For instance, in addition to the Compression option, the tool could allow the user to decide
which compression algorithm should be used. For this, we add a CompressionAlgorithm
option as a child of the Compression option. The CompressionAlgorithm has again two
children, e. g., LZMA and LZMA2, which represent the different algorithms. Applying our
semantic, this means that the CompressionAlgorithm option can only be active if we enable
Compression and we can only select LZMA or LZMA2 if we decide to manually choose the
compression algorithm, i. e., we enable the CompressionAlgorithm option. By defining these
relationships, we receive a directed tree structure representing the configuration options.

Configuration options are either mandatory or optional. If a configuration option is
mandatory, it must always be enabled if its parent is enabled. If a mandatory configuration
option does not have a parent, i. e., if it is the root of our tree, it must always be enabled.
Otherwise, it is up to the user to enable the configuration option. In the context of our
example, Compression could be a mandatory option since compression is the core task
of a file compression tool. In contrast, Encryption could be an optional configuration
option that the user can enable or disable. Similarly, we can specify that exactly one of the
children of a configuration option must be active. Since it seems reasonable that only one
compression algorithm can be used, either LZMA or LZMA2, but not both, must be active
if the CompressionAlgorithm option is enabled. In such cases, we say that the options form
an alternative group.

Generally, we differentiate between two different types of configuration options: run-time
options and compile-time options. Run-time options are options that can be changed before

3

4 background

or during the execution of the system whereas compile-time options are options that must
be set before compiling the program. In this thesis, we focus on run-time options.

Furthermore, configuration options are either binary or numeric. A binary configuration
option is an option that can only be turned on or off. In our previous file compression
example, all configuration options we defined so far would be binary. In contrast, a numeric
configuration option can take a fixed number of numeric values in a fixed range. For the
file compression example, a numeric option MaxMemory_val could specify the amount
of main memory that the system is allowed to use. If we have 1 GiB of main memory
available, a possible range for MaxMemory_val is (0, 1073741824], specifying the value in
bytes. As an additional option, we could have a binary option MaxMemory as a parent of
MaxMemory_val that indicates whether the main memory that the system is allowed to use
is limited or not.

We call a software system configurable if it provides configuration options. We denote
the set of all configuration options of a system S by OS. In our compression tool example,
we thus have

OS = {Compression, CompressionAlgorithm, LZMA, LZMA2, Encryption,

MaxMemory, MaxMemory_val}.

A configuration of a configurable software system describes instances of all configuration
options of the system, i. e., in a configuration, each option is assigned a value. We denote the
configuration space, i. e., the set of all configurations of S, by CS. We formalize the concept
of a configuration by closely sticking to a definition introduced by Siegmund et al. [24].

Definition 1. A configuration c for a software S is a total function

c : OS → {0, 1}

assigning a binary value to every configuration option.

Applying this formal definition to our previous file compression tool example, we would,
e. g., set c(Encryption) = 1 if encryption is enabled and c(Encryption) = 0 if it is disabled.
While this formal definition seemingly only considers binary options, we can discretize
numeric options to make this definition applicable. A numeric option can be modeled as
multiple binary options by including a binary option for each of the values in the range of
the numeric option and enabling the binary option with the desired value and disabling
all others. We name the binary options by suffixing the name of the numeric option with
the value of the option. For example, for MaxMemory_val, we generate the binary options
MaxMemory_val_1, . . . , MaxMemory_val_1073741824 where c(MaxMemory_val_x) = 1 if
and only if MaxMemory_val has the value x. In the remainder of this thesis, we always
discretize numeric options if not specified otherwise.

To formally model the configuration options of a system and their properties and relations,
feature models can be used. A feature model is a model that contains all configuration
options and their relations along with information about the options, e. g., whether the
option is binary or numeric, or the range of allowed values in the case of a numeric feature.
Depending on the intended use of the feature model, further information about the options,
such as code locations, can be included.

2.2 software evolution 5

Additionally, we can model constraints that configurations must fulfill. In the context
of our file compression tool, we could, just for the sake of an example, say that if we use
LZMA2, the memory must not be limited, i. e., MaxMemory must not be active. Formally,
we can define constraints as Boolean expressions.

Definition 2. A constraint b for a software S is a Boolean expression with variables xi where
xi ∈ OS .

With these constraints, we can also formalize concepts like parent-child relationships
and alternative groups by converting them to Boolean expressions. For instance, for our
compression algorithm alternative group, we could use the expression

(LZMA =⇒ ¬LZMA2) ∧ (LZMA2 =⇒ ¬LZMA)

to specify that only one of both options can be active at the same time. We denote the set of
all constraints for a software system S by BS. Using the concept of constraints, we can now
formalize which configurations are valid.

Definition 3. A configuration c ∈ CS for a software S is valid if it fulfills all b ∈ BS.

Since feature models are directed trees, it can ease understanding the models if we draw
them. In Figure 2.1, we depict a visualization of an exemplary feature model based on the
compression tool example that we previously described. We have a mandatory root config-
uration option that is always on. Then, we have the compression algorithm configuration
option with two mutually exclusive child options and the encryption configuration option.
Lastly, we have a binary configuration option to enable a memory limit. This binary option
has a numeric child option that we use to specify the memory limit.

root

Compression Encryption MaxMemory

CompressionAlgorithm

LZMA LZMA2

MaxMemory_val
Range: (0, 1073741824]

Explicit constraints:
LZMA2 =⇒ ¬MaxMemory

Binary option
Numeric option
Mandatory option
Optional option
Alternative group

Figure 2.1: A visualization of an exemplary minimal feature model representing a compression tool

2.2 software evolution

Usually, the development of a software is a continuous process over a long time span.
During this process, bugs are fixed, new functionality is added, or existing functionality

6 background

is enhanced. Since the code evolves over time, developers commonly make use of version
control systems to track code changes over time. A certain state of the code base is called
a revision. Each software has a finite amount of revisions. Hence, we can assign a unique
numeric ID to each revision. Thus, we can formally define the set of all revisions as follows.

Definition 4. Let S be a software with i ∈ N revisions. RVS = {r1, r2, r3, . . . , ri} defines the
set of all revisions of S.

Developers regularly declare some revisions as releases. Kaltenecker et al. [15] define
releases as revisions that are expected to run stable, contain prominent changes, or highlight
development milestones that have been reached. Revisions that are not releases usually
represent an intermediate state of the software that might contain incomplete or faulty
implementations of features, have not yet been fully tested, and are not expected to run
without any problems. Hence, we only consider releases for the studies in this thesis.
Formally, we define the set of releases as a subset of the set of revisions.

Definition 5. Let S be a software with revisions RVS. RS ⊆ RVS defines the set of all
releases of S.

Sometimes, releases are additionally tagged as “alpha” or “beta” [3]. While there are
no fixed definitions for these tags, they commonly indicate that the tagged release is an
early version of the release that is not thoroughly tested. Usually, “alpha” releases can still
contain major bugs while “beta” releases are mainly expected to only come with some
minor problems.

Releases almost always change the behavior of a system in some way. For example, the
run-time of the system could decrease with a new release, e. g., due to code optimizations.
In the context of configurable systems, releases also play an important role. New releases
frequently introduce new configuration options or alter the implementation or behavior of
existing ones. When looking at the development of a configurable system over time, we see
that the set of configuration options and their properties might change. If we again consider
our exemplary compression tool, a new release could, e. g., introduce a new compression
algorithm that can be used. Similarly, a new release may improve and speed up an existing
implementation of a compression algorithm. However, changes in a release might also,
usually unintentionally, introduce, e. g., a run-time regression. In that case, the release slows
down some configuration options.

2.3 workloads

The input provided to a software system can have an influence on the behavior and the
non-functional properties of the system. In the context of this thesis, we call this input a
workload. If we recall our compression tool example, the workload would be the file to be
compressed. To formally describe the set of all workloads, we use the following definition.

Definition 6. Let S be a software that is executed with i ∈ N workloads.
WS = {w1, w2, w3, . . . , wi} defines the set of all workloads of S.

Workloads can have a lot of properties that heavily influence the system’s behavior [5].
Regarding the compression tool, these properties could include the size of the file or the file

2.4 performance analysis 7

type. For instance, it seems reasonable that there is some correlation between the workload
size and the run-time of the compression tool. Similarly, Powers [21] shows that the file type
influences the compressibility of a file. For example, while files containing text often have a
high compressibility, image files such as JPEG files have, on average, a lower compressibility
since JPEG is already a compressed file format.

In the context of configurable software systems, the run-time of a system does not only
depend on the configuration of the system, but also on the workload. In particular, the
combination of configuration and workload can heavily influence the run-time or other
non-functional properties [5]. While some configuration might be beneficial for the run-time
of the system when executed with some workload A, it might be disadvantageous for the
execution of the system with workload B.

2.4 performance analysis

Software systems can, e. g., be evaluated by measuring different non-functional properties.
A commonly evaluated non-functional property of software systems is their performance.
The term performance is frequently defined as the amount of work done per time unit.
In the context of analyzing configurable software systems, we often examine the software
with a fixed amount of work. If the amount of work is fixed, evaluating the amount of
work done per time unit is equivalent to just measuring the time. Previous publications [5,
6, 15, 24] have shown that the configuration of a software system affects its performance.
First, each configuration option itself has a certain effect on the performance of a system.
In the context of our compression tool example, enabling encryption might increase the
run-time of the tool. Furthermore, interactions between configuration options can also affect
the performance. Depending on the compression algorithm that was used to compress the
file, the tool might take more or less time to encrypt the file since the size of the compressed
file can vary. Thus, the performance of a system is dependent on the configuration that is
used. Considering all of the above, we can use the following definition for performance in
the context of this thesis.

Definition 7. The performance p of a configurable software S under a configuration c is defined
as the run-time of this software when executing it with this configuration c:

pc(S) := run-timec(S)

To understand and improve the performance of a software system, it is helpful to analyze
the performance of the system.

2.4.1 Black-Box Performance Analysis

One way to analyze the performance of a software system is to perform a black-box
performance analysis. In this approach, we consider the software system to be a black box,
i. e., we only consider the behavior that is observable from the outside. We do not know
anything about the internals, such as the code, of the software system.

When performing a black-box performance analysis, we measure the performance of a
sample of configurations of the system in a stable environment. It is then possible to analyze

8 background

these measurements and to draw some conclusions from them. One established way to
perform the analysis is to use performance-influence models.

Performance-Influence Models

A performance-influence model is a mathematical model introduced by Siegmund et al.
[24] that predicts the expected performance of a configurable software system given a
configuration. Formally, a performance-influence model can be defined as follows [24].

Definition 8. Let S be a configurable software system and let CS be the set of all configuration
options of S. A performance-influence model of S is a total function ΠS of the form

ΠS(c) = β0 + ∑
i∈CS

ϕi(c(i)) + ∑
i..j∈CS

Φi..j(c(i)..c(j)),

that, given a configuration c, returns the expected performance of S when executing S with c.
β0 denotes the base value, ∑i∈CS

ϕi(c(i)) denotes the influence of the configuration options
and ∑i..j∈CS

Φi..j(c(i)..c(j)) denotes the influence of the configuration option interactions.

Going back to our compression tool example, an exemplary performance-influence model
could look as follows.

ΠS(c) = 1 + 2 · c(Compression) + 3 · c(Encryption)

+ 1 · c(Encryption) · c(LZMA)− 1 · c(Encryption) · c(LZMA2)

This performance-influence model tells us that our compression tool has a base value of
one second that is always needed to execute the system, regardless of the configuration. If
we enable compression or encryption, two or three seconds are added to the run-time of
our system, respectively. If we compress the data with LZMA and encrypt it, the run-time
increases by one second. Contrary, if we use LZMA2 for compression and encrypt the data,
we deduct one second. A possible explanation for this would be that LZMA2 has a higher
compression rate than LZMA, decreasing the size of the file that needs to be encrypted.

When creating a performance-influence model for a real software system, the coefficients
β0, ϕi, and Φi..j are determined by using a multiple linear regression approach with feature
forward selection on the measurement data obtained by the performance measurements. In
our research, we use the tool SPL Conqueror

1 which implements this approach to learn
the coefficients.

As described above, by analyzing these coefficients, it is possible to see the influence of
each configuration option or configuration option interaction on the performance of the sys-
tem. While this can already deliver useful information about, e.g., possible bottlenecks of a
software, the analysis can be further enhanced by comparing performance-influence models
across multiple dimensions. As discussed in the previous two sections, the performance of a
system does not only depend on the configuration, but also on the releases and workloads
that are used. Hence, it can be useful to consider these two dimensions when working with
performance-influence models.

1 SPL Conqueror. Available online at https://github.com/se-sic/SPLConqueror; visited on October 13th, 2022.

https://github.com/se-sic/SPLConqueror

2.4 performance analysis 9

Considering our compression tool example, we could have the following performance-
influence model for our tool at release i.

ΠSi(c) = 1 + 2 · c(Compression) + 3 · c(Encryption)

In release i + 1, an encryption algorithm that is more secure, but slower could be im-
plemented. Thus, encryption would take more time and, hence, the influence on the
performance of our system changes. This is reflected in our performance-influence model
by adjusting the coefficient of the Encryption configuration option.

ΠSi(c) = 1 + 2 · c(Compression) + 5 · c(Encryption)

Similarly, performance improvements might be made or performance regressions might
be unintentionally introduced. Consequently, analyzing performance-influence models can
help to evaluate whether the performance has improved as expected or to identify potential
performance bugs. Kaltenecker et al. [15] perform such an analysis and compare changes
of the coefficients of performance-influence models across multiple releases of the same
software. A more detailed description of their findings can be found in Chapter 3.

Similar analyses can be performed for different workloads. Dincher [5] analyzes performance-
influence models for the same software system across multiple workloads. Again, Chapter 3

contains an overview of the conducted work.

Multicollinearity

An important aspect to consider when comparing performance-influence models is their
interpretability and comparability. If we, e. g., compare performance-influence models of
the same software across releases, it is important that we know whether changes in the
coefficients of the model are caused by actual changes in the software or if they are caused
by some other factors. One factor that can cause such changes in the coefficients of a
linear model without changes in the software is multicollinearity. In the context of linear
regression, we speak of multicollinearity if one of the feature variables is (almost) equal to
a linear combination of other feature variables [2]. If we have an exact equality, we speak
of perfect multicollinearity. If perfect multicollinearity is present in the feature variables,
the coefficients determined by the linear regression are no longer unique [23]. Since our
performance-influence models are linear models, we have to take this into account.

Consider the following two performance-influence models for our compression tool
example.

ΠS(c) = 1 + 3 · c(LZMA2) + 1 · c(Compression) · c(LZMA2)

Π′
S(c) = 1 + 1 · c(LZMA2) + 3 · c(Compression) · c(LZMA2)

If we again take a look at our feature model in Figure 2.1, we see that LZMA2 is a child of
Compression. Hence, if c(LZMA2) = 1, then we also know that c(Compression) = 1. Thus,
we can conclude that c(LZMA2) = c(Compression) · c(LZMA2) and, consequently, ΠS=Π′

S.
Taking these thoughts into account, we can form infinitely many performance-influence
models that predict the same values, but have different coefficients. To solve the issue, we
can simply remove one of the terms c(LZMA2) and c(Compression) · c(LZMA2) from the

10 background

model. If we do this, the coefficients are uniquely determined and, hence, our model is
unique but still has the same predictive power.

The example above can be easily detected manually when inspecting the feature model.
However, there can be other non-trivial cases where we have a similar situation. This holds
true especially if more than two or three features are involved in such a dependency. Hence,
an automated solution is desirable to detect multicollinearity. One way to do this is by
performing a Variance Inflation Factor (VIF) analysis [14] as proposed by Dorn, Apel, and
Siegmund [6], Kaltenecker et al. [15], and Dincher [5]. The VIF can be used as a measure of
multicollinearity between multiple feature variables. A VIF of 1 indicates no multicollinearity
at all while a VIF of ∞ indicates perfect multicollinearity. When performing the VIF analysis,
we iteratively add feature variables representing configuration options to our model and
calculate the VIF. Whenever we encounter a VIF of ∞, we remove the most recently added
feature variable since it can already be represented by other feature variables in the model.
This way, we end up with a model that does not contain perfect multicollinearity. Similar to
Kaltenecker et al. [15], we only consider perfect multicollinearity since we always expect a
certain extent of multicollinearity when dealing with configuration options.

2.4.2 White-Box Performance Analysis

By definition, black-box performance analysis does not require any information about the
internals of the software system that should be analyzed. Hence, it also does not provide a
lot of details about the internals of a software system. It can only make statements about
behavior that can be observed from the outside. To close this gap, white-box performance
analysis can be used. A white-box approach does not only consider the system’s observable
behavior but also its internal information, such as the source code. For example, one way
of performing a white-box analysis is to instrument the code of the software system with
measurement instructions. This permits an exact analysis of which code was executed when
and how long it took to execute the code. In combination with the feature model of the
software, it is then possible to track the execution of configuration options by assigning
configuration options to code locations. This enables us to perform similar analyses as with
the black-box approach while additionally taking the information about the internals into
account. For example, it is possible to compare changes in the performance of certain code
regions instead of the software system as a whole.

As an example, recall our compression tool example and only consider the Compression
and Encryption configuration options. For simplicity, assume that each variable declaration
takes place on a separate line such that line information is sufficient to uniquely identify
variables. If we annotate the feature model with code locations, a simplified version of the
source code and the feature model could abstractly look like Figure 2.2.

We assign the Boolean variable compression to our Compression configuration option
and encryption to our Encryption configuration option. By analyzing the control flow that
depends on the selected variables, the analysis can deduct that the lines six and seven are
related to the Compression option and the lines eight and nine deal with the Encryption
option. We can then instrument the code with measurement instructions. As a result, we
receive a binary that tracks the execution of each configuration option. Consequently, we

2.4 performance analysis 11

1 def main():

2 file_path = Path(sys.argv[1])

3 data = read_from_file(file_path)

4 compression = bool(sys.argv[2])

5 encryption = bool(sys.argv[3])

6 if(compression):

7 data = compress(data)

8 if(encryption):

9 data = encrypt(data)

10 write_to_file(data,

11 file_path / " . out")

(a) Abstract source code

root

Compression

Location: Line 4

Encryption

Location: Line 5

(b) Annotated feature model

Figure 2.2: A simplified and abstract source code and feature model example for a compression tool

can see which configuration option was active at which point in time. An exemplary result
when enabling both configuration options is shown in Figure 2.3.

root

6s

Compression

2s

Encryption

3s

Figure 2.3: An exemplary result of a white-box analysis of a compression tool

We can see that the compression tool took six seconds in total to execute. The Compression
configuration option was active for two seconds whereas the Encryption configuration
option was active for three seconds. Additionally, we see that one second is not labeled
with any configuration option. This is due to the code locations that were not assigned to
any configuration options. In our example, this includes the parsing of the command line
arguments, the reading from the file and the writing to the file. So, this time is by default
attributed to the root feature.

A concrete implementation of such an approach has been introduced by Velez et al. [25]
with ConfigCrusher. ConfigCrusher first utilizes a static data-flow analysis to detect
configuration options that have no impact on the performance and to detect which configu-
ration options do not interact with each other. This reduces the number of configurations
to be measured. For the actual analysis, it instruments the code at control-flow statements,
such as if-then-else or while, that relate to configuration options. With this instrumenta-
tion, ConfigCrusher divides the code into regions. ConfigCrusher then measures the
performance of the regions by executing the selected configurations with the instrumented
code.

In this thesis, we use the VaRA-Tool-Suite
2 and the underlying VaRA framework for

our white-box measurements. VaRA is a white-box analysis framework that enables feature-

2 VaRA-Tool-Suite. Available online at https://github.com/se-sic/VaRA-Tool-Suite; visited on November
27th, 2022.

https://github.com/se-sic/VaRA-Tool-Suite

12 background

targeted analyses. On a technical level, VaRA divides the code into regions similar to
ConfigCrusher. Then, it assigns configuration options to the code regions. When executing
the software, VaRA records timestamps t for the configuration option every time a code
region r is entered or exited. By calculating the difference ∆t := texit

r − tenter
r of the exit

timestamp and the enter timestamp of one execution of a code region, we receive the
execution time of the respective execution of the code region. Executions of code regions
can also be nested inside each other. We consider the execution of a region r to be nested
inside the execution of another region r′ if tenter

r′ ≤ tenter
r < texit

r ≤ texit
r′ . Figure 2.4 depicts

a visualization of a nesting where y is nested inside x. Note that we do not consider the
nesting inside root since it is not a real configuration option, but a default fallback and, thus,
every execution is nested inside the execution of root.

root

x

tenter
rx texit

rx

y

tenter
ry texit

ry

Figure 2.4: An example for nested executions of regions

If the execution of a region r is not nested inside any other region except for root, we
attribute the execution time of the region to the configuration option that it is assigned to.
If the execution of a region ry that belongs to a configuration option y is nested inside the
execution of other regions rx1 , . . . , rxi that are assigned to different configuration options
x1, . . . , xi, we attribute the execution time of ry to the interaction between rx1 , . . . , rxi and ry,
i. e., to the term x1 · . . . · xi · y.

Considering this, it is then possible to determine the white-box performance p□,r
w (t) of a

term t by summing up all execution times attributed to this term as described above.
While a white-box approach is able to close some gaps of a black-box approach, it comes

with its own disadvantages. Performing a white-box performance analysis is much more
costly per configuration to be measured in comparison to a black-box approach. First, the
execution of the program under investigation is slowed down due to the measurement
instructions that are used to trace the execution. Thus, it is often infeasible to measure a
large number of configurations with a white-box approach. Furthermore, a lot of manual
effort is required to assign features to code locations. This can become even more complex
if code locations change between releases.

3
R E L AT E D W O R K

This chapter presents publications that are related to the topic of this thesis. We pro-
vide a general overview of the related studies and describe their relevance to this thesis.
Additionally, we outline the differences between each publication and this thesis.

Since the majority of related work focuses either on black-box performance analysis or
on white-box performance analysis, this chapter is subdivided into two sections. First, we
present literature that relates to the black-box part of this thesis. Then, we outline related
work that is related to the white-box aspects of our work.

3.1 black-box performance analysis

Most publications either exclusively deal with one dimension or at least focus on one of
the dimensions. In the following sections, we first give an overview of related work that
investigates the influence of configurations on the performance of software systems. After-
wards, we present literature that focuses on the evolution of software and its performance
over time. In the third section, we introduce a related thesis that examines the influence of
workloads on the performance of a software system.

3.1.1 Configurations

The relation between the performance of a software system and its configurations plays
a key role in this thesis. There exists a multitude of publications [6, 10, 11, 24, 26] about
the performance of configurable systems. In the following two subsections, we present a
selection of these publications that are of particular relevance to this thesis.

Performance-Influence Models for Highly Configurable Systems

One of the most fundamental papers that this thesis is based on has been published by Sieg-
mund et al. [24]. As already briefly mentioned in Chapter 2, Siegmund et al. [24] introduce
the notion of performance-influence models to model the influence of configuration options
and configuration option interactions on the performance of a software system. In contrast
to, for example, Ha and Zhang [10] who use neural networks to create similar models,
Siegmund et al. [24] rely on linear regression. In particular, they propose and implement a
multiple linear regression approach with feature forward selection to incrementally create
performance-influence models from measurement data. Due to this, the models can be read
and interpreted by humans. This can be a huge advantage when analyzing the performance
of software systems because the linear models make it easy to directly see from the model
which configuration options or interactions slow down or speed up the execution. In ad-
dition, the approach enables an easy comparison of performance-influence models. Their
approach supports binary as well as numeric configuration options. Moreover, they propose

13

14 related work

multiple sampling approaches to select a meaningful subset of configurations from the
configuration space CS.

In their evaluation, Siegmund et al. [24] investigate the correctness and accuracy of
their models and the feasibility of their approach in practice. Their findings show that the
approach yields promising results for the investigated systems.

However, in contrast to this thesis, Siegmund et al. [24] only consider each performance-
influence model individually and do not compare performance-influence models to each
other. Nevertheless, the performance-influence models that they introduce play a key role
in the black-box performance analysis approach that we use to identify configurations,
releases, and workloads that are worth investigating further with a white-box performance
analysis.

An Empirical Study on Performance Bugs for Highly Configurable Software Systems

While Siegmund et al. [24] first introduced performance-influence models, they are not the
only researchers studying the influence of configurations on the performance of software
systems. Han and Yu [11] conduct a study on performance bugs for highly configurable
software systems. In particular, they examine the relations between the configuration of a
system and the influence of performance bugs.

In their evaluation, Han and Yu [11] claim that in their case studies, the majority of the
performance bugs they examined are configuration-related. This emphasizes the necessity
to consider configurations when analyzing the performance of a software system. They
also state that all performance bugs in their case studies exclusively appeared with valid
configurations, probably due to the early detection of invalid configurations by the software
systems under investigation. This hints that restricting performance analysis to valid
configurations is a reasonable limitation. Another interesting claim they make is that the
majority of configuration-dependent performance bugs is caused by a small subset of
configuration options. This result supports the plausibility of our approach where we select
few configuration options to investigate with a white-box performance analysis based on the
results of a black-box performance analysis. Finally, they also state that it is more complex
to fix configuration-dependent performance bugs than to fix configuration-independent
performance bugs. This indicates that the additional insights provided by a white-box
performance analysis compared to a pure black-box performance analysis approach are
actually beneficial in the development process.

Generally, their key findings support the plausibility of our approach. However, Han
and Yu [11] do not study the effects of configurations along the dimensions of releases in
workloads. Furthermore, a possible limitation to the generalizability of their findings is the
limited number of case studies they investigated, making it unclear how their findings can
be transferred to other software systems.

3.1.2 Software Evolution

The performance of software systems frequently changes over time. Few publications exist
that systematically evaluate the evolution of the performance of software systems in the

3.1 black-box performance analysis 15

context of configurable software systems. In the following subsections, we provide an
overview of the most relevant papers in this area that this thesis is based on.

An Exploratory Study of Performance Regression Introducing Code Changes

Chen and Shang [4] investigate the prevalence of performance regressions between different
revisions of software systems. Specifically, they conduct performance measurements for two
case studies with ten and five releases, respectively, and compare them across revisions.
Afterwards, they also manually analyze issue reports and change logs to identify the cause
of the performance regression.

In their evaluation, Chen and Shang [4] state that a large number of revisions introduces
performance regressions. According to their results, most of the performance regressions
occur as the result of attempts to fix other bugs. Interestingly, performance regressions were
sometimes introduced when trying to improve the performance of other functionalities.
Both of these facts hint that performance regressions are easy to miss and often happen
without the knowledge of the developer. This reinforces the need for sophisticated analysis
tools that can help in spotting performance regressions and in identifying their root cause.
Our work aims at establishing a first pointer for such a toolchain. Additionally, in contrast
to our work, Chen and Shang [4] do not consider the impact of different configurations on
the performance of the software system.

Performance Evolution of Configurable Software Systems: An Empirical Study

Kaltenecker et al. [15] conduct an empirical study that investigates the performance of
software systems across multiple releases while also considering different configurations.
They compare the influence of configurations of a whole and of configuration options and
configuration option interactions on the performance of a software system between different
releases. For this, they conduct experiments on 12 configurable software systems. For each
software system, they investigate multiple releases of the software system. In total, they
analyze 190 different releases.

In their results, Kaltenecker et al. [15] claim that almost every release they examine
introduces a performance change in some configuration in comparison to the previous
release. Mostly, only few configurations are affected by performance changes. In the majority
of cases, they are able to track down performance changes to individual configuration
options or configuration option interactions. Additionally, they analyze the metadata, such
as commit messages and change logs, of the releases that exhibit performance changes.
Using their analysis, they are able to confirm many of the changes related to configuration
options or interactions.

Generally, the publication of Kaltenecker et al. [15] shows that performance changes
between releases appear frequently and often depend on the configuration or even con-
figuration options and interactions. This provides a strong indicator that the influence of
configurations and configuration options is worth investigating when analyzing the perfor-
mance of software systems. However, Kaltenecker et al. [15] do not consider workloads in
their research, so it remains unclear which role workloads play in the performance changes
across releases. This is one of the gaps that we try to close with this thesis.

16 related work

3.1.3 Workloads

The workload used to execute a software system can heavily influence its performance.
However, the influence might be of different strength depending on the configuration. In
the following subsection, we present related work that investigates the impact of workload
on the performance in the context of configurable software systems.

The Impact of Workloads on Performance of Configurable Software Systems

Dincher [5] examines the performance of configurable software systems if executed with
different workloads. He studies the changes of the performance of configurations and of
the influence of configuration options and interactions on the performance when using
different workloads. For this, Dincher [5] investigates two case studies with ten and seven
workloads, respectively.

He reports that when comparing workloads, the majority of configurations exhibits
a performance change. Additionally, his results also show that the influence of some
configuration options and interactions is heavily dependent on the workload. In many cases,
also the ranking of configuration options and interactions changed significantly between
workloads when ordering the options and interactions by their influence.

While Dincher [5] only investigated two case studies, his results still hint at the importance
of workloads when performing performance measurements. The workload can substantially
impact the performance of configurations and the influence of configuration options and
interactions. Thus, it seems reasonable to consider the dimension of workloads for our
investigations. In contrast to this thesis, Dincher [5] does not deal with releases, which
differentiates his work from ours.

3.2 white-box performance analysis

In the context of configurable systems, few publications deal with white-box performance
analysis. In the following sections, we present two papers closely related to the topic of this
thesis and describe how they relate to our work.

Performance Evolution Blueprint: Understanding the Impact of Software Evolution on Performance

Alcocer et al. [1] propose a white-box-based approach to measure and visualize the difference
in performance across different dimensions. They introduce a code execution profiler that
can handle the dimensions of workloads and revisions. Their tool reports performance
regressions between two revisions or highlights the performance difference between two
workloads. In their publication, Alcocer et al. [1] apply their approach to one case study and
illustrate how it helped them tracking down performance regressions. However, a thorough
evaluation of other case studies is missing, making it unclear whether their results can be
transferred to other software systems.

Additionally, their approach behaves similarly to well-known code profilers. While it
can collect information about different pieces of code, it is not aware of the concept of

3.2 white-box performance analysis 17

configurations or configuration options. Hence, the approach introduced by Alcocer et al. [1]
is not suited to automatically track down performance regressions to configuration options
or to predict the impact of configuration options on the performance. This is problematic
since, especially for large software systems, it is tedious and non-trivial to keep track of
which code belongs to which configuration options. In the approach that we evaluate in this
thesis, we close this gap by associating code locations with configuration options.

ConfigCrusher: Towards White-Box Performance Analysis for Configurable Systems

As already briefly mentioned in Chapter 2, Velez et al. [25] propose and evaluate a white-box
performance analysis approach called ConfigCrusher. In contrast to most other publications,
ConfigCrusher is targeted towards configurable systems. In particular, ConfigCrusher
supports associating code regions with configuration options. This allows a detailed analysis
of the impact of configuration options on the performance of a software system. From their
gathered information, they build performance-influence models similar to the models that
Siegmund et al. [24] use in their black-box approach.

Velez et al. [25] conduct experiments on ten case studies to investigate the effectiveness
and practicality of their approach. Generally, their evaluation shows that the approach
achieves comparable or even better results in terms of accuracy compared to a black-box
approach. However, they also find that their white-box approach significantly decreases the
performance of a software system due to the instrumentation of the code. Although they
are able to reduce the overhead by optimizing the instructions, this still emphasizes one of
the biggest disadvantages of a white-box approach in comparison to a black-box approach.

The results of Velez et al. [25] hint that an integration of black- and white-box performance
analysis as done in this thesis could yield promising results. Velez et al. [25] do, however, not
consider the dimensions of releases and workloads, leaving it unclear whether performance
regressions can be reliably detected by such an approach.

4
M E T H O D O L O G Y

In this chapter, we introduce the methodology for our evaluation. First, we present the
research questions that we investigate in our work. Next, we describe our measurement
setup for the experiments that we conduct to evaluate the research questions. Afterwards,
we provide an overview of our case studies. Finally, we lay out how we evaluate the research
questions based on the data we obtained from our experiments.

4.1 research questions

We integrate white-box with black-box performance analysis to take advantage of both
approaches. For example, both approaches individually can yield false positives or false
negatives. By integrating both approaches, we identify flaws in both approaches by compar-
ing and verifying their results. We choose our research questions in a way such that they
give a strong indicator of whether the integrated approach produces promising results or
not. Furthermore, we assess whether our approach indeed provides benefits over a pure
black-box performance analysis approach. We investigate our integrated approach along
the dimensions of configurations, releases, and workloads. Hence, we also incorporate these
dimensions into our research questions. The dimension of configurations can be explored on
multiple levels. First, there is the configuration level which means comparing configurations
as a whole across other dimensions. Secondly, the option level can be investigated. In
the option level, single configuration options are compared across dimensions. Since our
integrated approach targets at providing detailed insights into the influence and changes
in the influence of configuration options, we focus on the option level in our research
questions.

Performance Changes Between Consecutive Releases for Different Workloads

The first research question that we investigate is targeted towards the black-box part
of our approach and consists of two sub-questions. The initial step of our integrated
approach is to perform a black-box performance analysis on the software system under
investigation to identify the configuration options and configuration option interactions
whose influence on the performance changes over time. First, we are interested in the number
of configuration options and interactions whose influence changes between consecutive
releases. Consequently, we formulate the first sub-question that we evaluate as follows.

RQ1.1: How frequent are changes of the performance influence of individual configura-
tion options and interactions among them?

19

20 methodology

As outlined in Chapter 2, the performance influence of configuration options and option
interactions might be dependent on the workload. Hence, we evaluate the research question
for multiple workloads.

We are not only interested in the number of configuration options and configuration
option interactions whose influence changes, but also in how much they change. This allows
us to identify the most severe changes. Thus, we formulate the second sub-question similar
to the first one, but focus on the strength instead of the frequency of changes.

RQ1.2: How strong are changes of the performance influence of individual configuration
options and interactions among them?

Since the strength of changes is also dependent on the workload, we evaluate the research
question for multiple workloads, analogously to RQ1.1.

Fraction of Performance Changes Confirmable by White-Box Approach

In the second step of our integrated approach, we take the configuration options we
identified by the black-box approach as potentially interesting to investigate and perform
a white-box performance analysis with them to gain more insights on the performance
changes. Before we can take a closer look at the additional insights that the white-box
performance analysis can deliver, we first need to investigate whether the performance
changes we identified by the black-box approach can be confirmed by the white-box
performance analysis. This means that we need to examine whether the same performance
changes are detected by the white-box approach, leading us to the following formulation of
the second research question.

RQ2: What fraction of performance changes identified by our black-box approach can
be confirmed by our white-box approach?

Identification of Configuration-Dependent Code Responsible for Performance Changes

Since we aim at gaining additional insights by integrating the white-box performance
analysis with the black-box performance analysis, we also need to evaluate whether we
actually achieve this goal. The additional insights that the white-box performance analysis
can deliver are information about the code locations that are responsible for a performance
change and that depend on the configuration that was used to execute the system. Hence,
we need to identify the fraction of cases in which the white-box performance analysis is
able to deliver this information. We pose the following research question.

4.2 experiment design 21

RQ3: In what fraction of cases is our white-box approach able to identify the
configuration-dependent code responsible for a performance change identified by our
black-box approach?

4.2 experiment design

This section provides an overview of the general experiment design that we use for all case
studies. In particular, we describe the general measurement setup that we use.

We perform our measurements on machines that are organized in a cluster. For our
experiments, we use two different types of machines. To guarantee comparable results, all
measurements for a case study are performed on machines of the same type. All machines
of the same type have identical hardware.

There are 14 machines of the first type. Each of these machines is equipped with an
Intel Core i5-4590. The processor has four cores and four threads. The base frequency is
3.3 GHz and turbo boost is disabled. Additionally, the machines each have 16 GB of RAM.
As an operating system, Debian 11 is used. In the remaining part of the thesis, we call the
machines of this type the i5-machines.

The machines of the second type each run with two Intel Xeon E5-2630 v4 CPUs with
ten cores, 20 threads, and a base frequency of 2.2 GHz. Turbo boost is enabled and the
maximum turbo boost frequency is 3.1 GHz. We call these machines the Xeon-machines. To
minimize measurement noise due to Non-Uniform Memory Access (NUMA), we ensure that
our case studies are executed only on one of both CPUs and that they exclusively use the
main memory associated with that CPU. Each Xeon-machine has 256 GB of RAM. In total,
there are 20 Xeon-machines. The operating system of the Xeon-machines is Debian 11.

In the cluster, we use a workload manager to distribute the measurements to the machines.
To minimize side effects and, thus, measurement noise, we configure the workload manager
in a way that ensures that the measurements are executed exclusively on each machine.
This guarantees that no other processes are interfering with our measurements. Although
all machines have access to a shared network drive, we copy the relevant binaries and
workloads to the local drive of the machine before performing measurements. This eliminates
fluctuations in the network connection as a possible cause of measurement noise.

For our black-box measurements, we repeat each measurement five times. If we observe a
relative standard deviation larger than 5% between the five measurements, we repeat the
measurements until the relative standard deviation is below 5%. To calculate the relative
standard deviation, we divide the absolute standard deviation by the mean performance
across all measurements. Through these repetitions, we make sure to reliably detect and
eliminate high measurement noise. We perform the same procedure for our white-box
measurements. The white-box measurements for a case study are executed on the same
type of machines as the black-box measurements for the respective case study.

22 methodology

4.3 case studies

To evaluate our research questions, we investigate one case study specifically crafted for
this thesis and four real-world case studies. In the following sections, we briefly introduce
each of the case studies.

4.3.1 CompEnc

To demonstrate the theoretical capabilities of our approach without being restricted by the
natural complexity of real-world systems, we manually craft a case study that is loosely
based on our compression tool example introduced in Chapter 2. For the remainder of this
thesis, we call this exemplary tool CompEnc. CompEnc is written in C++.

CompEnc has two optional binary options, Compression and Encryption. Additionally, it
has a mandatory binary option Iteration that has a numeric option Iterations_val as a child.
This option specifies the compression iterations that CompEnc performs. Figure 4.1 depicts
the resulting feature model of CompEnc.

root

Compression Encryption Iterations

Iterations_val
Range: {1, 2, 3}

Binary option
Numeric option
Mandatory option
Optional option

Figure 4.1: The feature model of CompEnc

In the code, we emulate computations by simply sleeping for a specified amount of time.
We have different parts of the code to emulate the different configuration options and
interactions between these configuration options. In particular, we have statements that
emulate compressing the data and statements emulating the encryption of data. Additionally,
we have statements that emulate the compression iterations by increasing the compression
time and by adding a pre-processing stage depending on the iterations. Listing 4.1 contains
an abstract representation of the core part of CompEnc in its initial release (v1).

We create four different releases where we introduce performance regressions by simply
adjusting the sleep time. In the second release (v2), we introduce a regression related to the
Encryption option by changing the sleep time from 5 to 10. The third release (v3) contains
a performance regression related to the Iterations_val option, introduced by changing the
sleep time in the pre-processing phase from Iterations to 2 · Iterations. In the last release (v4),
we add a performance regression related to the interaction between Compression and
Iterations_val. We increase the sleep time in the additional compression iterations from
Iterations to 2 · Iterations.

4.3 case studies 23

Listing 4.1: Abstract representation of the core part of the source code of CompEnc (v1)

1 void sendPackage(PackageData Data) {

2 if (Iterations) {

3 // Pre-process

4 sleep_for_secs(Iterations);

5 }

6

7 if (UseCompression) {

8 // Compress

9 Data.Data = Data.Data.substr(0, Data.Data.size() / 2);

10 sleep_for_secs(3);

11

12 if (Iterations) {

13 // Additional compression iterations

14 sleep_for_secs(Iterations);

15 }

16 }

17

18 if (UseEncryption) {

19 // Encryption

20 reverse(Data.Data.begin(), Data.Data.end());

21 sleep_for_secs(5);

22 }

23

24 // Sending

25 sleep_for_secs(2);

26 send(&Data);

27

28 puts(Data.Data.c_str());

29 }

Since we knowingly introduce the performance changes, we do not consider different
workloads for CompEnc because the main reason to look at different workloads is to identify
performance changes that might only be prevalent in some workloads.

For our measurements, we select all configuration options and generate all possible valid
configurations, resulting in 12 configurations in total. We measure each configuration in
each release. We perform the measurements on the i5-machines.

4.3.2 PicoSAT

PicoSAT1 is a SAT solver written in C that provides proof and trace capabilities. PicoSAT
achieved good results in some SAT competitions2 and is relatively small with only a few

1 PicoSAT. Available online at http://fmv.jku.at/picosat/; visited on November 23rd, 2022.
2 The International SAT Competition Web Page. Available online at http://www.satcompetition.org/; visited

on November 23rd, 2022.

http://fmv.jku.at/picosat/
http://www.satcompetition.org/

24 methodology

thousand lines of code. For these two reasons, we selected it as our first real-world case
study.

For our measurements, we use two releases. We measure version 951 and version 965.
Version 951 was released in 2012 and version 965 was released in 2016. We select version
965 since it is the most recent available release. Version 951 is the oldest available release
that provides a similar set of configuration options in comparison to version 965.

As workloads, we select four different SAT problems from SAT competitions from different
domains. This selection is a subset of workloads that Dincher [5] used as workloads for
another SAT solver, Clasp, and that seemed to have different impact on performance. We
decide to use a subset of the workloads selected by Dincher [5] since the other workloads
took more than three hours to complete for many configurations with PicoSAT, making
it infeasible to perform measurements for these workloads for all configurations and all
releases. In particular, we use the following workloads.

abw-n-bcsstk07 .mtx-w44 .cnf

This workload by Fazekas et al. [7] contains a SAT problem describing the feasibility
of the antibandwidth problem which is a max-min optimization problem on graphs.

traffic_kkb_unknown.cnf

traffic_kkb_unknown.cnf is a SAT problem that models a traffic situation to be
solved [5].

unsat_h_instances_childsnack_p12 .hddl_1 .cnf

This workload contains a Hierarchical Task Network (HTN) planning problem and has
been provided by Froleyks [8].

unsat_h_instances_childsnack_p11 .hddl_1 .cnf

UNSAT_H_instances_childsnack_p11.hddl_1.cnf describes another HTN planning
problem by Froleyks [8].

Regarding the dimension of configurations, we select all configuration options that are
present in both versions and that do not lead to instant termination of PicoSAT such as,
for example, --version which simply prints the current version. Kolesnikov et al. [16] show
that frequently, covering interactions of up to two configuration options is sufficient to
model most of the variability in performance. Hence, we perform a pairwise sampling
approach [24] to generate configurations covering all valid pairs of configuration options.
This way, we hope to achieve a reasonable trade-off between the number of configurations
considered and the measurement time. In total, we cover 16 configuration options resulting
in 182 configurations.

We measure each configuration with both releases and all five workloads. Since pi-
coSAT requires a high amount of main memory in some configurations, we perform the
measurements on the Xeon-machines.

4.3 case studies 25

4.3.3 Clasp

Clasp
3 is an answer set solver that supports normal and disjunctive logic. As such, it can be

used as a SAT solver similar to picoSAT. Clasp is written in C++. It achieved good results
in some SAT competitions, making it a viable candidate for performance analysis.

We measure two releases of Clasp. The first release we consider is release v3.3.4 which
was published in 2018. The second release is release v3.3.9 which was published in 2022.
Similar to the PicoSAT case study, we select the most recent release and the oldest-possible
release. All releases prior to v3.3.4 do not compile without errors with recent versions of
well-known compilers which is why we select v3.3.4.

Similar to PicoSAT, we use a subset of the SAT problems that Dincher [5] used to
investigate Clasp. We select seven workloads from the set of workloads that Dincher [5]
investigated. We do not use the remaining three workloads since these lead to infeasible
run-times in some configurations and releases. In particular, we use the same workloads as
for PicoSAT and additionally the following three workloads.

sat_h_instances_childsnack_p08 .hddl_2 .cnf

This workload contains a satisfiable HTN planning problem provided by Froleyks [8].

unsat_p_opt_snake_p06 .pddl_30 .cnf

In this workload, Froleyks [8] model an unsatisfiable classical planning problem.

sat_p_opt_snake_p10 .pddl_27 .cnf

This workload is a classical planning problem that is satisfiable and, again, provided
by Froleyks [8].

Clasp offers a huge number of configuration options. To be able to perform measurements
in a feasible amount of time, we pre-select a subset of configuration options that we expect
to influence the performance. We base our selection on the results of Dincher [5]. With the
same reasoning as before, we perform pairwise sampling to generate configurations from
the set of configuration options. Totally, we consider 33 configuration options resulting in
91 configurations.

We measure each configuration with both releases and all seven workloads on the Xeon-
machines.

4.3.4 XZ

XZ is a general-purpose file compression and decompression tool that is part of the
XZ Utils

4. The XZ Utils are written in C. They are the successor to LZMA Utils
5 and still

support the legacy LZMA format.
We consider three releases of XZ. The first release is v5.2.3 which has been released in

2016. We choose it because it is the oldest version of XZ of the current v5.2 release branch
that does not exhibit any memory leaks on our measurement systems. Additionally, we

3 Clasp - A conflict-driven nogood learning answer set solver. Available online at https://potassco.org/clasp/;
visited on November 23rd, 2022.

4 XZ Utils. Available online at https://tukaani.org/xz/; visited on November 23rd, 2022.
5 LZMA Utils. Available online at https://tukaani.org/lzma/; visited on November 26th, 2022.

https://potassco.org/clasp/
https://tukaani.org/xz/
https://tukaani.org/lzma/

26 methodology

measure v5.2.6 which was released in 2022 and was the newest version of the current
release branch at the time of our measurements. The third release we evaluate is v5.3.3alpha
which was the most recent version of the current development branch at the time of our
measurements.

Regarding the dimension of workloads, we measure the following two workloads that we
expected to differ in many aspects.

enwik9

In enwik9
6, the first ten billion bytes of the English Wikipedia pages in the state of

March 3rd, 2006 are dumped into a text file. The workload has a size of 1 GB and prior
experiments by us showed that this workload is very well compressible, shrinking up
to 80% in size.

davis 2016

The DAVIS 2016
7 workload is a set of annotated images. The images are in JPEG

format and are available in resolutions of 480p and 1080p. The workload has a size of
1.8 GB. Prior experiments indicated a bad compressibility, providing only a size loss of
a few megabytes. Originally, the DAVIS 2016 dataset has been created by Perazzi et al.
[20] to be used for training machine learning systems to identify objects on images.

XZ offers a wide range of configuration options. We pre-select configuration options that
we expect to influence the performance based on their description in the manual of XZ.
With a pairwise sampling approach, we generate configurations from the configuration
options. In total, we measure 79 configuration options resulting in 713 configurations per
release and workload. We split up our measurements into two parts. First, we measure the
performance of XZ when compressing the workload. Then, we measure the performance
when decompressing the just compressed file again. All measurements are performed on
the Xeon-machines.

4.3.5 Fast Downward

Fast Downward
8 is a classical planning system that is written in C++. Since the measure-

ment data for Fast Downward has already been present before the start of this thesis, the
measurements were not time-critical. Thus, Fast Downward is the case study that covers
the widest range of releases and workloads.

We measure nine releases from 2016 to 2020. Until June 2019, the Fast Downward

development team did not label any revisions as releases. Hence, we contacted the Fast

Downward development team and they selected suitable revisions that could have been
declared as releases in a six-month cycle. From June 2019 on, we use the official releases.

For each release, we measure 19 different workloads. We base our workload selection on
the official benchmarks9 provided by the Fast Downward development team. For brevity

6 enwik9. Available online at http://mattmahoney.net/dc/textdata; visited on November 26th, 2022.
7 DAVIS: Densely Annotated VIdeo Segmentation. Available online at https://davischallenge.org/davis2016/
browse.html; visited on November 26th, 2022.

8 Fast Downward. Available online at https://www.fast-downward.org/; visited on November 23rd, 2022.
9 Fast Downward Benchmarks. Available online at https://github.com/aibasel/downward-benchmarks; visited

on November 26th, 2022.

http://mattmahoney.net/dc/textdata
https://davischallenge.org/davis2016/browse.html
https://davischallenge.org/davis2016/browse.html
https://www.fast-downward.org/
https://github.com/aibasel/downward-benchmarks

4.3 case studies 27

reasons, we do not describe every workload in detail, but we group them into different
types of workloads that we outline in the following.

data_network_p05

This workload belongs to the data network planning domain. The goal is to find an
optimal plan for the communication between multiple servers which is constrained by
server properties such as, e. g., main memory.

scanalyzer_p11

The workload describes an instance of a planning problem that deals with greenhouse
logistic management.

sokoban_p13 , sokoban_p17 , sokoban_opt08_p04 and sokoban_opt08_p08

The workloads describe instances of Sokoban games. Sokoban is a puzzle game.

transport_p04 , transport_p08 and transport_opt08_p04

These workloads deal with satisfiability and optimization problems in the transport
domain, i. e., how to (optimally) transport goods from one place to the other with
certain constraints.

termes_p17

The termes_p17 workload models problems the Harvard TERMES robot has to solve.
The TERMES robot10 is a robot that can move around and build structures from blocks.

agricola_p02

This workload models the board game Agricola which consists of a farm with multiple
workers.

hiking_ptesting225 , hiking_ptesting225 and hiking_ptesting244

These three workloads belong to the hiking domain which deals with planning the
preparation and execution of a hiking trip with several constraints.

elevators_p22

The elevators_p22 workload models the problem of controlling multiple elevators.

ged_d28 and ged_d43

These workloads belong to the domain of Genome Edit Distances (GED). In the GED

domain, the planning tool has to find operations that transform one genome into
another and are minimal with regard to cost.

visitall_opt11_p05 and visitall_opt14_p056

In these two workloads, the goal is to find an optimal plan to visit all cells in a grid
under some given constraints.

Fast Downward offers a large number of configuration options. In cooperation with the
development team, we pre-select configuration options that are of particular relevance or
are expected to have a significant impact on the performance. From these configuration
options, we generate configurations. In total, we measure 60 configuration options leading

10 TERMES. Available online at https://wyss.harvard.edu/media-post/termes/; visited on November 26th, 2022

https://wyss.harvard.edu/media-post/termes/

28 methodology

to 412 configurations per release and workload. The measurements are performed on the
Xeon-machines. In contrast to the other case studies, the measurements for Fast Downward

were performed without specific NUMA control. This is due to the fact that the measurements
for Fast Downward were performed before the beginning of this thesis and would have
taken too much time to repeat. However, since we made sure that the standard deviation of
the measurements is below 5%, we still expect the data to be valid.

4.4 operationalization

In this section, we outline the operationalization of each research question. We describe
which metrics we use to evaluate the research questions and how we apply them.

RQ1: Performance Changes Between Consecutive Releases for Different Workloads

To answer RQ1, we measure all configurations of the respective case study as described
before with our black-box approach for each release and workload that we consider. Then,
we learn a performance-influence model based on the measurements for all configurations.
We learn one performance-influence model per release and workload that we consider. For
the software system S with releases RS and workloads WS, we thus receive |RS| · |WS|
performance-influence models. As we have seen before, each performance-influence model
contains configuration options and interactions as terms. We denote the set of all terms
in a performance-influence model for a software system S with workload w and release
r by T ■,r

S,w where the black square ■ indicates that we are referring to the black-box data.
To guarantee the comparability of performance-influence models, we have to make sure
that all models contain the same configuration options and interactions. Hence, we first
take the iteratively learned performance-influence models for each release and workload
and collect all configuration options and interactions from them. Formally, we build the set
T ■

S :=
⋃

r∈RS, w∈WS

T ■,r
S,w . Then, we apply a VIF analysis to detect and prevent multicollinearity.

Based on the results of this analysis, we remove all options and interactions causing perfect
multicollinearity. This way, we receive a new set T ■

S ′ ⊆ T ■
S . Finally, we re-learn performance-

influence models for each release and workload, but force the terms in the model to be the
ones contained in T ■

S ′. By doing this, all performance-influence models for S include the
same terms and only the coefficients of the terms differ.

For a release r and a workload w, we denote the performance-influence model by Πr
S,w.

Similarly, we denote the coefficients for a term t in Πr
S,w by βr

S,w(t). In the following, we
usually omit S from all indices for better readability if the software system S for which the
model applies is clear from the context or irrelevant. In this case, we denote performance-
influence models simply by Πr

w.
In both sub-questions, we use the performance-influence models that we have learned

before. We compare the coefficients of each term in the performance-influence models
of consecutive releases, separately for each workload. The difference between the two
coefficients corresponds to a performance change. To prevent mistaking measurement
noise for performance changes, we first need to determine which performance changes we
consider. In both sub-questions, we only consider performance changes whose difference

4.4 operationalization 29

in the coefficients of the performance-influence model exceeds twice the maximum of
the two mean standard deviations of all configurations of the respective workload for
both releases. Additionally, we exclude tiny performance changes by only considering
performance changes larger than 100ms. Formally, we express this as

|βri
w(t)− β

ri+1
w (t)| > |2 · max(sdri

w, sdri+1
w)| ∧ |βri

w(t)− β
ri+1
w (t)| > 0.1s

where sdw
r

denotes the mean standard deviation of all measurements for workload w and
release r. We define the set of all terms that are involved in a performance change for
workload w and releases ri and ri+1 by

T ■,ri ,ri+1
w,rel := {t | t ∈ T ■′ ∧ |βri

w(t)− β
ri+1
w (t)| > |2 · max(sdri

w, sdri+1
w)|

∧ |βri
w(t)− β

ri+1
w (t)| > 0.1s}.

RQ1.1: Frequency of Performance Changes Between Consecutive Releases for Different Workloads

In RQ1.1, we are interested in the frequency of performance changes between consecutive
releases for different workloads. Hence, we set the number of configuration options and
interactions that were involved in a performance change in relation to the total number of
configuration options. For each workload and pair of consecutive releases, we determine
the fraction of terms that were involved in a performance change by computing

f ri ,ri+1
w :=

|T ■,ri ,ri+1
w,rel |
|T ■′| .

Additionally, we measure the mean fraction of terms involved in a performance change
across all workloads by computing

Fri ,ri+1 :=
∑

w∈W
f ri ,ri+1
w

|W| .

since we have |W| workloads. Similarly, we aggregate the data across all releases and
workloads by computing

F :=

|R|−1
∑

i=1
∑

w∈W
f ri ,ri+1
w

(|R| − 1) · |W| .

Note that we always compare pairs of consecutive releases and since we have |R| releases,
we have |R| − 1 such pairs.

Based on the metrics defined above, we are able to conclude the frequency of performance
changes influenced by configuration options and interactions for each case study which
answers RQ1.1.

RQ1.2: Strength of Performance Changes Between Consecutive Releases for Different Workloads

In RQ1.2, we consider the strength of the performance changes between consecutive releases
for different workloads. Thus, we restrict our evaluations to those configuration options and

30 methodology

interactions that were identified to contribute to performance changes. For a performance
change of a term t with workload w and releases ri and ri+1, we define the strength of the
performance change by the quotient of the difference in the coefficient and the mean of the
mean performances of both releases for the respective workload. Formally, we express this
as

δ
ri ,ri+1
w (t) :=

|βri
w(t)− β

ri+1
w (t)|

1
2 · (p■,ri

w + p■,ri+1
w)

where p■,r
w denotes the mean performance for workload w and release r across all configu-

rations based on the black-box measurements.
With this definition, we can determine the mean strength of the performance changes for

a workload and pair of consecutive releases by

∆ri ,ri+1
w :=


∑

t∈T ■,ri ,ri+1
w,rel

δ
ri ,ri+1
w (t)

|T ■,ri ,ri+1
w,rel |

, if |T ■,ri ,ri+1
w,rel | > 0,

0, otherwise.

Similar to RQ1.1, we also determine the mean strength across all workloads by

∆ri ,ri+1 :=
∑

w∈W
∆ri ,ri+1

w

|W|

and across all releases and workloads by

∆ :=

|R|−1
∑

i=1
∑

w∈W
∆ri ,ri+1

w

(|R| − 1) · |W| .

These metrics provide an indicator of the strength of performance changes of individual
configuration options and interactions for each case study which results in an answer to
RQ1.2.

RQ2: Fraction of Performance Changes Confirmable by White-Box Approach

In RQ2, we are interested in the relation between performance changes identified by the
black-box approach and by the white-box approach. In particular, we want to know whether
the white-box approach is able to detect the performance changes that the black-box ap-
proach identified. Therefore, the performance changes of the black-box approach identified
in RQ1 serve as a basis for this research question. Based on the configuration options and
interactions that were detected to contribute to performance changes, we generate minimal
configurations in which these configuration options or interactions are active. The term
minimal configuration refers to a valid configuration in which a minimal number of con-
figuration options is enabled. Depending on the feature model of the software system, we
either have one or multiple minimal configurations for a configuration option or interaction.

4.4 operationalization 31

After generating the minimal configurations, we perform white-box measurements for
these configurations with all releases and workloads on the same systems as the black-box
measurements.

As briefly described in Chapter 2, the white-box measurements deliver information about
the amount of time each configuration option and interaction contributed to the total
run-time of a software system. Hence, if we see a performance change in the black-box
measurements for a configuration option or interaction, we should, intuitively, be able to
see that a similar change is attributed to the same configuration option or interaction in the
white-box measurements. This research question aims at investigating to what extent this
intuitive statement holds true.

To answer RQ2, we first determine the white-box performance p□,r
w (t) for each term t as

described in Chapter 2. Then, we perform a similar approach as in RQ1. We investigate the
white-box measurement data for each workload and identify performance changes between
consecutive releases for configuration options or interactions. As before, we make sure to
filter out measurement noise by only considering performance changes larger than twice

the mean standard deviation sd□,r
w across all minimal configurations that we generated for

the respective configuration option or interaction. Furthermore, we again filter out tiny
performance changes by only considering performance changes above 100ms. We formally
express this similar to as in RQ1 as

|p□,ri
w (t)− p□,ri+1

w (t)| > |2 · max(sd□,ri
w , sd□,ri+1

w)| ∧ |p□,ri
w (t)− p□,ri+1

w (t)| > 0.1s.

Then, we create the set T □,ri ,ri+1
w,rel that contains all terms that exhibit a relevant performance

change for workload w and releases ri and ri+1. The white square □ indicates that we refer
to the white-box data.

For our evaluation, we now compute the fraction of black-box performance changes that
were confirmed by the white-box approach. Formally, we determine this by the formula

cri ,ri+1
w :=


|T ■,ri ,ri+1

w,rel ∩ T □,ri ,ri+1
w,rel |

|T ■,ri ,ri+1
w,rel |

, if |T ■,ri ,ri+1
w,rel | > 0,

1, otherwise.

Based on this, we then again aggregate the results across all workloads

Cri ,ri+1 :=
∑

w∈W
cri ,ri+1

w

|W|

and across all workloads and release pairs

C :=

|R|−1
∑

i=1
∑

w∈W
cri ,ri+1

w

(|R| − 1) · |W| .

Since VaRA uses a static data flow analysis, it can happen that the white-box measure-
ments do not correctly track the execution of all configuration options, e. g., if the variables
associated with a configuration option are stored in a dynamic object. Hence, for a term t

32 methodology

that exhibits a performance change between two releases r1 and r2 in the black-box data,
but not in the white-box data, we differentiate whether the white-box data actually does not
show any difference or if the white-box data is incomplete. We consider the white-box data
for t to be incomplete if in at least one of r1 and r2, the white-box data reports an execution
time of 0 for t. Based on the terms that the black-box analysis reports to exhibit a perfor-
mance change, we calculate the fraction of terms that exhibit a measurement problem on the
white-box data. Let T □,ri ,ri+1

w,rel be the set of terms for which the white-box data is incomplete,

formally expressed as T □,ri ,ri+1
w,rel,incomplete := {t | t ∈ T ■,ri ,ri+1

w,rel ∧ (p□,ri
w (t) = 0 ∨ p□,ri+1

w (t) = 0)}.
Then, we compute

errri ,ri+1
w :=


|T □,ri ,ri+1

w,rel,incomplete|

|T ■,ri ,ri+1
w,rel \ T □,ri ,ri+1

w,rel |
, if |T ■,ri ,ri+1

w,rel \ T □,ri ,ri+1
w,rel | > 0,

0, otherwise

to determine the fraction of terms that are not correctly measured by the white-box analysis
in relation to the terms whose performance changes have not been confirmed by the
white-box analysis.

We then, again, aggregate the results across all workloads

Errri ,ri+1 :=
∑

w∈W
errri ,ri+1

w

|W|

and across all workloads and release pairs

Err :=

|R|−1
∑

i=1
∑

w∈W
errri ,ri+1

w

(|R| − 1) · |W| .

Additionally, we investigate whether the performance changes detected by the white-box
analysis are of similar strength as the performance changes that the black-box analysis
reports. While, at a first glance, it might seem intuitive to use our strength measure δ

ri ,ri+1
w (t)

that we introduced in RQ1.2, using the measure δ
ri ,ri+1
w (t) on the white-box data would

not be comparable to the black-box data. δ
ri ,ri+1
w (t) puts the performance change in relation

to the average performance across all configurations. Since we only measure the minimal
configurations for a term t on the white-box data, we can only consider the average
performance across the minimal configurations. Therefore, we define

δ
■,ri ,ri+1
w,min (t) :=

|βri
w(t)− β

ri+1
w (t)|

1
2 · (p■,ri

w,min + p■,ri+1
w,min)

where p■,r
w,min refers to the mean performance for workload w and release r across the

minimal configurations for t based on the black-box measurements. Analogously, we define

δ
□,ri ,ri+1
w,min (t) :=

|p□,ri
w (t)− p□,ri+1

w (t)|
1
2 · (p□,ri

w + p□,ri+1
w)

4.4 operationalization 33

where p□,r
w denotes the mean performance for workload w and release r across the minimal

configurations for t determined by the white-box measurements. If

|δ■,ri ,ri+1
w,min (t)− δ

□,ri ,ri+1
w,min (t)| ≤ 0.05,

we declare the performance change as similar. Otherwise, we declare it as different. We group
the performance changes into the categories and determine the fraction sri ,ri+1

w of similar
performance changes. As before, we aggregate the results across workloads (Sri ,ri+1) and
across releases and workloads (S).

This data indicates whether the white-box approach is able to find the same performance
changes as the black-box approach and if they are of similar strength as in the black-box
approach. This way, we answer RQ2.

RQ3: Identification of Configuration-Dependent Code Responsible for Performance Changes

In RQ3, we are interested in the fraction of cases in which our white-box approach is able to
identify the configuration-dependent code responsible for a performance change identified
by our black-box approach. For the performance changes identified by the black-box analysis
(RQ1) that were not identified by the white-box analysis (RQ2), it is trivial that in these cases,
the white-box approach is not able to identify the code that is responsible for a performance
change. Hence, in the following, we restrict our investigation to the performance changes
that the white-box analysis successfully identified.

As described before, the VaRA framework that we use generates a mapping of configura-
tion options to code regions. Let FR = {FR1, . . . , FRi} be the set of regions in the code that
VaRA creates as described in Chapter 2. Then, we have a mapping O → P(FR) that maps
configuration options to regions, where P(FR) refers to the power set of FR. Additionally,
VaRA creates a mapping FR → L where L abstractly describes the set of all code locations
in S. Hence, we have a mapping O → P(L) by transitivity.

Using the timestamps that VaRA records during the execution of a software, we can
extract the execution times of each region as done in RQ2. To investigate a performance
change of a term t between two releases rj and rj+1, we could now, intuitively, look at all
regions that belong to t that exhibit a performance change and compare the execution times
of each region assigned to t in rj and rj+1. This way, we would be able to identify the code
locations related to a performance change. However, it is not possible to reliably create an
exact mapping between the regions FRj in rj and the regions FRj+1 in rj+1. Thus, the
comparison of execution times of regions between rj and rj+1 is not trivial. This is due to
the fact that the region IDs are depending on the software as a whole. Hence, changes
anywhere in the software that, e. g., introduce a new region, can, in the worst case, change
all region IDs.

To mitigate this problem, we assign additional, independent IDs to regions relative to the
function they are placed in. For example, assume we have a function foobar that contains
three regions with region IDs 1234, 1235, and 1236. Then, we assign them the function-
relative ID foobar1, foobar2, and foobar3 in the order of their appearance in the function.
Afterwards, we compare foobar1 in rj and foobar1 in rj+1, foobar2 in rj and foobar2 in rj+1,
and foobar3 in rj and foobar3 in rj+1. Note that the approach described above only works
if in both releases, the number of option-related regions within foobar is the same. If the

34 methodology

number of regions within foobar changes, we manually investigate all the regions in foobar.
In particular, we manually assign the same function-relative IDs to regions that are identical
in both releases with regard to the code they are assigned to. For the new or removed
regions, we assign additional function-relative IDs and attribute a performance of 0 to this
region in the release in which the region does not exist.

Then, for each release ri and ri+1 and workload w, we look at each term t in
T ■,ri ,ri+1

w,rel ∩ T □,ri ,ri+1
w,rel and collect the (function-relative) region IDs associated with t. Formally,

we collect them in a set FRri ,ri+1
w (t). For each region f in FRri ,ri+1

w (t) and configuration c, we
sum up all execution times of f to get the total performance tpr

c,w of f in r when executing c.
Afterwards, we build the mean performance tpr

w over all minimal configurations associated
with t. We compare this mean performance for ri and ri+1. If the difference between the
performance of a region in both releases exceeds twice the maximum of the mean standard
deviation sdr

tp,w of the region performance across all minimal configurations that we gen-
erated for t, we consider the performance change to be relevant. We formally express this
as

|tpri
w − tpri

w| > |2 · max(sdri
tp,w, sdri+1

tp,w)|.

If we identify a relevant performance change for a region between two releases, we
manually investigate the code location that is assigned to the region for changes. During
our manual investigation, we compare the code for the affected region for both releases. If
the code for a region that exhibited a performance change is identical in both releases, we
consider the location responsible for the change in the performance of the region as not
identified. Otherwise, we consider the location as identified. Since we manually examine the
code as a last step, we can also detect if our function-relative approach fails, e. g., if two code
regions simply switch places and, thus, swap their function-relative IDs. We consider the
code location responsible for the change in the performance of t as identified, if we identify a
code location responsible for the change in the performance of f for any f ∈ FRri ,ri+1

w (t).
In all cases, we group all terms affected by a performance change on the black-box side

into location identified and location not identified by the white-box analysis based on our
description above. Then, we compute the fraction lri ,ri+1

w of the performance changes whose
cause could be identified and whose cause could not be identified. Formally, we define

lri ,ri+1
w :=


{t∈T ■,ri ,ri+1

w,rel ∩ T □,ri ,ri+1
w,rel | code location for t identified}

|T ■,ri ,ri+1
w,rel |

, if |T ■,ri ,ri+1
w,rel | > 0,

1, otherwise.

Note that this definition implies that lri ,ri+1
w ≤ cri ,ri+1

w for all w ∈ W and ri, ri+1 ∈ R
since we can only identify the configuration-dependent code responsible for a performance
change if the white-box analysis confirms the performance change.

Again, we aggregate the data across workloads

Lri ,ri+1 :=
∑

l∈W
lri ,ri+1
w

|W|

4.4 operationalization 35

and across all workloads and release pairs

L :=

|R|−1
∑

i=1
∑

w∈W
lri ,ri+1
w

(|R| − 1) · |W| .

5
E VA L UAT I O N

This chapter presents the evaluation of our case studies. First, we evaluate each case study
as described in Chapter 4. Then, we discuss our results, elaborate on particular findings
that emerged during the evaluation and answer our research questions. Finally, we present
possible threats to the validity of our results and how we address these threats.

5.1 results

In this section, we provide an overview of the results for each case study and the overall
results across all case studies.

5.1.1 Performance Changes Between Consecutive Releases for Different Workloads

As presented in Chapter 4, we investigate the performance changes between consecutive
releases for different workloads that the black-box analysis reports in our first research
question.

5.1.1.1 Frequency of Performance Changes

In the first sub-question, we investigate the frequency of performance changes.

RQ1.1: How frequent are changes of the performance influence of individual configura-
tion options and interactions among them?

CompEnc

For our artificial case study CompEnc, we consider four releases. In each release, we measure
six configuration options resulting in twelve configurations.

Figure 5.1 depicts and compares the coefficients of the performance-influence models of
CompEnc for all releases. The performance-influence models contain seven terms where five
terms (71.4%) are associated with individual configuration options and two terms (28.6%)
represent interactions of configuration options. The most influential terms are Encryption
in v2, v3, and v4 and root, Compression, and Encryption in v1.

Investigating the terms in the model, we note that Iterations_val_3 does not appear
at all in the performance-influence model. This is due to the VIF analysis that we con-
duct to prevent multicollinearity as described in Chapter 2 to guarantee the compara-
bility of the performance-influence models. Since Iterations_val_1, Iterations_val_2, and
Iterations_val_3 form a mandatory alternative group, one of them is selected as the default
and, thus, omitted from the performance-influence models. In this case, Iterations_val_3 was

37

38 evaluation

Figure 5.1: Coefficients of the performance-influence models of CompEnc comparing all releases

selected as the default value and, thus, its influence is part of the root configuration option.
If we recall the source code of CompEnc depicted in Listing 4.1, we see that, in the initial
release, we expect an execution time of two seconds not related to any configuration option
and three seconds related to Iterations_val_3. Summing these two values up, this explains
the value of 5 for root. Keeping the inclusion of Iterations_val_3 in mind, it also becomes
clear why the coefficients of Iterations_val_1 and Iterations_val_2 are negative. Analo-
gously, Compression · Iterations_val_2 is selected as the default for the interaction between
Compression and Iterations_val and, hence, does not appear in the performance-influence
models. Therefore, Compression · Iterations_val_2 is part of the Compression option. The
same reasoning as before explains why the values for Compression · Iterations_val_1 and
Compression · Iterations_val_3 are not what we would intuitively expect.

Table 5.1 shows the metrics for this research question that we defined in Chapter 4.
Aggregating f ri ,ri+1

w across all releases, we receive an average fraction of performance changes
of approximately F = 33.3%. Since CompEnc is an artificial case study to demonstrate the
general process, we do not further elaborate on these numbers for this case study. Instead,
we qualitatively analyze the results in the following paragraph.

Between the first two releases (v1 and v2), we introduce a performance regression of
the Encryption configuration option. By looking at Figure 5.1, we see that the regression
is visible in the performance-influence models since the coefficient of Encryption increases
from 5 to 10. Between the second (v2) and the third (v3) release, we add a regression
to the Iterations_val option that is as large as the value of Iterations_val. Recalling that
Iterations_val_3 is part of root, we identify the performance change for Iterations_val_3 in

5.1 results 39

Table 5.1: Metrics related to CompEnc for RQ1.1

Release 1 Release 2 Workload f ri ,ri+1
w

v1 v2 none 14.3%

v2 v3 none 42.9%

v3 v4 none 42.9%

the coefficient of root. Analogously, the coefficients of Iterations_val_1 and Iterations_val_2
decrease even further due to the increase of the coefficient of the root option. In the last re-
lease (v4), we include a performance change affecting the interaction between Compression
and Iterations_val that is as large as the value of Iterations_val. As before, the perfor-
mance models reflect the performance change by including an increase of the coefficient of
Compression and, consequently, a change in the coefficients of Compression · Iterations_val_1
and Compression · Iterations_val_3.

Overall, we see that all performance regressions that we introduce are detected by the
black-box approach. However, some of them are not attributed to the term that we would
expect them to be.

PicoSAT

As described in Chapter 4, we measure 16 configuration options resulting in 182 configura-
tions with four different workloads in PicoSAT and we compare two releases. For better
readability, we assign IDs to each workload and reference the workloads by ID in the
following. Table 5.2 contains the mapping from workloads to IDs.

Table 5.2: Workload IDs for PicoSAT

Workload ID

abw-N-bcsstk07.mtx-w44.cnf workload1

traffic_kkb_unknown.cnf workload2

UNSAT_H_instances_childsnack_p11.hddl_1.cnf workload3

UNSAT_H_instances_childsnack_p12.hddl_1.cnf workload4

In Figure 5.2, we plot the coefficients of the performance-influence models for all work-
loads and compare both releases. The performance-influence models for PicoSAT contain
eleven terms. Six terms (54.5%) correspond to individual configuration options whereas
five terms (45.5%) correspond to interactions of configuration options. The most influential
configuration option in all performance-influence models is the root option.

We note that nine out of eleven (81.8%) terms in the performance-influence models are
related to generating traces or proofs for the satisfiability of the workload. When looking at
all configuration options, only five out of 16 configuration options (31.3%) deal with tracing
and proofs. Therefore, we observe that tracing- and proof-related configuration options are
overrepresented in the performance-influence models.

40 evaluation

(a) workload1 (b) workload2

(c) workload3 (d) workload4

Figure 5.2: Coefficients of the performance-influence models of PicoSAT for all workloads comparing
all releases

5.1 results 41

Table 5.3 contains the metrics for PicoSAT for this research question. We observe perfor-
mance changes affecting at least one configuration option or interaction for three out of four
(75%) workload and release pair combinations. On average, F = 47.7% of all configuration
options and interactions across all workloads and releases are affected by a performance
change. Regarding both the presence and frequency of performance changes, we observe a
strong dependency on the workload. For workload1 and workload2, ten (90.9%) configu-
ration options or interactions exhibit a performance change. In contrast, for workload4

we see only a single (9.1%) relevant change and even no relevant changes at all (0%) for
workload3.

Table 5.3: Metrics related to PicoSAT for RQ1.1

Release 1 Release 2 Workload f ri ,ri+1
w

951 965 workload1 90.9%

951 965 workload2 90.9%

951 965 workload3 0.0%

951 965 workload4 9.1%

The configuration options and interactions that participate in a performance change are
identical for workload1 and workload2. However, we note that for all affected terms,
the influence increases for workload1, but decreases for workload2. The only term that
participates in a performance change for workload4 also exhibits a change in workload1

and workload2, i. e., we see that T ■,951,965
workload4,rel ⊂ T ■,951,965

workload1,rel = T ■,951,965
workload2,rel .

Clasp

For Clasp, we measure seven workloads in two releases. We consider 33 configuration
options which result in 91 configurations. As before, we assign IDs to workloads for better
readability. The mapping is shown in Table 5.4.

Table 5.4: Workload IDs for Clasp

Workload ID

abw-N-bcsstk07.mtx-w44.cnf workload1

SAT_H_instances_childsnack_p08.hddl_2.cnf workload2

SAT_P_opt_snake_p10.pddl_27.cnf workload3

traffic_kkb_unknown.cnf workload4

UNSAT_H_instances_childsnack_p11.hddl_1.cnf workload5

UNSAT_H_instances_childsnack_p12.hddl_1.cnf workload6

UNSAT_P_opt_snake_p06.pddl_30.cnf workload7

We plot the coefficients of the performance-influence models for Clasp per workload
in Figure 5.3. We omit the performance-influence model for workload5 because it is

42 evaluation

(a) workload1 (b) workload2

(c) workload3 (d) workload4

(e) workload6 (f) workload7

Figure 5.3: Coefficients of the performance-influence models of Clasp for six workloads comparing
all releases

5.1 results 43

very similar to the model of workload6. The performance-influence models for Clasp

contain seven terms. Five (71.4%) terms correspond to individual configuration options
and two (28.6%) terms correspond to interactions of configuration options. Depending on
the workload, different terms are the most influential terms. For workload1, the most
influential term is heuristicVmtf which specifies the usage of the VMTF [17] heuristic.
enumModeCautious is the most influential term for workload2 and workload3 and selects
a cautious enumeration algorithm. For the remaining workloads, root has the strongest
influence.

Looking at all models, we see that the main source for variation in the performance is
related to the heuristic that is used and to the enumeration mode. Furthermore, interactions
between the heuristic and the enumeration mode also influence the performance for some
workloads. Apart from the heuristic and the enumeration algorithm, the only other configu-
ration option included in the performance-influence models is optModeOpt which selects an
optimization algorithm. However, its influence is minor with at most 0.2s which is less than
0.5% in relation to the average performance.

Additionally, we note that depending on the workload, different heuristics have a com-
pletely different impact on the performance. For example, when comparing workload4 and
workload7, we see that using heuristicVmtf decreases the expected run-time for workload4,
but increases it for workload7. We make similar observations when comparing other work-
loads. Additionally, it is noteworthy that for workload5 and workload6, the configuration
almost does not matter at all since around 99% of the performance influence is attributed to
the root feature. In contrast, for workload1 we observe that the influence of heuristicVmtf
is around 460s (approximately 90% in relation to the average performance) and therefore
considerably larger than the influence of all other configuration options, including root. We
make similar observations for the enumeration mode, e. g., when comparing workload1

and workload2 or workload3.
In Table 5.5, we list the metrics for Clasp for this research question. We observe per-

formance changes affecting at least one configuration option or interaction for two out of
seven (28.6%) release pair and workload combinations. On average, F = 10.2% of all con-
figuration options are affected by a performance change across all workloads and releases.
workload1, workload3, workload4, workload6, and workload7 do not exhibit any
performance change. For workload2, three (42.9%) terms exhibit a performance change.
In contrast, for workload5 we observe a performance change for two (28.6%) terms. The
interaction enumModeCautious · heuristicVmt f participates in a performance change for
both workloads. Additionally, the influence of heuristicVmtf changes for workload5. In
contrast, enumModeCautious and the interaction enumModeCautious · heuristicVsids exhibit
a performance change for workload2. Therefore, not only the number of affected con-
figuration options and interactions depends on the workload, but also the affected terms
themselves.

XZ

For XZ, we consider three releases and two workloads. For each release and workload,
we consider 79 configuration options resulting in 713 configurations. We investigate the
compression and the decompression process separately.

44 evaluation

Table 5.5: Metrics related to Clasp for RQ1.1

Release 1 Release 2 Workload f ri ,ri+1
w

v3.3.4 v3.3.9 workload1 0.0%

v3.3.4 v3.3.9 workload2 42.9%

v3.3.4 v3.3.9 workload3 0.0%

v3.3.4 v3.3.9 workload4 0.0%

v3.3.4 v3.3.9 workload5 28.6%

v3.3.4 v3.3.9 workload6 0.0%

v3.3.4 v3.3.9 workload7 0.0%

compression. For the compression process, the performance-influence models for XZ
contain 59 terms. Out of these 59 terms, 22 (37.3%) correspond to individual configuration
options and 37 (62.7%) correspond to interactions of configuration options. The most influ-
ential configuration option in all performance-influence models that affect the compression
process is the root option. We do not observe any peculiarities in the performance-influence
models and the performance changes we observe are very weak (see RQ1.2) which is why
we omit the plotting of the coefficients for the compression process.

Table 5.6: Metrics related to the compression process of XZ for RQ1.1

Release 1 Release 2 Workload f ri ,ri+1
w

v5.2.3 v5.2.6 DAVIS 2016 11.9%

v5.2.3 v5.2.6 enwik9 5.1%

v5.2.6 v5.3.3alpha DAVIS 2016 10.2%

v5.2.6 v5.3.3alpha enwik9 3.4%

Table 5.6 lists the metrics for the compression process of XZ. We observe performance
changes affecting at least one configuration option in all workload and release pair com-
binations. We note an average fraction of affected configuration options and interactions
of F = 7.6%. Between v5.2.3 and v5.2.6, Fv5.2.3,v5.2.6 = 8.5% of all terms participate in a
performance change, on average. For the DAVIS 2016 workload, seven out of 59 (11.9%)
terms exhibit a change in their influence whereas the influence of three (5.1%) terms changes
for enwik9. We note that the sets of affected terms for both workloads are disjunct. All
changes for DAVIS 2016 relate to the compression level (Preset_val) and interactions of
the compression level with the compression format (xz, auto, and raw). In contrast, for
enwik9 we also see a change associated with an interaction between the compression level
and the compression format, but also changes in the influence of the XtrmCPU option
and the selection of the block size. The XtrmCPU option tries to improve the compression
ratio by using more CPU time. When comparing v5.2.6 and v5.3.3alpha, the influence of
Fv5.2.6,v5.3.3alpha = 6.8% of all terms changes, on average. Similar to the previous release
pair, we observe a change in six out of 59 (10.2%) terms for DAVIS 2016 and a change in

5.1 results 45

two (3.4%) terms for enwik9. Again, the sets of affected terms are disjunct. For enwik9,
both changes are related to the interaction between the compression level and XtrmCPU.
In contrast, changes for DAVIS 2016 affect root and interactions between the compression
format and the maximum number of threads (Threads_val).

decompression. The performance-influence models for the decompression process
of XZ contain 28 terms. 19 (67.9%) terms correspond to individual configuration options
whereas nine (32.1%) terms correspond to interactions of configuration options. In all
performance-influence models, the most influential term corresponds to the root option.

Figure 5.4 depicts the coefficients of the performance-influence models for the decom-
pression phase for both workloads with both release pairs. We identify six categories of
configuration options that are included in the performance-influence models. First, as
always, the root feature is part of the performance-influence models. Then, the compression
formats xz, raw, and auto influence the performance. Additionally, the compression level
represented by the Preset_val options has an impact on the performance. Furthermore, the
block size values (Size_val) and the number of threads (Threads_val) are included in the
performance-influence models. Lastly, the XtrmCPU option impacts the performance. We
also see interactions between the compression level and the compression format, the com-
pression format and the number of threads, and between XtrmCPU and the compression
format.

In Table 5.7, we list the metrics for all workloads and release pairs. All workload and
release pair combinations exhibit a performance change affecting the influence of at least
one configuration option or interaction. On average, F = 44.6% of all configuration options
participate in a performance change of the decompression process. However, between v5.2.3
and v5.2.6 the performance-influence of only Fv5.2.3,v5.2.6 = 10.7% of options and interactions
changes while between v5.2.6 and v5.3.3alpha the performance of Fv5.2.6,v5.3.3alpha = 78.6%
of options and interactions changes. Again, we note a dependency on the workload. For
the first release pair, performance changes affect three terms (10.7%) in both workloads,
although the sets of affected terms are, again, disjunct. However, all changes except for one
are associated with the compression level and the compression format. We additionally
see a change in root for enwik9. For the second release pair, again both workloads are
affected by changes. However, only 19 (67.9%) terms change for DAVIS 2016 while 25

(89.3%) terms change for enwik9. We note that, ignoring the root configuration option,
T ■,v5.2.6,v5.3.3alpha

DAVIS 2016,rel ⊂ T ■,v5.2.6,v5.3.3alpha
enwik9,rel , i. e., all terms (except for root) that exhibit a change

for DAVIS 2016 also exhibit a change in enwik9. The terms that exhibit a change in both
workloads either determine the compression format, the compression level, the number of
threads, and the block size or interactions between number of threads and compression
format or compression level and compression format. For the enwik9 workload, additional
values for the compression level and interactions with it are affected.

Fast Downward

We measure nine releases with 19 workloads for Fast Downward. For each workload
and release, we consider 60 configuration options leading to 412 configurations. Again, we
assign IDs to workloads for better readability and show the mapping in Table 5.8.

46 evaluation

(a) DAVIS 2016

(b) enwik9

Figure 5.4: Coefficients of the performance-influence models of XZ for the decompression phase for
both workloads comparing all releases

5.1 results 47

Table 5.7: Metrics related to the decompression process of XZ for RQ1.1

Release 1 Release 2 Workload f ri ,ri+1
w

v5.2.3 v5.2.6 DAVIS 2016 10.7%

v5.2.3 v5.2.6 enwik9 10.7%

v5.2.6 v5.3.3alpha DAVIS 2016 67.9%

v5.2.6 v5.3.3alpha enwik9 89.3%

Table 5.8: Workload IDs for Fast Downward

Workload ID

agricola_p02 workload1

data_network_p05 workload2

elevators_p22 workload3

ged_d28 workload4

ged_d43 workload5

hiking_ptesting225 workload6

hiking_ptesting226 workload7

hiking_ptesting44 workload8

scanalyzer_p11 workload9

sokoban_opt08_p04 workload10

Workload ID

sokoban_opt08_p08 workload11

sokoban_p13 workload12

sokoban_p17 workload13

termes_p17 workload14

transport_opt08_p04 workload15

transport_p04 workload16

transport_p08 workload17

visitall_opt11_p05 workload18

visitall_opt11_p056 workload19

48 evaluation

(a) workload1

(b) workload3

(c) workload7

(d) workload13

(e) workload18

Figure 5.5: Coefficients of an excerpt of the performance-influence models of Fast Downward for
five workloads comparing all releases where each bar for a term corresponds to a release
and releases increase from left (July 2016) to right (June 2020)

5.1 results 49

The performance-influence models for Fast Downward contain 131 terms where 29

(22.1%) terms correspond to individual configuration options and 102 (77.9%) correspond
to interactions between configuration options. Due to the large number of terms, we only
plot the coefficients of the ten most influential terms in Figure 5.5. By most influential
terms, we refer to the terms which have the highest absolute coefficients. Furthermore, we
do not plot the coefficients for all workloads due to the high number of workloads. We
group the workloads by their most influential option and plot the performance-influence
model with the highest coefficient associated with the most influential term. For workload1

and workload9, max is the most influential option. It specifies the usage of the hmax [12]
heuristic. With workload3, root is the most influential option. When using workload18

and workload19, the most influential term is associated with the blind configuration option
which enables blind search instead of heuristic search. For workload2 and for workload10

to workload13, the most influential option is fPreserving which selects an f-preserving
shrink strategy [13]. For the remaining workloads, lmCut is the most influential term which
specifies usage of the landmarkCut [12] heuristic.

As we can see, the influence of each option is highly dependent on the workload.
On average, the most influential option is responsible for 30.8% (workload3) to 98.3%
(workload9) of variability in the performance, showing that for all workloads, a single
configuration option is responsible for a large part of the variability.

In Table 5.9, we show the aggregated metrics over all workloads for each release pair
for Fast Downward. Due to the number of combinations, we omit the detailed listing of
the metrics for all release pair and workload combinations. We note performance changes
affecting at least one configuration option or interaction for 150 of 152 (98.7%) workload
and release pair combinations. Aggregating the results across all release pairs, we observe
that, on average, the influence of F = 19.9% of all configuration options and interactions
changes between releases. Excluding the workload and release pair combinations where no
performance changes were present, the number of affected terms ranges from one out of 131

(0.8%) terms for workload19 to 78 out of 131 (59.5%) terms for workload15. Again, we
observe a strong dependency on the workload for the frequency of performance changes.
Analogously to the fraction of affected terms, the affected terms themselves also depend on
the release pair and the workload. However, we observe that some configuration options
change more frequently than others. Five out of 131 (3.8%) terms participate in a change in
more than 50% of all workload and release pair combinations. These terms are max (121

changes), landmarkCut (105 changes), landmarkCount (95 changes), blind (90 changes), and
canonicalPDB (78 changes). We note that all of these terms are related to the selection of a
heuristic.

Summary

Considering all real-world case studies, we see that the average fraction of configuration
options and interactions that contribute to a performance change ranges from 0.8% for the
compression phase of XZ to 47.7% for PicoSAT. Aggregating the results for all case studies,
we observe an average fraction of 24.2% of configuration options and interactions that
participate in a performance change. Looking at the individual results for workloads and
release pairs, the fraction ranges from 0% (e. g., for Clasp v3.3.4 and v3.3.9 for workload3,

50 evaluation

Table 5.9: Metrics related to Fast Downward for RQ1.1 aggregated over all workloads

Release 1 Release 2 Fri ,ri+1

2016_07 2017_01 20.5%

2017_01 2017_07 20.6%

2017_07 2018_01 21.7%

2018_01 2018_07 31.6%

2018_07 2019_01 17.2%

2019_01 2019_06 23.5%

2019_06 2019_12 10.8%

2019_12 2020_06 13.2%

workload4, workload5, and workload7) to 90.9% (e. g., for PicoSAT 951 and 965 for
workload1 and workload2).

Overall, we see that is very rare that the influence of no configuration option or interaction
changes between two releases. In all case studies, performance changes occur in each release
pair for at least one workload. Additionally, all case studies show that performance changes
heavily depend on the workload that is used. Not only does the fraction of affected terms
change between workloads, but also the affected terms themselves change. For some case
studies, we even see that the sets of affected terms are almost disjunct between some
workloads.

5.1.1.2 Strength of Performance Changes

The second sub-question deals with the strength of the performance changes that we
identified in RQ1.1.

RQ1.2: How strong are changes of the performance influence of individual configuration
options and interactions among them?

CompEnc

In Figure 5.6, we depict the strength of the performance changes for each term included in
the performance-influence models of CompEnc.

If we aggregate ∆ri ,ri+1
w across all releases, we see an average strength of ∆ = 24.8%. How-

ever, analogous to RQ1.1, the reported strength of a configuration option between individual
release pairs differs from the actual strength if the option is part of an alternative group.
This applies to all changes related to the number of compression iterations (Iterations_val).
The changes for the Encryption configuration option align with our expectations.

Table 5.10 contains the metrics for this research question according to our definition
in Chapter 4. Analogously to RQ1.1, we do not elaborate on these numbers further for
CompEnc due to its artificiality.

5.1 results 51

(a) v1 and v2 (b) v2 and v3

(c) v3 and v4

Figure 5.6: Strength of performance changes of CompEnc for all release pairs

Table 5.10: Metrics related to CompEnc for RQ1.2

Release 1 Release 2 Workload ∆ri ,ri+1
w

v1 v2 none 48.8%

v2 v3 none 16.0%

v3 v4 none 9.5%

52 evaluation

PicoSAT

In Figure 5.7, we plot the performance changes for each option in all workloads that
exhibit any performance change. Note that we only display the performance changes that
exceed the relevance threshold. All others are drawn with a strength of 0. The most notable
changes in the performance influence are related to the root configuration option. For
workload1 and workload2, we observe a performance change of δ■,951,965

workload1
(root) = 62.8%

and δ■,951,965
workload2

(root) = 49.4%, respectively. This is not necessarily surprising since root is
also by far the most influential configuration option in both releases. Interestingly, the
performance change of root is below the relevance threshold for workload3 and workload4.
For all other relevant configuration options and interactions, the changes are between 2%
and 5% for workload1 and workload2. Looking at the data for workload4, the only
relevant performance change has a strength of 2.5%.

Figure 5.7: Strength of performance changes of PicoSAT comparing all workloads that exhibit any
performance change

Aggregating the data, we observe an average strength of performance changes of ∆ = 4.6%
across workloads and releases. In Table 5.11, we show the results for all releases and
workloads.

We see that the average strength of the performance changes differs between workloads.
workload1 and workload2 have changes of similar strength with 8.3% and 7.8%, respec-
tively. In contrast, workload3 and workload4 have weaker performance changes with
an average strength of 0% and 2.5%, respectively. Considering the individual terms, we
observe a similar distribution of strengths for workload1 and workload2. Except for
root, workload2 exhibits stronger changes for all terms in comparison to workload1. For

5.1 results 53

Table 5.11: Metrics related to PicoSAT for RQ1.2

Release 1 Release 2 Workload ∆ri ,ri+1
w

951 965 workload1 8.3%

951 965 workload2 7.8%

951 965 workload3 0.0%

951 965 workload4 2.5%

workload4, the only affected term is CompactTrace · FileListingCoreVariables for which the
strength is nearly identical to the strength of the term for workload2.

Clasp

In Figure 5.8, we plot the strength of the performance changes for each configuration option
and interaction and for the two workloads that exhibit any performance changes. We see that,
generally, workload2 exhibits stronger performance changes than workload5. Additionally,
we note that all changes for workload2 are of similar strength, ranging from 9.1% to
9.3% for enumModeCautious, enumModeCautious · heuristicVmt f , and enumModeCautious ·
heuristicVsids. Similarly, the changes for workload5 are of similar strength with 1.2% and
1.1% for heuristicVmt f and enumModeCautious · heuristicVmt f , respectively.

Figure 5.8: Strength of performance changes of Clasp comparing all workloads that exhibit any
performance change

We observe an average change of ∆ = 1.5% in the influence of any configuration option
or interaction across all workloads. In Table 5.12, we list the computation results for each

54 evaluation

workload for the metric we defined for this research question. We note that workload2

exhibits stronger performance changes in comparison to workload6 which only exhibits a
minor performance change.

Table 5.12: Metrics related to Clasp for RQ1.2

Release 1 Release 2 Workload ∆ri ,ri+1
w

v3.3.4 v3.3.9 workload1 0.0%

v3.3.4 v3.3.9 workload2 9.2%

v3.3.4 v3.3.9 workload3 0.0%

v3.3.4 v3.3.9 workload4 0.0%

v3.3.4 v3.3.9 workload5 1.2%

v3.3.4 v3.3.9 workload6 0.0%

v3.3.4 v3.3.9 workload7 0.0%

Again, we observe a strong dependency of the strength of performance changes on the
workload.

XZ

compression. For the compression phase of XZ, we observe very weak performance
changes that only barely exceed the relevance threshold. Therefore, we omit plotting the
strengths of the performance changes. The option that exhibits the strongest change is the
root option for which we observe a performance change of δ

■,v5.2.6,v5.3.3alpha
DAVIS 2016

(root) = 1.7%
for the DAVIS 2016 workload in the first release pair. For enwik9 or the second release pair,
we observe no performance change at all for root.

Aggregating the data, we observe an average strength of performance changes of ∆ = 1.0%
across workloads and releases. In Table 5.13, we show the results for all releases and
workloads aggregated over all terms. The changes are of strength 0.8% to 1.2%. Looking at all
terms individually, the strength of changes ranges from δ■,v5.2.3,v5.2.6

DAVIS 2016
(Preset_val_9 · raw) =

0.6% to δ
■,v5.2.6,v5.3.3alpha
DAVIS 2016

(root) = 1.7%, i. e., there is only little variety in the strength of
changes for the compression phase of XZ.

Table 5.13: Metrics related to the compression process of XZ for RQ1.2

Release 1 Release 2 Workload ∆ri ,ri+1
w

v5.2.3 v5.2.6 DAVIS 2016 1.2%

v5.2.3 v5.2.6 enwik9 0.8%

v5.2.6 v5.3.3alpha DAVIS 2016 1.2%

v5.2.6 v5.3.3alpha enwik9 0.9%

5.1 results 55

decompression. For the decompression process, we see more and stronger changes. In
Figure 5.9, we plot the strength of the performance changes for each configuration option
and interaction for both workloads and both release pairs.

Table 5.14 contains the metrics for the decompression phase of XZ for this research
question. On average, we observe a change of ∆ = 15.3% in the influence of configuration
options or interactions across both release pairs and workloads. With ∆v5.2.3,v5.2.6 = 1.4%
and ∆v5.2.6,v5.3.3alpha = 29.2% we see that the changes between v5.2.3 and v5.2.6 are much
weaker than between v5.2.6 and v5.3.3alpha. We also note that some terms exhibit much
stronger changes than others. The strongest change is associated with the xz configuration
option with δ

■,v5.2.6,v5.3.3alpha
enwik9 (xz) = 105.5%. The weakest change affects compression level

two with δ■,v5.2.3,v5.2.6
enwik9 (Preset_val_2) = 0.8%.

Table 5.14: Metrics related to the decompression process of XZ for RQ1.2

Release 1 Release 2 Workload ∆ri ,ri+1
w

v5.2.3 v5.2.6 DAVIS 2016 1.0%

v5.2.3 v5.2.6 enwik9 1.7%

v5.2.6 v5.3.3alpha DAVIS 2016 26.8%

v5.2.6 v5.3.3alpha enwik9 31.6%

Generally, we see a wide variety in the strength of performance changes. While we still see
a dependency on the workload, the distribution of the strengths across the terms is similar
for both workloads. Recalling that the sets of affected terms for v5.2.6 and v5.3.3.alpha are
very similar, we note that we see stronger changes for enwik9 for all terms except for root
and Size_val_268435456.

Fast Downward

In Figure 5.10, we plot the strength of performance changes of a selection of release pairs.
We display the two release pairs that contain the terms with the strongest changes. As for
the first subquestion, we only plot the ten most influential terms.

We see that the strength of the performance change heavily depends on the workload.
In comparison to the other case studies, the performance changes for Fast Downward

are much stronger. For example, in both plots, we see that the max configuration option
exhibits the strongest change for workload9 with changes of strength 4 228.5% and 2 182.2%
between 2018_07 and 2019_01 and between 2017_07 and 2018_01, respectively. While changes
of such strength seem very extreme, we need to keep in mind that we calculate the strength
of a performance change in relation to the average performance of that release pair and
workload. Some configuration options or interactions have a very high influence that exceeds
the average performance by far. For example, for workload9 and release 2018_07, enabling
the max configuration option increases the run-time by more than 10 000s while the average
run-time is only 48s. Therefore, changes in the influence of max that are small in relation
to the influence of max are still huge in relation to the average performance. Nevertheless,
changes that are small in relation to the influence of max still result in a change of the

56 evaluation

(a) v5.2.3 and v5.2.6

(b) v5.2.6 and v5.3.3alpha

Figure 5.9: Strength of performance changes for the decompression process of XZ comparing all
workloads

5.1 results 57

(a
)

2
0

1
7

_0
7

an
d

2
0

1
8

_0
1

(b
)

2
0

1
8

_0
7

an
d

2
0

1
9

_0
1

Fi
gu

re
5
.1

0
:S

tr
en

gt
h

of
ex

ce
rp

t
of

pe
rf

or
m

an
ce

ch
an

ge
s

of
Fa

s
t

D
o

w
n

w
a

r
d

fo
r

tw
o

re
le

as
e

pa
ir

s
co

m
pa

ri
ng

al
lw

or
kl

oa
d

s
w

he
re

ea
ch

ba
r

fo
r

a
te

rm
co

rr
es

po
nd

s
to

a
w

or
kl

oa
d

an
d

w
or

kl
oa

ds
ar

e
or

de
re

d
by

th
ei

r
ID

58 evaluation

run-time of multiple minutes. The strength of 4 228.5% corresponds to an absolute change
of 1 190.3s if the max configuration option is active. Across all workloads and releases, we
observe that 156 out of 3 961 (3.9%) relevant performance changes have a strength of more
than 100% and 12 (0.3%) even have a strength that exceeds 1 000%.

On average, we observe a strength of ∆ = 22.8% for performance changes across all
workloads and releases. Looking at release pairs and workloads individually, we observe a
range from 1.1% to 389.4% if aggregating the strength across all terms. Table 5.15 contains
the aggregated results across workloads. We see that some releases introduce stronger
performance changes than others. For example, between 2019_12 and 2020_06, performance
changes are, in comparison, weak with an average strength of 9.9% while we see stronger
changes of 43.7% between 2018_07 and 2019_01.

Table 5.15: Metrics related to Fast Downward for RQ1.2

Release 1 Release 2 ∆ri ,ri+1

2016_07 2017_01 15.2%

2017_01 2017_07 17.7%

2017_07 2018_01 24.1%

2018_01 2018_07 37.3%

2018_07 2019_01 43.7%

2019_01 2019_06 24.8%

2019_06 2019_12 11.2%

2019_12 2020_06 9.0%

Generally, we again see a strong dependency on workloads and major differences between
releases.

Summary

Looking at all real-world case studies, the average strength of changes in the influence of
configuration options and interactions ranges from 1.0% for the compression phase of XZ to
22.8% for Fast Downward. Overall, across all real-world case studies, we observe a strength
of 8.9%. Considering the individual results for workloads and release pairs and ignoring the
cases where no performance changes were present, the strength ranges from 0.8% for the
compression phase of XZ (v5.2.3 and v5.2.6 with the enwik9 workload) to 389.4% for Fast

Downward (2018_07 and 2019_01 with workload9). Looking at the strength of relevant
performance changes of individual terms, we even see a range from less than 0.1% (e. g., the
fPreserving option for Fast Downward in workload1 and releases 2017_01 and 2017_07) to
4 228.5% (max option for Fast Downward in workload9 and releases 2018_07 and 2019_01).

Generally, we observe a wide range in the strength of performance changes between two
releases. Some releases introduce very weak changes of less than 2% while others introduce
considerably strong changes of up to 43.7%, aggregated across all workloads. Analogously
to the first subquestion, we see a strong dependency on the workload that is used.

5.1 results 59

On average across all case studies, 9.1% of all terms in a performance-influence model
are affected by a performance change that is stronger than 10%.

5.1.2 Fraction of Performance Changes Confirmable by White-Box Approach

In RQ2, we investigate the fraction of performance changes that are reported by the black-box
analysis and can be confirmed by the white-box analysis.

RQ2: What fraction of performance changes identified by our black-box approach can
be confirmed by our white-box approach?

CompEnc

For CompEnc, the white-box analysis correctly detects the performance regression of the
Encryption option introduced between the first two releases (v1 and v2). Furthermore, the
white-box approach detects the performance regression between v2 and v3 related to the
numeric Iterations_val option and, in contrast to the black-box approach, correctly attributes
it to Iterations_val_1 and Iterations_val_2 with the expected strength. Note that we do not
check Iterations_val_3 with the white-box approach according to our operationalization
since we only consider the performance changes that the black-box approach reports.
When comparing v3 and v4, we see that the white-box analysis correctly identifies the
performance changes in Compression · Iterations_val_1 and Compression · Iterations_val_3
with the correct strength. Again, this behavior differs from the black-box approach which is
able to detect the performance change, but attributes it to a different configuration option
due to VIF countermeasures. For the same reason, the white-box analysis does not report
the performance changes in the root and the Compression configuration options that the
black-box analysis falsely reports due to the VIF countermeasures.

Table 5.16: Metrics related to CompEnc for RQ2

Release 1 Release 2 Workload cri ,ri+1
w sri ,ri+1

w errri ,ri+1
w

v1 v2 none 100.0% 100.0% 0.0%

v2 v3 none 66.7% 0.0% 0.0%

v3 v4 none 66.7% 50.0% 0.0%

Based on the observations above, we receive the values listed in Table 5.16 to answer
RQ2. The fraction of confirmed performance changes ranges from cv2,v3

none = cv3,v4
none = 66.7% to

cv1,v2
none = 100%, leading to an aggregated value of C = 77.8%. We observe differences in the

strength of the performance changes on the white-box side in comparison to the strengths
detected on the black-box side. The similarity ranges from sv2,v3

none = 0% to sv1,v2
none = 100%. On

average, we have S = 50%, i. e., half of the performance changes on the black-box side are
similar to the performance changes on the white-box side in terms of strength. Figure 5.11

depicts the distribution of the absolute difference in the strength of performance changes

60 evaluation

across all workloads and releases when comparing the performance changes reported by
the black-box and white-box performance analysis, respectively.

Figure 5.11: Distribution of the absolute difference in the strength of performance changes between
black-box and white-box performance analysis for CompEnc

Since the white-box analysis correctly measures all configuration options and interactions,
errri ,ri+1

w is 0% for all release pairs and, thus, Err = 0%.

PicoSAT

For workload1 and workload2, the black-box analysis reports changes for root and nine
proof- and tracing-related configuration options and interactions. For both workloads, the
white-box performance analysis confirms five (c951,965

workload1 = c951,965
workload2 = 50%) out of these

ten performance changes. In particular, a closer look reveals that the white-box analysis
confirms the change for root and all changes related to individual configuration options
while it does not confirm any change related to interactions between configuration options.
Four (s951,965

workload1 = s951,965
workload2 = 80%) out of five changes are of similar strength according to

our definition when comparing them to the changes that the black-box analysis reports. The
only strength that deviates between black-box and white-box analysis is associated with the
root option. For workload2, the white-box analysis reports a weaker change for root (44.6%)
in comparison to the black-box analysis (54.4%). In contrast, the white-box analysis reports a
stronger change for root (145.8%) for workload1 when comparing the changes to the black-
box analysis (63.4%). For all terms associated with performance changes that the white-box
analysis does not confirm, the white-box analysis reports a performance of 0 in both releases,
i. e., it does not record any data for the interaction. Therefore, err951,965

w = 100% for all
workloads. For workload4, the black-box performance analysis reports only a single change.
This change is associated with the interaction CompactTrace · FileListingCoreVariables which
creates a compact trace file and writes a list of all core variables to a file. The white-box
analysis does not confirm this change (c951,965

workload4 = 0%). Consequently, s951,965
workload4 = 0%

and, for the same reason as for the other workloads, err951,965
workload4 = 100%.

In Table 5.17, we list an overview of all metrics related to PicoSAT for this research
question. We see a range of 0% to 50% of confirmed performance changes with an average
of C = 33.3%. Looking at the average similarity score of S = 53.3%, we note that most
performance changes are of similar strength when comparing black-box and white-box
analysis. All performance changes that the white-box analysis does not confirm relate to

5.1 results 61

interactions between configuration options and, as stated above, the white-box analysis does
not track the performance of these interactions. Hence, Err = 100%.

Table 5.17: Metrics related to PicoSAT for RQ2

Release 1 Release 2 Workload cri ,ri+1
w sri ,ri+1

w errri ,ri+1
w

951 965 workload1 50.0% 80.0% 100.0%

951 965 workload2 50.0% 80.0% 100.0%

951 965 workload4 0.0% 0.0% 100.0%

Figure 5.12 depicts the distribution of the absolute difference in the strength of the
performance changes when comparing black-box and white-box performance analysis. The
difference ranges from 0.3% to 82.1%.

Figure 5.12: Distribution of the absolute difference in the strength of performance changes between
black-box and white-box performance analysis for PicoSAT

In summary, we see that most confirmed performance changes are of similar strength,
but, across all workloads, only 33.3% of all performance changes are confirmed. In all
cases where the white-box analysis does not confirm the change, the affected terms are
interactions between two configuration options and the white-box data does not contain
any performance data for these interactions.

Clasp

For Clasp, the white-box performance analysis does not confirm any of the performance
changes reported by the black-box performance analysis. The black-box performance analy-
sis reported changes related to the enumeration mode and to the heuristic that is used. The
white-box analysis is not able to track the performance of the configuration options and
interactions related to the enumeration mode. In contrast, the white-box analysis tracks the
performance of the heuristics, but does not report any relevant changes when comparing
both releases. Table 5.18 contains the metrics we defined to answer this research question
for Clasp. Since the white-box performance analysis is not able to confirm any performance
change, we note that cv3.3.4,v3.3.9

w = 0% for both workloads that exhibit a performance change
on the black-box side and, thus, C = 0%. Consequently, this yields that sv3.3.4,v3.3.9

w = 0% for
both workloads and, hence, S = 0%. Since all changes for workload2 are related to the

62 evaluation

enumeration mode which the white-box analysis is not able to track, we have an error rate of
errv3.3.4,v3.3.9

workload2 = 100% for workload2. For workload5, one change reported by the black-box
analysis is related to heuristics and one change is related to an interaction between the
heuristic and the enumeration mode. Therefore, one out of two terms (errv3.3.4,v3.3.9

workload5 = 50%)
can be tracked by the white-box analysis. On average, this yields Err = 75%.

Table 5.18: Metrics related to Clasp for RQ2

Release 1 Release 2 Workload cri ,ri+1
w sri ,ri+1

w errri ,ri+1
w

v3.3.4 v3.3.9 workload2 0.0% 0.0% 100.0%

v3.3.4 v3.3.9 workload5 0.0% 0.0% 50.0%

Since no performance change can be confirmed by the white-box analysis, we refrain from
plotting the differences in the strength of performance changes reported by the black-box
and the white-box analysis.

XZ

As for the other research questions, we investigate the compression and the decompression
process separately.

compression. For the compression phase of XZ, the white-box performance analysis
does not confirm any of the performance changes that the black-box analysis reports. Hence,
cri ,ri+1

w = 0% for all workloads and releases and, thus, C = 0%. Similarly, this results in
S = 0%. Except for the root option, the white-box analysis does not report any performance
data for the configuration options and interactions affected by the performance changes
reported by the black-box analysis. The only workload and release combination that is
affected by a performance change of root is DAVIS 2016 between v5.2.6 and v5.3.3alpha.
Consequently, we see that errri ,ri+1

w ranges from errv5.2.6,v5.3.3alpha
DAVIS 2016

= 83.3% to errri ,ri+1
w = 100%

for all remaining workloads and releases. This yields an average of Err = 95.8%.
In Table 5.19, we list the metrics we defined to answer this research question for the

compression process of XZ.

Table 5.19: Metrics related to the compression process of XZ for RQ2

Release 1 Release 2 Workload cri ,ri+1
w sri ,ri+1

w errri ,ri+1
w

v5.2.3 v5.2.6 DAVIS 2016 0.0% 0.0% 100.0%

v5.2.3 v5.2.6 enwik9 0.0% 0.0% 100.0%

v5.2.6 v5.3.3alpha DAVIS 2016 0.0% 0.0% 83.3%

v5.2.6 v5.3.3alpha enwik9 0.0% 0.0% 100.0%

Due to the absence of confirmed performance changes, we omit the plots showing
the differences in the strength of performance changes when comparing black-box and
white-box analysis.

5.1 results 63

decompression. Analogously to the compression phase of XZ, the white-box analy-
sis does not report any performance data for the configuration options and interactions
affected by the performance changes reported by the black-box analysis, except for root.
However, in contrast to the compression process, the fraction of confirmed performance
changes ranges from cv5.2.3,v5.2.6

DAVIS 2016
= cv5.2.6,v5.3.3alpha

enwik9 = 0% to cv5.2.3,v5.2.6
enwik9 = 33.3%. This yields

Cv5.2.3,v5.2.6 = 16.7% and Cv5.2.6,v5.3.3alpha = 2.6% and, thus, an aggregated value of C = 9.6%.
In particular, the white-box analysis confirms all performance changes related to the root
option that the black-box analysis reports. All confirmed performance changes are of similar
strength according to our definition when comparing the results of black-box and white-box
analysis. Therefore, we see a range from sv5.2.3,v5.2.6

DAVIS 2016
= sv5.2.6,v5.3.3alpha

enwik9 = 0% to sv5.2.3,v5.2.6
enwik9 =

sv5.2.6,v5.3.3alpha
DAVIS 2016

= 100%. Hence, we note that that Sv5.2.3,v5.2.6 = Sv5.2.6,v5.3.3alpha = S = 50%.
Due to the absence of performance data for all terms related to non-confirmed performance
changes, we observe an error rate of errri ,ri+1

w = 100% for all workload and release pairs and,
thus, Err = 100%.

Table 5.20 lists the metrics we defined to answer this research question for the decompres-
sion process of XZ.

Table 5.20: Metrics related to the decompression process of XZ for RQ2

Release 1 Release 2 Workload cri ,ri+1
w sri ,ri+1

w errri ,ri+1
w

v5.2.3 v5.2.6 DAVIS 2016 0.0% 0.0% 100.0%

v5.2.3 v5.2.6 enwik9 33.3% 100.0% 100.0%

v5.2.6 v5.3.3alpha DAVIS 2016 5.3% 100.0% 100.0%

v5.2.6 v5.3.3alpha enwik9 0.0% 0.0% 100.0%

Figure 5.13 depicts the distribution of the absolute difference in the strength of perfor-
mance changes between black-box and white-box performance analysis for the decompres-
sion process. We note that all differences are small, ranging from 2.9% to 3.6%.

Figure 5.13: Distribution of the absolute difference in the strength of performance changes between
black-box and white-box performance analysis for the decompression process of XZ

Generally, we observe that only few performance changes can be confirmed by the white-
box analysis for XZ, but if they are confirmed, the changes are of similar strength. All
changes that cannot be confirmed are caused by an absence of white-box performance data
for the affected terms.

64 evaluation

Fast Downward

Unfortunately, at the time of our measurements, a bug in the VaRA framework hindered a
successful compilation of Fast Downward with the VaRA compiler. Since using the VaRA
compiler is a pre-requisite for the white-box performance analysis, this prevented us from
performing the white-box analysis for Fast Downward. Therefore, we omit the evaluation
of this research question for this case study. We note that this bug has been fixed1 in the
meantime. However, due to the time constraints imposed by a thesis, we were not able to
perform the missing measurements after the release of the fix.

Summary

Taking all real-world case studies into account, we observe an average fraction of 12.7% of
performance changes reported by the black-box performance analysis that the white-box
analysis confirms. We note few differences between the case studies, ranging from 0% for
Clasp and the compression process of XZ to 33.3% for PicoSAT. Across all case studies,
the strengths of performance changes reported by the white-box and the black-box analysis
are similar in 26.1% of all cases. On average, in 90.1% of all cases, the missing confirmation
of performance changes by the white-box performance analysis is caused by a lack of
performance data associated with the affected terms. Looking at individual workload and
release pairs, up to 50% (PicoSAT with workload1 and workload2 between 951 and 965)
of all performance changes are confirmed by the white-box performance analysis whereas
up to 80% of all changes are of similar strength in comparison to the black-box performance
analysis.

5.1.3 Identification of Configuration-Dependent Code Responsible for Performance Changes

In RQ3, we investigate whether the white-box analysis is able to identify the root cause of a
performance change, i. e., if it can localize the configuration-dependent code that changed.

RQ3: In what fraction of cases is our white-box approach able to identify the
configuration-dependent code responsible for a performance change identified by our
black-box approach?

CompEnc

We observe that we can identify the configuration-dependent code that causes the per-
formance changes for all performance changes confirmed by the white-box analysis. For
CompEnc, these are the lines of code in which we changed the sleep time. Table 5.21 lists the
results of the metrics we defined to answer the research question. Note that the white-box
performance analysis does not confirm all changes reported by the black-box performance
analysis. Hence, although we can identify the configuration-dependent code responsible
for the performance changes confirmed by the white-box analysis, we can only identify the

1 "Introduces unlimited stack wrapper for phasar using experiments". Available online at https://github.com/
se-sic/VaRA-Tool-Suite/pull/742; visited on February 15th, 2023.

https://github.com/se-sic/VaRA-Tool-Suite/pull/742
https://github.com/se-sic/VaRA-Tool-Suite/pull/742

5.1 results 65

responsible code locations for L = 77.8% of all changes reported by the black-box analysis.
The fraction ranges from lv2,v3

none = lv3,v4
none = 66.7% to lv1,v2

none = 100%.

Table 5.21: Metrics related to CompEnc for RQ3

Release 1 Release 2 Workload lri ,ri+1
w

v1 v2 none 100.0%

v2 v3 none 66.7%

v3 v4 none 66.7%

PicoSAT

The white-box analysis confirms the performance changes related to root and to all individ-
ual configuration options. We identify changes in the code associated with root between both
releases. Analogously, for all individual configuration options, we identify changes in at
least one code region associated with the respective configuration option. Consequently, we
are able to identify the configuration-dependent code that causes the performance changes
reported by the black-box analysis in all cases in which the white-box analysis confirms the
performance change. Hence, lri ,ri+1

w = cri ,ri+1
w for all workloads and release pairs. On average,

we identify the responsible code in L = 33.3% of all cases.
Table 5.22 lists the detailed evaluation results for this research question for PicoSAT.

Table 5.22: Metrics related to PicoSAT for RQ3

Release 1 Release 2 Workload lri ,ri+1
w

951 965 workload1 50.0%

951 965 workload2 50.0%

951 965 workload4 0.0%

Clasp

Since the white-box analysis does not confirm any performance changes reported by the
black-box performance analysis for Clasp, we are not able to identify the configuration-
dependent code responsible for the performance changes. Hence, it is clear that L = 0%.
Therefore, we omit the detailed listing of metrics for all workloads and release pairs for this
research question for Clasp.

XZ

As before, we separately evaluate the compression and the decompression process.

66 evaluation

compression. Due to the lack of confirmation of any performance changes reported
by the black-box analysis, the white-box performance analysis is also not able to identify
the configuration-dependent code responsible for the performance changes. Hence, L = 0%.
Consequently, we refrain from listing the metrics for all workload and release pairs for this
research question for the compression process of XZ.

decompression. As outlined in the previous research question, the white-box perfor-
mance analysis confirms all performance changes related to the root configuration option.
In all cases, we identify changes in the code associated with root between the release pairs.
Hence, we identify the configuration-dependent code responsible for a performance change
in all cases in which the white-box performance analysis confirms the performance changes
reported by the black-box analysis. Therefore, lri ,ri+1

w = cri ,ri+1
w for all workloads and release

pairs. On average, this yields Lv5.2.3,v5.2.6 = 16.7% and Lv5.2.6,v5.3.3alpha = 2.6% and, thus,
L = 9.6%.

In Table 5.23, we list the results for this research question for the decompression process
of XZ.

Table 5.23: Metrics related to the decompression process of XZ for RQ3

Release 1 Release 2 Workload lri ,ri+1
w

v5.2.3 v5.2.6 DAVIS 2016 0.0%

v5.2.3 v5.2.6 enwik9 33.3%

v5.2.6 v5.3.3alpha DAVIS 2016 5.3%

v5.2.6 v5.3.3alpha enwik9 0%

Fast Downward

For the same reason as for the previous research question, we have to omit the evaluation
of this research question for Fast Downward.

Summary

Across all real-world case studies, we can identify the configuration-dependent code respon-
sible for a performance change reported by the black-box analysis in 12.7% of all cases. In
all other cases, the white-box analysis does not confirm the performance changes (see RQ2)
and, consequently, is not able to identify the configuration-dependent code.

5.2 discussion

In this section, we discuss noteworthy insights that we obtained during the evaluation of
our research questions.

5.2 discussion 67

5.2.1 Performance Changes Between Consecutive Releases for Different Workloads

In the following paragraphs, we discuss some insights for each case study related to both
sub-questions of the first research question.

compenc . For our artificial case study, the black-box performance analysis is able
to detect all performance changes that we introduced. However, some changes are not
attributed to the correct term due to multicollinearity which cannot fully be avoided. While
this still delivers some helpful insights, the reported changes must be interpreted carefully
to avoid drawing wrong conclusions due to multicollinearity.

picosat. For PicoSAT, we witness a very strong dependency of performance changes on
the workload. If we look at workload1, 90% of all configuration options and interactions
participate in a performance change. In contrast, not a single option changes for workload3.
The major difference between these two workloads is their domain. Workload1 models
the feasibility of the antibandwidth problem which is a max-min optimization problem on
graphs. Workload3 models a problem in the planning domain. Furthermore, the average
run-time is considerably different for both workloads. While workload1 has an average run-
time of 171.4s, workload3 runs only 46.2s, on average. We also note that the performance
changes do not necessarily align with the expectations. For example, workload3 does not
exhibit any performance changes, but performance changes are present for workload4.
Both workloads are different instances of the same problem domain. Therefore, we would
have expected a very similar behavior for these two workloads. Yet, we also note that only a
single term changes for workload4 and that the change is minor with a strength of only
2.5%. Hence, it is questionable whether there is an actual performance change or if the
change is an artifact of other circumstances, e. g., the model error that is introduced by the
linear regression. Although we make sure to filter out changes introduced by measurement
noise as described in Chapter 4, such cases cannot be fully excluded. We also observe that
workload1 and workload2 show a very similar behavior although they also stem from
different domains since workload2 models a traffic situation to be solved.

clasp. Inspecting the performance-influence models for Clasp in general, we note that
different workloads profit from different heuristics. For example, workloads from the
planning domain (workload2, workload3, workload5, and workload6) seem to profit
from the VMTF heuristic whereas workload1 (antibandwith problem) seems to perform
poorly with that heuristic. Similar observations apply to the enumeration mode, although
we do not observe a clear mapping to problem domains here. Similar to PicoSAT, we also
observe a dependency of performance changes on the workload. Only two out of seven
workloads exhibit any performance change. Both workloads are from the planning domain.
Workloads from other domains do not exhibit any performance changes. However, we
again note that even similar workloads do not necessarily behave similarly. For example,
workload5 and workload6 are different instances on the same problem space, but a
performance change is only present for workload5. We also note that the general structure
of their performance-influence models is almost identical. The changes for workload5 are
again small with a strength of only 1.2%. Therefore, the performance changes could again

68 evaluation

be an artifact of, e. g., the model error. The changes that affect workload2 are stronger with
9.2% and, thus, more likely to actually originate from code changes.

xz . Since there are only very few (7.6%) and weak (1.0%) changes for the compression pro-
cess of XZ, we focus on the decompression phase in our discussion. For the decompression
process, we observe very few (10.7%) and weak (1.4%) changes between v5.2.3 and v5.2.6,
while we observe more (78.6%) and stronger (29.2%) changes between v5.2.6 and v5.3.3alpha.
Eleven out of the 15 strongest changes between v5.2.6 and v5.3.3alpha are related to the
compression format or interactions between the compression format and the number of
threads. We need to keep in mind that due to the multicollinearity countermeasures, the
influence of the default value of the number of threads in interaction with the compression
format is part of the influence of the compression format. In our case, this means that xz and
auto are implicitly equivalent to xz · Threads_val_4 and auto · Threads_val_4, respectively.
Therefore, the black-box performance analysis hints at threading-related changes between
v5.2.6 and v5.3.3alpha. An investigation of the change log between both versions reveals
that v5.3.3alpha introduced multi-threaded decompression for the xz format which was not
supported before, confirming the hint. An investigation of the manual of xz also revealed
that in our measurement setup, the auto configuration option is implicitly equivalent to the
xz configuration option which is why we also observe a similar behavior for both options.
Regarding the dimension of workloads, both workloads exhibit a similar behavior in terms
of performance changes although they are different types of workloads. enwik9 consists 1

GB of English text whereas DAVIS 2016 contains 1.8 GB of image data. Another interesting
observation we make is that for the compression process, DAVIS 2016 has a better average
performance (254.1s) than enwik9 (296.7s). In contrast, enwik9 performs better (14.8s), on
average, than DAVIS 2016 (23.3s) when decompressing the data. This might also be related
to the workload type.

fast downward. In Chapter 4, we divided the workloads for Fast Downward into
different groups, depending on the problem type. We note that within each group, the
general structure of the performance-influence models is mostly consistent. For Fast Down-
ward, we make similar observations as for Clasp. Different workloads profit from different
heuristics. For example, the run-time of the agricola group heavily increases by more than
25 000s when using the hmax heuristic. In contrast, the hmax heuristic has much less influence
(less than 1 200s) for workloads from the hiking_ptesting group. Contrary, the landmarkCut
heuristic has an influence of up to 45 000s for the hiking_ptesting group, but of less than
1s for the agricola group. We make similar observations for all workload groups with
different types of heuristics. Nevertheless, we notice that also within a workload group,
performance changes are of different strengths. For example, between releases 2016_07

and 2017_01, the influence of the landmarkCut heuristic has changes of strength 566.2% for
workload17, but only 21.9% and 14.0% for workload15 and workload16, respectively,
although all three belong to the transport group. Generally, we note that is hard to predict
performance changes, even within the same workload group.

summary. Across all case studies, we note that performance changes are heavily depen-
dent on the workload. Different types of workloads might profit from different configuration

5.2 discussion 69

options such as, e. g., heuristics. However, even for workloads of the same type, it is not
always possible to predict performance changes. While they often exhibit similar behavior,
we also note some outliers for each case study. The reasons for that are not clear based on
the data provided by the black-box performance analysis.

Therefore, we formulate the answer to our first research question as follows.

Answer to RQ1.1: Every release of every case study exhibits at least one change in
the influence of a configuration option or interaction on the performance for at least
one workload. In the majority of cases, the influence of multiple configuration options
or interactions changes. The workload has a considerable impact on the presence of
performance changes.

Answer to RQ1.2: The strength of performance changes vastly varies between case
studies and releases. The average strength across all workloads and releases does
not exceed 9%, but ranges from 1.0% to 22.8%. The strength of performance changes
is strongly dependent on the workload. Most performance changes are of moderate
strength with only 9.1% of all performance changes exceeding a strength of 10%.

5.2.2 Fraction of Performance Changes Confirmable by White-Box Approach

For each case study, we discuss insights about the second research question in the following
paragraphs.

compenc . For CompEnc, the white-box performance analysis detects all performance
changes that actually exist. As we already noted in the discussion of the first research
question, the black-box performance analysis attributes some changes to the wrong con-
figuration options and interactions due to multicollinearity in the performance-influence
models. For the same reason, the strength of the reported performance changes deviates
from the strength of the actual performance changes. The white-box performance data for
CompEnc does not suffer from these flaws. It reports all performance changes correctly and
with the correct strength. The comparison with the black-box data stresses the necessity
to be careful when interpreting the black-box data since multicollinearity cannot fully be
avoided. We also note that lower values of cri ,ri+1

w do not necessarily imply a shortcoming of
the white-box analysis, but merely indicate a deviation from the black-box results. This, in
turn, hints at a need for a deeper manual analysis since we cannot automatically determine
which, if any, of both approaches reports the correct results.

Generally, we note that the white-box analysis delivers reliable results for this case study.

picosat. For PicoSAT, the white-box performance analysis confirms all performance
changes associated with individual configuration options, but does not confirm any per-
formance change related to an interaction between configuration options. An explanation
for this could be the difference in the semantics of interactions between black-box and
white-box performance analysis. In the black-box performance analysis, the influence of

70 evaluation

an interaction describes all changes in the performance that occur when all configuration
options involved in the interaction are enabled. In contrast, the white-box analysis requires
explicit interaction or nesting of the configuration options in the code to count it as an
interaction. For example, enabling an additional configuration option may increase the
data to be processed by the application and, thus, indirectly influence the performance of
other configuration options. If this dependency is not possible to detect by a static code
analysis, the white-box analysis does not consider this dependency as an interaction. The
black-box performance analysis detects this as an interaction. A manual investigation of
the code of PicoSAT reveals that all proof- and trace-related configuration options share a
part of the code. In particular, this part of the code is only executed once, independent of
how many of these configuration options are active. Recalling the performance-influence
models from the first research question, we see that the coefficients associated with all
interactions of two configuration options are negative. Due to the shared code, the influence
of both configuration options involved in the interaction does not fully add up. Instead,
we need to deduct the influence of the shared code that is included in the influence of
both configuration options, but that only runs once if both are enabled. This results in the
negative coefficients of the black-box performance-influence models. This also explains why
we do not see the performance change in these configuration option interactions in our
white-box data since our definition does not consider these kinds of interactions. Therefore,
the performance of these interactions is not tracked in the white-box data and, thus, we
cannot detect the performance changes associated with these interactions.

We observe similar strengths of performance changes when comparing black-box and
white-box data for all configuration options except root which reinforces the black-box
results. The reason for the difference in the strength for root is not clear, but could result
from the measurement overhead introduced by the white-box performance analysis.

clasp. In contrast to the black-box analysis, the white-box analysis does not report
any performance changes for Clasp. We see two explanations for this. First, the white-
box analysis is currently not able to track the performance of the code depending on
the enumeration mode. This is due to the fact that the enumeration mode in Clasp is
encoded by the usage of an enum which is, as of this writing, not yet fully supported2 by the
VaRA framework that we use. Therefore, the only performance change in a configuration
option or interaction that the white-box analysis could have detected is associated with
heuristicVmtf. The white-box performance analysis is able to measure the performance of
heuristicVmtf, but it does not report a relevant change for it. However, as we already pointed
out in the discussion of the first research question, the performance change for heuristicVmtf
reported by the black-box performance analysis is very weak and only barely exceeds the
relevance threshold. Therefore, it is questionable whether the performance change actually
exists or if it is merely an artifact of measurement noise or the error introduced by linear
regression. Another factor that supports this assumption is that a manual investigation
reveals that the heuristics-related code has not been changed between both releases and,

2 This is a known issue in VaRA’s issue queue: "Support Feature enums with more precision". Available online at
https://github.com/se-sic/VaRA/issues/918; visited on February 9th, 2023.

https://github.com/se-sic/VaRA/issues/918

5.2 discussion 71

additionally, the change log of Clasp
3 also does not mention any heuristic-related changes.

Hence, the absence of a performance change in the white-box data may be reasonable
and hints at a falsely reported performance change. While we cannot reliably determine
which approach is right here, the integrated approach still provides additional insights by
indicating performance changes that require further investigation.

xz . For both, the compression and the decompression process, the white-box analysis
does not confirm any performance changes reported by the black-box analysis, except
for changes related to root. In more than 90% of all cases, this was due to the absence of
white-box performance data associated with the corresponding configuration option or
interaction. A closer manual investigation reveals multiple reasons for this. Considering the
compression and the decompression process at the same time, 26 out of 68 terms affected
by performance changes across all workloads and release pairs involve the compression
level (Preset_val). XZ stores multiple configuration options in a single integer and retrieves
the individual configuration options by using bit masks. The compression level is one of
these configuration options. This means that it would be necessary to trace the influence
of configuration options on a bit level. However, the white-box analysis tool VaRA that
we use does not support this. Hence, VaRA is not able to identify the code that depends
on the compression level. The same explanation applies to the XtrmCPU configuration
option which participates in seven performance changes. The compression format, which
participates in 33 performance changes, is encoded by using an enum. As already outlined in
the discussion of Clasp, this is currently not supported by VaRA.

While the white-box analysis confirms the changes related to root, we need to consider
that root contains the influence of all configuration options that the white-box analysis is
not able to track. Hence, the performance associated with root must be treated with care
when comparing it to the influence of root in the black-box data. Nevertheless, the changes
in root are similar to the changes reported by the black-box performance analysis.

fast downward. As outlined in the description of the results, it was not possible to
gather white-box performance analysis data for Fast Downward. While this prevents us
from gaining additional insights, it highlights a weakness of the white-box performance
analysis. A white-box approach cannot be universally applied to all software systems. While
much effort is put into making the white-box analysis as generally applicable as possible,
examples like this show that potential pitfalls still exist. This is a disadvantage in comparison
to the black-box performance analysis that only requires a working binary compiled with
an arbitrary compiler to analyze the performance.

summary Under optimal conditions, the white-box analysis confirms all performance
changes reported by the black-box analysis that actually exist and points out weaknesses in
the data reported by the black-box analysis. For one real-world case study (PicoSAT) the
white-box analysis confirms half of the performance changes. The missing confirmation
for the other half is due to the difference between black-box and white-box performance
analysis in the semantics of interactions. For Clasp, the white-box analysis contradicts a

3 clasp: Changes. Available online at https://github.com/potassco/clasp/blob/master/CHANGES; visited on
February 16th, 2023.

https://github.com/potassco/clasp/blob/master/CHANGES

72 evaluation

performance change reported by the black-box analysis. The contradiction is backed up
by a manual investigation of the related code and the change log. However, for the other
real-world case studies, we also observe some flaws in the white-box performance analysis.
In some cases, the white-box analysis is not able to track the performance impact of features,
especially if they use specific programming constructs like bit masks or enums. Generally,
this emphasizes the inherent complexity of white-box performance analysis and shows that
a universal approach is hard to implement. Nevertheless, we see multiple instances in which
the white-box analysis is able to provide additional information in comparison to a pure
black-box approach.

We answer RQ2 as follows.

Answer to RQ2: The minority (12.7%) of performance changes reported by the black-box
performance analysis can be confirmed by the white-box performance analysis. In the
majority of cases (90.1%), this is due to the absence of white-box performance data
related to the affected terms.

5.2.3 Identification of Configuration-Dependent Code Responsible for Performance Changes

In the following paragraphs, we report insights about the identification of configuration-
dependent code responsible for performance changes.

compenc . For CompEnc, the white-box performance analysis correctly identifies the
configuration-dependent code responsible for each confirmed performance change. Thereby,
we gain additional insights in comparison to a pure black-box performance analysis which
only tells us about the presence, but not the cause of a performance change. With the
additional information, we are able to investigate the performance changes more closely to,
ideally, better understand their cause and impact.

picosat. The white-box analysis identifies the configuration-dependent code for all
confirmed performance changes for PicoSAT. We note two things. First, one of the confirmed
performance changes is associated with the root configuration option. Since root includes
the impact of every piece of code that the white-box analysis does not associate to a
configuration option, many lines of code are associated with root. The performance of all
of these lines is tracked in a single region. Therefore, in the case of root, the identification
of the responsible code region is only of limited use since we do not know which exact
changes in the code caused the performance changes. The second observation we make
is that the code changes in the code regions associated with the confirmed configuration
options are seemingly minor. In particular, an additional manager object is added as an
argument to all method calls. Hence, it is questionable whether these changes are indeed
responsible for the performance changes. It seems likely that, instead, an implicit data flow
dependency is responsible for the performance changes since the proof- and tracing-related
code depends on the data provided by the SAT solving process itself. Nevertheless, the

5.3 threats to validity 73

code locations identified by the white-box performance analysis provide pointers for further
manual investigation.

clasp. Since the white-box performance analysis is not able to confirm any changes
reported by the black-box performance analysis, we do not gain any information about the
configuration-dependent code responsible for performance changes. Therefore, we omit a
further discussion of this research question for Clasp.

xz . All performance changes that the white-box analysis confirms are associated with
the root configuration option. For the same reasoning as for PicoSAT, the identification of
the configuration-dependent code is only of limited use in this case since we do not have
fine-granular information about the performance of root.

fast downward. Due to the absence of white-box performance data for Fast Down-
ward, we omit a further discussion for this case study.

summary. Similar to the second research question, we gain useful additional insights
from the white-box performance analysis under optimal conditions. However, the insights
are limited when considering real-world case studies. While we are able to identify the
configuration-dependent code responsible for the performance change in all cases in which
the white-box performance analysis confirms the black-box results, we need to keep two
things in mind. First, some changes are associated with the root option for which the
location data is not fine-granular. Additionally, we cannot tell if the code changes are
actually responsible for the performance change. Our way of identifying configuration-
dependent code responsible for a performance change only implies correlation, but not
necessarily causality. Nevertheless, the identified code locations provide pointers for further
manual investigation.

We formulate the answer to RQ3 as follows.

Answer to RQ3: In all cases in which the white-box performance analysis confirms
the performance changes reported by the black-box performance analysis, we are able
to identify the configuration-dependent code responsible for the performance change.
Overall, we can identify the responsible code in 12.7% of all cases.

5.3 threats to validity

In this section, we discuss possible threats to the validity of our results. Furthermore, we
describe how we mitigate these threats. First, we discuss threats to the internal validity
of our results, i. e., potential sources of error in our measurement data and evaluation.
Afterwards, we discuss the external validity, i. e., the generalizability of our results.

74 evaluation

5.3.1 Internal Validity

Reasons for measurement noise are manifold and can be caused by software as well as
hardware [19]. To mitigate these effects, for each subject software system under investigation,
we used identical hardware for all of our measurements related to this system. Additionally,
we kept the software environment for all measurements stable by using an identical and
minimal installation of Debian 11 on all machines. For the Xeon machines, we made sure
to use NUMA control such that the case studies are executed only on one of both CPUs
and that they exclusively use the main memory associated with that CPU. This way, we
eliminate potential sources of randomness. By using a workload manager to distribute our
measurements to machines, we ensured that each measurement is executed exclusively on
a machine without the interference of any other software. Before each measurement, we
executed a warm-up phase for the CPU by operating it at full capacity for five seconds.
This way, we mitigated the probability of the current state of the CPU influencing our
measurements. This is of particular importance for measurements that terminate within a
very short time frame. To ensure that our precautions actually lead to reliable results, we
repeated each measurement five times and verified that the relative standard deviation of
the measurements is below 5%. If this was not the case, we repeated the measurements until
the relative standard deviation dropped below 5%.

Another possible source of inaccuracy of our results is caused by the fact that we used a
pairwise sampling approach for three of our case studies to generate configurations for our
measurements. Using a different sampling approach could yield different results. However,
due to the immense size of the configuration space of some software systems and the limited
time frame of a thesis, we had to opt for a sampling approach. We decided to use a pairwise
sampling approach since related work [9, 16] shows that covering interactions of up to two
configuration options covers most of the variability of the performance of a software system.

We only examined configuration options that were present in all releases that we con-
sidered for the software system under investigation. This way, we ensure that we can
reliably compare the performance-influence models of our approach in the black-box part
of our approach, leading to a higher internal validity. We manually ensured that no newly
introduced configuration option was enabled by default so that we ruled out the possibility
of such a new configuration option indirectly influencing our models.

The decision on using SPL Conqueror to create performance-influence models poses
another threat to the internal validity of our results. As described in Chapter 2, SPL Con-
queror implements multiple linear regression with feature-forward selection to generate
performance-influence models. Using a different approach could lead to completely differ-
ent models which would possibly yield different results. However, using multiple linear
regression ensures that, in comparison to, e. g., neural networks, the models can be easily in-
terpreted by humans. Furthermore, our linear models guarantee that we can compare them
across releases and workloads due to their structure staying constant and that we can also
interpret their changes. Additionally, multiple publications have successfully applied this
approach in practice. For example, Grebhahn et al. [9] have learned performance-influence
models for a software system by using this approach. They handed the performance-
influence models to domain experts for verification and the experts reported good results.
Furthermore, multiple publications [15, 16, 24], show that this approach yields performance-

5.3 threats to validity 75

influence models that cover the majority of the influence of configuration options and
interactions on the performance with high accuracy.

Another problem related to the usage of multiple linear regression with feature-forward
selection is multicollinearity as outlined in Chapter 2. Multicollinearity hinders the compar-
ison of performance-influence models. We applied a VIF analysis to detect and eliminate
terms from our performance-influence models that cause perfect multicollinearity. By re-
moving these terms from the models, we reduce multicollinearity and, hence, improve the
comparability of performance-influence models across releases and workloads.

The overhead introduced by the instrumentation of the code for the white-box analysis
poses another threat to the internal validity of our results. While we perform very little
computation at run-time, adding overhead cannot fully be avoided. Furthermore, we decided
to aggregate the performance data for each feature region and region interaction at run-time.
Otherwise, we would have produced up to 200 GB of measurement data per execution,
leading to 1 TB of measurement data per configuration due to the five repetitions we
perform. This would have made an evaluation of the measurement data infeasible on a
large scale. We had to make a trade-off between keeping the overhead small and ensuring
the feasibility of evaluating the data. On average, we observe an overhead of 38.8% when
comparing the run-time of the instrumented code with the original code. However, to answer
our research questions, we never directly compare the performance of instrumented code
with original code. We identify performance changes within the instrumented code and the
original code, respectively, and only compare the relative values. This way, we mitigate the
influence of the overhead. Nevertheless, we cannot fully exclude that the overhead has an
influence on our results.

Another threat to the validity of our results is posed by our decision on using the VaRA
framework for our white-box performance analysis. As we have seen in the evaluation of our
results, the VaRA framework does not work flawlessly under all circumstances. However,
few reliable white-box performance analysis tools are available and prior publications [22]
have successfully used the VaRA framework for similar purposes. Therefore, we opted for
this framework.

In addition to the threats stated above, the metrics that we used pose a threat to the
internal validity of our results. Using different metrics could have yielded different results.
However, due to the absence of a ground truth, except for our artificial case study, we needed
to establish an automated way to detect performance changes. Related publications [15]
utilize similar metrics. For our white-box performance analysis, we compared the results
against the results of the black-box performance analysis. Hence, we use the black-box
performance analysis as a baseline for the white-box performance analysis which is in
line with the general integrated approach that we explore. Furthermore, we manually
investigated the performance changes and examined whether they are related to a code
change in our last research question, increasing the plausibility of the results.

5.3.2 External Validity

To achieve a high generalizability of our results, we investigated five case studies in our
thesis. In total, we examined one artificial case study and four real-world case studies from
three different domains, namely compression, planning, and solving satisfiability problems.

76 evaluation

All of the subject systems are written in either C or C++ which can be an influential factor
in a white-box analysis. However, in its current state, the VaRA framework that we used
does not support any other programming languages which limits the generalizability of our
results to software written in other languages.

For each system, we measured 91 to 713 configurations with two to 20 workloads and
two to nine releases. By using releases that have been developed over many years, we tried
to cover as many performance changes as possible. Basing our selection of workloads on
results from related work such as [5] or on the general properties of the workloads, we
aimed at identifying a broad range of performance changes that depend on workloads.
Note that one of the goals of our work was to identify flaws in the black-box and the
white-box approach. Therefore, we decided to cover a wide range of subject systems. Since
the white-box performance analysis needs to be carefully adapted and prepared for each
subject system and each release of the system, we sacrificed some external validity with
regard to the range of releases and workloads covered for some external validity with regard
to the number of subject systems.

Our work aimed at a first exploration of the integration of white-box with black-box
performance analysis which, to the best of our knowledge, has not yet been covered by prior
work. Considering the limited time scope of a thesis, we decided to not focus on covering
too many subjects in each dimension and rather aimed at increasing the internal validity of
our results.

6
C O N C L U D I N G R E M A R K S

In this chapter, we summarize the insights that the results of this thesis provide and, finally,
we outline potential points for further improvements or investigations that subsequent
research could be based on.

6.1 conclusion

In most cases, performance analysis approaches view the subject system as a black box.
However, there also exist approaches that conduct a performance analysis in a white-box
fashion. In this thesis, we implemented an approach that integrates both approaches. In an
empirical study, we first conducted a black-box performance analysis to identify potentially
interesting configuration options and interactions. Based on this data, we determined the
frequency and strength of performance changes between releases with multiple workloads.
Then, we used the VaRA framework to conduct a white-box analysis to more closely investi-
gate the configuration options and interactions that are affected by a performance change
according to the black-box performance analysis. We examined the fraction of cases in
which the white-box performance analysis confirms the black-box results. Furthermore, we
investigated whether we are able to retrieve information about the configuration-dependent
code responsible for a performance change from the white-box analysis data. We used an
artificial case study to demonstrate the general feasibility of our approach and evaluated
four real-world case studies to investigate the applicability of an integrated approach to
real-world case studies.

The results of our black-box performance analysis indicate that changes in the influence
of individual configuration options or configuration options are quite frequent. Often,
performance changes are prevalent only for some workloads or affect different configuration
options and interactions depending on the workload. Under optimal circumstances, the
white-box analysis confirms the performance changes reported by the black-box perfor-
mance analysis and is also able to uncover some shortcomings of the black-box analysis.
For example, the performance changes reported by the black-box analysis are sometimes
attributed to the wrong configuration options and interactions due to multicollinearity
that cannot fully be avoided. Moreover, in the evaluation of real-world case studies, we
uncovered some weaknesses of the white-box analysis. For instance, the white-box analysis
is not able to track the performance of all configuration options. This is due to, e. g., unsup-
ported programming language constructs or to bit-level encoding of configuration options.
In the real-world case studies, this affected a large portion of the configuration options that
exhibited a performance change according to the black-box performance analysis. There-
fore, the white-box analysis confirmed only few performance changes. Consequently, the
configuration-dependent code responsible for the performance change was also only located
in few instances. Nevertheless, in many cases, the results of the white-box performance

77

78 concluding remarks

analysis provide insightful pointers that indicate a possible starting point for further manual
investigation.

Overall, our results show that an integrated approach delivers reliable and insightful
results under optimal conditions, but requires further work to become an “out of the box“
solution for real-world scenarios.

6.2 future work

During our investigations, we discovered shortcomings of both, the black-box and the
white-box performance analysis. These shortcomings also lead to potential problems in our
integrated approach. In the following, we outline possibilities for future work based on the
identified flaws and their implications for our integrated approach.

For the black-box performance analysis, we note that multicollinearity can still hinder the
interpretation of the results despite countermeasures being in place. Future research could
further investigate the general prevalence of this problem and evaluate different approaches
to mitigate this flaw. Further research can also be conducted on tackling this problem in the
integrated approach. Currently, we generate configurations to investigate with the white-box
performance analysis based on the results reported by the black-box analysis. Thus, if the
black-box analysis attributes a performance change to the wrong configuration option or
interaction, we do not even consider the actually affected configuration option or interaction
in the white-box analysis. Approaches should be investigated that mitigate this problem
without requiring to measure all configurations with a white-box approach.

Similarly, we observed differences in the semantics of interactions when comparing
black-box and white-box performance analysis that resulted in unexpected results in some
cases. Further research could be conducted to develop a solution that unifies the semantics
between both approaches.

Since configuration-aware white-box performance analysis is a relatively new field of
study, only few research has been conducted and applications in real-world situations are
still rare. As a consequence, problems and bugs are still prevalent in its implementation.
Finding one-size-fits-all solutions for these problems is a difficult task due to the inherent
complexity of real-world software systems. Hence, future work could investigate and
evaluate different approaches to mitigate the existing problems. For example, bit-level
tracking of configuration options is still an open problem that hinders proper measuring
of some configuration options. Similarly, using enums to model configuration options is a
common pattern in software systems, but not yet supported. Adding support for this could
be another possibility for further extensions of the white-box performance analysis.

While the white-box analysis does not support all programming language constructs, it
still supports a wide range of them. In the case studies we investigated, many performance
changes that we observed were related to configuration options that currently cannot be
reliably tracked by the white-box analysis. However, our case studies are only very few
instances of a vast number of software systems. The shortcomings we encountered might
not apply to other case studies. It could be insightful to replicate our study with additional
software systems.

6.2 future work 79

Finally, it could be interesting to re-evaluate the case studies that we investigated after
further improvements for the black-box and the white-box performance analysis are in
place.

A
A P P E N D I X

a.1 content of accompanying zip file

The digital version of this thesis is accompanied by a supplementary ZIP file. In the
following, we outline the content of this ZIP file.

Figure A.1 depicts the directory structure of the supplementary ZIP file. The Scripts
directory contains all scripts that we used for the evaluation of our research questions and
are based on the scripts used by Kaltenecker et al. [15]. The Data directory contains one
directory per case study. Each case study directory contains three directories: Performance,
Results, and Plots. The Performance directory contains all performance data that we gathered
for the respective case study. In particular, we include the feature model, all performance-
influence models (black-box) for the case study, the feature and region performance data
(white-box) for the case study, and the configurations that we used for our black-box and the
white-box measurements, respectively. The Results directory contains all computed metrics
that we defined for each research question. In the Plots directory, we include all plots that
we generated for the respective case studies, including the plots we omitted in the written
composition of our evaluation.

Our contributions to the VaRA framework reside in the GitHub repositories of the
VaRA-Tool-Suite

1, VaRA2 and the vara-llvm-project
3.

1 GitHub repository of the VaRA-Tool-Suite. Available online at https://github.com/se-sic/VaRA-Tool-Suite;
visited on February 16th, 2023.

2 GitHub repository of VaRA. Available online at https://github.com/se-sic/VaRA; visited on February 16th,
2023.

3 GitHub repository of the vara-llvm-project. Available online at https://github.com/se-sic/

vara-llvm-project; visited on February 16th, 2023.

81

https://github.com/se-sic/VaRA-Tool-Suite
https://github.com/se-sic/VaRA
https://github.com/se-sic/vara-llvm-project
https://github.com/se-sic/vara-llvm-project

82 appendix

thesis_cs_msc_Buchholz_Nico.zip

Scripts

Data

CompEnc

Performance

Results

Plots

PicoSAT

Performance

Results

Plots

Clasp

Performance

Results

Plots

XZ

Performance

Results

Plots

Fast Downward

Performance

Results

Plots

Figure A.1: Directory structure of the supplementary ZIP file

B I B L I O G R A P H Y

[1] Juan Pablo Sandoval Alcocer, Alexandre Bergel, Stéphane Ducasse, and Marcus
Denker. “Performance Evolution Blueprint: Understanding the Impact of Software
Evolution on Performance.” In: Proceedings of the Working Conference on Software Visual-
ization, VISSOFT. IEEE Computer Society, 2013, pp. 1–9.

[2] Vlasta Bahovec. “Multicollinearity.” In: International Encyclopedia of Statistical Science.
Springer, 2011, pp. 869–870.

[3] Ron Burback. “Software Engineering Methodology: The WaterSluice.” Dissertation.
Stanford University, 1998.

[4] Jinfu Chen and Weiyi Shang. “An Exploratory Study of Performance Regression
Introducing Code Changes.” In: Proceedings of the International Conference on Software
Maintenance and Evolution, ICSME. IEEE Computer Society, 2017, pp. 341–352.

[5] Alexander Dincher. “The Impact of Workloads on Performance of Configurable
Software Systems.” Bachelor’s Thesis. Saarland University, 2021.

[6] Johannes Dorn, Sven Apel, and Norbert Siegmund. “Mastering Uncertainty in Perfor-
mance Estimations of Configurable Software Systems.” In: Proceedings of the Interna-
tional Conference on Automated Software Engineering, ASE. IEEE Computer Society, 2020,
pp. 684–696.

[7] Katalin Fazekas, Markus Sinnl, Armin Biere, and Sophie Parragh. “Duplex Encoding
of Antibandwidth Feasibility Formulas Submitted to the SAT Competition 2020.” In:
Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions. Department of
Computer Science, University of Helsinki, 2020, pp. 81–82.

[8] Nils Froleyks. “Planning Track Benchmarks.” In: Proceedings of SAT Competition 2020:
Solver and Benchmark Descriptions. Department of Computer Science, University of
Helsinki, 2020, p. 64.

[9] Alexander Grebhahn, Carmen Rodrigo, Norbert Siegmund, Francisco José Gaspar,
and Sven Apel. “Performance-Influence Models of Multigrid Methods: A Case Study
on Triangular Grids.” In: Concurrency and Computation: Practice and Experience, CCPE
29.17 (2017).

[10] Huong Ha and Hongyu Zhang. “DeepPerf: Performance Prediction for Configurable
Software with Deep Sparse Neural Network.” In: Proceedings of the International
Conference on Software Engineering, ICSE. IEEE Computer Society, 2019, pp. 1095–
1106.

[11] Xue Han and Tingting Yu. “An Empirical Study on Performance Bugs for Highly
Configurable Software Systems.” In: Proceedings of the International Symposium on
Empirical Software Engineering and Measurement, ESEM. ACM, 2016, 23:1–23:10.

[12] Malte Helmert and Carmel Domshlak. “Landmarks, Critical Paths and Abstractions:
What’s the Difference Anyway?” In: Proceedings of the International Conference on
Automated Planning and Scheduling, ICAPS. AAAI, 2009, pp. 162–169.

83

84 bibliography

[13] Malte Helmert, Patrik Haslum, and Jörg Hoffmann. “Flexible Abstraction Heuristics
for Optimal Sequential Planning.” In: Proceedings of the International Conference on
Automated Planning and Scheduling, ICAPS. AAAI, 2007, pp. 176–183.

[14] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. “Linear Regres-
sion.” In: An Introduction to Statistical Learning with Applications in R. Springer, 2021,
pp. 59–128.

[15] Christian Kaltenecker, Alexander Grebhahn, Stefan Mühlbauer, Norbert Siegmund,
and Sven Apel. Performance Evolution of Configurable Software Systems: An Empirical
Study. Submitted to: Empirical Software Engineering, EMSE. 2023.

[16] Sergiy S. Kolesnikov, Norbert Siegmund, Christian Kästner, Alexander Grebhahn,
and Sven Apel. “Tradeoffs in Modeling Performance of Highly Configurable Software
Systems.” In: Software and Systems Modeling, SoSyM 18.3 (2019), pp. 2265–2283.

[17] Ryan Lawrence. “Efficient Algorithms for Clause-Learning SAT Solvers.” Master’s
Thesis. Simon Fraser University, 2002.

[18] Stefan Mühlbauer, Florian Sattler, Christian Kaltenecker, Johannes Dorn, Sven Apel,
and Norbert Siegmund. “Analyzing the Impact of Workloads on Modeling the Perfor-
mance of Configurable Software Systems.” In: Proceedings of the International Conference
on Software Engineering, ICSE. IEEE Computer Society, 2023.

[19] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney. “Pro-
ducing Wrong Data Without Doing Anything Obviously Wrong!” In: Proceedings
of the International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS. ACM, 2009, pp. 265–276.

[20] Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams, Luc Van Gool, Markus H. Gross,
and Alexander Sorkine-Hornung. “A Benchmark Dataset and Evaluation Methodology
for Video Object Segmentation.” In: Proceedings of the Conference on Computer Vision
and Pattern Recognition, CVPR. IEEE Computer Society, 2016, pp. 724–732.

[21] Carson Powers. “Estimating File Compressibility Using File Extensions.” Master’s
Thesis. University of Minnesota, 2009.

[22] Florian Sattler. “A Variability-Aware Feature-Region Analyzer in LLVM.” Master’s
Thesis. University of Passau, 2017.

[23] Ashish Sen and Muni Srivastava. “Multicollinearity.” In: Regression Analysis: Theory,
Methods, and Applications. Springer, 1990, pp. 218–232.

[24] Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian Kästner. “Performance-
Influence Models for Highly Configurable Systems.” In: Proceedings of the Joint Meeting
on Foundations of Software Engineering, ESEC/FSE. ACM, 2015, pp. 284–294.

[25] Miguel Velez, Pooyan Jamshidi, Florian Sattler, Norbert Siegmund, Sven Apel, and
Christian Kästner. “ConfigCrusher: Towards White-Box Performance Analysis for
Configurable Systems.” In: Automated Software Engineering, ASE 27.3 (2020), pp. 265–
300.

bibliography 85

[26] Yi Zhang, Jianmei Guo, Eric Blais, and Krzysztof Czarnecki. “Performance Prediction
of Configurable Software Systems by Fourier Learning (T).” In: Proceedings of the
International Conference on Automated Software Engineering, ASE. IEEE Computer Society,
2015, pp. 365–373.

	Abstract
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	2 Background
	2.1 Configurable Systems
	2.2 Software Evolution
	2.3 Workloads
	2.4 Performance Analysis
	2.4.1 Black-Box Performance Analysis
	2.4.2 White-Box Performance Analysis

	3 Related Work
	3.1 Black-Box Performance Analysis
	3.1.1 Configurations
	3.1.2 Software Evolution
	3.1.3 Workloads

	3.2 White-Box Performance Analysis

	4 Methodology
	4.1 Research Questions
	4.2 Experiment Design
	4.3 Case Studies
	4.3.1 CompEnc
	4.3.2 PicoSAT
	4.3.3 Clasp
	4.3.4 XZ
	4.3.5 Fast Downward

	4.4 Operationalization

	5 Evaluation
	5.1 Results
	5.1.1 Performance Changes Between Consecutive Releases for Different Workloads
	5.1.2 Fraction of Performance Changes Confirmable by White-Box Approach
	5.1.3 Identification of Configuration-Dependent Code Responsible for Performance Changes

	5.2 Discussion
	5.2.1 Performance Changes Between Consecutive Releases for Different Workloads
	5.2.2 Fraction of Performance Changes Confirmable by White-Box Approach
	5.2.3 Identification of Configuration-Dependent Code Responsible for Performance Changes

	5.3 Threats to Validity
	5.3.1 Internal Validity
	5.3.2 External Validity

	6 Concluding Remarks
	6.1 Conclusion
	6.2 Future Work

	A Appendix
	A.1 Content of Accompanying ZIP file

	 Bibliography

