
Chair of Software Engineering

Software Practitioners Perspective on Merge
Conflicts and Resolution

Masterarbeit von

Muhammad Zohaib Brohi

1. Prüfer 2. Prüfer
Prof. Dr. Sven Apel Prof. Dr. Gordon Fraser

17. Juli 2019

Abstract

Merge conflicts are undeniable events in collaborative software development. Merge

conflicts arise when developers perform concurrent changes in the same part of code.

Researcher and practitioners seek to minimize the number of merge conflicts because

resolving them is difficult, time consuming, and often an error-prone task. Despite the

number of studies investigating merge conflicts, there are only few studies focusing on

merge conflicts resolution. The goal of this study is to investigate which factors make

conflicting merge scenarios harder to resolve in practice. To achieve the goal, we ana-

lyzed 31 projects developed in 13 programming languages containing around 45 thousand

merge scenarios involving 1.2 million files, and 6.3 million chunks. Methodologically, we

use rank correlation, principal component analysis, multivariate regression model, and

effect size to investigate which independent variables (e.g. number of conflicting chunks

and files) influence most our dependent variable (i.e., number of seconds to merge). As

result, we find that the number of chunks (#Chunks) and the code complexity of con-

flicting code (CodeComplexity) have a negative influence while number of lines of code

(#LoC), number of conflicting chunks (#ConfChunks), number of developers involved in

a merge scenario (#Devs), and the percentage of the files that the integrator had knowl-

edge before solving the merge conflict (%IntegratorKnowledge) have a positive influence.

Our effect size analysis reveals that #Chunks, #LoC, and #Devs have a medium ef-

fect size on the merge conflict resolution time and #ConfChunks, CodeComplexity, and

1

%IntegratorKnowledge have a small effect size on the merge conflict resolution time.

In further analysis we discuss reasons of why some projects are prone to have format-

ting changes, why integrators that had knowledge on changed files before face with the

merge conflicts need more time to solve merge conflicts than integrators that did not

had previous knowledge on the conflicting code, and why merge scenario size metrics

have a stronger correlation with the merge conflict resolution time than merge conflict

size metrics.

2

Acknowledgments

I want to thank my supervisor Gustavo do Vale for his guidance and support through-

out the thesis work. Without his encouragement guidance, this thesis would not have

materialized.

3

Contents

1 Introduction 8

2 Background 12

2.1 Version Control Systems . 13

2.2 Pull-Based Model . 14

2.3 Merge Conflicts . 15

3 Related Work 17

3.1 Merge Strategies . 17

3.2 Prediction Strategies . 18

3.3 Awareness Tools . 19

3.4 Understanding Merge Conflicts Nature 19

3.5 Merge Conflict Resolution . 21

4 Methodology 24

4.1 Research Question . 24

4.2 Subject Projects . 27

4.3 Data Acquisition . 29

4.4 Operationalization . 34

4.4.1 Rank Correlation . 35

4

Contents

4.4.2 Principal Component Analysis (PCA) 36

4.4.3 Multivariate Regression Model 36

4.4.4 Effect Size . 37

5 Results 39

5.1 Distribution of Covariates Among Projects Analysis 39

5.2 Rank Correlation of All Covariables Analysis 40

5.3 Principal Component Analysis . 42

5.4 Multivariate Regression Model Analysis 43

5.5 Effect Size Analysis . 46

5.6 Research Question Answer Summary . 47

6 Discussion 48

6.1 Reflection Upon Our Results . 48

6.2 Comparing Our Results with Previous Studies 53

6.3 Threats To Validity . 54

6.3.1 Internal Validity . 55

6.3.2 External Validity . 55

7 Final Remarks 57

Bibliography 60

Eidesstattliche Erklärung 68

5

List of Figures

2.1 Overview of the Pull-based Model by Means of a Merge Scenario 15

4.1 Investigated Relationship of Our Study 27

4.2 Projects Filter . 28

4.3 Class Diagram . 32

5.1 Distribution of the Covariates Among Projects 40

5.2 Rank Correlation of Covariables . 41

5.3 Pricipal Component Analysis of Our Covariables 43

6

List of Tables

4.1 Investigate Variables of Our Study . 26

4.2 Overview of the Subject Projects . 30

5.1 Correlation Coefficients Between Subject Measures 44

5.2 Effect Size Analysis . 46

6.1 An Overview of the Projects with Formatting Changes 50

6.2 Comparision Between the Dataset which Integrators Had Knowledge be-

fore Resolving the Merge Conflicts and the Dataset which Integrators

Had No Knowledge before Resolving the Merge Conflicts 52

6.3 Comparison of Our Results with Previous Studies 54

7

1 Introduction

Collaborative software development is more often than not, a team effort in which the

success depends on the ability to coordinate social and technical assets [JAM17]. Mul-

tiple developers may work and update a single project concurrently by working on a

separate version of the mainline project. The changes in the separate version of the

project are pushed to the mainline project, which is updated by other developers to

ensure that they have the latest version of the current project.

Version control systems (VCSs) is a tool used to achieve collaborative software develop-

ment [Whi10]. The project evolves incrementally by developers performing tasks. With

the support of version control systems changes in the project are saved overtime in a

repository. It allows tracking all the changes made in the past (e.g. detect what, why,

and when changes were introduced, and who did them). In case any changes went wrong,

developers can go back in time and revert them to its working version. With the con-

cept of branching, VCSs allow developers to create a branch to implement new features,

refactor existing features, or to fix bugs simultaneously without affecting the project

branch [PSW11]. Once the task is completed in the working branch, developers merge it

to the main repository branch.. Overwriting changes in this manner is often referred to

as Merging Branches [Roc17] and the whole process is often referred pull-based model

or three-way merge [Les18][GPD14].

8

1 Introduction

However, merging particular code changes to the project may introduce merge conflicts.

Merge conflicts occur when one or multiple developers change the same chunk of code

in different branches. Merge conflicts should be resolved before continuing working on

the project as the code will not be able to run. According to Kasi and Sarma [KS13],

merge conflicts occur on an average of 23% of the merges. Researchers seek to minimize

the number of merge conflicts, because resolving them is difficult, time-consuming, and

often error-prone [Les18][Men02]. Studies related to merge conflicts involves: (i) merge

strategies (e.g., structured [ALL12] or semi-structured [Ape11]), (ii) prediction strate-

gies (e.g., continuous integration [GS12] and speculative merging [Bru11]), (iii) aware-

ness tools (e.g., CollabVS [DH07], Palantír [SRv12], Cassandra [KS13], and FASTDash

[Bie07]), (iv) studies to understand their nature (e.g., type of code changes that lead to

conflicts) [ABC18][Les18], and (v) merge conflict resolution strategies.

Despite the number of studies investigating merge conflicts, the resolution of merge

conflicts is in its initial phase [Nel19] [S M17]. For instance, Nelson et al. [Nel19] have

presented 9 factors that impact the evaluation and resolution of a merge conflict, these

factors include: complexity of conflicting line of code, expertise in area of conflicting

code, complexity of files with conflicts, number of conflicting lines of code, time to

resolve a conflict, number of files in the conflict. They asked developers to point out

factors that make a conflicting merge scenario harder to solve. However, there is no

empirical study to see if these factors reflect the working practice.

The goal of this study is to investigate which factors do make merge conflicts harder

to resolve in practice. Knowing that we may provide opportunities for future research

by presenting practical insights into the factors that influence the conflicting merge

scenarios resolution. Without such knowledge, tool builders may build tools on wrong

assumptions, and researchers may miss opportunities for improving the state of the art.

9

1 Introduction

To achieve our goal, we extract merge scenario information from 31 GitHub projects cho-

sen based on their popularity. Merge scenario information includes variables: the number

of files (#Files), number of conflicted files (#ConfFiles), number of lines of code (#LoC),

number of conflicting lines of code (#CLoC), number of chunks (#Chunks), number of

conflicting chunks (#ConfChunks), number of developers (#Devs), developer knowledge

in the area of the conflicting file (%IntegratorsKnowledge), formatting changes (%For-

mattingChanges), code complexity of the chunk (CodeComplexity) and time (in seconds)

taken to resolve the merge conflict (#SecondsToMerge). We use time as our proxy of

difficulty, hence, we create a matrix correlation among all covariables and present the

covariables concerning their rank correlations with other variables. We additional use

principal component analysis and to reduce the dimensionality of the dataset to provide

better visualization of the variables. We also use multivariate regression model analysis

to build the model with the highest variance with all independent variables and groups

that we obtained from the principal component analysis. Finally, we perform effect size

analysis to answer our research question by classifying independent variables which have

a larger effect on merge conflict resolution time.

As a result of our study, we find that #Chunks, #LoC, and #Devs are top 3 variables

that make conflicting merge scenarios harder to resolve in practice. We find strong

correlation among #LoC, #Files, #Chunks, and moderate correlation among #Con-

fLoC, #ConfFiles, and #ConfChunks. Finally, we also find that for a fixed amount of

#ConfLoC, #Chunks, #Devs, CodeComplexity, and developers knowledge in the area

of conflicting code (%IntegratorKnowledge), adding 100 LoC in the merge scenario leads

to an increase in time by approximately 8 minutes to solve the merge conflicts, on

average. Our discussions show the reasons why some projects are prone to have format-

ting changes, why integrators that had knowledge on changed files before face with the

merge conflicts need more time to solve merge conflicts than integrators that did not

10

1 Introduction

had previous knowledge on the conflicting code, and why merge scenario size metrics

have a stronger correlation with the merge conflict resolution time than merge conflict

size metrics.

This thesis makes the following main contributions:

• We provide evidence that #Chunks, #LoC, #Devs, #ConfChunks, CodeComplex-

ity, %IntegratorKnowledge has effect on the merge conflict resolution time.

• We provide evidence that variables indirectly related to merge conflicts, such as

the number of lines of code changed in a merge scenario has high impact on time,

and variables directly related to merge conflict, such as the number of lines of code

in conflict.

• We found positive correlation coefficient among #LoC, #ConfLoC, and #Devs,

and negative correlation coefficient among #Chunks and CodeComplexity, and

%IntegratorKnowledge and CodeComplexity.

• We make our infrastructure publicly available to mine fine-grained merge scenario

information from software repositories. [Bro19].

• We make all data publicly available for replication and follow-up studies on a

supplementary website [Bro19].

This thesis is structured as follows: Chapter 2 contains background on collaborative

software development, version control systems, pull-based model, and merge conflicts.

Chapter 3 describes related work. Chapter 4 describes the methodology used to gather

and analyze the merge conflicts. Chapter 5 presents the results of the study. Chapter

6 discusses the outcome of the study and threats to validity. Chapter 7 concludes the

study and discusses future work.

11

2 Background

Software development is a collaborative and distributed activity in which success de-

pends on the ability to coordinate social and technical assets [JAM17]. Coordination

of social and technical assets is one of the greatest challenges in collaborative soft-

ware development, especially in open source systems where many developers contribute

voluntarily and are normally geographically distributed [SRP17]. To achieve high pro-

ductivity and support daily tasks, developers normally choose well-defined development

models (e.g., pull-based model) and version control systems (e.g., Git, Mercurial, and

SVN). However, with great number of code contributions simultaneously, problems are

prone to occur. Among these problems, merge conflicts have attracted the attention of

researchers and practitioners because solving them is a difficult, time-consuming, and

often an error-prone task [Men02].

To get deeper in concepts and technologies of collaborative software development, the

following sections present an overview of version control systems, the pull-based model,

and merge conflicts.

12

2 Background

2.1 Version Control Systems

Version control systems support collaborative software development by tracking all

source code changes over time. This way, if something goes wrong, developers can revert

previous changes and fix the unexpected behavior [Zim04]. Version control systems can

be decentralized or centralized [DH07]. In centralized version control systems, there is

a single centralized master copy of the code base, and changes are made to this central

copy. Part of the changed code is locked, and only one developer is allowed to work on

that part of the code [AS09]. Examples of centralized version control systems are con-

current version systems (CVS1) and Subversion2. In distributed version control systems,

a project is cloned locally, with its full history. To work on distributed version control

systems, developers make code changes locally and, when they finish their tasks, they

merge it back to the main project branch. Hence, in distributed version control systems

multiple developers can work on the same part of the code concurrently. Examples of

distributed version control systems are Git3 and Mercurial4.

Distributed version control systems allow developers to share code without adopting

the main repository. On the other hand, centralized version control systems use the

main repository through which developers share their code. Distributed version control

systems offer flexibility for reviewing and fixing changes ahead of submitting to the main

repository. This way, they can be considered an evolution of centralized version control

systems and are used more often, especially in open source projects. The huge use of

distributed version control systems on open source projects comes basically because it

allows complex work-flows, tasks being distributed among several developers, and does

not block the work of others contributing to the project [AS09].
1https://www.nongnu.org/cvs/
2https://subversion.apache.org/
3https://git-scm.com/
4https://www.mercurial-scm.org/

13

2 Background

2.2 Pull-Based Model

To extract the best of version control systems and achieve high productivity with mul-

tiple developers contributing to the project, it is also important choosing an efficient

development model. The pull-based development model is a widely used development

model of which only GitHub platform hosts more than a million of projects [GSB16].

The pull-based model consists of merge scenarios and it is basically based on three steps:

(i) contributors create new branches from the main repository of the project they want

to contribute to, (ii) contributors make their changes independently to solve a task (e.g.,

new feature implementation, bug fixing), and (iii) they integrate it back to the main

repository [GSB16]. The integration is normally done by means of merge commits or

pull requests. Integrations using pull requests happen when directly in one hosting plat-

form, such as GitHub5, GitLab6, and Bitbucket7. This process is also called three-way

merge [GPD14] [Les18].

A good practice when using this model is to create different branches for release, de-

velopment, implementing a new feature, or fixing bugs [PSW11]. Figure 2.1 exemplifies

this model of which each dot represents a commit. In this example, the merge scenario

consists of the integration of two branches (left and right), however, more branches can

be integrated simultaneously in a merge scenario. To retrieve information from a merge

scenario, there are three important commits: base commit, parent commit, and merge

commit. The base commit, the one most to the left on the top of Figure 2.1 (commit

hash: f5a31ed), is the common ancestor between the two branches. The parent com-

mit is the last commit of a branch before the integration. In this example we see one

parent commit to the left (commit hash: 32cc0f8) and another to the right branch (com-

5https://github.com
6https://about.gitlab.com
7https://bitbucket.org

14

2 Background

Figure 2.1: Overview of the Pull-based Model by Means of a Merge Scenario

mit hash: 1602adc). The merge commit is the commit that integrates both branches

(commit hash: 718ec42).

2.3 Merge Conflicts

As mentioned, merge conflicts occur if developers change the same part of chunk code

in the branches that are going to be merged. As merge conflicts are unexpected events,

they have a negative effect on project’s objectives compromising the project success,

especially when arising frequently [GS12][JAM17][SRv12]. In Chapter 3, we give more

details about how researchers have been investigating merge conflicts over the past years.

As mentioned, Figure 2.1 presents a merge scenario. In this scenario developers A and

C changed the left branch while developers B and D changed the right branch. As there

is concurrent changes in the same chunk of code, this is a conflicting merge scenario

(i.e., there are merge conflicts). In this merge scenario we can see three merge conflicts

15

2 Background

highlighted by the exclamation mark. For instance, as developer C changed line 1 of

File1 on the left branch while developer B changed the same line of code on the right

branch a merge conflict emerged when trying to merge both branches.

In Figure 2.1, much information can be extracted from a merge scenario. Such infor-

mation includes, for instance, the number of developers involved, the number of files,

chunks, and the number of conflicting chunks in the merge scenario. In Chapter 4, we

present all information extracted for each merge scenario investigated in this thesis.

16

3 Related Work

This chapter describes previous work in the area of merge conflicts. It is essential to learn

some of the studies performed in this area to get benefit from work done in this study.

Section 3.1 contains studies in the field of merge strategies. Section 3.2 contains studies

to detect merge conflict in the early stage. Section 3.3 presents studies that provide tools

to support developers awareness to minimize the number of merge conflicts. Section 3.4

explains the nature of merge conflicts. Section 3.5 presents studies that investigate how

developers approach merge conflicts, how some merge conflicts are harder to resolve,

and insights into how developers resolve merge conflicts.

3.1 Merge Strategies

Merging strategies can be classified into unstructured, structured and semi-structured.

Unstructured strategies treat software artifacts as sequences of text lines and they are

known to be fast, however not efficient in avoiding merge conflicts. Structured strate-

gies are based on the artifacts syntactic structure and they are known as efficient in

avoiding merge conflicts, however, computationally expensive. Semi-structured strategy

is trade-off which inherits strengths of structured and unstructured strategies. This way,

Apel et al. [ALL12] offers a software merging strategy that obtains a balance between

17

3 Related Work

precision and performance. Thereby, semi-structured strategies represent artifacts as

trees, however an artifact is only partly exposed in the tree, and the rest is treated as

plain text [ALL12]. In what follows we describe how the semi-structured strategy is

proposed. First, software artifacts are represented as trees. When developers merge

code changes, this strategy merge them using tree matching and amalgamation. Then,

for performance enhancement, they rely on auto-tuning. To apply expensive differenc-

ing and merge operations in suitable situations, this strategy used unstructured merge

when it is free of merge conflict, and structure merge when conflicts are detected. In a

empirical study [Ape11] noticed that: semi-structured strategy reduced the number of

merge conflicts by 21±34 %, the number of conflicting lines of code by 22±61%, and the

number of conflicting files by 12±28%.

3.2 Prediction Strategies

When merge conflicts are detected late, software defects may appear and it requires ex-

pensive resolution since developers may have forgotten the reasons of their code changes.

Guimaraes et al. [GS12] propose a solution for early detection of the merge conflicts on

behalf of developers. Their solution introduces the concept of continuous merging inside

the IDE. Analyzing merge conflicts earlier provides information to developers taking

better decisions regarding how to proceed, whether it will be a safe merge (i.e., free of

merge conflicts), to publish a safe change, to immediately address a new merge conflict,

and to interact with developers [Bru11]. Brun et al. [Bru11] provide an approach to

support developers classifying and resolving merge conflicts early before those conflicts

become difficult and before developers forget about the notable changes. They explain

the design of Crystal1, a publicly-available tool that uses speculative analysis to deliver

1http://crystalvc.googlecode.com/

18

3 Related Work

concrete advice unobtrusively accessible to developers, helping them identify, maintain,

and prevent merge conflicts. Their study verifies that: (i) conflicts are the norm rather

than the exception, (ii) 16% of all merges required human effort to solve textual con-

flicts, (iii) 33% of merges that were reported to contain no textual conflicts by the VCSs,

included higher-order merge conflicts, and (iv) conflicts endure, on average, for ten days.

3.3 Awareness Tools

Merge conflicts arise when developers make concurrent changes to the code-base. The

primary goal of awareness tools is to identify potential merge conflicts early, while con-

flicts are small and easier to resolve. Some studies provide supporting tools when de-

veloping software. These tools aim at minimizing the number of merge conflicts and

notify developers of emerging conflicts [SNv03]. Kasi et al. [KS13] present Cassandra.

Cassandra proactively identifies merge conflicts and other constraints to manage the

task that will avoid the incidence of merge conflicts. Biehl et al. [Bie07] present FAST-

Dash. It provides an interactive visualization which enhances team activity awareness.

FASTDash determines which team members have files checkout, which files were viewed

and which classes and methods were changed. It gives insights into potential conflict

situations, such as two or more developers working on the same file.

3.4 Understanding Merge Conflicts Nature

Merge conflicts occur when merging concurrent changes into the main project, and

developers have to complete the merge manually. The amount of pain when solving

the merge conflicts can be reduced if the developer knows the nature of the merge

19

3 Related Work

conflict. In what follows, we present three studies which investigate the nature of the

merge conflicts.

Lessenich et al. [Les18] analyzed seven potential indicators to predict the number of

merge conflicts. These indicators are: (i) number of commits, (ii) commit density,

(iii) number of files changed by both branches, (iv) number of changed lines of code, (v)

number of code chunks changed, (vi) number of changes inside class declaration, and (vii)

scattering degree (number of changed classes/number of all classes). They computed

correlations between the seven potential indicators and the number of conflicts in a

merge scenario. They found that none of the seven indicators can predict the number

of merge conflicts.

Accioly et al. [ABC18] derive a merge conflict catalog with nine patterns to understand

the structure of the changes that lead to merge conflicts. These patterns are: (i) edits to

the same or consecutive lines of the same method, (ii) different edits to the same class

field declaration, (iii) methods added with the same signature and different bodies, (iv)

class fields declarations added with the same identifier and different types or modifiers,

(v) different edits to the modifier list of the same type declaration, (vi) different edits to

the same implements declaration, (vii) different edits to the same extends declaration,

(viii) different edits to the same Enum constant declaration, and (ix) different edits

to the same annotation method default value declaration. Their results showed that

84.57% of merge conflicts occur because developers edit the same lines or consecutive

lines of the same method. Editing methods, class fields, or modifier lists have similar

probability of leading to merge conflicts. Merge conflicts can be avoided if awareness

tools are improved to alert developers of these cases.

Ghiotto et al. [Ghi18] focus on the investigation of the nature of merge conflicts, and

how the developers resolved them. They analyzed thousands of merge scenarios from

20

3 Related Work

five different open source projects. Then, they identified merge scenarios that led to

merge conflicts and chunks which are involved in merge conflicts. Finally, they analyzed

the resolution strategy used by developers to resolve the merge conflicts. They analyzed

different perspectives that make a merge conflict more difficult to resolve than others.

These perspectives included the size and the number of conflicting chunks, the presence

of language constructs in the conflict chunks, the language constructs’ patterns, the

relating language constructs, and the developer’s decisions. Their results showed that:

(i) 87% of conflicting chunks (automated analysis; 83% manual analysis) had all the

information needed to resolve merge conflicts without writing any new code, (ii) 60%

of merge conflicts involve multiple conflicting chunks which can depend on the project

and, (iii) 14% to 16% of those chunks are dependent on other chunks.

3.5 Merge Conflict Resolution

Resolving merge conflicts are painful, particularly when changes diverge significantly

[Bru11]. In additional, merge conflict resolution can be a tedious task and cause delays

on the project production. As we aim at investigating factors that make merge conflicts

harder to resolve in practice, the studies of this section are closer to our study. We found

only two studies of merge conflict resolution of which one is an extension of the other.

Nelson et al. [Nel19] present insights into developers‘ process and perceptions on merge

conflicts resolution. Nelson et al. [Nel19] is an evolution of McKee et al. [S M17] the

main difference is that they did a semi-structured interview and examined barriers to

approach merge conflicts resolution. To learn the effects and implications of software

developers’ processes and strategies, they answered six questions: (i) how do software

developers manage merge conflicts?, (ii) how do software developers become aware of

21

3 Related Work

merge conflicts?, (iii) how do software developers plan for merge conflict resolutions?,

(iv) how do software developers evaluate merge conflict resolutions?, (v) What difficulties

do software developers experience when managing merge conflicts?, and (vi) how well

do tools support developer’s needs for managing merge conflicts?

To answer these questions they investigate nine factors: (i) complexity of conflicting lines

of code, (ii) expertise in area of conflicting code, (iii) complexity of files with conflicts,

(iv) number of conflicting lines of code, (v) time to resolve a conflict, (vi) atomicity of

changesets in conflict, (vii) dependencies of conflicting code, (viii) number of files in the

conflict, and (ix) non-functional changes in codebase.

As results, they found that developers rely on the code complexity of the conflicting lines

and their knowledge in the area of the conflict as the top two factors when estimating

the difficulty of a merge conflict resolution. They also found that most developers use

the reactive process when observing merge conflicts i.e., 87.72% of those participants

rely on version control systems (e.g. Git2, SVN3, CVS4), while 21.05% use continuous

integration systems (e.g. Jenkins5, Travis CI6). The developers rely on their expertise

and the complexity of the conflicting code. In addition, they found that when the merge

conflict resolution fails, developers generally rely on their knowledge to resolve a merge

conflict but also seek help from other practitioners to resolve the conflict if they feel that

their experience is not sufficient to resolve that conflict.

Our study complements these studies because we examine most of their factors that

led the merge conflict resolution in the practice of collaborative software development

environment. While Mckee et al. [S M17] and Nelson et al. [Nel19] surveyed developers

2https://git-scm.com/
3https://subversion.apache.org/
4https://www.nongnu.org/cvs/
5https://jenkins.io/
6https://travis-ci.org/

22

3 Related Work

to find out factors that effects on the resolution of merge conflicts, our study investigates

their factors and additional factors by analyzing time merge conflicts took to be resolved.

Details of our methodology can be seen in Chapter 4, and a comparision of their results

with our results are discussed in Chapter 6.

23

4 Methodology

This chapter presents our empirical study methodology, whose overall goal is to inves-

tigate which factors do make conflicting merge scenarios harder to resolve in practice of

the collaborative software development. First, we describe our research question followed

by explanations of how we selected subject projects. Then, we present our approach to

retrieve contribution data. Finally, we explain how we answered the research question.

4.1 Research Question

Our discussion of the literature has shown how painful merge conflicts are for practi-

tioners achieving the project objectives (see Chapter 2) and how researchers have been

investigating merge conflicts over the years (see Chapter 3). Despite the number of

studies investigating merge conflicts only few of them investigate how merge conflicts

are solved and factors that make merge conflicts harder to resolve. Considering that

knowing in practice which factors lead to a longer conflicting merge scenarios resolution

time is useful for tool builders developing more useful tools to better support practition-

ers and, for researchers investigate opportunities for improving the state of art of merge

conflict resolution, we investigate this topic in practice based on factors presented by

previous studies [S M17] [Nel19]. Our study is guided by the following research question:

24

4 Methodology

RQ: What factors does make conflicting merge scenarios harder to resolve in

practice of collaborative software development?

This research question investigates factors that make a conflicting merge scenario harder

to solve. To measure the difficult of resolving conflicting merge scenarios, we use the

difference of time between the merge commit and the latest commit of the merged

branches. To know which factors may influence the time of resolving merge conflicts,

we defined a set of ten variables (e.g., the number of conflicting chunks, the number of

developers involved, the size and complexity of the conflicting code) inspired on factors

presented on related work [Nel19] [S M17]. As mentioned in the related work chapter,

the main difference of our study and previous studies is that we rebuild thousands merge

scenarios and look whether these ten variables influence the merge scenario resolution

time while previous studies asked developers which factors (variables) make the merge

conflict resolution harder.

Table 4.1 describes all factors we explore in this study divided into dependent and

independent variables. In what follows, we explain the reasons of investigating these

variables. To make our description short, we organize these variables into three groups:

time, variables directly related to merge conflicts, and variables indirectly related to the

merge conflicts.

Time. #SecondsToMerge captures how much time (in seconds) was taken to resolve the

merge conflict. This is our dependent variable for that reason we give more details about

how this variable measures difficulty. We think that this variable is a good indicator of

difficulty because it is natural that trivial tasks (e.g., simple, short) will take less time

than large and complex tasks. In addition, time has been used to investigate difficulty

of executing tasks in usability methods [Thy09] and crowdsourcing [Fan18].

25

4 Methodology

Table 4.1: Investigate Variables of Our Study
Measure Description

Dependent variable
#SecondsToMerge The shortest time difference between the parent commits of the merged

branches and the merge commit of the merge scenario
Independent variables

#LoC The sum of lines of code of the merge scenario
#ConfLoC The sum of conflicting lines of code of the merge scenario
#Chunks Number of chunks of the merge scenario
#ConfChunks Number of conflicting chunks of the merge scenario
#Files Number of files of the merge scenario
#ConfFiles Number of conflicting files of the merge scenario
#Devs Number of developers involved in code changes of the merge scenario
%IntegratorKnowledge Percentage of files which exists conflicting chunks that the merge

scenario integrator had committed before integrate branches of a
merge scenario among all chunks of the merge scenario

%FormattingChanges Percentage of formatting changes of conflicting chunks among all
chunks changed in the merge scenario

CodeComplexity Sum of the cyclomatic complexity of conflicting chunks of the merge
scenario

Variables directly related to merge conflicts. This group contains the majority of

variables investigated in this study since our goal is about finding factors that leads to

longer merge conflict resolution time. Therefore, nothing more adequate than chose mea-

sures that directly measures the size, complexity, and knowledge on the conflicting code.

#ConfLoC, #ConfChunks, #ConfFiles, %IntegratorKnowledge, %FormattingChanges,

and CodeComplexity are the six variables that composes this group.

Variables indirectly related to merge conflicts. A prove that merge conflict res-

olution is not trivial is the number of studies investigating it in the whole life-cycle.

Considering that the resolution of a merge conflict may depend on other code changes

not in conflict, we opted to measure code changes not related to the merge conflict, but

to the whole merge scenario. #LoC, #Chunks, #Files, and #Devs are the four variables

that composes this group.

26

4 Methodology

Figure 4.1: Investigated Relationship of Our Study

Figure 4.1 illustrates the relationship we investigate in our study by means of the vari-

ables presented in Table 4.1.

4.2 Subject Projects

Overall, we selected 31 subject projects from a variety of domains from the hosting

platform GitHub. We chose to limit our analysis to Git repositories because it simplifies

the identification of merge scenarios in retrospect. We restrict our selection of projects

on GitHub because it is one of the most popular platforms to host repositories and have

been investigated and used by several studies [Sto14][Lei13][Dab12][TDH14][GSB16]

[LLH16]. We selected the corpus as follows. First, we retrieved the 50 most popular

projects on GitHub, as determined by the number of stars [BV18]. Then, we applied the

27

4 Methodology

Figure 4.2: Projects Filter

following five filters: (i) projects that do not have a programming language classified as

the main language (i.e., the main file extension), (ii) projects with less than two commits

per month in the last six months, (iii) projects in which it was not possible to reconstruct

most of the merge scenarios, (iv) projects with no merge conflicts and (v) the balance of

the main programming language of the subject projects. Figure 4.2 presents the amount

of projects remaining after each filter.

We created these filters inspired by Kalliamvakou et al. [Kal14]. These filters aim at

selecting active projects in terms of code contributions with an active community and

at increasing internal validity. For example, the second filter captures active community

28

4 Methodology

projects on GitHub. The third filter excludes projects such as kubernetes1 and moby2

because we considered that these projects do not mostly use the pull-based model (i.e.,

do not follow the three-way merge [GPD14]) and they could bias our analyses. Details

of how we rebuild merge scenarios are provided in Section 4.3. As most of the popular

projects are developed in JavaScript, in the fourth filter, we excluded two less popular

JavaScripts projects ordered by the number of stars until they accounted for less than

half of the subject projects. After applying all filters, we obtained 33 projects developed

in 13 programming languages (i.e., a project can be developed using more than one

programming language), such as JavaScript, CSS, and C++, containing around 45766

merge scenarios that involve 1.2 million files changed, and 6.3 million chunks. Table 4.2

provides information and statistics of each subject project. More details, such as the

subject project’s URLs, are available on the supplementary website.

Some #MS and #CMS are blank in Table 4.2. This is due (i) seven project does not

have any main programming language (i.e., we cannot get all the merge scenarios form

that project), (ii) three projects are inactive, and (iii) not possible to reconstruct most

of the merge scenarios of five projects.

4.3 Data Acquisition

Note that we have excluded merge scenarios that do not have a base commit (e.g.,

rebase, fast-forward, or squash integrations [S J16]) and we ignore binary files, because

we cannot track changes from them, and we retrieve data only for merge scenarios that

resulted on merge conflicts.

1https://github.com/kubernetes/kubernetes
2https://github.com/moby/moby

29

4 Methodology

Table 4.2: Overview of the Subject Projects
id Subject Project Name Main Prog. #Stars #MS #CMS Excluded

Language by filter

1 freeCodeCamp JavaScript 302551 4499 81
2 996.ICU Rust 243370 1280 134
3 vue JavaScript 137975 140 5
4 bootstrap JavaScript 133212 4355 184
5 react JavaScript 128811 2486 11
6 tensorflow C++ 127312 5831 - (iii)
7 free-programming-books No prog lang 122687 - - (i)
8 awesome No prog lang 108144 - - (i)
9 You-Dont-Know-JS No prog lang 101509 - - (i)
10 oh-my-zsh Shell 87925 1579 5
11 javascript JavaScript 84945 311 0 (iv)
12 d3 JavaScript 84554 688 286
13 gitignore No prog lang 83537 - - (i)
14 developer-roadmap No prog lang 80910 - - (i)
15 coding-interview-university No prog lang 77388 - - (i)
16 react-native JavaScript 76955 650 3
17 vscode TypeScript 75689 3857 20
18 linux C 74733 61720 - (iii)
19 electron C++ 73088 4198 32
20 create-react-app JavaScript 67352 80 8
21 awesome-python Python 67037 452 26
22 flutter Dart 63213 1842 0 (iv)
23 system-design-primer Python 62818 5 1
24 CS-Notes Java 61165 493 35
25 node JavaScript 61047 391 57
26 Font-Awesome JavaScript 59749 156 4
27 angular.js JavaScript 59509 36 6
28 animate.css CSS 59336 111 5
29 axios JavaScript 59120 188 5
30 go Go 57868 147 4
31 public-apis Python 56704 624 46
32 moby Go 53239 15808 - (iii)
33 models Python 52510 970 20
34 kubernetes Go 52454 36960 - (iii)
35 laravel PHP 52169 1455 14
36 jquery JavaScript 51510 250 1
37 three.js JavaScript 51325 6083 - (iii)
38 youtube-dl Python 50264 1381 79
39 free-programming-books No prog lang 49712 - - (i)
40 puppeteer JavaScript 48965 - - (ii)
41 TypeScript TypeScript 48760 7616 7
42 webpack JavaScript 48729 2269 86
43 javascript-algorithms JavaScript 48676 - - (ii)
44 atom JavaScript 48675 4336 134
45 redux JavaScript 48489 675 9
46 angular TypeScript 47939 4 2
47 swift C++ 47677 28342 - (ii)
48 java-design-patterns Java 47481 393 25
49 material-ui JavaScript 46700 2115 64 (v)
50 socket.io JavaScript 46218 342 33 (v)

#Stars, #MS, and #CMS denote the number of GitHub stars, the number of merge scenarios, the number of conflicting
merge scenarios we were able to compute.

30

4 Methodology

We rebuilt merge scenarios from the subject projects since their creation until May 2019.

Our strategy for merge scenario data acquisition consists of five steps. First, we clone a

subject project’s repository. Second, as merge commits can be identified in Git when the

number of parent commits is greater than one, we identify merge scenarios by filtering

commits with multiple parent commits. Third, for each merge commit, we retrieve a

common ancestor for both parent commits (i.e., the base commit). Fourth, we (re)merge

the parent commits and retrieve the measures for the variables in Table 4.1 by comparing

the changes that occurred since the base commit until the merge commit. Finally, we

store all data and repeat steps 3 to 5 for each merge scenario found in the step 2.

Figure 4.3 presents a class diagram containing all the information required for our study.

As can be seen, for each project we build merge scenarios. Each merge scenario contains

one or more files and each file contains one or more chunks of code. For each conflicting

chunk, we get the changed code that resulted in the merge conflict, the changed code

that resolved the merge conflict, and time difference between the parent commit (seen

in Figure 4.3 as merge_conflict_info). Then, we compute variables for these classes and

extract each one of them at merge scenario level. Following we describe how we compute

these variables:

• #SecondsToMerge. We compute it by taking the shortest time difference be-

tween the parent commits of the merged branches and the merge commit of a

merge scenario.

• #LoC. We calculate it by counting lines of code of all the chunks from the files

that were involved in a merge scenario.

• #ConfLoC. We compute it by counting line of codes of all the chunks in conflict

from the files that were involved in a merge scenario.

31

4 Methodology

Figure 4.3: Class Diagram

32

4 Methodology

• #Chunks. We compute it by counting all the pieces of code where it was added

or modified in a merge scenarios

• #ConfChunks. We compute it by counting all the places where the code is

added or modified and had conflict in a merge scenarios

• #Files. We calculate it by counting all the files added, removed or modified in a

merge scenarios

• #ConfFiles. We calculate it by counting all the files added or modified and has

conflict in a merge scenarios

• #Dev. We calculate it by counting all developers who committed to a chunk of

code in each file involved in a merge scenario.

• %IntegratorKnowledge. We calculate it by checking if the developer had previ-

ously committed in the file before integrating the code in a merge conflict. We then

take percentage dividing it by the number of merge conflicts in a merge scenario.

• %FormattingChanges. The percentage of conflicting chunks that had only

formatting changes among all conflicting chunks in a merge scenario. We calculate

it by analyzing chunks in a file resulted from formatting changes in a merge conflict.

We then take percentage dividing it by number of chunks in a merge scenario.

• CodeComplexity. We compute McCabe cyclomatic complexity of each chunk

in a merge conflict. We then take sum of all cyclomatic complexity of each chunk

in a merge scenario.

Exemplifying the subject variables. Taking the merge scenarios exemplified in

Figure 2.1, developers changed 10 lines of code (#LoC) in this merge scenario, of which

33

4 Methodology

8 of them are in conflict (#ConfLoC). These lines of code changed 4 chunks #Chunks, in

which 3 are in conflict (#ConfChunks). This chunks belongs to 2 files (File1 and File2),

hence #Files equal to 2 and as the conflicts are in both files, it also has 2 conflicting

files (#ConfFiles). Overall 4 developers (Dev A, Dev B, Dev C, and Dev D) committed

to this merge scenario. As Dev D is the developer who solved the merge conflict and

he had committed before in both files, we consider that this developer knew the code

before lead with the merge conflicts. Therefore, Dev D had 100% of knowledge on

the changed files (%IntegratorKnowledge). As Figure 2.1 is illustrative example, it is

not possible calculating %FormattingChanges, CodeComplexity, and #SecondsToMerge.

However, we can say that the right branch commit has the shortest distance to the

merge commit when compared with the commit of the left branch. Hence, we would

have gotten the difference among the right commit (commit hash: 1602adc) and the

merge commit (commit hash: 718ec42)

Framework and Data Availability. Our analysis framework (Java and Python) and

analyses scripts (R and Python) are open-source. All data necessary for replicating this

study are stored in a MySQL database and replicated on spreadsheets (.csv files). All

tools, links to the subject projects, and data are available at the supplementary Web

site [Bro19].

4.4 Operationalization

The operationalization of our study to answer the research question consists of 5 steps.

First, we check the distribution of covariates among projects to see if it may influence our

results. Second, we compute the rank correlation of all covariables, using the Spearman

rank-based correlation, which is invariant to any linear transformations of the covariates.

34

4 Methodology

Third, we compute the principal component analysis to have a better visualization of

the correlation among covariables and remove some of them of our regression model

avoiding noise in our analysis. In other words, we want to have the highest variance

with the minimum number of covariables. Fourth, we build and compute the multivariate

regression model for predicting factors that make the merge conflict harder to resolve. To

define the used model, we compare the model with all independent variables with a model

with a simplified number of independent variables until we optimize the variance of our

model. Finally, aware that independent variables change differently and, even with the

results of the regression model they are not able to classify the most influencing factors,

in the fifth step, we compute the Cohen’s f2 effect size. In what follows we provide an

overview of the last four analysis we did since the first one consist only on plotting the

values of each variable to see how they are distributed.

4.4.1 Rank Correlation

Spearman’s correlation coefficient is represented as the Pearson correlation coefficient

among the rank variables [LW03]. This way, for size n, the n raw scores Xi, YiXi, Yi are

converted to ranks rgXi, rgYi, and rs calculated from the following equation:

rs = ρrgX ,rgY =
cov(rgX , rgY)

σrgXσrgY

(4.1)

where ρ indicates the Pearson correlation coefficient but applied to the rank variables,

cov(rgX , rgY) is the covariance of the rank variables, and σrgXσrgX and σrgY σrgY are the

standard deviations of the rank variables.

35

4 Methodology

4.4.2 Principal Component Analysis (PCA)

Principal component analysis is a dimensionality-reduction method [Bha14], we use it to

reduce the number of variables, but preserve the essential variables . Because small data

sets are more comfortable to explore and visualize, we also analyze how variables are

correlated with each other. The principal component analysis is based on a correlation

matrix. To avoid bias due to distribution of the data, we use the rank transformed data

in correlation estimation, as mentioned before. Based on the covariance matrix for the

original variables in a matrix form is defined as:

Q ∝ XTX = WΛW T (4.2)

The empirical covariance matrix within the principal components becomes

W TQW ∝ W TWΛW TW = Λ (4.3)

where Λ is the diagonal matrix of eigenvalues λ(k) of XTX. λ(k) is equivalent to the sum

of the squares across the dataset associated with various component k, i.e. λ(k) = Σi t
2
ki

= Σi (xiwk)
2.

4.4.3 Multivariate Regression Model

Multiple linear regression is used to predict a dependent variable y (also called outcome

variable) on the basis of multiple distinct independent variables x (also called predictor

variables). The following equation represents a multiple linear regression model:

ŷ = β0 + β1x1 + β2x2 + ...+ βnxn + ε0 (4.4)

36

4 Methodology

The β values are called the regression weights (or beta coefficients). They measure

the association between the predictor variable and the outcome variable. βj can be

interpreted as the average effect on y of a one unit increase in Xj, holding all other

predictors fixed [Jam13].

4.4.4 Effect Size

Effect size is a model of a kind of standardized average effect in the population across

all the levels of the independent variable [Coh88]. We analyze which factor have more

effect on the time taken to solve the merge conflict by using effect size analysis. We use

Cohen’s f 2, in the context of an ANOVA (Analysis of variance), which is one of many

effect size measures like F-test and multiple regression. The f 2 effect size measure for

sequential multiple regression and PLS (partial least squares path modeling) modeling

is defined as:

f 2 =
R2

AB −R2
A

1−R2
AB

(4.5)

where B is the variable of interest, A is the set of all other variables , R2
AB the proportion

of variance accounted for by A and B together (relative to a model with no regressors),

and R2
A is the proportion of variance accounted for by A (relative to a model with

no regressors). By custom, f 2B effect sizes of 0.02, 0.15, and 0.35 are termed small,

medium, and large, respectively [Coh88]. Cohen’s f̂ can be found for factorial analysis

of variance (ANOVA) using:

f̂effect =
√

(dfeffect/N)(Feffect − 1) (4.6)

37

4 Methodology

In a symmetrical design of ANOVA, the similar population parameter of f 2 is

SS(µ1, µ2, . . . , µK)

K × σ2,

SS(µ1, µ2, . . . , µK)

K × σ2,
(4.7)

where µj indicates the population means within the jth group of the total K groups, the

equivalent population standard deviations within each group. SS is the sum of squares

in ANOVA.

38

5 Results

In this chapter, we present the results of our empirical study which goal is to present

factors that make conflicting merge scenarios harder to resolve in practice. We struc-

ture this chapter according to the five steps presented in Section 4.4 plus a section to

summarize our results.

5.1 Distribution of Covariates Among Projects Analysis

Figure 5.1 presents the distribution of each variable investigated in this study among

the subject projects. Each variable is shown in a different boxplot. X-axis shows the

project id, which an mapping of these ids can be found in Table 4.2. Y-axis shows the

values of a target investigated variable. Hence eleven different plots can be found.

As can be seen in Figure 5.1, all variables have a similar behavior among projects, the

only exception is %FormattingChanges variable since it is not so frequent for most of the

projects. Besides, there are few outliers which are beyond the first and third quartile,

most covariates seem to be sufficiently equally distributed among the subject projects.

This is a statistically a good choice, as unequally distributed covariates could result in

39

5 Results

Figure 5.1: Distribution of the Covariates Among Projects

an erroneous interpretation. Therefore, in general, there is no project concentrating a

behavior that may bias our analysis.

5.2 Rank Correlation of All Covariables Analysis

Figure 5.2 presents a matrix correlation among all covariables in analysis. As expected

merge scenario size metrics (i.e., #LoC, #Files, and #Chunks) has a high correlation

(above 0.8) among them. Merge conflict size metrics (#ConfLoC, #ConfFiles, and

40

5 Results

Figure 5.2: Rank Correlation of Covariables

#ConfChunks) also have a moderate to high correlation (above 0.5) among them. Inter-

esting not all metrics related to the merge conflicts correlate, for instance, %Integrator-

Knowledge and %FormattingChanges have a correlation coefficient smaller than 0.1 for

most of the merge conflict. The two exceptions are in the case of %IntegratorKnowledge

with a negative correlation coefficient with CodeComplexity equals to -0.269 and positive

correlation coefficient with #Devs equals to 0.167. Both cases seem to be reasonable

since once the integrator knows about the conflicting chunks, it does not matter the

complexity, they do not have to understand the code, hence, the merge conflict resolu-

tion becomes faster. Regarding #Devs, more developers may add different code style

and it will impact on the code understanding as well the merge conflict resolution.

We also give more attention to the correlation among our dependent variable and each in-

dependent variable. For short, the coefficient correlation is significant with a confidence

41

5 Results

interval of 95% for all independent variables except #CodeComplexity and %Format-

tingChanges. For the significant ones the correlation coefficient are 0.342, 0.188, 0.286,

0.207, 0.272, 0.164, 0.256, 0.127 for #LoC, #ConfLoC, #Chunks, #ConfChunks, #Files,

#ConfFiles, #Devs, %IntegratorKnowledge, respectively. Therefore, the top three vari-

ables with highest correlation coefficient are the three variables that measures the merge

scenario size (#LoC, #Chunks, and #Files). In the next sections we investigate whether

this correlation remains true to be able to say that these variables influence the most

with merge conflict resolution time.

5.3 Principal Component Analysis

Figure 5.3 shows the two dimensional output from the principal component analysis for

each communication approach, which covers 54.3% (37.7% + 16.6%) of the total variance

of our data. The arrows represent the weights of each variable in the respective principal

component and its color represents the square cosine (cos2). The square cosine represents

the share of original variation in the variable that is retained in the dimensionality

reduction. The longer the arrow, the larger is the share of a variable’s variance. Arrows

pointing to the same direction have a large share of common variance and can be assumed

to belong to the same group.

Figure 5.3 analysis suggests to classify the confounding variables into four groups (size,

conflicting size, social activity, and type of change). The arrows representing #Chunks,

#Files, and #LoC point in to the same direction; they represent the size of a merge

scenario. Pointing to another direction, #ConfLoC, #ConfFiles, and #ConfChunks

represent the conflicting size. The two factors that involve social assets (#Devs and

%IntegratorKnowledge) point to a close direction, hence, we call them social activity.

42

5 Results

Figure 5.3: Pricipal Component Analysis of Our Covariables

The factors CodeComplexity and %FormattingChanges composes the fourth group which

we named type of change since it represents formatting and the cyclomatic complexity

of the conflicting code.

From the previous rank correlation analysis, it was already possible to see that not all

variables that are directly relationed with merge conflicts belong together. The principal

component analysis support us to easily group them. These four groups will be useful

to check the variance of our regression model with a model with all covariables.

5.4 Multivariate Regression Model Analysis

As mentioned, our multivariate regression model analysis consists of building the model

with the highest variance possible for our scenario. Hence, we first build two models,

43

5 Results

Table 5.1: Correlation Coefficients Between Subject Measures
Measure Correlation Coefficient p-value
#LoC 0.4741 3.4e-14
#Chunks -0.2406 0.00016
#ConfChunks 0.1473 5.4e-05
#Devs 0.1539 2.8e-07
CodeComplexity -0.0724 0.03039
%IntegratorKnowledge 0.0773 0.01456

the former with all independent variables and the later with the four groups found by

the principal component analysis. Performing the analysis of variance, we saw that the

model with all independent variables has a higher variance than the other one. Hence,

we build a third intermediate model with highest variance. This model is composed

by the dependent variable #SecondsToMerge and 6 independent variables (i.e., #Loc,

#Chunks, #ConfChunks, #Devs, CodeComplexity, and %IntegratorKnowledge). This

model contains variables from all groups, excluded the suspicious variable found in the

distribution of covariable among projects (%FormattingChanges), and excluded indepen-

dent variables with high correlation coefficient with other variables in the model such

as #Files that strongly correlate with #Chunks. These three points, in addition with

the variance let us to think this is the best model we can build with the covariables

investigated. The other models as well as their correlation coefficients can be found in

our supplementary website [Bro19].

Table 5.1 presents the correlation coefficients obtained by our regression model as well

as their p-value. Note that all independent variables are significant for a confidence

interval of 95%. The multiple R-squared and the p-value of our model are equal to 0.166

and < 2e− 16, respectively. Despite the multiple R-squared is small, what is not always

bad, it has a very small p-value which means that our model is significant for 99.9%

confidence interval.

44

5 Results

The most interesting point analyzing Table 5.1 is that #LoC, #ConfLoC, and #Devs

has a positive correlation coefficient. Hence, if these variables increase the time to

resolve merge conflicts also increases. On the other hand, #Chunks and CodeComplexity

has a negative correlation coefficient is negative. Hence, increasing code complexity of

conflicting chunks CodeComplexity and the number of chunks (#Chunks) leads to less

time to resolve merge conflicts. Note that two out of the three variables with the highest

correlation coefficient with the time to resolve the merge conflict found in the rank

correlation analysis remains with the highest correlation in the multivariante regression

model analysis. As #Files was removed for our best fit model it is supposed that this

variable does not appear in this analysis. As mentioned, #LoC and #Chunks already

represent the variance that #Files could represent to our model.

A simple way to interpret the results of or regression model is described as follows.

For a given independent variable (predictor), the coefficient β can be interpreted as the

average effect on ŷ of a one unit increase in predictor, holding all other predictors fixed.

For example, for a fixed amount of #ConfLoC, #Chunks, #Devs, CodeComplexity, and

%IntegratorKnowledge, adding 100 LoC in the merge scenario leads to an increase in

time by approximately 0.4741 ∗ 100 = 474 seconds or 8 minutes to solve the merge

conflicts, on average. As another example, for a fixed amount of #LoC, #ConfLoC,

#Devs, CodeComplexity, and %IntegratorKnowledge, adding 100 chunks in the merge

scenario leads to an decrease in time by approximately 240 seconds or 4 minutes. We

discuss this controversial counter intuitive in Chapter 6.

45

5 Results

Table 5.2: Effect Size Analysis
Measure Cohen’s f 2

#Chunks 0.3136
#LoC 0.2097
#Devs 0.1773
#ConfChunks 0.1168
CodeComplexity 0.0838
%IntegratorKnowledge 0.0671

5.5 Effect Size Analysis

Finally to answer our research question and be able to classify independent variables

for the one the influence #SecondsToMerge most, we performed an effect size analysis.

As describe in Section 4.4, we choose Cohen’s f 2 effect size since it is more adequate

when using multivariate regression models. Table 5.2 presents the results of our effect

size analysis ordered by the highest effect to the lowest effect. Note that as #ConfLoC,

#Files, #ConfFiles, %FormattingChanges variables do not compose the effect size anal-

ysis since they were removed from the multivariate regression analysis.

Looking at Table 5.2 we see that the effect size of #Chunks, #LoC, #Devs, #Con-

fChunks, CodeComplexity, and %IntegratorKnowledge are 0.3136, 0.2097, 0.1773, 0.1168,

0.0838, and 0.0671, respectively. Following Cohen’s classification, #Chunks, #LoC, and

#Devs have a medium effect size on merge conflict resolution time and the bottom three

variables (#ConfChunks, CodeComplexity, and %IntegratorKnowledge) have a small ef-

fect size. Note that, despite #Chunks has a medium effect size its Cohen’s f 2 is close

to the large effect size group.

Surprisingly the three variables with highest effect size are not directly related with

the merge conflicts (i.e., they are related to the merge scenario changes). In addition,

to that looking at the regression analysis, we can see that the number of chunks has

46

5 Results

a negative correlation coefficient while the other two variables indirectly related with

merge conflicts (#LoC and #Devs) has a positive coefficient. Hence, we assume that

more chunks in the merge scenario leads to shorter merge conflict resolution time with a

medium effect size. On the other hand, more lines of code and developers lead to more

time to resolve the merge conflicts with a medium effect size.

5.6 Research Question Answer Summary

Our distribution of covariates among projects analysis indicate that there is no bias

evaluating all merge scenarios together since variables have a similar distribution among

projects and %FormattingChanges may be not a good metric for our analysis since it

is absent in most projects. Our rank correlation analysis enforced by the principal

component analysis shows that some variables are strongly correlated. With that, they

should be grouped to remove noise from our multivariate regression model and keep

high variance. Our multivariate regression model analysis shows that #LoC, #Chunks,

#ConfChunks, #Devs, CodeComplexity and %IntegratorKnowledge are correlated with

the #SecondsToMerge with a confidence interval of 95% of significance. #Chunks and

CodeComplexity have a negative influence while the other four variables have a positive

influence. Our effect size analysis reveals that #Chunks, #LoC, and #Devs have a

medium effect size on the merge conflict resolution time and #ConfChunks,

CodeComplexity, and %IntegratorKnowledge have a small effect size on the

merge conflict resolution time.

47

6 Discussion

This chapter discusses the results of the analysis of factors that make merge conflict

resolution harder in practice. Furthermore, it presents the threat to validity of the

study. The chapter begins with comparing our results with previous studies. Then it

ends with the discussion of the threats to validity. This chapters discusses reflections

on upon our study (6.1), compares our results with previous studies (6.2) and present

limitation and threats to validity to our study.

6.1 Reflection Upon Our Results

Why do we investigate the difficulty to resolve conflicting merge scenarios in-

stead of the difficulty to resolve each merge conflict separated? We investigate

the difficulty to resolve conflicting merge scenarios instead of the difficulty to resolve

each merge conflict separated because when the merge conflicts occur, the integrator

should resolves all the merge conflicts present in the merge scenario. Hence, as some

of them depend on other merge conflicts and might be larger or more complex than

others it would be hard to estimate how much time the integrator took to solve each

specific merge conflict. This approach of looking at the merge scenario changes and all

conflicting merge scenarios are also used by related work [S M17] [Nel19] [Ghi18].

48

6 Discussion

Why formatting changes are common in some software projects and absent

in the majority of the subject projects? To investigate this question we looked

at four measures: domain, popularity, programming language, and rules to contribute to

the project. In addition, we use two merge scenario metrics to obtain an overview of

formatting changes. #CMS and #CMS100% which stands for the number of conflict-

ing merge scenarios with one or more formatting changes and the number of conflicting

merge scenarios with 100% of formatting changes. Table 6.1 presents an overview of

these measures for the subject projects containing formatting changes. Regarding the

domain, we can see that three projects were classified to framework, three to tools, two

to learning, and two to library domain. Learning domain has #CMS and #CMS100%

equal to 11 and 8, respectively. Even that this domain has only two projects, they called

our attention and we looked at deep into them. Looking at them, we could perceive that

software projects in the learning domain consist of projects with theoretical content as

well as practical exercises. Hence, a great amount of no programming language code

can be found which may lead to merge conflicts given formatting changes. Regarding

popularity, we use the project id from Table 4.2. In this table they were order by popu-

larity. Considering it, we cannot see a notable difference since the most popular project

and also the 42th most popular project belongs to this list. Regarding programming

language, we can see that 6 out of the 10 projects that has merge scenarios with format-

ting changes use JavaScript. As our subject projects consist of almost half of JavaScript

projects, it is hard to conclude that JavaScript is a programming language that normally

involves formatting changes. Regarding the rules to contribute to the project, CS-Notes

project with no rule to contribute to project defined has 8 and 7 conflicting merge sce-

narios with formatting changes and with 100% of formatting changes, respectively. As

the other two projects without rules to contribute to the project do not have many for-

matting changes, it is hard to draw some conclusion. However, as stated by previous

49

6 Discussion

Table 6.1: An Overview of the Projects with Formatting Changes

Id Project Name Domain Programming #CMS #CMS100% Rules to contribute
Languages to the project

1 freeCodeCamp Learning JavaScript 3 1 Yes, well defined
4 bootstrap Framework JavaScript 1 0 Yes, well defined
12 d3 Library JavaScript 1 1 No
19 electron Framework C++ 5 0 Yes, well defined
20 create-react-app Tool JavaScript 2 0 Yes, well defined
24 CS-Notes Learning Java 8 7 No
25 node Framework JavaScript 1 0 Yes, well defined
33 Models Library Python 1 1 Yes, but not very clear
38 youtube-dl Tool Python 1 1 No
42 webpack Tool JavaScript 5 0 Yes, well defined

studies [ALL12] many merge conflicts could not half existed by avoiding formatting and

syntactic changes. With all, looking at the measures together, we can see that learning

domain and not defining rules to contribute to the project may increase the number of

conflicting merge scenarios with formatting changes.

Do integrators normally know the conflicting merge scenario that they are

going to integrate? Are these merge scenarios more complicated than con-

flicting merge scenarios integrated by integrators without knowledge on the

files in conflict? To answer these two questions, we create a subset with only merge

scenarios that the integrator had some knowledge and compared with the merge scenar-

ios that the integrator had no knowledge. As result, in 38.62% of the conflicting merge

scenarios the integrator had some knowledge on the files in conflict (516 conflicting merge

scenarios out of 1336). In addition, in 35.63% of the conflicting merge scenarios the inte-

grator knew all the files in conflict (conflicting merge scenarios 476 out of 1336). This is

an interesting finding because in more then one than one third of the conflicting merge

scenarios the integrator already knew something about the files that she integrated. As

our regression model does not present a negative correlation coefficient for this metric

with the #SecondsToMerge, we did a further analysis to see whether the merge scenarios

50

6 Discussion

that they integrated were larger, more complex, or with more developers involved.

Table 6.2 shows the mean and average of the two datasets mentioned including all

investigated variables in this study, except %FormattingChanges since this metric is in

percentage. As we can see, integrators that had knowledge on the merge scenario take

less time on average than the ones that do not have any knowledge, however, the median

is greater for them. In other words, when integrators know about the files that they are

merging, they are fast, however, for half of the merge scenarios that they integrate they

took more time. It should be given the fact that developers normally ask for helping

when doing complicated tasks [Nel19]. For that reason waiting for some support on

the merge conflict resolution make it longer. Looking at the other metrics we can see

that integrators with previous knowledge on the modified files normally integrate larger

merge scenarios (i.e., #LoC, #Chunks, and #Files), with more developers involved

(#Devs), and larger number of conflicting files (#ConfFiles). However, integrators

without previous knowledge normally resolve conflicting merge scenarios with larger

#ConfLoC, #ConfChunks, and CodeComplexity.

Why merge scenario size metrics are more correlated with the merge conflict

resolution time than merge conflict size metrics? Solving merge conflicts is not

something trivial, for that reasons we have so many studies investigating it, and some

with unexpected results [Les18]. One may say that it depends on the type of the conflict

[ABC18], others will say that it depends on the language constructs that composes the

conflict [Ghi18]. What none may question is that resolving merge conflicts and avoid

unexpected behavior as well bugs and passing in the tests do not involve look only at

the conflicting code. As we can see in our data, normally the conflicting code is only a

fraction of the changes in the merge scenario, however, if the conflicting code depends

of many not conflicting code the integrator have to understand the non conflicting code.

51

6 Discussion

Ta
bl

e
6.

2:
C

om
pa

ris
io

n
B

et
we

en
th

e
D

at
as

et
w

hi
ch

In
te

gr
at

or
s

H
ad

K
no

w
le

dg
e

be
fo

re
R

es
ol

vi
ng

th
e

M
er

ge
C

on
fli

ct
s

an
d

th
e

D
at

as
et

w
hi

ch
In

te
gr

at
or

s
H

ad
N

o
K

no
w

le
dg

e
be

fo
re

R
es

ol
vi

ng
th

e
M

er
ge

C
on

fli
ct

s
D

at
as

et
St

at
is

ti
cs

M
ea

su
re

s

#
Se

co
nd

sT
oM

er
ge

#
L

oC
#

C
on

fL
oC

#
C

hu
nk

s
#

C
on

fC
hu

nk
s

#
F

ile
s

#
C

on
fF

ile
s

#
D

ev
s

C
od

eC
om

pl
ex

it
y

H
ad

K
no

w
le

dg
e

m
ea

n
36

94
3

75
09

.4
12

6.
9

64
8.

5
4.

7
11

5.
0

3.
1

10
.0

8.
9

m
ed

ia
n

77
3

59
6

12
87

1
18

1
5

2

D
id

no
t

ha
ve

m
ea

n
10

94
09

.0
55

57
.1

14
6.

1
37

6.
6

8.
0

62
.1

2.
2

8.
0

33
.3

K
no

w
le

dg
e

m
ed

ia
n

36
4

35
9

12
67

1
15

1
3

4

52

6 Discussion

Therefore, our answer to the question is regarding the dependencies among changed

code. Integrators have to understand what changed in the merge scenario to only then

decide the best option in solving each specific merge conflict.

Why does the number of chunks have a negative correlation coefficient with

the number of seconds to resolve conflicting merge scenarios? The answer

of the previous discussion point is also related to this question. So, arguments from

the previous point remain true for this point. However, in the case of the number of

chunks, we agree with Ghioto et al., [Ghi18] that the language constructors will have

a fundamental role on the merge conflict resolution. Looking at our analysis, we can

see that the impact of increasing the number of chunks will be greater than increasing

lines of code. The reasonable explanation is that having small chunks make the code

understanding fast, and in many cases, when there is no dependence, the integrator can

only ignore that chunk. On the other hand, when the chunk is large many functionality

is there and it increases also the dependence with other pieces of code.

6.2 Comparing Our Results with Previous Studies

In this section we compare our findings on merge conflict resolution with related work.

As it is hard to compare values, we only provide a descriptive answer for each of them

showing when they agree with each other or disagree with each other.

Table 6.3 shows the comparison of our results with previous studies. As we can see, 13

factors are explored by previous studies and our study explore 3 new factors. By com-

paring our results with Nelson et al. [Nel19], we see that complexity of conflicting lines

of code (CodeComplexity) and non-functional changes (%FormatingChanges) are factors

that make the merge conflict resolution harder in their study. However, in our study we

53

6 Discussion

Table 6.3: Comparison of Our Results with Previous Studies
Factors Nelson Ghiotto Our Study

Complexity of conflicting lines of code V - X
Expertise in area of conflicting code V - V
Complexity of files with conflicts V - -
Number of conflicting lines of code V - V
Time to resolve a conflict V - -
Atomicity of changesets in conflict V - -
Dependencies of conflicting code V - -
Number of files in the conflict V - V
Non-functional changes in codebase V - X
Number of chunks - - X
Number of lines of code - V V
Number of developers - - V
Number of files - - V
Number of conflicted chunks - V V
Language constructs involved in conflicting chunks - V -
Language constructs involving multiple conflicting chunks - V -

Nelson = Nelson et al. [Nel19] study, Ghiotto = Ghiotto et al. [Ghi18] study
”V” means that the factor makes merge conflict resolution harder.
”X” means that the factor makes the merge conflict resolution easier.
”-” the factor is not explored by the study.

found that code complexity and non-functional changes has a negative effect on merge

conflict resolution. Comparing our results with Ghiotto et al. [Ghi18] study, we agree

on the two common factors that we both explore. In other words, both studies agree

that number of lines of code (#LoC) and number of conflicting chunks (#ConfChunks)

make the merge conflict resolution harder.

6.3 Threats To Validity

In this section, we discuss limitations and internal and external threats to the validity

of our study. We try to eliminate threats when possible and decrease the effect when

the elimination of threats was not possible.

54

6 Discussion

6.3.1 Internal Validity

There are basically three main factors for internal validity. First, we are not able to

measure the experience of the integrator. This is a limitation of our study since more

experience developers may need less time to solve the same merge conflict than less

experience developers.

Second, despite our analysis is not dependent of programming language, our script to

calculate the complexity of the code supports a limited number of programming lan-

guages. Hence, the study does not generalize to other groups or open source software

projects written in programming languages that out script does not support. In our

supplementary website, we provide details which programming languages the analysis

script covers.

Third, we are not able to capture unexpected events that happened on the merge conflict

resolution. We believe that it does not influence our results because it would change all

the analyzed variables and not only some of them. However, we could not check if these

merge scenarios are outliers without asking developers.

6.3.2 External Validity

External validity is threatened mainly by four factors. First, our restriction to Git

and GitHub as platform as well as to the pull-based model. Generalizability to other

platforms, projects, and development model is limited. This limitation of the sample

was necessary to reduce the influence of confounds, increasing internal validity, though

[Sie14]. While more research is needed to generalize to other version control systems

and development models, we are confident that we selected and analyzed a practically

55

6 Discussion

relevant platform and a substantial number of software projects from various domains,

programming languages, longevity, size, and coordination practices. In addition, our

filters applied during subject project selection guarantee, for instance, that we sampled

projects that actively use GitHub as a communication tool and that we do not let a

single programming language dominate our dataset (see Section 4.2).

Second, developers may use informal work practices, awareness-tools, or prediction

strategies (e.g., continuous integration and rebase) that we are not able to measure.

To minimize this threat, we manually looked at 50 issues randomly selected of each sub-

ject project searching for terms that point to such practices and tools, but we did not

find any indication. One may also claim that rebased scenarios bias our analysis, how-

ever, since the commit(s) that a developer wants to integrate into another branch will

be added on the top of the branch. it will make the repository’s history linear avoiding

merge conflicts. In addition, as mentioned in Sections 4.2–4.3, the rebase scenarios that

damage the repository’s history and so we are not able to retrieve the common ancestor

of two (parent) commits were excluded from our analysis. Considering that our research

is only about the pull-based model (i.e., three-way merge), together with the previous

actions, there is no bias.

Third, we are not able to retrieve information from binary files, hence, we may miss a

piece of information from some merge scenarios. Unfortunately we cannot do anything

about that, however, the number of binary files is normally small in software projects.

Fourth, the need of triangulation through interview data. Interviewing developers could

make our analyses and findings more reliable, however, as some our results intrigued

us, we believe this would also happen to other developers. To mitigate this threat,

we provided triangulation through observational data for every topic that deals with

counter-intuitive findings, as we discussed in Sections 6.1.

56

7 Final Remarks

In the collaborative software development developers work simultaneously in a project

addressing different tasks through version control systems. Simultaneously contributions

to a common code base may introduce problems during integration, often manifesting

as merge conflicts. Merge conflicts occur when one or multiple developers change the

same chunk of code in different branches. There are many studies investigating merge

conflicts, however, only few of them investigated the merge conflict resolution and none

of them has investigated merge conflict resolution in practice. However, these factors

are not investigated in practice.

In this study, we present factors that make conflicting merge scenarios harder to re-

solve in practice. To achieve our goal, we extract merge scenario information from 31

GitHub projects chosen based on their popularity, developed in 13 different program-

ming languages containing around 45766 merge scenarios involving 1.2 million files and

6.3 million chunks. We investigate variables directly related to merge conflict (i.e.,

#ConfLoC, #ConfChunks, #ConfFiles, %IntegratorKnowledge, %FormattingChanges,

and CodeComplexity) and variables indirectly related to merge conflict (i.e., #LoC,

#Chunks, #Files, and #Devs). For operationalization of our study, we first check the

distribution of covariates among projects to see if it may influence our results. Second,

57

7 Final Remarks

we compute the rank correlation of all covariables using the Spearman rank-based cor-

relation. Third, we compute principal component analysis to have a better visualization

of the correlation among covariables and remove some of them to reduce noise in our

analysis. Fourth, we build and compute the multivariate regression model for predicting

factors that influence the merge conflict resolution time. Finally, we compute Cohen’s

f 2 effect size to measure the influence of the investigated factors on the merge conflict

resolution time.

As result of our rank correlation analysis together with our principal component anal-

ysis, we found a strong correlation among merge conflict size metrics (i.e., #LoC,

#Files, and #Chunks), medium correlation among merge conflict size metrics (i.e.,

#ConfLoC, #ConfFiles, and #ConfChunks), and small correlation among %Integra-

torKnowledge and %FormatingChanges with the merge conflict resolution time metric

(#SecondsToMerge). The two exceptions are in the case of %IntegratorKnowledge with

a negative correlation coefficient with CodeComplexity and positive correlation coeffi-

cient with #Devs. By using multivariate regression analysis, we found that increasing

#LoC, #ConfLoC, #Devs, and %IntegratorKnowledge, the time to resolve the merge

conflicts also increases. However, when increasing #Chunks and CodeComplexity, the

time to resolve the merge conflicts decreases. Our effect size analysis indicates that the

6 factors that make conflicting merge scenarios to resolve in practice are: #Chunks,

#LoC, #Devs, #ConfChunks, CodeComplexity and %IntegratorKnowledge ordered by

the effect size.

Reflecting upon our study we investigated explanations for some unexpected results.

These explanations show the reasons of why some projects are prone to have formatting

changes, why integrators that had knowledge on changed files before face with the merge

conflicts need more time to solve merge conflicts than integrators that did not had

58

7 Final Remarks

previous knowledge on the conflicting code, and why merge scenario size metrics have

a stronger correlation with the merge conflict resolution time than merge conflict size

metrics.

As future work, we suggest a study that involves more variables to understand their

influence on the merge conflict resolution time. These variables include factors that we

are not able to measure for instance the dependencies among files, chunks, conflicting

files, and conflicting chunks. We also suggest interviewing developers asking them about

specific outliers merge scenarios. This investigation would explain strange values of the

factors that we analyzed in this study.

59

Bibliography

[ABC18] Paola Accioly, Paulo Borba, and Guilherme Cavalcanti. “Understanding Semi-

structured Merge Conflict Characteristics in Open-source Java Projects”. In:

Empirical Softw. Engg. 23.4 (Aug. 2018), pp. 2051–2085. issn: 1382-3256.

doi: 10.1007/s10664-017-9586-1. url: https://doi.org/10.1007/

s10664-017-9586-1 (cit. on pp. 9, 20, 51).

[AS09] Brian de Alwis and Jonathan Sillito. “Why Are Software Projects Moving

From Centralized to Decentralized Version Control Systems?” In: Jan. 2009,

pp. 36–39. isbn: 978-1-4244-3712-2. doi: 10.1109/CHASE.2009.5071408

(cit. on p. 13).

[Ape11] Apel, Sven and Liebig, Jörg and Brandl, Benjamin and Lengauer, Christian

and Kästner, Christian. “Semistructured Merge: Rethinking Merge in Revi-

sion Control Systems”. In: Proceedings of the 19th ACM SIGSOFT Symposium

and the 13th European Conference on Foundations of Software Engineering.

ESEC/FSE ’11. Szeged, Hungary: ACM, 2011, pp. 190–200. isbn: 978-1-4503-

0443-6. doi: 10.1145/2025113.2025141. url: http://doi.acm.org/10.

1145/2025113.2025141 (cit. on pp. 9, 18).

60

Bibliography

[ALL12] Sven Apel, Olaf Lessenich, and Christian Lengauer. “Structured Merge with

Auto-tuning: Balancing Precision and Performance”. In: Proceedings of the

27th IEEE/ACM International Conference on Automated Software Engineer-

ing. ASE 2012. Essen, Germany: ACM, 2012, pp. 120–129. isbn: 978-1-4503-

1204-2. doi: 10.1145/2351676.2351694. url: http://doi.acm.org/10.

1145/2351676.2351694 (cit. on pp. 9, 17, 18, 50).

[Bha14] Sanjiv Bhadauria. “Introduction to Principal Component Analysis in Applied

Research”. In: New Man International Journal of Multidisciplinary Studies

Vol.1 (Dec. 2014), pp. 67–75 (cit. on p. 36).

[Bie07] Biehl, Jacob T. and Czerwinski, Mary and Czerwinski, Mary and Smith, Greg

and Robertson, George G. “FASTDash: A Visual Dashboard for Fostering

Awareness in Software Teams”. In: Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems. CHI ’07. San Jose, California,

USA: ACM, 2007, pp. 1313–1322. isbn: 978-1-59593-593-9. doi: 10.1145/

1240624.1240823. url: http://doi.acm.org/10.1145/1240624.1240823

(cit. on pp. 9, 19).

[BV18] Hudson Borges and Marco Valente. “Whats in a GitHub Star? Understanding

Repository Starring Practices in a Social Coding Platform”. In: Journal of

Systems and Software 146 (Sept. 2018), pp. 112–129. doi: 10.1016/j.jss.

2018.09.016 (cit. on p. 27).

[Bro19] Muhammad Zohaib Brohi. “Software Practitioners Perspective on Merge

Conflicts and Resolution”. In: (2019). url: https://sites.google.com/

view/perspective-on-merge-conflicts (cit. on pp. 11, 34, 44).

[Bru11] Brun, Yuriy and Holmes, Reid and Ernst, Michael D. and Notkin, David.

“Proactive Detection of Collaboration Conflicts”. In: Proceedings of the 19th

ACM SIGSOFT Symposium and the 13th European Conference on Founda-

61

Bibliography

tions of Software Engineering. ESEC/FSE ’11. Szeged, Hungary: ACM, 2011,

pp. 168–178. isbn: 978-1-4503-0443-6. doi: 10.1145/2025113.2025139. url:

http://doi.acm.org/10.1145/2025113.2025139 (cit. on pp. 9, 18, 21).

[Coh88] J Cohen. “Statistical power analysis for the behavioral sciences. Rev ed, Aca-

demic Press”. In: New York. xv (Jan. 1988) (cit. on p. 37).

[Dab12] Dabbish, Laura and Stuart, Colleen and Tsay, Jason and Herbsleb, Jim. “So-

cial Coding in GitHub: Transparency and Collaboration in an Open Software

Repository”. In: Proceedings of the ACM 2012 Conference on Computer Sup-

ported Cooperative Work. CSCW ’12. Seattle, Washington, USA: ACM, 2012,

pp. 1277–1286. isbn: 978-1-4503-1086-4. doi: 10.1145/2145204.2145396.

url: http://doi.acm.org/10.1145/2145204.2145396 (cit. on p. 27).

[DH07] Prasun Dewan and Rajesh Hegde. “Semi-Synchronous Conflict Detection and

Resolution in Asynchronous Software Development.” In: Jan. 2007, pp. 159–

178. doi: 10.1007/978-1-84800-031-5_9 (cit. on pp. 9, 13).

[Fan18] Fang, Yili and Sun, Hailong and Li, Guoliang and Zhang, Richong and Huai,

Jingpeng. “Context-Aware Result Inference in Crowdsourcing”. In: Informa-

tion Sciences 460 (May 2018). doi: 10.1016/j.ins.2018.05.050 (cit. on

p. 25).

[Ghi18] Ghiotto lima de Menezes, Gleiph and Murta, Leonardo and Barros, MÃand

van der Hoek, Andre. “On the Nature of Merge Conflicts: a Study of 2,731

Open Source Java Projects Hosted by GitHub”. In: IEEE Transactions on

Software Engineering PP (Sept. 2018), pp. 1–1. doi: 10.1109/TSE.2018.

2871083 (cit. on pp. 20, 48, 51, 53, 54).

[GPD14] Georgios Gousios, Martin Pinzger, and Arie van Deursen. “An Exploratory

Study of the Pull-based Software Development Model”. In: Proceedings of

62

Bibliography

the 36th International Conference on Software Engineering. ICSE 2014. Hy-

derabad, India: ACM, 2014, pp. 345–355. isbn: 978-1-4503-2756-5. doi: 10.

1145/2568225.2568260. url: http://doi.acm.org/10.1145/2568225.

2568260 (cit. on pp. 8, 14, 29).

[GSB16] Georgios Gousios, Margaret-Anne Storey, and Alberto Bacchelli. “Work Prac-

tices and Challenges in Pull-based Development: The Contributor’s Perspec-

tive”. In: Proceedings of the 38th International Conference on Software En-

gineering. ICSE ’16. Austin, Texas: ACM, 2016, pp. 285–296. isbn: 978-1-

4503-3900-1. doi: 10.1145/2884781.2884826. url: http://doi.acm.org/

10.1145/2884781.2884826 (cit. on pp. 14, 27).

[GS12] Mário Luís Guimarães and António Rito Silva. “Improving Early Detection

of Software Merge Conflicts”. In: Proceedings of the 34th International Con-

ference on Software Engineering. ICSE ’12. Zurich, Switzerland: IEEE Press,

2012, pp. 342–352. isbn: 978-1-4673-1067-3. url: http://dl.acm.org/

citation.cfm?id=2337223.2337264 (cit. on pp. 9, 15, 18).

[Jam13] James, Gareth and Witten, Daniela and Hastie, Trevor and Tibshirani, Robert.

An Introduction to Statistical Learning. Jan. 2013, p. 426. isbn: 1461471389

(cit. on p. 37).

[JAM17] Mitchell Joblin, Sven Apel, and Wolfgang Mauerer. “Evolutionary Trends of

Developer Coordination: A Network Approach”. In: Empirical Softw. Engg.

22.4 (Aug. 2017), pp. 2050–2094. issn: 1382-3256. doi: 10.1007/s10664-

016-9478-9. url: https://doi.org/10.1007/s10664-016-9478-9 (cit. on

pp. 8, 12, 15).

[Kal14] Kalliamvakou, Eirini and Gousios, Georgios and Blincoe, Kelly and Singer,

Leif and German, Daniel M. and Damian, Daniela. “The Promises and Perils

of Mining GitHub”. In: Proceedings of the 11th Working Conference on Mining

63

Bibliography

Software Repositories. MSR 2014. Hyderabad, India: ACM, 2014, pp. 92–

101. isbn: 978-1-4503-2863-0. doi: 10.1145/2597073.2597074. url: /pub/

promises-perils-github.pdf (cit. on p. 28).

[KS13] Bakhtiar Khan Kasi and Anita Sarma. “Cassandra: Proactive Conflict Min-

imization Through Optimized Task Scheduling”. In: Proceedings of the 2013

International Conference on Software Engineering. ICSE ’13. San Francisco,

CA, USA: IEEE Press, 2013, pp. 732–741. isbn: 978-1-4673-3076-3. url:

http://dl.acm.org/citation.cfm?id=2486788.2486884 (cit. on pp. 9,

19).

[LW03] J L. Myers and Arnold Well. “Research Design Statistical Analysis”. In: XVII

(Jan. 2003) (cit. on p. 35).

[Lei13] Leif Singer and Fernando Marques Figueira Filho and Brendan Cleary and

Christoph Treude and Margaret-Anne D. Storey and Klaus Schneider. “Mu-

tual assessment in the social programmer ecosystem: an empirical investiga-

tion of developer profile aggregators”. In: CSCW. 2013 (cit. on p. 27).

[Les18] Lessenich, Olaf and Siegmund, Janet and Apel, Sven and Kästner, Christian

and Hunsen, Claus. “Indicators for Merge Conflicts in the Wild: Survey and

Empirical Study”. In: Automated Software Engg. 25.2 (June 2018), pp. 279–

313. issn: 0928-8910. doi: 10.1007/s10515-017-0227-0. url: https:

//doi.org/10.1007/s10515-017-0227-0 (cit. on pp. 8, 9, 14, 20, 51).

[LLH16] J. Liu, J. Li, and L. He. “A Comparative Study of the Effects of Pull Request

on GitHub Projects”. In: 2016 IEEE 40th Annual Computer Software and

Applications Conference (COMPSAC). Vol. 1. June 2016, pp. 313–322. doi:

10.1109/COMPSAC.2016.27 (cit. on p. 27).

64

Bibliography

[Men02] T. Mens. “A State-of-the-Art Survey on Software Merging”. In: IEEE Trans.

Softw. Eng. 28.5 (May 2002), pp. 449–462. issn: 0098-5589. doi: 10.1109/

TSE.2002.1000449. url: https://doi.org/10.1109/TSE.2002.1000449

(cit. on pp. 9, 12).

[Nel19] Nelson, Nicholas and Brindescu, Caius and McKee, Shane and Sarma, Anita

and Dig, Danny. “The life-cycle of merge conflicts: processes, barriers, and

strategies”. In: Empirical Software Engineering (2019), pp. 1–44. doi: 10.

1007/s10664-018-9674-x. url: https://app.dimensions.ai/details/

publication/pub.1111934867 (cit. on pp. 9, 21, 22, 24, 25, 48, 51, 53, 54).

[PSW11] Shaun Phillips, Jonathan Sillito, and Rob Walker. “Branching and Merging:

An Investigation into Current Version Control Practices”. In: Proceedings

of the 4th International Workshop on Cooperative and Human Aspects of

Software Engineering. CHASE ’11. Waikiki, Honolulu, HI, USA: ACM, 2011,

pp. 9–15. isbn: 978-1-4503-0576-1. doi: 10.1145/1984642.1984645. url:

http://doi.acm.org/10.1145/1984642.1984645 (cit. on pp. 8, 14).

[Roc17] Rocha, Fabio and Menezes, Pablo and Nascimento, Rogerio and JÃ, Metha-

nias and Oliveira, Adicineia. “CONTINUOUS INTEGRATION AND VER-

SION CONTROL: A SYSTEMATIC REVIEW”. In: May 2017. doi: 10.

5748/9788599693131-14CONTECSI/RF-4435 (cit. on p. 8).

[S J16] S. Just, K. Herzig, J. Czerwonka and B. Murphy. “Switching to Git: The

Good, the Bad, and the Ugly”. In: 2016 IEEE 27th International Symposium

on Software Reliability Engineering (ISSRE). Oct. 2016, pp. 400–411. doi:

10.1109/ISSRE.2016.38 (cit. on p. 29).

[S M17] S. McKee and N. Nelson and A. Sarma and D. Dig. “Software Practitioner

Perspectives on Merge Conflicts and Resolutions”. In: 2017 IEEE Interna-

tional Conference on Software Maintenance and Evolution (ICSME). Sept.

65

Bibliography

2017, pp. 467–478. doi: 10.1109/ICSME.2017.53 (cit. on pp. 9, 21, 22, 24,

25, 48).

[SNv03] A. Sarma, Z. Noroozi, and A. van der Hoek. “Palantir: raising awareness

among configuration management workspaces”. In: 25th International Con-

ference on Software Engineering, 2003. Proceedings. May 2003, pp. 444–454.

doi: 10.1109/ICSE.2003.1201222 (cit. on p. 19).

[SRv12] A. Sarma, D. F. Redmiles, and A. van der Hoek. “Palantir: Early Detection

of Development Conflicts Arising from Parallel Code Changes”. In: IEEE

Transactions on Software Engineering 38.4 (July 2012), pp. 889–908. issn:

0098-5589. doi: 10.1109/TSE.2011.64 (cit. on pp. 9, 15).

[SRP17] Todd Sedano, Paul Ralph, and Cécile Péraire. “Software Development Waste”.

In: Proceedings of the 39th International Conference on Software Engineer-

ing. ICSE ’17. Buenos Aires, Argentina: IEEE Press, 2017, pp. 130–140. isbn:

978-1-5386-3868-2. doi: 10.1109/ICSE.2017.20. url: https://doi.org/

10.1109/ICSE.2017.20 (cit. on p. 12).

[Sie14] Siegmund, Janet and Schumann, Jana. “Confounding parameters on program

comprehension: a literature survey”. In: Empirical Software Engineering 20

(Aug. 2014). doi: 10.1007/s10664-014-9318-8 (cit. on p. 55).

[Sto14] Storey, Margaret-Anne and Singer, Leif and Cleary, Brendan and Figueira

Filho, Fernando and Zagalsky, Alexey. “The (R) Evolution of Social Media

in Software Engineering”. In: Proceedings of the on Future of Software En-

gineering. FOSE 2014. Hyderabad, India: ACM, 2014, pp. 100–116. isbn:

978-1-4503-2865-4. doi: 10.1145/2593882.2593887. url: http://doi.

acm.org/10.1145/2593882.2593887 (cit. on p. 27).

66

Bibliography

[Thy09] Thyvalikakath, Thankam and Monaco, Valerie and Thambuganipalle, Himabindu

and Schleyer, Titus. “Comparative study of heuristic evaluation and usability

testing methods”. In: Studies in health technology and informatics 143 (Feb.

2009), pp. 322–7. doi: 10.3233/978-1-58603-979-0-322 (cit. on p. 25).

[TDH14] Jason Tsay, Laura Dabbish, and James Herbsleb. “Influence of Social and

Technical Factors for Evaluating Contribution in GitHub”. In: Proceedings

of the 36th International Conference on Software Engineering. ICSE 2014.

Hyderabad, India: ACM, 2014, pp. 356–366. isbn: 978-1-4503-2756-5. doi:

10.1145/2568225.2568315. url: http://doi.acm.org/10.1145/2568225.

2568315 (cit. on p. 27).

[Whi10] Whitehead, Jim and Mistrík, Ivan and Grundy, John and van der Hoek, An-

dré. “Collaborative Software Engineering: Concepts and Techniques”. In: Col-

laborative Software Engineering. Ed. by Ivan Mistrík et al. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2010, pp. 1–30. isbn: 978-3-642-10294-3. doi:

10.1007/978-3-642-10294-3_1. url: https://doi.org/10.1007/978-3-

642-10294-3_1 (cit. on p. 8).

[Zim04] Zimmermann, Thomas and Weisgerber, Peter and Diehl, Stephan and Zeller,

Andreas. “Mining Version Histories to Guide Software Changes”. In: Proceed-

ings of the 26th International Conference on Software Engineering. ICSE ’04.

Washington, DC, USA: IEEE Computer Society, 2004, pp. 563–572. isbn:

0-7695-2163-0. url: http : / / dl . acm . org / citation . cfm ? id = 998675 .

999460 (cit. on p. 13).

67

Eidesstattliche Erklärung

Hiermit versichere ich, dass ich diese Masterarbeit selbstständig und ohne Benutzung

anderer als der angegebenen Quellen und Hilfsmittel angefertigt habe und alle Aus-

führungen, die wörtlich oder sinngemäß übernommen wurden, als solche gekennzeichnet

sind, sowie, dass ich die Masterarbeitin gleicher oder ähnlicher Form noch keiner anderen

Prüfungsbehörde vorgelegt habe.

Passau, 17. Juli 2019

AUTHOR

68

