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Abstract

Current research has provided increasingly accurate collaboration
networks. At the same time, the growing number of applications for
these networks, for example, to predict software failures, leads to the
direct need of more accurate networks.

This thesis enlightens a new way of gathering developer collabo-
ration by using the notion of features established by the research of
software product lines (SPL). Within this work we show how feature-
aware collaboration tracking can be implemented within the software
analysis tool Codeface, which already supports the creation of tag-
ging, file, and function based collaboration networks. Additionally we
benchmark our implementation and evaluate our networks by compar-
ing them with the established function based networks on four open
source projects using three 3-month commit windows.
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1. Introduction

Software product lines (SPLs) are an effective way to implement software products for a
specific domain [28]. SPLs consist of a shared code base and are configured by specifying
a set of features, each provided by feature-specific code. Every configuration yields a
different software product. Due to the characteristics of the implementation mechanism
features may also have inter-dependencies and often require extra code (glue code) de-
pending on the configuration. In the end the idea is to maximize the reuse of software
artifacts between different products [28].

For readability, we assume that the concrete implementation of SPLs is done in
C/C++ with the help of the C-Preprocessor (CPP) to annotate feature-specific code.
This is reasonable as most of the examples discussed within this work can be imple-
mented using other concrete methods of feature separation as well. Furthermore, the
CPP is widely used for SPLs, even when research shows that alternatives exist [20, 14].

Collaboration tracking or collaboration analysis as suggested within this work aims at
answering the question “Who is working with whom?” by only using the version control
system. These collaboration networks provide crucial information for project managers
or new project members [29, 9, 11, 12, 25, 26]. A project manager could compare these
networks with the networks of the actual communication, extracted from, for example,
mailing lists. This way, a lack of communication or an overhead of communication could
be detected. On the other hand, new members are able to see with whom they should
connect with for their changes. Research strongly indicates that developer organization
and coordination is critical for software quality [9, 8, 11, 12, 26, 25], some are even able
to predict software failures [24, 26].

It has already been shown that modern version control systems (VCS) provide suf-
ficient information to construct such collaboration networks with various methods [18,
22, 21, 16, 17, 23]. Research by Joblin et al. has shown that function-based collabora-
tion networks are more accurate than file- and tagging-based networks [18]. However,
the authors suggest that there are still missing links, so it is likely that a more special-
ized analysis can uncover those. We implement and investigate two more approaches
specialized to SPLs, which incorporate the feature view into the analysis. Addition-
ally we evaluate our new approaches by comparing the feature-based networks with the
function-based ones.
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2. Related Work

To get a general overview on the current state of research, we give a short historical
overview about the related work leading to this thesis.

Initially extracting collaboration information from the VCS was done by Lopez-Fer-
nandez et al., by linking developers based on the collaboration on the same module
[21, 22]. This work was later improved by Huang et al. by automating module clas-
sification by analyzing the directory structure [16]. However, the developer networks
generated by this approach are still to dense to apply any collaboration analysis. One
important step was done by Jermakovics et al. to use file information to capture collab-
oration [17]. With this method collaboration is identified by working on the same file
instead of a complete directory. This helped to find more fine-grained collaboration but
the generated networks where still too dense for collaboration analysis methods. But
the authors still managed to run a community-detection and visualize their networks by
filtering them beforehand. A more fine-grained approach was used by Bird et al. by
using the Linux tagging convention to construct a developer network without analyzing
it [7].

Joblin et al. found a general and fully automated approach to produce collaboration
networks just with the right amount of density to be able to use them in collaboration
analysis algorithms [18]. The general idea was to take the code structure into account
and detect collaboration if developers collaborated in the same function of a file. They
implemented this approach within the freely available Codeface tool [1], they verified
the generated function-based networks in an empirical study and compared the Linux
graph against the tagging approach. They also extended the work of Meneely et al.
who addressed the question of real-world significance of file-based developer networks
by showing missing links and false positives by extending the survey and showing that
function-based networks only miss edges [23]. Our work starts at their conclusion that
the function-based approach reflects collaboration in reality, but is missing some edges.
By using a feature instead of a function induced code structure we aim to uncover those
missing links.

Research has used other sources to create collaboration networks. Mailing lists have
been used by using a sent e-mail as an edge between sender and recipient. Social-
network analysis has been applied to investigate different roles in the Linux mailing list
[27] Bird at al. have used mailing-list networks to compare the relationship between
email and VCS participation and to study the small-world property as well as social-
network analysis [5]. They also investigated the organization and structure of four open
source projects and have shown statistically significant communities [6]. However, they
miss to show real-world significance.

Bug-tracking systems have been used to create and analyze collaboration graphs by
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finding community structure as well [10, 15]. Their work focused on social networks in
contrast to developer networks as it seems obvious that the bug tracker is a place for
social interaction, but not necessarily suited to find developer collaboration, as most of
the time a single developer is responsible for fixing a bug and the bug is often reported
by people not directly committing to the repository.
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3. Codeface

Within this chapter we explain the codeface architecture and important implemen-
tation details. This provides the necessary background to explain our changes and the
new implementation, which will be shown in the following chapter.

3.1. Architecture

Codeface is a software-project analysis tool, which can analyze multiple data sources
within a common framework [18, 1]. The tool can extract and analyze information from
version control systems and mailing lists. An overview over the Codeface architecture
can be found in Figure 3.1.

Mailing list
analysis

none

none

Function/
File

Feature/
Feature File

Tagging/
C2A

Collaboration analysis Timing
Analysis

VCS Analysis

Codeface logging, sql abstraction, configuration

Codeface Architecture

Figure 3.1.: Architectural overview of Codeface. Codeface provides analysis meth-
ods for two sources, namely the mailing list and the VCS. The VCS Analysis
can be split up in two categories: First the timing analysis which calculates
evolutionary project metrics like the number of files, and the collaboration
analysis which creates the developer network and runs a cluster analysis
to extract clusters of developers. Codeface can find collaborations be-
tween developers based on files, functions and tagging (where C2A stands
for Commiter2Author) based approaches. And we present two completely
new approaches, namely Feature and Feature File as part of this thesis.

Codeface is an open-source project, initially developed internally by Siemens to
analyze software projects. The tool outputs PDF and LATEX reports of the collaborations

9



and communications in the system. Additionally, a web-service is included to visualize
the results within a website. A screenshot can be found in Figure 3.2.

Figure 3.2.: A screenshot of the shiny web service of Codeface. It shows the collabo-
ration section which shows the analysis of a collaboration network and the
detected clusters, i.e., groups of developers working together on the selected
time frame.

Within the scope of this work, only the collaboration analysis techniques of codeface
are discussed.

3.2. Collaboration Analysis

Codeface can generate a developer or collaboration network within its collaboration
analysis by using various ways for collaboration tracking. This process is defined for a
single time-frame of the VCS, however, Codeface can show the evolution of the data
by repeating its collaboration analysis process for multiple commit ranges. Hereinafter,
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we explain a single iteration and use the range (r1, r2), where r1 is the first commit
and r2 is the last. It is possible to configure multiple commit ranges for a project in
the Codeface configuration files and Codeface is able to process them in parallel.
If no commit range is specified, Codeface calculates and uses three 3-month windows
automatically, which have historically yielded good results [18].

The codeface collaboration analysis powered by the VCS data is described in Fig-
ure 3.3 and is given by a multiple-step process. In the first step, an internal Codeface
structure is generated from the version control system1. This first step gets the commit
and blame2 data out of the repository and saves it into an easy-and-fast-to-process, in-
memory, python data structure. Blame analysis is quite costly for most VCS systems, so
this step currently takes the most amount of the time. Additionally Codeface collects
line information depending on the selected analysis method. The first step is only done
for implementation and performance reasons and the internal data structure does only
contain data fetchable with a simple git query or additional tools for the line informa-
tion. Currently Codeface is calling sub-processes and parsing their output to fetch the
commit, blame and additional information.

The second step is to analyze the raw data and the code changes to determine the col-
laboration strength between different developers. The collaboration graph and strength
between the developers is then given by an adjacency matrix. The concrete meaning of
strength depends on the used analysis method.

This matrix is then used in the next step, the cluster analysis, to find clusters or
networks of developers. Codeface uses the order statistics local optimization method
(OSLOM) for community detection or cluster analysis. The main reason is that OSLOM
can handle weighted and directed networks [18, 19]. These clusters are then written to
various LATEX and PDF files in the output directory. Additionally Codeface saves the
developer network and the captured clusters in its database, the data-model is shown in
Figure 3.4.

The following subsections give further insight into the “Collaboration Analysis” box
of Figure 3.3.

3.2.1. Signed-Off/Committer2Author Analysis

The Signed-Off and Committer2Author analysis methods are enumerating all commits
from the current commit range and compute the collaboration directly from the commit
meta-data. The process is shown in Figure 3.5.

For the Committer2Author analysis, Codeface is reading the Author and Committer

meta-data fields from the Codeface internal data structure and adds a relation from
the committer to the author.

For the Signed-Off analysis, Codeface is only using the Commit-Message meta-data
field from the internal data structure. Projects use various tags within the commit

1Currently Codeface only supports the VCS system git
2A common feature of modern VCS to extract additional line information, like who contributed a

particular line on which particular commit. See git blame for details.

11



Start

IN: Commits

Collaboration Analysis

OUT: Collaboration Graph

Cluster Analysis

OUT: Collaboration Clusters

Stop

Figure 3.3.: Flowchart of the collaboration-analysis process in Codeface. Initially,
Codeface collects data about the configured repository. Then, Codeface
runs the configured collaboration analysis. The analysis produces an adja-
cency matrix, which represents the collaboration graph3. Now the graph is
processed by the cluster analysis to find the clusters of the network. Finally,
the output files are generated and results are saved to the database.

This graph is saved into the Codeface database as edgelist as well.
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edgelistweight

cluster

number method

person

name email

project name

analysis method

release range

start

end

fromId

toId

clusterId projectId projectId

projectId

Figure 3.4.: A (simplified) ER-Model of the Codeface database which only shows
tables relevant to saving collaboration analysis results. Clusters are saved
by creating a new entry in the cluster table and adding the edges to the
edgelist table. The complete developer network is saved in codeface as a
special cluster with number 0.
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message to add some additional information to a commit. For example, the Signed-Off

tag is used by many projects to establish a developer certificate of origin4 and is directly
supported by git itself5. Some projects use similar tags like Acked-by, Reviewed-by.
Codeface supports these tags and establishes a relationship between the mentioned
developers or authors.

Start

IN: Commit

Collect collaboration

Next commit?

OUT: Collaboration

Stop

yes

no

Figure 3.5.: Flowchart of the Signed-Off /Committer2Author collaboration analysis in
Codeface. It shows the most simple analysis method where just commits
are enumerated and the collaboration is collected by analyzing commit meta-
data. The Signed-Off analysis uses the Author and Committer meta-data
fields, while the Committer2Author parses the commit message to extract
common tags like Reviewed-by and Acked-by.

3.2.2. File/Function Analysis

While the previous analysis are pretty straightforward to understand from their imple-
mentation details, we want to give a much deeper insight into the File- and Function-
based analysis before discussing the technical details. This makes it easier to point out
the analogies and differences between the function-/file- and the feature-based methods,
that we implement.

4http://elinux.org/Developer_Certificate_Of_Origin
5http://git-scm.com/docs/git-commit
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High-Level Example

One way to explain the Function and File analysis is to look at an in-depth example
and show the processing step by step. The example should only provide the general idea
and doesn’t show the full process. To simplify the example, special cases like removing
older commits are not considered. Those details are explained later when the concrete
implementation is discussed.

For example, consider the code in Figure 3.6 to be a file within the currently analyzed
project at the time r2 (the end of our analysis window).

1 // I n i t i a l comment to foo
2 int f oo ( int arg ) {
3 doFunc ( ) ;
4 otherFunc ( ) ;
5 return 0 ;
6 }
7 // Some comment to bar
8 int bar ( int b) {
9 a ( ) ;

10 return 4 ;
11 }

Listing 3.6.: A simple example source code to explain the Function analysis.

Codeface will now run ctags and/or doxygen to gather function information and
git blame for the blame data [3, 4]. This process will yield information about the
lines of the code. In particular Codeface can now assign lines to specific functions and
to specific commits. The commits provide additional information about the user and
the time when the commits were added. Codeface uses the time of every commit, to
define an order on all the commits. Therefore we further simplify the example by using
abstract time points instead of concrete times. For our example code from Listing 3.6,
the result will look similar to Table 3.1.

Once function information is available the collaboration is collected by enumerating
the time steps and considering all older lines, working on the same function. The weight
is given by the sum of the number of lines. Performing these steps for the example
returns a set of collaborations for each time frame. The results from our example can
be found in Table 3.2.

Finally, Codeface creates a collaboration network from the aggregated collaboration
data. The graph for the current example, a project with a single code file, can be found
in Figure 3.7.
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Line Function User Time

1 FILE UserC 2
2 foo UserA 0
3 foo UserB 1
4 foo UserA 4
5 foo UserB 1
6 foo UserA 0
7 FILE UserD 5
8 bar UserC 2
9 bar UserC 2
10 bar UserC 2
11 bar UserA 3

Table 3.1.: Data available to Codeface after running the VCS blame analysis and
ctags/doxygen. Note that the abstract time used in this table is given
by an implicit commit order used within Codeface based on the commit
time.

Time User Function Collaborating User Weight

1 UserB foo UserA 2 + 2 = 4
3 UserA bar UserC 1 + 3 = 4
4 UserA foo UserB 1 + 2 = 3
5 UserD FILE UserC 1 + 1 = 2

Table 3.2.: Collaboration collection process by enumerating time steps, and finding col-
laboration with earlier times.

UserA

UserB

UserC

UserD

3

4

4

2

Figure 3.7.: A simple example function-based network generated from the code in List-
ing 3.6 and the collected metadata from Table 3.1.
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Implementation Details

In the File or Function6 analysis Codeface enumerates FileCommit objects instead
of raw commits. The process is shown in Figure 3.8. FileCommit objects are built by
splitting up every commit into the files it modifies and then collecting all parts, which
belong to the same file. Because the File analysis is a special case of the Function
analysis, where every file is seen as being one function, we only explain the Function
analysis.

While the analysis is complex, the basic idea is this: The collaboration of two authors
is given by the sum of the number of line changes on a function. For fetching the function
locations of a file, Codefaces uses docygen and falls back to ctags which covers a
wide range of programming languages. To include the time-information, the analysis
enumerates all commits of a file (FileCommit) and calculates the collaboration in the
following way:

1. Get the blame analysis of the file at commit r2.

2. Remove all lines after the current commit (c).

3. Remove all lines before the current commit-range start commit r1.

4. Group code-blocks (a group of lines with the same committer) by function name.

5. Calculate the collaboration for each group:

a) Separate the group into the blocks which belong to the current commit and
the rest.

b) Enumerate all commits (d) of the rest (commit d is always before commit c)

i. The collaboration strength is the sum of the blocks belonging to either
commit c or d.

ii. The direction of the collaboration is from committer of c to the committer
of d.

This procedure ensures that the ordering of the commits is taken into account. The
grouping of the commits is done for performance reasons and to simplify the implemen-
tation.

Naturally, one would use the file at the time of commit c at step 1, but for performance
reasons codeface uses the blame analysis of the file at the time r2 (the last commit
of the current range). While this is a potential threat to validity it has already been
analyzed and discussed by Joblin et al. [18] without any indication of practical relevance.
Although, we might miss collaborations.

6Within Codeface, the Function analysis is called the Proximity analysis as well.
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Start

IN: File

Do analysis as
explained in 3.2.2

Add results to
global results

Git blame,
ctags ouput

Process commit in file

Next file?

OUT: Collaboration

Stop

yes

no

Figure 3.8.: Flowchart of the File/Function collaboration analysis in Codeface. All
files are iterated and for each file all commits (FileCommit objects) are
iterated. For each file, the git blame and Doxygen or ctags output is used
to calculate the collaboration as explained in Section 3.2.2.
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4. Feature-Aware Collaboration Analysis
with Codeface

With the knowledge of the Codeface internals, we can now discuss how the new feature-
based analysis methods are implemented on top of the Codeface framework.

Basically two new analysis methods, namely the per-file Feature File and the project-
wide Feature analysis, have been added. While the Feature File analysis is heavily based
on the Function analysis, the Feature analysis implements a new approach7.

4.1. Feature detection

Before we can create any community networks based on features we first need to be
able to detect them. We therefore need to replace the ctags/doxygen-based detection
with cppstats, a tool for preprocessor-based SPLs, which allows detection of feature-
annotated code blocks [2]. We show this detection process with a simple code example
from Listing 4.1.

1 #i f A | |B
2 doFunc ( ) ;
3 #i f C
4 otherFunc ( ) ;
5 #endif
6 #endif

Listing 4.1.: A simple example source code to explain the feature detection algorithm.

First we run cppstats to detect feature lines and get the results written as a CSV
file as shown in Figure 4.2. The file contains a line for each feature, marks its start- and
end-line as well as the feature condition.

While we could use this format, create an entry for each source code line and insert
the feature information, there is a more efficient way to save this information by only
saving the lines which change the feature set. This is because we expect only a very
limited number of feature annotation lines in comparison to other lines. The idea is to
order this list of changed lines by the actual line number and use binary search when the
information is accessed. To construct such a list, we first need to parse the cppstats

7The list of contributions can be found here: https://github.com/siemens/codeface/commits?

author=matthid
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#f i l e , #s ta r t ,#end , #i f , #i fcond , #f e a t u r e l i s t
t e s t . c , 1 , 6 , #i f , A | |B, A;B
t e s t . c , 3 , 5 , #i f , C, C

Listing 4.2.: The result CSV file written by cppstats by using our test-code from Fig-
ure 4.1. Codeface doesn’t evaluate the #file, #if, #ifcond columns.

data and convert it to a simpler structure which splits the start- and end-lines into
separate items. The result looks similar to Table 4.1.

Line Type Features

1 Start A,B
3 Start C
5 End C
6 End A,B

Table 4.1.: The Table shows the simplified data extracted and converted from the gen-
erated cppstats CSV file from Figure 4.2.

Now we simply need to iterate over this list and construct the list of changed lines.
Codeface combines this list with the blame data, as already seen in Section 3.2.2. The
result is semantically equivalent with a lookup table which yields feature and commit
information for each line. An example can be found in Table 4.2.

Line User Features Commit

1 X A,B 1
2 Y A,B 2
3 X A,B,C 1
4 X A,B,C 1
5 Y A,B,C 2
6 X A,B 1

Table 4.2.: The Table shows the final data after running the blame analysis, returning
the commit and user information, and the feature detection with cppstats,
returning the feature information, for the code in Figure 4.1.

4.2. Feature File Analysis

Now that feature detection is available we can implement a new Feature File analysis
based on the Function analysis.
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High-Level Example

To explain the Feature File analysis we provide an example and show the processing step
by step. As in Subsection 3.2.2 the example should only provide the general idea and
doesn’t show the full process. To simplify the example some special cases, like removing
older commits, are not considered. Those details are explained later when the concrete
implementation is discussed.

For example, consider the source code files in Listing 4.3 as the currently analyzed
project at the time r2 (the end of our analysis window).

1 int main ( int arg ) {
2 #i f A | |B
3 doFunc ( ) ;
4 #i f C
5 otherFunc ( ) ;
6 #endif
7 return 0 ;
8 #endif
9 }

1 #i f C
2 int bar ( int b) {
3 a ( ) ;
4 #else
5 return 4 ;
6 }
7 #endif

Listing 4.3.: Two simple example source code files to explain the Feature File analysis.
The left is called main.c, while the right one is called bar.c.

Codeface will now run feature detection as explained in Section 4.1 and the VCS
blame analysis to gather line-specific information for the source code. Similar to the
result of the previous function-based example, shown in Table 3.1, we now get data
similar to Table 4.3. Codeface can now assign lines to specific features and to specific
commits and, for our example, we abstract from concrete times the same way we did in
Subsection 3.2.2.

Once feature and blame information is available, the collaboration is collected by
enumerating the time steps and considering all previous (in time) lines, working on the
same feature. Performing these steps for the example returns a set of collaborations for
each time frame. The results from our example can be found in Table 4.4.

Finally Codeface creates a collaboration network from the aggregated collaboration
data. The graph for the current example, a project with two code files, can be found in
Figure 4.4.

Implementation Details

As already mentioned in the introduction of Section 4, the Feature File analysis is quite
similar to the Function analysis. The main difference is that Codeface now groups
code lines by features instead of functions. We basically replace the doxygen/ctags-
based process with the process explained in Section 4.1. On this occasion we needed to
generalize some concepts about line information within Codeface, as a single line can
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Line Features User Time

1 - UserA 0
2 A,B UserA 1
3 A,B UserA 1
4 A,B,C UserB 2
5 A,B,C UserB 2
6 A,B,C UserB 2
7 A,B UserA 1
8 A,B UserA 1
9 - UserA 1

Line Features User Time

1 C UserC 3
2 C UserC 3
3 C UserC 3
4 C UserD 4
5 C UserD 4
6 C UserC 5
7 C UserC 5

Table 4.3.: Data available to Codeface after running the VCS blame analysis, parsing
cppstats output file and analysis the results. Note that the abstract time
used in this table is given by an implicit commit order used within Codeface
based on the commit time.

Time User Feature Collaborating User Weight

2 UserB A UserA 3 + 4 = 7
2 UserB B UserA 3 + 4 = 7
4 UserD C UserC 2 + 3 = 5
5 UserC C UserD 2 + 2 = 4

Table 4.4.: The Table shows the Feature File collaboration collection process by enumer-
ating time steps, and finding collaboration with earlier times. Weights are
given by the sum of the number of lines working on the same feature.

UserA

UserB

UserC

UserD

14

4

5

Figure 4.4.: A simple example Feature File-based network generated from the code in
Listing 4.3.
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belong to multiple features but not to multiple functions. For example grouping lines
by function is just a matter of enumerating all lines and tracking the current function
name. For features, we need to track a list of current features and properly handle cases
like a feature nested in itself. We can describe the complete process with the following
steps:

1. Get the blame analysis of the file.

2. Remove all lines after the current commit (c).

3. Remove all lines before the current commit range start commit r1.

4. Group code-blocks (a group of lines with the same committer) by feature name.

5. Calculate the collaboration for each group:

a) Separate the group into the blocks which belong to the current commit and
the rest.

b) Enumerate all commits (d) of the rest (commit d is always before commit c)

i. The collaboration strength is the sum of the blocks belonging to either
commit c or d.

ii. The direction of the collaboration is from committer of c to committer of
d.

Note that these are almost the same steps as in Section 3.2.2, but here code lines are
grouped by features in step 4. As mentioned above, the implementation could not be
re-used and had to be more generalized. An interesting side effect is that now a single
line-change can lead to multiple lines of collaboration if the line belongs to multiple
features, this is shown in the example as well.

4.3. Feature Analysis

High-Level Example

To explain the Feature analysis, we use the same example code as the Feature File
example and show the processing step by step. Again we start with the source code files
in Figure 4.3 to be the currently analyzed project at the time r2 (the end of our analysis
window). Codeface will now run feature detection as explained in Section 4.1 and the
VCS blame analysis to gather line specific information for the source code. Exactly like
in the Feature File case we now get data similar to Table 4.3. Therefore Codeface can
now again assign lines to specific features and to specific commits.

Once feature and blame information is available the collaboration can be collected by
enumerating the time steps and considering all previous (in time) lines, working on the
same feature. In contrast to the Feature File analysis, we now take cross-file changes
on the same feature into account. Performing these steps for the example returns a set
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of collaborations for each time frame. The results from our example can be found in
Table 4.5.

Time User Feature Collaborating User Weight

2 UserB A UserA 3 + 4 = 7
2 UserB B UserA 3 + 4 = 7
3 UserC C UserB 3 + 3 = 6
4 UserD C UserC 2 + 3 = 5
4 UserD C UserB 2 + 3 = 5
5 UserC C UserD 2 + 2 = 4
5 UserC C UserB 2 + 3 = 5

Table 4.5.: Feature collaboration collection process by enumerating time steps, and find-
ing collaboration with earlier times.

The collaboration network generated from this data can be found in Figure 4.5.

UserA

UserB

UserC

UserD

14

11 4

5

5

Figure 4.5.: A simple example Feature-based network generated from the code in Fig-
ure 4.3.

To limit the scope of this thesis, to ease the implementation and to improve perfor-
mance, we decided to approximate the shown solution by removing the timing aspect of
the analysis. Instead of collecting the time-based analysis we simply collect the number
of changes for each user, for our example the result can be extracted from Table 4.3 and
is shown in Table 4.6.

Now we define the collaboration on a single feature as the minimum number of lines two
people worked on the same feature. With this definition we can collect the collaboration
from Table 4.6 and get Table 4.7.
Codeface now can create a collaboration network from the collaboration data. The

resulting network is shown in Figure 4.6. As visualized in the network, we basically
merge all edges of the ”exact” method; this makes sense, as we basically just lifted the
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User Feature Lines

UserA A 4
UserA B 4
UserB A 3
UserB B 3
UserB C 3
UserC C 5
UserD C 2

Table 4.6.: Users and the features they are working on, collected from Table 4.3.

Feature User Collaborating User Weight

A UserA UserB min(3, 4) = 3
A UserB UserA min(4, 3) = 3
B UserA UserB min(3, 4) = 3
B UserB UserA min(4, 3) = 3
C UserB UserC min(3, 5) = 3
C UserC UserB min(5, 3) = 3
C UserB UserD min(3, 2) = 2
C UserD UserB min(2, 3) = 2
C UserC UserD min(5, 2) = 2
C UserD UserC min(2, 5) = 2

Table 4.7.: The Table shows the Feature collaboration collection process by processing
all users, and finding collaboration with other users. The data is collected
from Table 4.6.
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time restriction, which means the edge-weights are different and no longer directed.

UserA

UserB

UserC

UserD

66

3

2

3 2

2

2

Figure 4.6.: A simple example approximated Feature-based network generated from the
code in Figure 4.3.

Implementation Details

With the project-wide Feature analysis, we introduce another new analysis method to
Codeface. The example above shows how the Feature and Feature File methods are
related. The main goal is to track collaborations across files and only limited by feature
boundaries. To calculate a number representative for a collaboration on a feature, we
first need to define how we measure collaboration within this context. A natural choice
would be the line numbers two developers worked on a feature for a given time period.
Assume now FP to be the set of features and AP the set of authors of a given project P .
Next we let lines(t1,t2)(a, f) be number of changed lines of author a ∈ AP on the feature
f ∈ FP in the time between t1 and t2. So, given our analysis time period (r1, r2)
and setting lines = lines(r1,r2) we can calculate the collaboration between two authors
a1, a2 ∈ AP with:

Ca1,a2 =
∑
x∈FP

min (lines(a1, x), lines(a2, x))

The adjacency matrix C is the result of this calculation and represents the collabora-
tion within the project for a given time window. To easily calculate the sum, we first
need to calculate a mapping M : feature → (author → line number). From this map-
ping, we can directly calculate C by enumerating all features and all authors, because
lines(a, x) = M(x)(a).

To get the mapping M , we enumerate all files in the project, group feature lines (as
shown in Section 4.2) and collect all groups based on the author and the feature of the
group in a lookup table. This lookup table represents M .

After the calculation of C, Codeface will write the resulting matrix into a file and
continue with the cluster analysis as shown in Figure 3.3. At the same time C already
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Start

IN: File

Calculate
M : feature →

(author →
linenumber)

mapping

Git blame,
cppstats ouput

Process file

Next file?

Calculate Collaboration from M

OUT: Collaboration

Stop

yes

no

Figure 4.7.: Flowchart of the Feature collaboration analysis in Codeface. All files
are iterated to calculate the number of line changes of an author on any
feature. After calculation of this table M , we can calculate and output the
collaboration matrix as shown in Section 4.3.
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describes the developer network or the collaboration graph and is written into the Code-
face database as an edgelist by using the model of Figure 3.4. The complete process is
shown in Figure 4.7.
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5. Evaluation

In Sections 3 and 4, we discussed the implementation details of the Function collab-
oration analysis within Codeface (Section 3.2.2) and the new feature-based analysis
methods, namely Feature and Feature File (Sections 4.2 and 4.3). In this chapter, we
compare the three collaboration analyses, as all of them extract collaboration networks
directly from the source code of the VCS. Our focus is to get an initial idea of the va-
lidity of the newly generated data and how it compares to previous methods. First, we
look very briefly into the performance. Then, we take a closer look on the generated
collaboration graphs. Because Joblin et al. have already shown the accuracy of their
Function analysis [18], we compare our feature-based networks with the function-based
ones to get an overview on the real-world relevance of our networks.

5.1. Performance

To measure the impact of our changes we run a simple collaboration analysis on an Intel
Core i5-4200 CPU @ 1.6GHZ with 8 GB RAM and an SSD hard-drive. As operating
system an up-to-date Gentoo system running within VirtualBox and a Windows 8.1
host was used. The virtual machine itself had access to 4 GB RAM and 2 cores with a
limit of 100% (no limit). As the focus was on graph comparison (Section 5.2) we did not
measure the performance in detail, instead we did only a very minimal benchmark.

We used the command ./codeface/runCli.py run --recreate --profile-r -p

conf/benchmark.conf -c codeface.conf res/benchmark ../git-repos/ to execute
a simple OpenSSL analysis and used the same configuration for each analysis method.
All the benchmark configuration files can be found in Appendix C. We ran the OpenSSL
analysis command 5 times and took the average run-time of those 5 runs. This process
was then repeated 3 times and we took the lowest average value. The results are pre-
sented in Table 5.1.

The performance between the different methods is pretty equal with a deviation of
about 10% and every run took about 10 to 12 minutes. This clearly shows that our new
analysis doesn’t introduce any new performance impact.

This matches our experience with long-running Codeface analyses, which indicated
that there is no significant difference between the used methods. Nevertheless, we want
to note here that Codeface lacks an internal profiling system, which means it is difficult
to measure the run-time of a specific subsystem. Thus we can not exactly know where
the run-time is spent within Codeface.
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Analysis Method Time (best of 3)8

Function 665 sec

Feature 709 sec (+6.6%)

Feature File 611 sec (-8.1%)

measured with python -m timeit -n 5 -v " import (’os’).system(’codeface ...’)"

Table 5.1.: Benchmark results

5.2. Graph Comparison

To evaluate the generated feature-based networks we compared the Feature- and Fea-
ture File-based networks9 with the networks generated by using the Function analysis.
We use the same Jaccard-distance-based method Joblin et al. used to compare the
function-based (Function) against the tagging-based (Signed-Off /Committer2Author)
approach [13]. Additionally we extend this method to get an idea of how this distance
behaves when non-matching nodes and edges are considered as well. The result is a
number indicating the dissimilarity between the graphs.

In the following we describe the matching algorithms in detail: Consider two graphs
G1 = (V1, E1) and G2 = (V2, E2), which represent two collaboration networks. Now
every node represents a developer and every edge a collaboration between two developers.
Edges can have a weight, which is modeled by weightE : E 7→ N. To compare a matching
node v ∈ V1 and v ∈ V2, we set the following:

1. V = V1 ∩ V2 (matching nodes)

2. Ẽ1 = E1 ∩ (V × V ) (edges of first graph between matching nodes)

3. Ẽ2 = E2 ∩ (V × V ) (edges of second graph between matching nodes)

4. in(E, v) = {(a, v) ∈ E} (incoming edges)

5. out(E, v) = {(v, a) ∈ E} (outgoing edges)

6. matchingEdges(E1, E2, v) = |in(E2, v) ∩ in(E1, v)|+ |out(E2, v) ∩ out(E1, v)|

7. totalEdges(E1, E2, v) = |in(E2, v) ∪ in(E1, v)|+ |out(E2, v) ∪ out(E1, v)|

Further, we define

Diff node(G1, G2, v) =

{
matchingEdges(Ẽ1,Ẽ2,v)

totalEdges(Ẽ1,Ẽ2,v)
if totalEdges(Ẽ1, Ẽ2, v) > 0

0 otherwise

Diff node(G1, G2, v) describes the difference of the given vertex v between G1 and G2,
where 0 means they have the same edges and 1 means they are completely different
(have no matching edges).

9written as matrix files and saved in the Codeface database as list of edges
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Unmerged graph comparison

Now we can define the comparison method by numbering the matching vectors vi ∈ V
and setting

Diff (G1, G2) = (Diff node(G1, G2, v1), ...,Diff node(G1, G2, vn)) (5.1)

Diff (G1, G2) calculates a vector of comparison results of matching nodes between the
graphs G1 and G2. This is called the unmerged comparison method and it does not
consider edges which have an endpoint at a node appearing in only one of the graphs.

Merged graph comparison

To see what happens if all nodes are considered, we define a similar, merged, comparison
method:

Diff (G1, G2) = Diff (add(G1, V2), add(G2, V1)) (5.2)

where add(G, V̂ ) = (V ∪ V̂ , E).
This way, we add the missing nodes to the graph before performing the comparison.

Diff (G1, G2) will therefore always return a vector of comparisons for all nodes, instead of
only matching nodes (and without limiting the edges beforehand because V = V1 = V2).

Aggregation

To get a single aggregated number for the Diff and Diff comparison vectors, we explored
various possible solutions and terminology as defined in Table 5.2. Basically, we use the
simple average function and define a modified averageWeighted function that takes the
weight of the incoming and outgoing edges into account. Then, these functions are used
on the vectors generated by the merged and the unmerged comparison methods.
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Definition Name, Explanation

average(d1, ..., dn) =

n∑
i=1

di

n

The average calculates the
average of the given tuple as

returned by Diff .

averageWeighted(d1, ..., dn) =

n∑
i=1

di ∗ weight(vi)

n∑
i=1

weight(vi)

where
di = Diff node(G1, G2, vi) as in equation 5.1 and
Edges1 (vi) = in(E1, vi) ∪ out(E1, vi),
Edges2 (vi) = in(E2, vi) ∪ out(E2, vi) and

weight(vi) =
∑

e∈Edges1

weightE1
(e)+

∑
e∈Edges2

weightE2
(e)

The weighted average
calculates an average value
which takes the weight of

edges into account.

average(Diff (G1, G2))

The unmerged total vertex
diff calculates the average

difference between two
graphs.

average(Diff (G1, G2))

The (merged) total vertex diff
calculates the average
difference between two

graphs, by first merging the
graphs.

averageWeighted(Diff (G1, G2))

The unmerged weighted
vertex diff calculates the

average difference between
two graphs, by taking the
weight of the edges into

account.

Continued on next page
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Definition Explanation

averageWeighted(Diff (G1, G2))

The (merged) weighted vertex
diff calculates the average

difference between two
graphs, by taking the weight
of the edges into account and

merging the graphs.

Table 5.2.: Table of used network graph comparison methods.
.

The previously defined comparison methods, as well as the aggregation methods de-
fined in Table 5.2, are completely implemented in R and are part of the Codeface
repository10. However the comparison has to be started manually and the code used to
produce the results of this thesis can be found in Appendix A.

With these comparison methods and aggregations, we empirically check the following
hypotheses in a short empirical study:

H.1 Networks generated based on feature information show the system from another
perspective, but are still useful for the creation of collaboration networks. In detail,
we argue that if both methods agree on two nodes, they likely agree on the edges
between the nodes.

H.2 Feature File and Function analyses agree more than Feature and Function analyses
in comparison.

H.3 Feature File- and Function-based networks agree more if features (ifdefs) are used
more thoroughly. If features are not used widely enough Feature File should be
unable to detect any collaborations.

In the empirical study, we analyzed three 3-month windows of commits for the projects
Linux, LLVM, Clang, and BusyBox. An overview of the projects can be found in
Table 5.3 and the analyzed commit windows in Table 5.4.

We selected the projects, because they are representative for a specific set of projects.
Linux, for example, is known for its thorough use of features throughout the source code.
BusyBox on the other hand is representative for small projects with a limited number
of developers and activity. LLVM and Clang are representative for a minimal use of
features, but on the other hand have a very large code-base with lots of developers.
For each 3-month window, we calculated the three collaboration networks Function,
Feature file, and Feature. Then, we compared the Function collaboration network against
the Feature file and Feature networks.

10At the time of writing, the code was not fully merged, but it can be found as part of this pull
request: https://github.com/siemens/codeface/pull/17.
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Name Language Size (LOC)1 Feature Code2 Description

BusyBox C 189 170 22.6% stripped down unix tool box

Linux C 12 209 732 8.9% free and open source operating
system.

Clang C++ 730 198 6.4% C/C++/Objective-C
compiler and library.

LLVM C++ 793 847 6.5%

source and target independent
optimizer, generation support
for many CPUs. LLVM IR

(intermediate representation).

1measured with sloccount, Version 2.26
2measured with cppstats: normalized Feature LOC / normalized LOC

Table 5.3.: Analyzed projects

Additionally, we randomized both graphs to get an idea on how the comparison values
for the original networks compare to those random graphs. If we get the same results
with randomized graphs, we can directly follow that the graphs are already different
enough such that randomization doesn’t make them more different. To randomize the
graphs, we rewire edges, i.e., take two edges (v1, v2) ∈ E and (w1, w2) ∈ E and replace
them with the edges (v1, w2) and (w1, v2). We did this |E| times on both graphs and
calculated the same comparison metrics as for the non-rewired graphs. The results are
presented in the Figures 5.1, 5.2, 5.4, and 5.3.

5.3. Results

First, we noticed that one of the release ranges of BusyBox was too small for Codeface
to produce a network with any analysis method. The remaining two ranges are very small
as well, with only several nodes and edges. This means the networks are too small for
sophisticated further analysis like statistical approaches.

In general, we found that the feature-based networks are smaller than the function-
based ones. The exception is the Feature network in Linux which still has fewer nodes,
but is a lot more dense. The details can be found in Table 5.5.

There seems to be no information regarding the weight of the edges as we cannot
recognize any tendency regarding the weighted comparison methods. The weighted
average comparison seems to be on par with the simple average.

When analyzing Linux we found that the Feature file analysis yields developer net-
works that are more similar to File-based networks than the Feature-based networks.
Figure 5.2 shows this for example when comparing the bars (e) with (h) by the higher
similarity on (h) when using the unmerged comparison method. On the other hand
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IDs Project Start SHA1 End SHA1 is below

(a),(b) BusyBox 50e4cc29f56b5401579cddaf42d0404320b9efa7

(c),(d) BusyBox 539e2802ebd2680602de0a2c76069b7f555392d9

none end of above feac9b607dc68ea63992a46b3b8361f00f663cdc

(e),(f) Linux a8b33654b1e3b0c74d4a1fed041c9aae50b3c427

(g),(h) Linux e560623050693d2550d0bfb3b092e6398249176e

(i),(j) Linux 9797eb83c85d553dbc062b2953597fb1086649e9

none end of above 64aa90f26c06e1cb2aacfb98a7d0eccfbd6c1a91

(k),(l) Clang 3390ed3341a0848f37333d55bb34bcff4b9364c2

(m),(n) Clang 04f9ed5f8cf30195a85743d43e56d06f62b87ce2

(o),(p) Clang 5b0b279f796ecf91b10ba8b0ca89f9dbf802bae4

none end of above 33947ed22c57e11e7aa88e803bfdd664fe50412f

(q),(r) LLVM c413e016723673ca93d5700c72083194ac21b766

(s),(t) LLVM 99cd10fe111560b9921e731a89109972a149dfab

(u),(v) LLVM e1e1392e13ef3f5e97fbdd15ca8d60d63f69a862

none end of above 186332c0c98aab21acb91ae11055e44ec1acb95a

Table 5.4.: Analyzed commit-ranges and their exact SHA1 hashes. All ranges are con-
tinuous, therefore the table only shows the beginning of a range. The end
of the range is given by he start of the next range or a separate row. Be-
cause every range is used for two comparisons, Feature and Feature File with
Function, it is assigned two IDs which identify the comparison. The exact
comparison can be found in Table 5.5.
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when analyzing LLVM or Clang (Figure 5.4 and 5.3) the Feature analysis yield higher
similarity with the Function-based approach.

The results show that the merged networks are more different to each other than their
unmerged counterparts. This can be seen on all comparisons, for example, in Figure 5.3
(k) by comparing the first 4 bars (merged) with the last 4 (unmerged).

Additionally, we see that the corresponding randomized graph comparison always
yield a higher result, besides three minor exceptions (in (d) and (r)). This means the
randomized graphs are more different to each other.

Id Compared with
Vertex

Function
Vertex

Edges

Function
Edges

BusyBox

(a) Feature 5 4 4 4

(b) Feature File 5 4 4 2

(c) Feature 6 4 7 6

(d) Feature File 6 3 7 2

Linux

(e) Feature 610 242 1159 3178

(f) Feature File 610 110 1159 154

(g) Feature 851 367 2000 10994

(h) Feature File 851 199 2000 245

(i) Feature 760 309 1662 7152

(j) Feature File 760 161 1662 293

Clang

(k) Feature 103 28 1730 170

(l) Feature File 103 19 1730 19

(m) Feature 104 19 1360 54

(n) Feature File 104 13 1360 11

(o) Feature 98 21 1202 114

(p) Feature File 98 11 1202 7
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Id Compared with
Vertex

Function
Vertex

Edges

Function
Edges

LLVM

(q) Feature 128 27 1826 454

(r) Feature File 128 17 1826 16

(s) Feature 139 16 1491 170

(t) Feature File 139 10 1491 13

(u) Feature 146 27 1833 316

(v) Feature File 146 13 1833 8

Table 5.5.: The table shows the network sizes of the developer networks before perform-
ing the comparison. The Id specifies the project and the commit window
from Table 5.4. Therefore, every line specifies two graphs that are compared
later on. One graph is always given by the Function-based network and the
other one is specified in the Compared with column.

5.4. Interpretation

The main focus of this thesis is on assessing the feature-aware data and the integration
of the according changes into the Codeface infrastructure. Therefore, we provide only
general interpretations, whereas in-depth analysis of the data will be done in future
work.

The failure of one BusyBox range shows that we need a minimum number of regular
commits and changes within the VCS system to successfully create a developer network.
All three methods are similar in this regard, as all failed to provide a sophisticated
network.

From the network sizes, we conclude that the feature-based approaches cannot capture
all developers and relate them to each other. This is most likely due to the fact that our
feature-based methods do not relate developers which are only working in the shared
code base. Our feature-based methods only relate developers working on feature-specific
code. The density exception in the Linux analysis can most likely be explained with
some generic feature symbols which relate a lot of developers to each other. For example,
symbols like DEBUG or CONFIG PM are used frequently within the Linux code-base.

We are surprised by the LLVM analysis due the fact that the Feature-based networks
have a higher similarity to the Function-based networks than the Feature File-based
networks. We generally expected Feature File-based networks to be more similar as
their generation process is almost identical to the Function-based networks and it is still
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Figure 5.1.: Four comparisons of 3-month windows of commits for BusyBox. (a) and
(c) are two comparisons between the Function and the Feature networks,
while (b) and (c) compare the Function and the Feature File networks. (a)
and (b) as well as (c) and (d) are created from the same commit window. A
height of 0% means totally equal, while 100% means totally different. One
commit window of BusyBox does not contain enough commits to create a
developer network for any analysis method.
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Figure 5.2.: Six comparisons of 3-month windows of commits for Linux. The order of
the bars is the following: Two bars form the same range, so (e) and (f), (g)
and (h), and (i) and (j) are generated from the same commits respectively, as
seen in Table 5.3. The bars (e), (g), (i) show the comparison results between
the Function and Feature analysis, while (f), (h), (j) show the comparison
between the Function and the Feature File analysis. The names of the bars
match the comparison methods defined in Table 5.2. A height of 0% means
totally equals, while 100% means totally different.
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Figure 5.3.: Six comparisons of 3-month windows of commits for Clang. The order of
the bars is the following: Two bars form the same range, so (k) and (l), (m)
and (n), and (o) and (p) are generated from the same commits respectively,
as seen in Table 5.3. The bars (k), (m), (o) show the comparison results
between the Function and Feature analysis, while (l), (n), (p) show the
comparison between the Function and the Feature File analysis. The names
of the bars match the comparison methods defined in Table 5.2. A height
of 0% means totally equals, while 100% means totally different.
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Figure 5.4.: Six comparisons of 3-month windows of commits for LLVM. The order of
the bars is the following: Two bars form the same range, so (q) and (r), (s)
and (t), and (u) and (v) are generated from the same commits respectively,
as seen in Table 5.3. The bars (q), (s), (u) show the comparison results
between the Function and Feature analysis, while (r), (t), (v) show the
comparison between the Function and the Feature File analysis. The names
of the bars match the comparison methods defined in Table 5.2. A height
of 0% means totally equals, while 100% means totally different.
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file-based instead of project-wide. As the feature networks for LLVM are quite small
in comparison to the function-based network, it seems to be more important to detect
a larger number of connection (using the Function analysis) instead of using time and
file-restrictions. However, we still accept our hypothesis that Feature File is more similar
to Function, but we need to restrict the hypothesis to projects using a minimum amount
of features (ifdefs, in this case) (H.2).

We accept H.3 as we can see that for Linux, which uses feature code more thouroughly
with 8.9%, the Feature File similarity is higher than for LLVM, which uses less feature
code with 6.5%.

As we can generally see that unmerged comparisons yield higher similarity than merged
comparison and because random graphs always yield more different results we accept
our initial assumption, that feature-based networks show a different perspective of the
system and are useful to capture feature-specific collaborations (H.1). We can see this
exceptionally well in the Linux comparison (Figure 5.2) where all random graphs do
not yield any similarity.
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6. Conclusion

This thesis provided initial results from feature-based collaboration networks generated
by two new methods, implemented as part of Codeface within the scope of this thesis.
We have shown how Codeface works, how the new feature-based methods are imple-
mented, provided initial results and an initial interpretation of the feature-based results.
The main focus of this work was to provide a foundation for future research. If the new
feature-based networks emerge as being to dense to analyze (our feature-based Linux
analysis generated dense networks), there are still methods to limit the number of edges
by taking the ordering of commits and the direction of collaboration into account11. We
noticed that the feature-based networks do not seem to relate nearly as many developers
as the function-based networks do, so it should be considered to either relate developers
based on non-feature code (the shared code base) or to fall back to function-based col-
laboration if the generated networks are too dense by directly relating the shared code
base.

Another point that could be improved is the feature detection. Currently only ifdefs
are supported, but not many projects use ifdefs throughout the project. Finally, the
weight of a collaboration could be defined differently; currently, we use the minimum
number of changed lines of two developers as their collaboration-strength (in the feature-
based analysis), but we could use the sum or the maximum or a custom defined function
as well. This would possibly change our weight-based comparisons. Taking this number
in context to the size of the feature would also make sense.

After analyzing LLVM and Clang, the question arises12 how many features need to
be used within a project for the data to become useful. We possibly need to introduce
a relative feature usage scale which relates feature-specific to feature-shared code and
gives an idea of the usefulness of our feature-based methods on a given project. Future
work can possibly use this scale to evaluate which method is more accurate on a given
project or file. Of course, additionally, we need to repeat the comparisons for other and
more feature-using projects and relate the data or find general patterns.

We can also use this data for evolutionary analysis, for example an interesting question
is: How does the comparison between function- and feature-based collaboration networks
change over time or how do the networks themselves change?

11The Feature File and Function-based methods already take direction and ordering into account.
12Their rewired(=random) comparison was not reasonably different to our data.
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A. Comparing networks

loadArgs.R

library(Rcpp)

library(igraph)

library(BiRewire)

# Setup the environment

codeface.dir <- "/mnt/codeface/projects/codeface"

R.wd <- "/codeface/R/cluster"

setwd(paste(codeface.dir, R.wd, sep="/"))

# In case you run out of connections

#library(RMySQL)

#for (con in (dbListConnections(MySQL()))) dbDisconnect(con)

# Load Codeface

source("../db.r", chdir=T)

source("../query.r", chdir=T)

source("../config.r", chdir=T)

source("../utils.r", chdir=T)

source("community_metrics.r")

source("graph_comparison.r")

# establish database connection

con <- connect.db("../../../codeface.conf")$con

## Configure graph comparison ids

## Extract the range ids from the codeface database

compare.ranges <- data.frame(

original= c(172, 172, 173, 173, # BUSYBOX

208, 209, 210, 208, 209, 210, # LINUX

202, 202, 203, 203, 204, 204, # CLANG

214, 215, 216, 214, 215, 216),# LLVM

compare = c(175, 178, 176, 179, # BUSYBOX

235, 236, 237, 238, 239, 240, # LINUX

199, 205, 200, 206, 201, 207, # CLANG

217, 218, 219, 220, 221, 222))# LLVM

# Run the comparsion

compare.result <- run.batch.comparison(con, compare.ranges)

# View the data

View(compare.result$overview)

print(compare.result$vertexdata)
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# Get data of a specific comparison (here range-id 172 with range-id 175)

View(compare.result$vertexdata$’172/175’)

# Use regular R to plot/save/extract data from the "compare" data-frame
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B. Codeface configuration files

conf/busybox_proximity.conf

---

project: busybox_proximity

repo: busybox

description: busybox_proximity

mailinglists:

- name: gmane.comp.emulators.qemu

type: dev

source: gmane

revisions: []

rcs: []

tagging: proximity

conf/busybox_feature.conf

---

project: busybox_feature

repo: busybox

description: busybox_feature

mailinglists:

- name: gmane.comp.emulators.qemu

type: dev

source: gmane

revisions: []

rcs: []

tagging: feature

conf/busybox_feature_file.conf

---

project: busybox_feature_file

repo: busybox

description: busybox_feature_file

mailinglists:

- name: gmane.comp.emulators.qemu

type: dev

source: gmane

revisions: []
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rcs: []

tagging: feature_file

conf/linux_proximity.conf

---

project: linux_proximity

repo: linux

mailinglists:

- {name: gmane.comp.encryption.proximity.devel, type: dev, source: gmane}

description: linux proximity

revisions: []

rcs: []

tagging: proximity

conf/linux_feature.conf

---

project: linux_feature

repo: linux

mailinglists:

- {name: gmane.comp.encryption.feature.devel, type: dev, source: gmane}

description: linux feature

revisions: []

rcs: []

tagging: feature

conf/linux_feature_file.conf

---

project: linux_feature_file

repo: linux

mailinglists:

- {name: gmane.comp.encryption.feature_file.devel, type: dev, source: gmane}

description: linux feature_file

revisions: []

rcs: []

tagging: feature_file

conf/clang_proximity.conf

---

project: clang_proximity
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repo: clang

description: clang_proximity

mailinglists:

- name: gmane.comp.emulators.qemu

type: dev

source: gmane

revisions: []

rcs: []

tagging: proximity

conf/clang_feature.conf

---

project: clang_feature

repo: clang

description: clang_feature

mailinglists:

- name: gmane.comp.emulators.qemu

type: dev

source: gmane

revisions: []

rcs: []

tagging: feature

conf/clang_feature_file.conf

---

project: clang_feature_file

repo: clang

description: clang_feature_file

mailinglists:

- name: gmane.comp.emulators.qemu

type: dev

source: gmane

revisions: []

rcs: []

tagging: feature_file

conf/llvm_proximity.conf

---

project: llvm_proximity

repo: llvm

description: llvm_proximity

mailinglists:
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- name: gmane.comp.emulators.qemu

type: dev

source: gmane

revisions: []

rcs: []

tagging: proximity

conf/llvm_feature.conf

---

project: llvm_feature

repo: llvm

description: llvm_feature

mailinglists:

- name: gmane.comp.emulators.qemu

type: dev

source: gmane

revisions: []

rcs: []

tagging: feature

conf/llvm_feature_file.conf

---

project: llvm_feature_file

repo: llvm

description: llvm_feature_file

mailinglists:

- name: gmane.comp.emulators.qemu

type: dev

source: gmane

revisions: []

rcs: []

tagging: feature_file
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C. Codeface benchmark files

conf/benchmark.conf

---

project: benchmark

repo: openssl

mailinglists:

- {name: gmane.comp.encryption.openssl.devel, type: dev, source: gmane}

description: Benchmark test

revisions: [ ]

rcs: []

tagging: proximity

conf/benchmark_feature.conf

---

project: benchmark_feature

repo: openssl

mailinglists:

- {name: gmane.comp.encryption.openssl.devel, type: dev, source: gmane}

description: Benchmark test

revisions: [ ]

rcs: []

tagging: feature

conf/benchmark_feature_file.conf

---

project: benchmark_file

repo: openssl

mailinglists:

- {name: gmane.comp.encryption.openssl.devel, type: dev, source: gmane}

description: Benchmark test

revisions: [ ]

rcs: []

tagging: feature_file
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